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Abstract: Control of a naturally unstable riderless bicycle around zero equilibrium 
speed is investigated. A simple parametric model is derived. It predicts basic known 
dynamics.  Jacobian linearization reveals that zero speed tilt stabilization is a MIMO 
non-minimum phase problem.  It is shown that at certain operating conditions, the 
bicycle can be controlled only through velocity or steering. Combining both loops to 
maintain vertical balance at all speeds is the challenge. Some control structures and 
ideas are explored.   
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1. INTRODUCTION 

 
The wider problem presented in this paper concerns 
stabilization and path tracking control of a naturally 
unstable nonlinear riderless bicycle, which belongs to a 
class of problems in single track mobile robots.  The 
inputs are steering and speed commands and the 
outputs are speed, tilt and heading angle.  Some issues 
on the physics of the problem are dealt by Jones (1970) 
and Fajans (2000). This paper looks at modelling and 
control structures for vertical balance around zero 
speed.  
 
Path tracking has so far met with limited success for 
speeds very close to zero, a problem which is 
discussed in the context of what is termed rocking.  
Getz (1994, 1995, 1999); Yavin (1998) derive 
linearizing state space feedback laws for point to point 
path tracking for higher speed.  Analysis and 
simulation around zero speed has shed more light on 
factors that limit performance and directed effort to 
synthesize simple controllers that meet the 
requirements of balance.  Till now most literature is  
confined to bicycles moving above a certain speed and 
often with complicated controllers. There are however 
severe hardware constraints that impose bandwidth 
limitations in the balancing problem. 
 
 

2. BICYCLE MODEL 
 

2.1 Convention and model concept  
 
Hand (1988) gives a historical summary of bicycle 
modelling. The models consider the bicycle as a 
system of interconnected masses, namely the rear 
wheel, frame / rider, steering fork and front wheel.  
These masses rotate in local co-ordinates which in turn 
can be referred to a fixed reference frame.  Co-ordinate 

transformation is required to refer the motions to the 
fixed inertial co-ordinates frame.    
 
Generally there are two methods used to develop the 
models, Newton’s conservation of momentum and the 
Lagrange method. The latter is often associated with 
loss of direct physical interpretation. On the other hand 
coordinate transformation makes Newton’s derivation 
very difficult in comparison to the Lagrange technique 
but it has merits of transparency.  In anticipation of 
future work the Newton’s principle of conservation of 
angular momentum is preferred over the Lagrange 
technique.    
 
For simplicity we use the approach of Åstrøm (1977) 
and Klein (1989) which focuses on the important 
effects of steering geometry and mass placement.  The 
result is a single mass inverted pendulum subject to 
kinematic constraints. Rider behaviour, frames 
rotational geometry and tire-road phenomena which 
complicate the model are ignored.  Vertical tilt θ, rear 
wheel/frame heading or yaw angle ψ , steering angle 
ϕ  and translation speed rv or fv  as illustrated in Fig. 
1. constitute the bicycle states.  
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Fig.1. Projections showing model concept and sign 

convention of rotation angels. 
 

 



     

The derived model agrees with the works of 
Shashikanth (2002), Fajans (2000), and Lowel and 
McKell (1982), Timoshenko and Young (1948) upon 
appropriate substitutions and harmonization of the sign 
convention used.   
 
 
2.2 Definitions: Model geometry 
 
A co-ordinate system defining the position of the 
bicycle at a given time is shown in Fig. 2. Generalized 
co-parameters required to describe the basic motions 
are also illustrated in Fig. 1 and 2.  The definitions are; 
 
xyz   Inertial co-ordinates on a horizontal plane.  
ψ  Yaw angle, angel between the x-axis and 
 the bicycle frame axis, degrees.  
β Direction of bicycle centre of gravity (CG) 
 velocity V with respect to AB , degrees. 

rf V,V  Bicycle front and rear wheels velocity, m/s.  
a,b  Distance between the rear wheel ground 
 contact point and CG, and  AB , m. 
M Total mass of bicycle and rider, kg. 
l Height of bicycle CG above ground, m. 
J    Bicycle moment of inertia about the z- 

 axis, 2kgm . 

or    Rear wheel contact point curvature  radius.  
r     Front wheel contact point curvature radius. 
 
