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Abstract: This paper deals with the problem of transforming an observable pair and a controllable
pair of matrices into a so-called Jordan observable pair and a Jordan controllable pair respectively. We
provide the necessary algorithms for deriving the similarity matrices that permit such transformation.
The Jordan canonical form is, in fact, an extension of the classical Brunowsky canonical form. We also
show how such canonical forms can be used as an alternative tool for designing observers and controllers

for linear time varying systems.
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1. INTRODUCTION

Consider the single input single output (SISO) linear
system

y=Hzx (1)

{ z=Fz+ Gu
where x € R™", u € R,y € R, and, F € R™*" G €
R™*1 and H € R'*™ are constant matrices. We assume
that the pairs (F,H) and (F,G) are observable and
controllable respectively. It is well-known that if the
pair of matrices (F, H) is observable, then (F,H) is
equivalent to the following pair of matrices

[, 1 0 0]
Y, 0 1
Ao: : 3
0 0 0 (2)
: 1
_wn o - 0 0_
C’z(l 0 0)

More precisely, there exists a nonsingular matrix P,
such that A, = P,FP;! and C = HP;!. The pair
(Ao, C) is known as the Brunowsky observable canoni-
cal pair (see eg. Chen, 1970). Note that the matrix 4,
can be further decomposed as A, = A + WC where

01 O 0
0 0 1 zl
AZ 0 0 0 and\IJZ .2 . (3)
1 (S
|00 -~~~ 0 0]

Similarly, if (F, G) is controllable, then (F,G) is equiv-
alent to the following pair of matrices

0 1 0 0
0
0O 0 1
A = . B: 4
& 0 .. 0 ) 0 ()
0 0 1 1
(pl (p2 e e (pn

More precisely, there exists a nonsingular matrix P,
such that A, = P.FP;! and B = P.G. The pair
(Ac, B) is known as the Brunowsky controllable canoni-
cal pair (see eg. Chen, 1970). Again, it can be observed
that the matrix A, can be decomposed as A. = A+ B®
where & = ( Y1 g ©n ) . Such canonical pairs
are extremely useful for the analysis and synthesis of
control systems. In effect, the Brunowsky canonical
forms provide a basis for controllers and observers de-
sign for linear time-invariant systems (Brogan, 1982).
On the other hand, it is well-known that any square
matrix is similar to a Jordan matrix (see eg. Gant-
macher, 1959, Horn, 1985). Notice that the matrix A
is nothing more than a Jordan block with its diagonal
entries being 0. Consequently, one might ask if it is
possible to extend the Brunowsky canonical form into
an extended Jordan canonical form where all the main
diagonal entries are not necessarily 0 and all the entries
on the diagonal just above the main diagonal are not
necessarily equal to 1.

In effect, in this paper, we consider the prob-
lem of transforming the observable pair (F,H) and
the controllable pair (F,G) into the following pairs



(Jo(ey, B),C) and (J.(c, B), B) respectively where
Twte 80 - 0
V2 a f :
Jo(a, B) = 0 a . 0| 6
g
Yn 0 0 «
a 0 0
0 1
Je(a, B) = o 0 (6)
0 .. 0 - 8
61 b2 0 bno1 bnta

and the matrices C' and B are as above; a and 3 are
coefficients that are chosen arbitrarily with the restric-
tion that 3 # 0. Note that the matrix J,(a, 3) and
J:(a, B) can be respectively decomposed as J,(a, ) =
Jop +TapC and Jo(o, B) = Jog + BAs where

a B8 0 -+ 0
oes i
Jap = S a0 | o Tas= :
g Y
0 -+ -+ 0 «
Ao = (61 6 - 6,). (7)

The matrix J,g is a Jordan block where all its diag-
onal entries are equal to « all the entries on the di-
agonal just above the main diagonal are equal to .
We shall call the pair (J,(a, 8),C) a Jordan observable
canonical pair, and, the pair (J.(a, 8), B) a Jordan con-
trollable canonical pair. It is important to note that
the pairs (J,(a, 8),C) and (J.(c, B), B) are indeed ob-
servable and controllable pairs respectively since their
corresponding observability and controllability matrices
are both of rank n for 8 # 0.

We shall show that any controllable and observable
pairs can be transformed into a Jordan controllable and
a Jordan observable pair, for arbitrary values of o and
0B # 0, respectively. Indeed, we give the construction of
a matrix M,(a, 8) and a matrix M,(«, 8) such that

Jo(a, B) = M,(e, B)FM; ' (o, ) and C = HM, *(a, B)
and,
Je(o, B) = Mo(a, B)F M (r, B) and B = M,(c, B)G.

