

CONTROL OF COMPLEX SYSTEMS USING BAYESIAN NETWORKS AND GENETIC
ALGORITHM

Tshilidzi Marwala

Centre for Systems and Control Engineering
School of Electrical and Information Engineering

University of the Witwatersrand
Private Bag 3, Wits, 2050, South Africa

Abstract: A method based on Bayesian neural networks and genetic algorithm is proposed
to control the fermentation process. The relationship between input and output variables is
modelled using Bayesian neural network that is trained using hybrid Monte Carlo method.
A feedback loop based on genetic algorithm is used to change input variables so that the
output variables are as close to the desired target as possible without the loss of confidence
level on the prediction that the neural network gives. The proposed procedure is found to
reduce the distance between the desired target and measured outputs significantly.

Keywords: neural nets, control, feedback control, fermentation processes

1. INTRODUCTION

The control of engineering systems, such as
bioprocesses, has been the subject of research for
some time. A literature review on the subject can be
found in Schurgel (2001). This paper reviews recent
development of bioprocess engineering including
monitoring of product formation processes. It also
reviews advanced control of indirectly evaluated
process variables by means of state space estimation
using structured and hybrid models, expert systems
and pattern recognition for process optimization.
Control of engineering systems has been conducted
in several areas, such as aerospace engineering,
where it was applied to actively control pressure
oscillations in combustion chambers (Blonbou, et.
al., 2000). Genetic algorithms and fuzzy logic have
been successfully used to control load frequency in
PI controllers (Chang, et. al., 1998). Plant growth has
been optimally controlled using neural networks and
genetic algorithms (Morimoto and Hashimoto, 1996)
and fuzzy controller has been used for active
management of queuing problem (Fengyuan, et. al.,
2002).

The control procedure adopted in this paper consists
of two components of a feedback control system.
The first component is the forward component that

takes the inputs and computes the outputs. In many
complex problems, approximation methods, e.g.
neural networks or fuzzy logic, are used to achieve
this goal. The second component is the feedback loop
that is only activated if the predicted output is not
sufficiently close to the desired target. This is an
optimisation problem and any number of
optimisation tools such as gradient-descent methods
can be used (Pallaschke, 1997). However, in many
practical problems, which are generally complex, it is
sometimes impossible to calculate the gradients
required when gradient based optimisation methods
are used. Furthermore, the gradient based methods
are more susceptible to local optimum solutions
rather than global optimum solutions. As a result of
these limitations, over the past years evolutionary
techniques such as genetic algorithms have become
popular. This is due to the fact that they do not
require gradients and are able to identify globally
optimum solutions (Michalewicz and Dasgupta,
1997).

Thus far most control procedures that use neural
networks use networks that are trained by the
maximum-likelihood method (Bishop, 1995).
Maximum-likelihood method for training neural
networks is conducted by minimising the distance
between the network training target and the neural

network prediction. However, this procedure is only
effective if the networks are trained in the
conventional approach of training, validation and
testing, which is not ideal for on-line control
problems. Furthermore, the maximum-likelihood
method does not give confidence levels on the
predictions they give. As a result, the optimised input
parameters do not necessarily fall within the learned
input space and consequently, neural networks are
not confident of the outputs they give. In this paper,
an alternative neural network method, i.e. Bayesian
neural networks are used to predict the output given
the input data and be implemented in the context of
control systems. The output predicted by neural
networks also has confidence levels due to the
Bayesian formulation. If the output is not sufficiently
close to the target output, genetic algorithm is
activated to sample the combination of input
parameters that ensures that the predicted output is as
close to the desired target output as possible. This is
done such that the resulting predicted outputs retain
high confidence levels.

The framework, proposed in this paper, is tested to
optimally control the fermentation problem, which is
a highly complex process. The reason why
fermentation is chosen is because of its practical
importance in areas such as pharmaceutical and food
industries, which are vital for human life.

This paper makes the following contributions to the
scientific literature: (1) contribute to control
literature by tackling the control of highly complex
scenario with multiple variables that involve
biological organisms; (2) apply Bayesian statistics to
ensure that the control algorithm is confident of the
optimal solution it gives; (3) and apply genetic
algorithm and Bayesian neural networks for the
control of highly complex systems.

