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Abstract  
 
Heterogeneous Ball Mills Systems (HBMS) are hybrid dynamic systems that are characterized by continuous and discrete behaviour. 
Their dynamics change with the wear and replenishment of spherical steel balls, raw material characteristics, or levels in the mill. 
The changes in the HBMS dynamics result in various regimes of control that form subsets of hybrid systems with increased 
operational costs and loss of efficiency. An appealing alternative is a combined Multiestimator and Genetic Algorithm Optimizer 
supervisory and multi-control system scheme, where different control laws are selected in each dynamic regime. We present a 
framework for multi-control and selection using combined Multiestimator and Genetic Algorithm Optimizer supervisory system, 
optimum performance states are derived for the normed-value of the HBMS's allowable unmodeled dynamics as well as for the 
system's ability for disturbance and error tracking. 
 
Keywords: Hybrid systems-discrete-and-continuous systems, switching controllers, Multiestimator, and Genetic 
Algorithm Optimizer supervisory system, multi-control system HBMS, Ball mill system, spherical steel balls, and 
grinding circuit 
 
1.1 Introduction  
 
Heterogeneous Ball Mills Systems (HBMS) are hybrid dynamic systems that are characterized by continuous and 
discrete behaviour. The dynamic behaviour of Heterogeneous Ball Mills Systems (HBMS) is dependent on the 
combination of spherical steel balls and raw material levels (Lepore, Wouwer, Vande and Remy, 2002), mill speed and 
ball mill filling (Liddel and Moys, 1988, Dong and Moys, 2001), classifier settings (Rogers, Hassibi and Yang, 1999) 
and the state of the lifters or shell liners. The wear effect of spherical steel balls holdup diminishes the efficiency of the 
comminution process and introduces a strong nonlinearity through specific rate of breakage. (Lepore, Wouwer, Vande, 
and Remy, 2002) This means there is an irreversible accumulation of material in the mill with a decrease of the 
production as the balls wear. (Basting and Provost, No Date). Hence, it is necessary to control and maintain certain 
normal working level of spherical steel balls and raw material in the grinding circuit.  
 
The control of Heterogeneous Ball Mill Systems (HBMS) remains a challenging problem and is the subject of 
considerable research; see (Basting and Provost, No Date, Buchholtz and Poschel in Wolf and Grassberger, (1997), 
Buchholtz, Freund, and Poschel, (2000), Jia and Li, (2000). HBMS have a number of autonomous trajectories that 
manifest themselves as the steel balls and shell liners wear or are replenished, and when the raw material changes its 
physical structure or properties. Generally, the control philosophy of HBMS optimizes the continuous element ignoring 
the discrete aspect of the behaviour, albeit with a reduced performance and productivity.  
 
In the sequel, we provide a relatively uncluttered analysis of the HBMS dynamical behavior, an integrator and a 
multi-controller supervised by an estimator based and genetic algorithm (GA) optimizer employing dwell time 
switching. The estimator system has been considered previously in Morse, (1996), Morse, (No Date). It has been 
analyzed in one form or another in Kulkarni and Ramadge, (1996), Borrelli, Morse, and Mosca, (1997), Morse, (1997), 
Narendra and Balakrishnan, (1997) and elsewhere under various assumptions. Morse, (1997) has shown that the 
system's supervisor can successfully orchestrate the switching of a sequence of candidate multi-controllers into 
feedback with the system's imprecisely modeled process like the HBMS, so as to cause the output of the process to 
approach and track a constant reference input despite norm bounded unmodeled dynamics, and constant process 
disturbances and to insure that none of the signals within the overall system can grow without bound in response to 
bounded disturbance, be they constant or not.  
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Multiple Lyapunov functions were proposed for stability analysis of hybrid systems in Peleties and DeCarlo, (1991), 
Laferriere (1994), and Branicky, (1994), a controller design methodology based on multiple Lyapunov functions is 
described Malmborg, (1996), and Petterson and Lennartson (1996) and Johansson and Rantzer, (1997) makes an 
important contribution towards the application of multiple functions for practical controller design. Burridge and Rizzi 
(1996) employed the idea of guiding the system through a sequence of equilibrium points in order to stabilize the 
controller and they go on to make an assumption that is common to most of these works that every subsystem has the 
same equilibrium point, which has to be stabilized. However, hybrid systems can exhibit much richer behavior that can 
be used in HBMS: the system might switch between multiple equilibrium sets before reaching the final state. It is also 
commonly assumed that the switches between the controllers are either explicitly controlled, or that the switching 
surfaces can be explicitly characterized.  
 