The fact, that the coefficients o and 8 can be chosen
arbitrarily - with the only restriction that g # 0 - will
turn out to be particularly useful in the design of con-
trollers and observers. Indeed, we shall show that the

coefficients a and (8 can be used as controllers and ob-
servers gain tuning parameters.

An outline of the paper is as follows: In the next
section, some preliminary results on the equivalence of
controllable and observable systems are given. In Sec-
tion 3, the equivalence of an observable pair to the Jor-
dan observable canonical pair is discussed. In Section
4, the equivalence of an controllable pair to the Jordan
controllable canonical pair is demonstrated. In Section
5, the application of the Jordan controllable canonical
form to design a controller for linear time varying rank
controllable systems is considered. Section 6 deals with
the application of the Jordan canonical observable form
to design an observer for linear time varying rank ob-
servable systems. Finally, some conclusions are drawn.

2. SOME PRELIMINARIES
In this section, we are going to recall some preliminary
results, on the equivalence of controllable and observ-
able pairs, which are used in the subsequent sections.

Definition 1. Let (F,G) be a controllable pair. Then,
the pair (F,G) is said to be an equivalent controllable
pair of (F,Q) if there exists a nonsingular matrix P,
such that F = P.FP;! and G = P.G.

Definition 2. Let (F, H) be an observable pair. Then,
the pair (F, H) is said to be an equivalent observable
pair of (F, H) if there exists a nonsingular matrix P,
such that F = P,FP;! and H= HP; .

An important result on observable and controllable
equivalent pairs is given in the following lemmas:

Lemma 1 (Chen, 1970) Let (F,H) and (F,H), with
F,F € R™™ and H H € RY™™, be two equiva-
lent observable pairs. Then, the matriz P, such that

F = P,FP;! and H = HP;! is given by P, =
W;iY, where Y, = [HT,FTHT,...,(F~1THT]"
and W, = [AT,FTHT,... (F~1THT]".

Lemma 2 (Chen, 1970) Let (F,G) and (F,G), with
F,F € R™ and G,G € R™ !, be two equiva-
lent controllable pairs.  Then, the matriz P. such
that F = P.FP;! and G = P.G is given by P, =
Y. U ! where U, = [G,FG,...,F”_lG] and Y, =
G,FG, ..., F"G].

Remark 1. Note that, since F' and F are similar, the
characteristic polynomials of F' and F' are equal.

3. THE JORDAN OBSERVABLE CANONICAL FORM

The main objective of this section is to give the al-
gorithm for the construction of a similarity matrix
M,(a, B) such that the observable pair (F, H) of sys-
tem (1) is transformed into a Jordan observable pair
(Jo(a,; 8),C) = (Jap + TapC,C) as described in (5)



for any given value of o and § # 0. It is clear that
the column matrix I'yg will depend on the particular
choice of o and (. As a result, to construct the matrix
M,(a, B), we need to know what is the relationship be-
tween the components of the column matrix I',3 and
the parameters o and (. For this, we define the observ-
ability matrices corresponding to the pair (J,(a, ), C)
and (F, H) that is

C
CJo(a, B)
W(a,B) = :a (8)
CJ (e, B)
and
H
HF
T = : . 9)
HF:n—l

According to Lemma 1, it is obvious that the matrix
M,(a, B) is defined by

M, (a, ) = W™ (a, B)T. (10)

Lemma 3. Let (F,H) ; F € R™*", H € R'*"™ be an
observable pair and let (Jo(a, B), C) = (Jap+TapC, C)
be a Jordan observable canonical pair as described by
(5) for any given value of a and (B # 0 with Fa,@ =
(7> Yas +--» Yn )- Then, the matriz My(c, 3)
define by (10) satisfies

Jo(a, ) = Mo(cr, B)F M (e, B)and C = HM; " (ax, B)

(11)
if
k . .
> ,Criab T — Cha¥ (12)
i=1
where Ck = m and the 1, ’s are the coefficients
the characteristic equation of F

det[ My —F] = A" — ¢ A" — oo — gy A —1p,,.

In other words, the pair (F, H) is equivalent to the pair
(Jap +TagC, C) if the entries of T'ap are as above.