2. CONTROL FRAMEWORK

The control framework that is implemented in this
paper is shown in Figure 1. As mentioned in the
introduction, the first component of the framework is
a feed-forward neural network, which takes input
vector x given network weights w and predict output
vector y as follows:

()w,xFy =
The network weights in equation 1 are obtained
through the learning process, which is explained in
the next section. It must be borne in mind that the
network weights, in this paper, form a probability
distribution because we are employing Bayesian
statistics to train the networks. As a result, the output
vector also has a probability distribution from which
confidence levels can be drawn.

The second component of the control loop, shown in
Figure 1, is genetic algorithm optimiser. Its function
is to identify input parameters that minimise the
distance between predicted and desired target output
vectors while ensuring that confidence levels on the
prediction remain high. The objective function that is
used to achieve this goal is:

())CL1(tyerror 2

d −+−=�

In equation 2, y is the neural network output vector,
td is the desired target vector and CL is the
confidence level and it ranges linearly from 0 for no
confidence to 1 for full confidence. The CL is
calculated from the average standard deviations of all
the elements of the normalised output vector. The
average standard deviation of 0 gives CL of 1 while
an infinitely high standard deviation gives the CL of
a 0. The design variables, in equation 2, are the input
parameters to the neural networks. The second term,
in equation 2, ensures that the identified input
parameters that minimises the error fall within the
subset of the information that has been learned
before. This is crucial because neural networks only
operate within the framework of the information they
have learned before. The exclusion of CL tends to
give the input parameters that when forward-
propagated into the neural networks, they give
inaccurate results. The details on solving equation 2
using genetic algorithm are explained later in the
paper.

Fig. 1. Feedback control loop that uses Bayesian

neural networks and genetic algorithm

3. NEURAL NETWORKS

As explained in the previous section, the first
component of the control mechanism adopted in this
paper is neural networks. Neural networks are tools
that make probabilistic assumptions about data.
Learning algorithms are methods for finding
parameter values that look probable in the light of the
data. In this paper, neural network learning is used to
approximate the functional mapping between the
input vector x and output vector y. In this paper, the
multi-layer-perceptron (MLP), with a hyperbolic
tangent basis function in the hidden units and linear
basis functions in the output units, is used (Bishop,
1995). A schematic illustration of the MLP is shown
in Figure 2 and the relationship between the kth
output y and x may be may be written as follows
(Bishop, 1995):

��
�

�
��
�

�
+�
�

�
�
�

� += ��
==

)2(
0k

d

1i

)1(
0ji

)1(
jiinner

M

1j

)2(
kjouterk wwxwfwfy

Here, M is the number of hidden units, d is the
number of input units,)1(

jiw and)2(
jiw indicate weights

in the first and second layer, respectively, going from
input i to hidden unit j while)1(

0jw indicates the bias
for the hidden unit j.

Bayesian Neural
Networks

Genetic
Algorithm

Input

Output

Yes
End

No:
Optimis

(1)

(3)

(2)

Training the network essentially means estimating
the weight vector w that ensures that the output
vector y is as close to the training target vector as
possible. In this paper, Bayesian technique is applied
to estimate the weight vector and this method is able
to handle the lack of adequate amount of training
data.

Fig. 2. Feed-forward network having two layers of

adaptive weights.

The problem of identifying the weights (wi) is posed
in Bayesian form as follows (Neal, 1993):

)D(P
)w(P)w|D(P

)D|w(P =

where P(w) is the probability distribution function of
the weight-space in the absence of any data, also
known as the prior probability distribution function,
and D≡ (y1,…,yN) is a matrix containing the output
data. The quantity P(w|D) is the posterior probability
distribution after the data have been seen and P(D|w)
is the likelihood probability distribution function
while P(D) is the normalisation factor. Following the
rules of probability theory, the distribution of output
vector y may be written in the following form:

�= dw)D|w(p)w|y(p)D|y(p

For special cases, the distribution, in equation 5, may
be calculated directly, however, for many practical
problems it is estimated using Monte Carlo methods
(Neal, 1993; Takaishi, 2002). The integral in
equation 5 may, thus, be approximated as follows
(Neal, 1993):