GA-based strategies Goldberg, (1984) Srinivans, (1994), and Zitzler (1999a, 199b), typically require some hundreds 
individuals for ensuring convergence. Moreover, when dealing with real-life optimization problems in control systems, 
the evaluation of each objective often requires a solution lasting several minutes Kim, (1998), Battistetti and others, 
(2000). This difficulty often makes the use of GA based strategies computationally unaffordable or highly unpractical 
from an industrial point of view.  
 
The objective of this paper is to derive estimator based supervisory results with an addition of genetic algorithm for 
optimization of systems with changing dynamics like the HBMS processes This will be done for a supervisory control 
system in which the number of candidate controllers is finite, and the switching between candidate controllers is 
constrained in a sense to be made precise in the sequel. These restrictions not only greatly simplify the analysis in 
comparison with that given by Morse, (1997), but also make it possible to derive reasonably explicit upper bounds for 
the process's allowable unmodeled dynamics as well as for the system's disturbance-to-tracking error gain. We use a 
combined multiestimator and genetic algorithm optimizer for supervisory and switching of controllers with an optimum 
landscape. 
 
Our work was influenced particularly by Pohleim and Hebner, (1996) they used genetic algorithm for optimal control 
of a greenhouse, Ursem, Krink, Jensen and Michalewicz (No Date) analyzed the modeling of control tasks in dynamic 
systems, Zefran and Burdick, (1998) designed the switching controllers for systems with changing dynamics. Sontag 
(1981), he used piecewise linear systems as underlying model for hybrid systems; Di Barba and others used, (2000). 
Multiobjective genetic algorithm for optimization of real time devices in electrical engineering Mehra, Smith, and 
Beard, (2000) used genetic algorithm for multi-spacecraft trajectory optimization. Laumanns, Laumanns, Laumanns, 
and Kitterer, (No Date) used evolutionary multiobjective integer programming for the design of adaptive cruise control 
system. 
 
The description of Heterogeneous Ball Mill Systems(HBMS) is made in Section 1. The  overall structure of 
multicontroller system, and family of realizations is described in Section 2. Section 3 gives the description of 
multiestimator based supervisory system. The genetic optimizer based system intended to support the multiestimator 
and its use on non-linear dynamics is described in Section 4. The main theorem characterizing the system's behavior is 
stated in Section 3. A simple, informal proof of the theorem is carried out in Section 4. The simulation process and 
results of the genetic algorithm Optimizer is given in Section 5. Section 6 is the discussion and evaluation of the use of 
genetic algorithm Optimizer on HBMS. The conclusion and future works are discussed in Section 7.  
 
2. The Overall Multicontroller System  
 
The aim of this section is to describe the structure of the supervisory control system to be considered in this paper. We 
begin with a description of the multicontroller system, and family of realizations,  
 
2.1 The HBMS Multicontroller System 
 
The overall problem of interest is to construct a supervisory system containing genetic algorithm optimizer used on 
processes like the HBMS. The HBMS process is presumed to admit the model of a non-linear system M whose transfer 
function from control input u(t) to measured output y(t) is a member of a known class of admissible transfer functions 
of the form  
 
 
 
where Mn is a finite set of indices, 
 
 

        ∆ 
vm =αm!βm (2)