Proof
First of all, it is easy to check that the pair (Jap +
I'o3C,C) is observable whatever the vector I'pg. In

n n— 1
fact, det W(e,, 8) = B which is nonzero since

B8 # 0 and is 1ndependent of I'ng. Consequently,
W (w, B) is invertible which also justify the definition
of M,(a,8) = W~(a, 8)Y. As mentioned previously,
if (F, H) is equivalent to (J,(a, 8), C), then

det (A, — Jo(, B)] = det[A, — (Jog + TagC)]
= det [\, — F].

Note that Jos = al, + BA where A is as in (3). It can
be checked that for any I'ng € R”
det (A, — (BA+To3C)] =

)\n_,ylAn—llBO_ '—ﬂn_l’)’n-

Consequently, since AI, — Jo(a, 8) = (A—a)I, — (BA+

T'osC), we have

det [)\In _ Jo(a’ /8)] = 1S\n—llgo . /Bn_l’)/n
’ (13)
where A = A — a. Now,
det [)\In - F] = A" - d)l)‘n_l - d}n—l)‘ - d)n
A+a)" = A+ a)" ™t = =gy

Using the binomial expansion of (A 4 )" % one can
show that
j\n +r j\n—l +

det [\, — F] = A At (14)

where

Tk—Ckk chzkzw

By comparing (13) to (14), it is easy to see that
det [A,, — F] = det [AI,, — (Jag + T'apC)] if

Yo =~ 6k 1: k 1 Zd}zcﬁ " —Cka”| (15)

O
Remark 2

i) In the above lemma, the Brunowski canonical ob-
servable form consists of the particular case where
a =0 and § = 1. In fact, in such a case 7v;, = 9.

ii) The above result can also be applied to para-
metrised observable pairs as long as the rank
observability condition is obeyed. In partic-
ular, if we have a time dependent observable
pair (F(t),H(t)), then provided that its ob-

H(t)
H(t)F(t)
servability matrix T(t) = ) is

H(t)F"~(t)
of full rank for all t, we can use Lemma
3 to construct a matrix M,(a, 8,t) such that
(a /Bﬂt)_ (C\t ﬂa ) () o_l(aﬂﬂat) andC’:
H(t)M;(a,8,t) for any given value of o and

B#0.

4. THE JORDAN CONTROLLABLE CANONICAL FORM
In this section, we are going to give the construction of
a similarity matrix M.(«, ) such that the controllable
pair (F, Q) of system (1) is transformed into a Jordan
controllable pair (J:(a, ), B) = (Jag + BAug, B) as



described in (6) for any given value of o and 8 # 0.
As before, this amounts to deriving the relationship
between the components of A,g and the parameters
a and 8. According to Lemma 2 the similarity matrix
M,(a, B) is given by

Mc(e, 8) =Y (a, H)U (16)
where
Y(a,B) = [B, Je(a, B)B, ..

and

o JP N, B)B]  (17)

U=IG, FG, ..., F"'G]. (18)

Lemma 4. Let (F,G) ; F € R™", G € R™! be
a controllable pair and let (J.(o, ), B) = (Jag +
BAyp,B) be a Jordan controllable canonical pair as
described by (6) for any given value of a and B # 0
with Apg = ( 61 69 --- b, ) Then, the matric
M. (a, B) defined by (16) satisfies

Je(a, ) = Mc(a, B)FM; (e, B)and B = Mc(a, B)G

(19)
if
1 n—m-+1 ) . )
Oom = G Z Prip1Cpy e timm=
i=1
1

g CplanTmH (20)
where Ck = m and the @, ’s are the coefficients

the characteristic equation of F
det [\, — F] = A" = X"t — o — Ay — ;.

In other words, the pair (F,G) is equivalent to the pair
(Jap+BAyg, B) if the component of Ayp are as above.

Proof

First of all, it is easy to check that the pair (Jag +
BA,p,B) is controllable for every vector A,g =
(61 62 6n ). Indeed, the controllability ma-
trix Y (a, B) of the pair (J.(e, ), B), given by (17),

is lower triangular and det(Y («, 8)) = 3 5 There-
fore, the determinant of Y (a, 3) is independent of A,
and is nonzero since 8 # 0; that is, Y (e, ) is nonsin-
gular. This also ensures the invertibility of M.(a, 8);
that is M 1(a,8) = UY "1(a, B). Again, since Jo5 =
al, + BA, it can be checked that for any A,g € R"™

det [M,, — (BA + BAgg)] = A"—A""16,8°—..—§, 8",
Consequently,

det [\, — Jo(a, B)] = X" = N" 16,80 — - — 6,87
(21)

where A = A — .. Now,
det [\, —F] = X"=\""lp, —- = Apy — ¢
A+a)" == (A +a)p, — .