�
−+

=

≅
1LQ

Ii
i

~

)w(F
L
1

y

Here
~

y is the estimated output, F is the neural
network model that gives the output whenever the
input is given, Q is the number of initial states that
are discarded in the hope of reaching a stationary
distribution represented by equation 5 and L is the
number of retained samples. In this paper, the hybrid
Monte Carlo method, which has been used quite
extensively to solve complex engineering problems
(Öcten, 2002), is used to estimate equation 5 through
equation 6. The details of this technique, which are
fairly abstract, are beyond the scope of this paper and
can be obtained in (Neal, 1993). This technique is a
form of a Markov chain with transition between

states achieved by alternating the ‘stochastic’ and
‘dynamic moves’. The ‘stochastic’ moves allow the
algorithm to explore states with different total
energy. The ‘dynamics’ moves are achieved by using
Hamiltonian dynamics (Neal, 1993) and allowing the
algorithm to explore states with the total energy
approximately constant. This is achieved by
following these steps: (1) Choose the step size (∆w)
and the number of steps (L) in the trajectory; (2)
From the initial weight vector (winitial), take¸ L steps
each of size ∆w, in the weight space in the direction
that result with higher posterior probability leading to
vector wcurrent [this direction is obtained by
determining the gradient of p(w|D)]; and (3) If the
posterior probability of the current sample is higher
than from the previous sample, then accept wcurrent.
Otherwise, select a random number ξ of uniform

distribution in the range [0, 1]. If ξ�
)D|w(p
)D|w(p

old

current

then wcurrent is accepted, otherwise it is rejected. This
process is called Metropolis et. al. algorithm (1953).

4. GENETIC ALGORITHM

In Figure 1 it is indicated that the other component of
the control process proposed in this paper is genetic
algorithm. Genetic algorithms were inspired by
Darwin’s theory of natural evolution. In this paper,
this natural optimisation method is used to optimise
the cost function shown in equation 2. The genetic
algorithm implemented in this paper uses a
population of binary-string chromosomes (Holland,
1975). Each of these strings is the discretised
representation of a point in the search space and,
therefore, has a fitness function given by the
objective function. On generating a new population,
three operators are performed: (1) crossover; (2)
mutation; (3) and reproduction.

The crossover operator mixes genetic information in
the population by cutting pairs of chromosomes at
random points along their length and exchanging
over the cut sections. This has a potential of joining
successful operators together. Simple crossover
technique (Goldberg, 1989) is used in this paper. For
simple crossover, one crossover point is selected,
binary string from beginning of chromosome to the
crossover point is copied from one parent, and the
rest is copied from the second parent. For example,
when 11001011 undergoes simple crossover with
11011111 it becomes 11001111.

The mutation operator picks a binary digit of the
chromosomes at random and inverts it. This has a
potential of introducing to the population new
information. In this paper, binary mutation is used
(Goldberg, 1989). When binary mutation is used, a
number written in binary form is chosen, and its
value is inverted. For an example: 11001011 may
become 11000011.

Reproduction takes successful chromosomes and
reproduces them in accordance to their fitness
functions. In this paper roulette reproduction method

x1 xd

z1 zM

y1 yc

x0

z0

Output Units

Input Units

Bias

Hidden Units

(4)

(5)

(6)

is used (Goldberg, 1989). Roulette method can be
viewed as allocating pie-shaped slices on a roulette
wheel to population members. Each slice is
proportional to the member's fitness. Selection of a
population member to be a parent can then be
regarded as a spin of the wheel. The winning
population member is the one in whose slice the
roulette spinner ends up. Even though this selection
method is random, each parent's chance of being
selected is directly proportional to its fitness. The
least fit members are therefore gradually driven out
of the population.