 
Cm=∪ {vm+δ:δ≤ε m }          (1) 
  m∈Μ  
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is a prespecified, strictly proper, nominal transfer function, εm is a real non-negative number, δ is a proper stable 
transfer function whose poles all have real parts less than the negative of a prespecified stability margin λc>0, and 
•••• is the shifted infinity norm  
 

 

 

 
Prompted by the requirements of set-point control, it is assumed that the numerator of each transfer function in Cm is 
nonzero at s = 0. It is further assumed for each m∈Μ , that ββββm is monic and that ααααm and ββββm are coprime. All transfer 
functions in Cm are thus proper, but not necessarily stable rational functions. The specific model of the HBMS process 
to be controlled is shown in Figure 2. Here y(t) is the HBMS measured output and d is a disturbance. 
 
The control task is to optimize the grinding circuit as the spherical balls wear or are replenished. Each state of the 
spherical steel balls and raw material is a sub-manifold m in a particular dynamic regime, m⊆ Mn. Depending on the 
application; it might be necessary to achieve asymptotic optimization or maybe only convergence of the trajectories of 
the system to m. In both cases, the control task is complicated by the fact that it is not known in advance what 
manifolds the dynamical system will traverse. In particular, it is possible that the HBMS switches autonomously 
between different manifolds. Switching might also be unpredictable due to external disturbances such the change in 
raw material characteristics and the replenishment of steel balls.  
 
Let the HBMS be in a given dynamic state. A natural way to control HBMS is to design a controller for each of the 
dynamic states. Therefore, for each manifold m∈ M, we design a controller K: 
 
 
 
 
2.2 HBMS Family of Realizations 
 
The evolution of the discrete state also depends on the discrete input  such as the wear and replenishment rate of 
spherical steel balls. For each m∈  M, -λc is greater than the real parts of all of the closed loop poles of the feedback 
interconnection. It is presumed that a family of controllers is given, for each km∈ K. These controllers are required to be 
chosen so that for each m∈ Mn is detectable and the controller is stabilizable. Morse et al, 1996 describes many different 
ways to construct such realizations, once one has in hand an upper bound nm on the McMillan Degrees of the km Given 
the HBMS family of realizations, the sub-system to be supervised is thus of the form shown in Figure 2 
 
 
 
 
 
 
 
 

Fig: 2 Controller, the system, and the environment 
 
where vector x(t) represents the internal state of the mill at time t, v(t) is the environment state, u(t) denotes the control 
signal, and y(t) is the output from the mill, Mn is the nc dimensional state shared dynamical system called a 
multicontroller, v(t) is the input to the integrator, eT is the tracking error and σpcs is a piecewise constant switching. 
 
 
3 Combined Multiestimator and Genetic algorithm Optimizer Based Supervisory System 
 
The objective is to construct a combined multiestimator and genetic algorithm optimizer based supervisor, which is 
capable of generating piecewise constant switching signal σpcs that can be used: 

1. At all times of the HBMS dynamics changes.  
2. Provide global boundedness and multicontroller Mn selection in the face of disturbance.  
3. Setpoint regulation for the selected multicontroller Mn in the event that the disturbance signal is constant. 

 
 
 

•  

x(m)=Aσxm+bσeT            (5)  
 
v(m)=fσxm+gσeT            (6) 

 
•  
u(t)=v            (7) 
        ∆ 
eT =r-y(t)     (8)

     ∆ 
Ki ={kp: m∈Μ }          (4) 

 
δ= supδ( jω−λc )           (3) 

ω∈ ℜ

        σσσσpcs            v(t)       u(t)        x(t)       y(t) 
 

Reference      -              eT       y(t) 
         + 

   - 
Multicontroller 

Mn 
1/S HBMS
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3.1 Multiestimator Based Supervisor 
 
The multiestimator shown in Fig 3 is an nE-dimensional linear dynamic system. It generates yr using an identifier 
estimator of the form:  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3 Combined Multiestimator, Genetic Algorithm Supervisor and Multicontroller 

 
where        
 
 
 
 
and (AE, bE) is a parameter independent, (nm+1) dimensional SISO controllable pair with (λcI+AE) stable. Here nm is 
upper bound on the McMillan Degrees of vm. Morse, (1996) explains in detail how to construct a function m→cm so 
that for each m∈ M  
 
is a stabilizable realization of (1/svm) whose uncontrollable eigenvalues have real parts less than  
-λc. The cm enables the determination of estimation error xE; through the low value gate selector. The performance 
function generator ∑W processes the lowest of the two values yr and yga . 
 