Using the binomial expansion of (A 4 )™ % one can
show that

det AL, — F] = X"+ X" b A b, (22)

where

k
ry = Cpa — Z‘Pn—z’-ﬁ-lczjak_i

i=1
As noted in Remark 1, if (F,G) is equivalent to
(Je(a, B), B) then, the characteristics equations of F'
and J.(a,3) are the same. By identifying the coef-
ficients of (22) with those of (21), we can see that
det [\I, — F| = det [AL, — J.(a, B)] if

k

Tk 1 —3 —4

pkt1 = ——p7 = =7 | D Pnit1Cnia¥ T = CFa¥ | .
/8 6 i=1

By a change of variable, we get

n—m+1

1 )
_ m—1_n+l—-m—i
6’”" - /Bn—m Z wn—i-l-lcn—i a
i=1
1
_ m—1_n—m+1
,Bn_m n a

O
Remark 3. The above results can also be applied
to parametrised controllable pairs as long as the rank
controllability condition is obeyed. In particular, if we
have a time dependent controllable pair (F(t), G(t)),
then, provided that its controllability matrix U(t) =
( G(t) F@)G(t) Fr=1(t)G(t) ) is of full rank
for all ¢, we can use Lemma 4 to construct a matrix
M., (a, B,t) such that

Jc(a,ﬂ,t) = Mc(a,ﬂ,t)F(t)Mc_l(a,ﬂ,t)
and B = M_.(a,B,t)G(t)

for any given value of @ and 8 # 0 and where
Je(a,B,t) = Jag + BAag(t) with Aaﬁ(t) =
[610) 6a(t) - 8(t) .

5. APPLICATION TO OBSERVER AND CONTROLLER
DESIGN

The previous results can be used to design observers
and controllers for particular classes of dynamical sys-
tems. The Jordan controllable form was used by Bu-
sawon (2000) to design a controller for a class of non-
linear systems. In this section, we are going to use the
previous results to design observers and controllers for
linear time-varying systems.



5.1.  Control design for linear time varying systems

Consider the single-input linear time varying system
z(t) = F(t)z(t) + G(t)u(t) (23)

where z € R", u € R. F(t) = (fi;(t)) and G(t) =
(9i;(t)) are time varying matrices of appropriate dimen-
sions. We make the following assumptions:

A1) The entries f;;(t) and g;;(t) of F(t) and G(t) are
continuously differentiable and bounded for all ¢t >

0.

A2) The controllability
(G1t) F)G()
full rank for all ¢ > 0.

matrix  U(t) =
FrY(t)G(t) ) is of

Due to Assumption A2) and Remark 3, one can
use the procedure of Lemma 4 to construct a matrix
M,(a, B,t) such that

Jc(aa 67 t) = Jaﬁ + BAaﬁ(t)
= M(a, B,)F(t)M; (e, B, 1)
and
B = Mo, B,t)G(2).
Consider the feedback law defined by

w(z(t)) = (—Aap(t) + BKe) Me(a, B, t)x(t)  (24)
where K, is a vector which is chosen such that the ma-

trix (A + BK,) is Hurwitz.

Theorem 1. Assume that system (23) satisfies as-
sumptions A1) and A2). Then, for all B > 0 there
exists &g > 0 such that for all a € [—ay,0] the origin
of the closed-loop system

z(t) = F(t)z(t) + G(t)u(z(t)) (25)

where u(z(t)) is as in (24), is globally asymptotically
stable.

Proof:
Consider closed-loop system (25) and let Z =
M. (a, B,t)z. Then,
i = M.FM'Z+ M.Gu(z) + M.z
= (Jap + BAup)T + Bu(z) + M. M 'Z
The arguments of the various time varying matrices

are dropped for the sake of convenience. Since u(z) =
—AnpT + BK. T, we have

i=aZ +B(A+BK.,)Z+ MM 'z

Now, since (A + BK,) is Hurwitz, there exists a sym-
metric positive definite matrix P such that:

(A+ BK.)TP+ P(A+ BK,) = —1I,.