5. CASE STUDY

To validate the procedure proposed in this paper, the
proposed method is tested to control fermentation.
Fermentation is a process by which sugar is
transformed into alcohol using yeast as a catalyst.
There are many ways in which fermentation is
controlled and this includes pursuing the chemical
route (Johansson and Hahn-Härgedal, 2002). This
can be done by understanding the chemistry and
adding chemical additives to control fermentation.
The disadvantage of this procedure is that nowadays
there are health pressure groups that have made it
their missions for there not to be any added
chemicals to goods that are consumed by human
beings. The control of the fermentation process has
been studied by O’Connor et. al. (2002), who used
fuzzy-logic to control the fermentation process, with
an objective being to find interrelationships between
input and output variables. Their work was limited in
the following ways: (1) the input parameters were
not as comprehensive because fuzzy logic cannot
handle many input variables; (2) fuzzy logic is more
of an approximation method that neural networks
and therefore tends to be less accurate; (3) fuzzy
control scheme that was implemented is not able to
optimally control a complex process, such as
fermentation; (4) the control scheme proposed was
not practically implemented. The present study
addresses all these four issues mentioned above.

The device constructed, in this paper, to control the
fermentation process is called the Fermentation
Management System (FMS) and is illustrated in
Figure 3.

Fig. 3 Illustration of the fermentation management

system implemented to control fermentation.

The FMS has the following components:
1. Brand Chooser: Here there are two beer brands to
choose from.
2. Input Parameters: These are grouped into various

types. The first group is the fermentation vessel and
here the fermentation process occurs with yeast as a
catalyst. The second group is the characteristics of
the malt (which is obtained from barley through a
process called malting, which is beyond the scope
of this paper) from which fermentable sugars are
obtained. Parameters in this group cannot be
changed or modified and therefore do not form part
of parameters that can be controlled. The third
group is the mashtun where malt is heated through
various temperatures for defined durations. There
are some parameters in this group that can be
changed for control purposes and these are stands
temperatures and pressures. The fourth group is the
mills where malt is meshed to prepare it for
fermentation. In this paper, none of the parameters
from the mills are conveniently controllable. The
fifth group is the wort, which has the wort-
dissolved-oxygen that can be controlled. Wort is
filtered liquid sugar. The sixth group is the yeast
which is essential for making of alcohol and is a
single-cellular living organism with certain
measurable properties. Input parameters that are
controllable are two stands temperatures and their
respective durations as well as the wort dissolved
oxygen. These controllable parameters are
highlighted in white colour in Figure 3.

3. Predicted Output Parameters: These are quality
parameters that can be linked to the taste of the
beer. These are beer colour, pH, alcohol; residual
extract (RE), diacetyl and limit extract (LE).

4. Graphical display of predicted outputs: This
makes it easy for the user to visually inspect the
predicted output graphically as seen in Figure 3
with the y-axis named Prediction.

5. Output numerical display: This supports (4) and is
indicated in Figure 3 (see Output Prediction).

6. Difference between predicted outputs and targets:
This functionality allows the user to have some
idea on how far the predicted output is from the
desired target. The graph in the FMS can be used to
manually control the fermentation process through
trial-and-error. This is useful because brew-masters
are reluctant to completely surrender the decision-
making process to a computer program such as the
FMS.

7. Optimal controllable inputs: These inputs, shown
in white in Figure 3, can be controlled and are the
mashtun 1 and 2 stands temperatures and durations
as well as the amount of oxygen in the wort.

8. Confidence levels (CL): This indicates the
confidence the network has on a solution and
allows a user to take or reject a recommendation of
the FMS. Practical implementation of the FMS
shows the CL of 80% as a cut-off point.

9. Real measured outputs: Measured outputs which
are used to expand the training database.

The FMS infrastructure has the following pushdown
buttons:

1. Train Networks: This activates a program that
reads the database and trains the network and saves
the characteristics of the trained networks.

2. Prediction: This takes the input data as well as
trained networks’ characteristics and predict the
end of fermentation parameters.

3. Add Data: This takes measured output parameters
and the corresponding input parameters and add
them to the database.

4. Optimiser: This invokes the genetic optimiser to
identify mash temperatures and the amount of
dissolved oxygen that give predicted output that is
as close to the desired target as possible

5. Close: This functionality closes the FMS

In many control problems the control procedure,
such as the one proposed by Blonbou et. al. (2000) to
control combustion, time is critical and a control
algorithm has to be invoked within a fraction of a
second. For these types of applications Bayesian
networks are not suitable, due to the fact that they are
computationally intensive relative to other types of
neural networks. As a result, the advantage of
confidence levels that, is offered by Bayesian
networks is not exploited. However, for the present
application, of optimal control of fermentation, time
is not as critical because the fermentation process is a
slow process that takes 10 days to complete. The
window period in which the control process can be
activated is one day.