 
4. Genetic Algorithm Based Supervisor Optimizer  
 
The genetic optimizer based system is intended to support the multiestimator with selecting the non-linear dynamics of 
the HBMS. The HBMS environment, system, and control are monitored in order to determine the optimum switching 
value yga. The objectives are defined to give a sufficient characterization of the optimizer-system’s selection behavior 
considering energy consumption and cost of comminution. All these objective functions are computed within the 
simulation. Thus, the resulting genetic optimization problem can be stated as follows (where the function values of f 
and g calculated by the simulator). 
 

 
 

 
 
 
 
 
For efficiency reasons, there is a constraint on the minimum energy consumption g(x). 
 

Minimize f(x) = f1(x)  Energy consumption     (11) 
f2(x)  Cost of comminution 

 
subject to g(x) ≥E min (minimum energy consumption) 

m ∈ M 

 •  
x(E)=  AE 0  xE+ bE  +  bE y + bE      (9) 
         0 AE          0       0         bE  

 AE 0 + bE cm +  0  y + bE ,cm 
0  AE      0          bE      bE  

        ∆ 
nE =2(nm+1) 

 
           Combined Multiestimator & GA Optimizer                   Reference  + 
y(t)   yr               
 
v(t)           eT       y(t) - 

      xE       W    σσσσpcs 
y(t) 
u(t)    yga                        
x(t)                 v(t) 
v(t)             y(t)   

                  
y(t)                   u(t) 

 
      Disturbances 

Multiestimator 

Genetic 
Algorithm 
Optimizer 

 
 
 

Low Value 
Gate 

Selector 

Performance 
Function 
Generator 

∑∑∑∑W

Switching 
Logic 
∑∑∑∑S

Multicontroller

1/S

HBMS
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4.1 Genetic Algorithm Optimizer Modeling Shell 
 
The genetic algorithm based supervisor optimizer shown in Fig 4 consists of a simulation shell that contains the current 
simulation step, the step length, the global time, an array for the performance measures, and three arrays for the control, 
system, and environment variables. Any variable is modeled by a data structure that contains its current value, a record 
of past values, the domain of the variable, and the parameters for drift, stochasticity, and periodicity. Moreover, the 
data structure contains a number of internal variables that are used for management of the genetic algorithm based 
supervisor optimizer variables (calculation of new state, resetting, etc.). 
 
 
 
 
 
 
 
 
 
 

Fig 4 Genetic Algorithm Based Supervisor Optimizer 
 
The HBMS Genetic Algorithm Based Supervisor Optimizer problem is modeled by the interactions between the 
controller, the system, and the surrounding environment. Here, vector x(t) represents the internal state of the mill at 
time t, v(t) is the environment state, u(t) denotes the control signal, and y(t) is the output from the mill. The change in 
HBMS state is usually modeled by a number of difference equations of the form: 
 
 
 
 
 
where xi is the ith system variable in x, ∆xi (• ) is the update function, t is the time, h is the length of a time-step, and u, 
x, and v are the control signals, the system state, and the environment state of previous time-steps (sometimes several 
steps in the past). Real systems are often described by a set of non-linear differential equations. In these cases, an 
approximation method, such as Runge-Kutta, is used as the update function ∆xi (• ) 
 
5. Genetic Algorithm Optimizer Simulation Process and Results  
 
The optimization was carried out using the Multiple Population Genetic Algorithm. The following operators and 
parameters were used:  
 