Consider the following candidate Lyapunov function
V(z) = 2T Pz. Then,

Vv = 2i"Pz

207" P% + 2037 P(A + BK,)% + 22" PM .M %
20zT Pz — 77z + 22T PM M 'z
205" Pz — B |7|* + 21 | MM |13

INIA

where ¢; = ||P||. Now, by Assumption Al) there exist
a positive constant ¢y such || M, M| < ¢y o™ |8

for some constant m; and msy. Let « = —& with & > 0,
then

V < =28\ (P) |2]* — (8—206™ ™) ||z
where A\pin (P) is the smallest eigenvalue of P. Now, for
a fixed value of 8 > 0, it suffices to choose & such that

1
B —20&™F™ > 0 that is 0 < & < (07%) ™ &g
This completes the proof of Theorem 1.

5.2 Observer for linear time varying systems

Consider the single-output linear time varying system

z(t) = F(t)z(t) + G(t)u(t
o

where z = (a:l,...,xn)T €ER™ u e R™and y € R.
The matrices F(t) = (fi;(t)), G(t) = (9s;(t)) and
H(t) = (hij(t)) are time varying matrices of appropri-
ate dimensions. We make the following assumptions:

A3) The entries f;;(t), gi;(t) and h;;(t) of F(t),
G(t) and H(t) are continuously differentiable and
bounded for all ¢ > 0.

A4) The observability matrix
H(t)
H(t)F(t)
H(t)F"1(2)
of the pair (F(t), H(t)) is of full rank for all £ > 0.

Due to Assumption A4) and Remark 2, one can
use the procedure of Lemma 3 to construct a matrix
M,(a, B,t) such that

Jo(aa B; t) = Jaﬂ+raﬂ(t)0 = Mo(a,ﬂ,t)F(t)Mo_l(a,ﬂ, t)

and
C = H(t)M; (e, ,1).

Consider the system defined by

2 (1) = F(t)2(t) + G(t)u(t) + L(o, B,1)(y(1) — H (t)ifﬁ((;%;



where

L(aaﬁa t) = Mo_l(aaﬁ’ t) (Faﬂ(t) + IBKO)

with K, is a vector which is chosen such that the matrix
(A+ K,C) is Hurwitz.

Theorem 2. Assume that system (26) satisfies as-
sumptions A8) and A4). Then, for all B > 0 there exist
&1 > 0 such that for all o € [—&1,0] the system (27) is
an exponential observer for system (26).

Proof
Set e = z — Z, then the error dynamics is given by

é(t) = F(t)e(t) — L(a, B, 1) H(t)e(t)
Let e(t) = M,(a, B,t)e(t). Then,
é= M,FM;'e — M,LHM; ‘e + M,M; ‘e

The arguments of the various time varying matrices are
dropped for the sake of convenience. Therefore,

é= Jo(a, B,t)e — M,LCE + M,M; '€
Since L(a, B,t) = M; ! (Tap(t) + BK,), we have
é=ae+f(A—-K,C)e+ M,M; ‘e

Now, as (A — KC) is Hurwitz, there exists a symmetric
positive definite matrix S such that

(A-K,0)'S+S(A-K,C) = —I,

Consider the candidate Lyapunov function V (€) =
el Se. Then,

Ve = 27se

= 2ae'Se+28e"S (A—K,C)e+ 2T SM,M; ‘e

= 20e"Se—pele+ 28T SM,M; ‘e
< 208"5e - Blel* + 2018 | VoM | el

where I; = ||S||. Now, by Assumption A3) there exist
a positive constant I such ‘MOMO_IH < cg|al™ |8]™

for some constant n; and ny. Let a = —& with & > 0,
then

V < —28\win(S) [lel|* - (8 — 208™ ™) |le]?

where Apin(S) is the smallest eigenvalue of S. Now,
for a fixed 8 > 0, it suffices to choose & such that

1
B —20&™B™ > 0 that is 0 < & < (%)1 = &1
This completes the proof of Theorem 2.

6. CONCLUSIONS

In this paper, we have shown that any observable pair
and controllable pair of matrices can be transformed
into a so-called Jordan observable and a Jordan control-
lable pair respectively. We have provided algorithms for
deriving the similarity matrices that permit such trans-
formation. The Jordan canonical form is, in fact, an
extension of the Brunowsky canonical form. We have
also shown how such canonical form can be used to de-
sign observers and controllers for linear time varying
systems. We have treated only single input and single-
output systems. The extension of the Jordan canonical
form to multi-input and multi-output case can be done,
a priori, in similar fashion as in the SISO case and is
currently under investigation.
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