In this paper, the architecture of the neural network
constructed has 29 input parameters, 19 hidden units
and six output units. The details of the input and
output units are described at the beginning of this
paper (see equation 3) and the activation units in the
hidden layer is a hyperbolic tangent function while in
the output layer is a linear function. The number of
retained samples that form the posterior probability
indicated in equation 4 is 500, while the number of
discarded samples is 100. Some samples are
discarded, as a matter of good practice, because they
may not necessarily reflect the true posterior
probability (see equation 4) due to the fact that the
algorithm may not have reached sampling at the
regions of the desired distribution. Bayesian neural
network is used to estimate the predicted output,
through equation 6, and the confidence level (CL) is
obtained from the standard deviation of the
distribution of the output (see equation 5). The
standard deviation is normalised so that when
standard deviation is 0 then the confidence level is 1.
On training the neural networks 600 samples were
used.

The genetic algorithm is constructed using the
objective function in equation 2. The design
variables are the five controllable parameters which
are stands 1 and 2’s temperatures and durations in
the mashtun as well as the amount of dissolved
oxygen in the wort. The size of the population of
possible input parameters when implementing
genetic algorithm is 40. The input parameters to be
optimised are transformed from floating point to 16-
bit format using Gray coding (Michalewicz and

Dasgupta, 1997). The chromosomes (individuals in
the population) represented by binary numbers are
allowed to interact by using simple crossover
procedure as mentioned above. The probability of
crossover occurring is set to 0.6. This value was
determined by trial and error. Each chromosome
mutates at a probability of 0.0333. Again this value
was obtained through trial and error. The
chromosomes are transformed back to floating-point
parameters. The objective function, given by
equations 2, is then used to evaluate the fitness of
each population member. The population members
that are relatively fit are allowed to reproduce and the
weak members are gradually eliminated using
roulette wheel (Holland, 1975; Goldberg, 1989)
procedure. When the fitness of the population has
converged then the procedure is terminated.
Otherwise, the process of crossover, mutation and
reproduction is repeated. It was observed that
convergence was generally achieved after 20 genetic
algorithm generations.

The computational time taken to train the neural
network on a Pentium 3 with 200MHz of RAM was
5 computer processing unit (CPU) minutes, while the
time it took to determine the optimum input
parameters using genetic optimiser was 6 CPU
minutes. However, the time taken to predict the
output was 3 CPU seconds while the time taken to
add an additional sample to the database was 0.5
CPU second.

6. DISCUSSION

The Bayesian neural network prediction is shown in
Figure 4. This is an average prediction as obtained by
using equation 6. Figure 5 shows results of the
prediction versus actual that was taken to asses the
accuracy of the neural networks. These figures show
that indeed Bayesian neural networks offer accurate
prediction of the end of fermentation parameters.

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

Colour pH Alcohol RE Diacetyl LE

Actual

P r ediction

Fig. 4. Results of the output of the neural networks

Key: RE: residual extract; LE: limit extract

5 10 15 20 25
8

10

12

14

Co
lor

5 10 15 20 25
4.1

4.2

4.3

4.4

pH

5 10 15 20 25
6.5

7

7.5

8

8.5

Alc
oho

l

5 10 15 20 25

3.5

4

4.5

5

5.5

Re
sid

ual
 Ex

trac
t

5 10 15 20 25
0

20

40

60

Dia
cet

yl

5 10 15 20 25
0

1

2

3

Lim
it E

xtra
ct

Fig. 5. A snapshot of 29 samples showing the output

of the neural networks

The sample distribution of the output corresponding
to colour is shown in Figure 6. From this figure the
average output calculated through equation 6, is 0.35.
From this figure several characteristics of the output
may be derived including the standard deviation. It is
from this standard deviation that the confidence level
(CL) (see equation 2) is derived.

The sample graph showing the errors between the
prediction and the target and what was actually
achieved through the implementation of genetic
algorithm optimiser and the target is in Figure 7. The
error shown is the sum-of-square errors of the
normalised output and target.