The chromosomes in the population are initialized and change with time. The peaks of the objective function are 
plotted as rings on the graph Figure 5. The objective function is both noisy and dynamic and dependent on the 
simulation process, therefore identifying the true optima at the centre is no use as it is not robust to the noise and 
dynamic behaviour.  
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Fig 5: objective function are plotted as rings on the graph 

 

 
xi (t + h) = xi(t) + ∆xi(u; x; v; t; h)         (12) 
 

 
 
 

y(t)     Genetic Algorithm Optimizer 
u(t) 

  yga 
x(t)              
v(t) 

Simulation 
Runge-Kutta

Data Structure and 
Processing Unit 

Genetic Based 
Performance 

Generator 
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The initial population converges rapidly to one or more clusters located on the rings. The sigma parameters converge 
quite quickly to a low value. The minimum value of σga has been increased to make the algorithm search continuously 
for a better operating point. After a while, the population forms a single cluster, often on the side of a ring, which is 
quite robust. The outer rings are more robust to the dynamic behaviour, but have a slightly lower mean objective value. 
Occasionally the population may diverge, increasing σga accordingly and settle on a new ring.  
 
Using a diploid chromosome and a dominance mechanism. The chromosome has redundant information and is able to 
`remember' where it has been in the past. This mutating the dominance bits at the end of the chromosome may cause 
the chromosome to represent a very good past position. The algorithm tends to produce more transient clusters than the 
single chromosome implementation.  

The essential goal of HBMS is that of identifying, in a completely automatic way, the system changes that affect 
behaviour and provide some prescribed performance for a given change, e.g. to minimize power consumption and 
materials cost or to maximize some output, taking into account physical constraints and geometrical bounds. Two 
objectives are defined to give a sufficient characterization of the HBMS behavior considering the efficiency and high 
throughput objective. The profit is equal to the income from the mill throughput and the minimum energy consumption. 
The penalty is enforced to avoid over flooding the mill and high-energy consumption. As stated earlier, direct control 
determines a solution’s performance by simulating a number of steps into the future. In practice, this includes 
simulating the mill performance, or rather, predicting the mill performance in the control horizon. The change in 
HBMS state is modeled by non-linear differential equations (11) and simulated to initialize the genetic optimizer. The 
fitness of a solution σga at time t is calculated as the profit achieved minus a penalty p: 

 
 
 

For control reasons there is a constraint on the minimum g (x)<0 and h (x)>0 between the estimator based supervisor 
and genetic algorithm optimizer. 

The genetic algorithm was employed with the objective function of equation 11 and 13 the system model equation 11. 
All the standard parameters of the model were used. Fig 6 shows the evolution of the objective value for the best set of 
selection parameters yga found during an optimization. 
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Fig. 6: Evolution of objective value for continuous system 

6. Discussion and Evaluation on Use of Genetic Algorithm Optimizer on HBMS 
 
The parallel use of multiestimator and genetic algorithm optimizer models to simulate real-world systems and select the 
best control for a given trajectory is the optimum solution for HBMS. The most important issue is the maximal allowed 
response time, which defines how fast the controller must react to ensure proper control. The main problem with 
genetic algorithm optimizer is that the calculation time for the response might be so long that the system state has 
changed substantially, thereby making the difference between the model and the real system too big. Hence, to 
overcome longtime delay in calculations, the multiestimator carries out the selecting task. This gives an opportunity of 
evolving controllers while the system is being controlled. If a better controller is evolved, it takes over the control of 
the real system. This technique allows the controller to adapt better to the HBMS and thereby compensate for long-term 
effects such as wear out of spherical steel balls or change in material properties. 

      t+Control Horizon 

Fit(xm; t) =∑ ∆x (profit(j) ) p(j)         (13) 
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7. Conclusions and Future Work  
 
In this paper, we investigated the use of genetic algorithm for switching and selecting the optimum controller for use in 
real-world problems. The main motivation was the need for realistic optimization of dynamic systems, like the HBMS. 
In this context, we suggested a novel combined multiestimator and genetic algorithm optimizer for switching and 
controller selection for systems with changing dynamics. We demonstrated the potential of our combined 
multiestimator and genetic algorithm supervisory system in an HBMS.  
 
It seems that the genetic algorithm optimizer introduced for switching and controller selection process are of value for 
modeling realistic dynamic problems. This conclusion is based on condition the following is taken into consideration:  
 

 First, the models need direct interactions between the system components and creation of artificial dynamic 
problems where the shape and dynamics of the fitness landscape are introduced with relation to real problem.  

 
 Second, even if the genetic algorithm optimizer could approximate the underlying dynamics by imitating the 

corresponding landscape one has to tune the system to allow the landscape of the real system to imitate it 
properly.  

 
 Third, the previously introduced behaviour needs to be allowed for the optimization algorithm to affect the 

shape of the fitness landscape.  
 
In our future work, we plan to concentrate on a few issues; these include: Real time control of the HBMS, (ii) 
investigation of discrete dynamic problems such as spherical steel balls replenishment, wear of shell liners on control 
and other mechanical failure problems. 
 
8. References  

 
1. Bastin G. and A. Provost, Feedback stabilisation with positive control of dissipative compartmental systems, 

Centre for Systems Engineering and Applied Mechanics (CESAME), Universite Catholique de Louvain, 
Belgium, (No Date) 

2. Buchholtz, Volkhard and Poschel Thorsten, Force Distribution and Comminution in Ball Mills In: D. E. Wolf, 
P. Grassberger (Eds.) \Friction, Arching, Contact Dynamics" World Scientific (Singapore, 1997) p. 265-273. 

3. Buchholtz, V., J.A. Freund, and T. Poschel Molecular dynamics of comminution in ball mills, Eur. Phys. J. B 
16, 169{182 (2000) THE EUROPEAN PHYSICAL JOURNAL B EDP Sciences Societ_a Italiana di Fisica 
Springer-Verlag 2000 Comments on the history and current state. IEEE Transactions on Evolutionary 
Computation 1(1), 3–17. 

4. Borrelli, D., A. S. Morse, and E. Mosca. Discrete time supervisory control of families of 2-degree of freedom 
linear set-point controllers. IEEE Transactions on Automatic Control, 1997. 

5. Branicky, M. S. ``Stability of switched and hybrid systems,'' in Proceedings of the 33rd IEEE Conference on 
Decision and Control, (Lake Buena Vista, FL), pp. 3498--3503, 1994. 

6. Burridge, R. R. Rizzi, A. A. and D. E. Koditschek, Sequential composition of dynamically dexterous robot 
behaviors.'' Preprint, 1996. 

7. Di Barba, P.: A Fast Evolutionary Method for Identifying Non-inferior Solutions in Multicriteria Shape 
Optimization of a Shielded Reactor. Presented at 6th Intl OIPE Workshop, September 25-27, 2000, Torino 
(Italy).  

8. Dong H. and Moys, M.H., Assessment of Discrete Element Method for one Ball Bouncing in a Grinding Mill, 
Int. J. Miner Process 65 (2002) 213-226, 17 August 2001. 

9. Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, USA 
1989 

10. Jia Lixin and Li Xinzhong, SELF-OPTIMIZATION COMBINED WITH FUZZY LOGIC CONTROL FOR 
BALL MILL, Xi0an Jiaotong University, Xi0an, Shaan Xi, 710049, P. R. China, IJCSS, Vol.1, No.2, 2000  

11. Johansson M. and A. Rantzer, ``On the computation of piecewise quadratic Lyapunov functions,'' in 
Proceedings of the 36th IEEE Conference on Decision and Control, (San Diego, CA), 1997 

12. Kim, M. K., Lee, C., Jung, H.: Multiobjective Optimal Design of Three-phase Induction Motor using 
Improved Evolution Strategy. IEEE Trans. Mag., vol. 34, no. 5, pp. 2980-2983, 1998  

13. Kulkarni S. R. and P. J. Ramadge. Model and controller selection policies based on output prediction errors. 
IEEE Transactions on Automatic Control, 41:1594--1604, 1996. 