The output are normalised between 0 and 1 and the
standard deviation that is used to calculate CL is
obtained from the normalised output. Each output
gives its own standard deviation and the CL is
calculated from the average standard deviations of all
the members of the output vector. The mean square
error (MSE) before the implementation of the
optimisation method is 0.71 while the achieved MSE
after optimisation is 0.41 (see Figure 7). The results
from Figure 7 show that the proposed control
framework is robust and improves the end of
fermentation results.

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48
0

20

40

60

80

100

120

Fre
qu

en
cy

Output Corresponding to Color

Fig. 6. Distribution of the output corresponding to

colour level.

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

Sample

Er
ror

 be
tw

ee
n t

arg
et

an
d m

ea
su

red
/pr

ed
ict

ed

−−−−− Initial prediction

 Achieved after optimisation

Fig. 7. A graph showing the error of the prediction

from the initial inputs and the error achieved
when the optimal inputs have been determined
from the optimisation process

7. CONCLUSION

In this paper a control procedure that uses Bayesian
neural networks and genetic algorithm is proposed to
solve complex problems. The Bayesian networks are
trained using the hybrid Monte Carlo method. The
objective function used in the genetic algorithm
optimiser minimises the error and maximises the
confidence levels of the prediction. When the
proposed procedure is implemented to control the
fermentation process, it is observed that the
procedure is able to give better results than was

predicted without the use of genetic algorithm
optimiser.

REFERENCES

Bishop, C.M. (1995). Neural Networks for Pattern

Recognition, Oxford University Press.
Blonbou, R, A. Laverdant, S. Zaleski and P.

Kuentzmann. (2000) Active adaptive combustion
control using neural networks. Combustion
Science and Technology, 156, 25-47.

Chang, S.S., W.H. Fu and F.S. Wen (1998). Load
frequency control using genetic-algorithm based
fuzzy gain scheduling of PI controllers.
Electronic Machines and Power Systems, 26, 39-
52.

Fengyuan, R., R. Yong and S. Xiuming (2002).
Design of a fuzzy controller for active queue
management, Computer Communications, 25,
No. 1, pp. 874-883, 2002.

Goldberg, D.E. (1989). Genetic algorithms in search,
optimization and machine learning, Addison-
Wesley, Reading, MA.

Holland, J. (1975). Adaptation in natural and
artificial systems, University of Michigan Press.

Johansson, B. and B. Hahn-Härgedal (2002). The
non-oxidative pentose phosphate pathway
controls the fermentation rate of xylulose but not
of xylose in Saccharomyces cerevisiae
TMB3001, FEMS Yeast Research, 2, 277-282.

Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth,
A.H. Teller and E. Teller (1953). Equations of
state calculations by fast computing machines.
Journal of Chemical Physics, 21, 1087-1092.

Michalewicz, Z., and D. Dasgupta, editors, (1997)
Evolutionary algorithms in engineering
applications, Springer-Verlag, New York.

Morimoto, T. and Y. Hashimoto (1996) Optimal
control of plant growth in hydroponics using
neural networks and genetic algorithms. In W.
Day, & P. C. Young (Eds.), Acta Horticulture
Process, Mathematics and control application in
agriculture and horticulture. 406, 433-440.

Neal, R.M. (1993). Probabilistic inference using
Markov chain Monte Carlo methods, University
of Toronto Technical Report CRG-TR-93-1,
Toronto, Canada.

O’Connor, B., C. Riverol, P. Kelleher, N. Plant, R.
Bevan, E. Hinchy, J. D’Arcy (2002). Integration
of fuzzy logic based control procedures in
brewing. Food Control, 13, 23-31.

Öcten, G. (2002). Random sampling from low-
discrepancy sequences: applications to option
pricing. Mathematical and Computer Modelling,
35, 1221-1234.

Pallaschke, D. (1997). Foundations of Mathematical
Optimization - Convex Analysis without
Linearity, Kluwer Academic Publishers, London.

Schurgel, K. (2001). Progress in monitoring,
modelling and control of bioprocesses during the
last 20 years, Journal of Biotechnology, 85, 149-
173.

Takaishi, T. (2002). Higher order hybrid Monte
Carlo at finite temperature. Physics Letters B,
540, 159-165.