14. Laumanns, Nando, Laumanns, Marco and Kitterer, Hartmut Germany, Evolutionary Multi-objective Integer 
Programming for the Design of Adaptive Cruise Control Systems, (No Date) 



 8

15. . Liddel, K.S. and M.H. Moys, The effect of mill speed and filling on the behaviour of load in a rotary 
grinding mill, J.S. Afr, Inst. Metall, vol. 88, no 2 Feb 1988, pp49-57. 

16. Laferriere, G. A. ``Discontinuous stabilizing feed back using partially defined Lyapunov functions,'' in 
Proceedings of the 33rd IEEE Conference on Decision and Control, (Orlando, FL), 1994.  

17. Lepore, R. Wouwer, A. Vande and M. Remy, MODELING AND PREDICTIVE CONTROL OF CEMENT 
GRINDING CIRCUITS Laboratoire d’Automatique, Faculté Polytechnique de Mons, 31 Boulevard Dolez, B-
7000 Mons, Belgium  IFAC15th Triennial World Congress, Barcelona, Spain, 2002  

18. Morse A. S., Supervisory control of families of linear set-point controllers - part Exact matching. IEEE 
Transactions on Automatic Control, pages 1413--1431,Oct 1996. 

19. Morse A. S., A Bound for Disturbance to – Tracking- error Gain of Supervised set Point Control System, 
Springer-Verlag, Berlin, No Date. 

20. Morse, A. S. Supervisory control of families of linear set-point controllers -part 2: Robustness. IEEE 
Transactions on Automatic Control, 42:1500--1515,Nov 1997. 

21. Malmborg, J. Bernhardsson, B. M. and K. J. š MagNet Version 6, Getting Started Guide, Infolytica 
Corporation, 1999. http://www.infolytica.com/ 

22. Mehra, S.L., Smith, R., and Beard, R. Multi-spacecraft Trajectory Optimisation and Control Using Genetic 
Algorithm Techniques, IEEE, 2000 

23. Narendra K. S. and J. Balakrishnan. Adaptive control using multiple models. IEEE Transactions on Automatic 
Control, pages 171 --187, fib 1997. 

24. Narendra K. S. and A. M. Annaswamy. Stable Adaptive Systems. Prentice Hall, 1989. 
25.  Peleties P. and R. DeCarlo, ``Asymptotic stability of m-switched systems using Lyapunov-like functions,'' in 

American Control Conf., (Boston), pp. 1679--1684, 1991. 
26. Pohleim, H, Genetic Algorithm Toolbox, Documentation Report, 1995]. 
27. Rogers, K.J., Hassibi. M. and M. Yang Advances in Fine Grinding & Mill System Application in the FGD 

Industry BR-1679 Presented to:EPRI-DOE-EPA Combined Utility Air Pollutant Symposium Control Atlanta, 
Georgia, U.S.A. August 16-20, 1999 

28. Sontag, E. D. ``Nonlinear regulation: The piecewise linear approach,'' IEEE Transactions on Automatic 
Control, vol. AC26, pp. 346--358, 1981.  

29. Srinivans, N., Deb, K.: Multiobjective Optimization using Non-dominated Sorting in Genetic Algorithms. E, 
vol. Comput. Vol. 2 no. 3, pp. 221-248, 1994. 

30. Ursem, Rasmus, K., Thiemo Krink, Mikkel T. Jensen and Zbigniew Michalewicz, Analysis and Modeling of 
Control Tasks in Dynamic Systems, IEEE, (No Date) 

31. Zefran M. Ÿ and J. W. Burdick, ``Stabilization of systems with changing dynamics,'' IEEE Transactions on 
Automatic Control, 1998.  

32. Zitzler, E. E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the 
Strength Pareto Approach. IEEE Trans. E, vol. Comp. Vol. 3 no. 4, pp. 257-271, 1999a 

33. Zitzler, Eckart Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, Thesis, 
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich, November 11, 
1999b 

 