 
2.3 Yaw motion dynamics of the bicycle 
 
The following assumptions are made (i) the bicycle’s 
wheels are rigid and subject to small tilt small steering 
angles,  (ii) wheels do not slide and (iii).  the only 
forces that are applied to the bicycle are the ‘body’ 
forces due to gravity and ground constraint forces 
preventing slipping. Trail torque which results from 
internal feedback at the front fork is set to zero.  

 
From Fig.2. velocities can be resolved leading to 
kinematic constraint equations in inertial co-ordinates. 
The rear/front wheel ground contact points and centre 
of gravity travel in concentric arcs when the bicycle is 
turning. This implies the three radii from these points 
are coincident at the centre of curvature O.  These radii 
are also orthogonal to the velocities V,Vr  and fV at 
respective points of tangency.  Expressions of these 
velocities in the fixed inertial frame with basis vectors 
( )kji ,,  are given in Eqs. (1).   
    

( ) ( ) ff ,sincos VjiV =+++= fff vψvψv ϕϕ

( ) ( ) VjiV =+++= vβψvβψv ,sincos  
rr ,sincos VjiV =+= rrr vψvψv  (1) 

 
With no wheels side slip at the rear and front contact 
points A ( )rr ,yx and B ( )ff ,yx  respectively then, 
 

0cossin =− ψyψx rr &&     (2) 

( ) ( ) 0cossin =+−+ ϕϕ ψyψx ff &&           (3) 
 
Eqs. (2) and (3) are the kinematic constraints.  From 
geometric expressions for fy& and fx& in Eq.(1) and 
manipulation of the constraint equations the first 
expression in  Eqs. (4) is obtained.  
        

        ϕtan
b
v

ψ r=&       β
a
v

ψ r tan=&  (4) 

 
Similarly defining co-ordinates of the centre of gravity 
and the non-slippage constraints the second expression 
in Eq. (4) is obtained.   These equations constitute the 
yaw model for the bicycle.   
 
 
2.4 Tilt Dynamics  
 
The tilt model describes how steering ϕ and bicycle 
velocity influence frame tilt.   Consider the inverted 
pendulum idealization, Fig. 3.   
When the bicycle travels in an arbitrary path it is tilted 
by the centripetal component normal to the 
frame βrMv cos12 − , the component of the translation 
force ⊥vM & ( ⊥v is the component of V    orthogonal to 

the bicycle frame, AB ) and the gravitational   
component θgM sin .  From Figs.2. and (3) if 1−r  is 
the curvature at CG then rψv &=  and   

βsinvv =⊥   or  ϕtanrv
b
av =⊥                (5) 

ϕtancos
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vMβ
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Fig.2. Kinematic plan projection in inertial frame. 
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Fig. 3. Inverted pendulum model of a bicycle. 



     

Summing torques by the principle of conservation of 
angular momentum about the tilt z-axis the model 
simplifies to Eq.(7). 
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The trigonometric expressions are shortened to 
θθ θθ ttan,ssin == and θθ ccos = . For nearly 

rectilinear motion θθ ≈s  1c ≈θ and ϕϕ ≈t . The 
constant speed model subject to these approximations 
is analysed by Åstrøm (1977).    
   
 

3. TILT DYNAMICS AROUND ZERO SPEED 
 
Skilled cyclists can ‘rock’ a bicycle around zero 
equilibrium speed without toppling.  By rocking is 
implied the act of pedalling forward and backward by 
incremental amounts while keeping the handlebars at 
some fixed steering angle.  In this state the bicycle has 
two inputs, speed command and steering, and two 
outputs, tilt angle and speed.  
 
The possibility of emulating zero speed tilt 
stabilization i.e. rocking is investigated through 
linearization and a nonlinear control approach.  
 
 
3.1 Rocking equilibrium conditions 
 
The starting point is the basic inverted pendulum 
model of Eq.(7). The inputs steering angle ϕ  and 
pedalling speed rv are provided by first order motor 
models ( )sPϕ  and ( )sPv  respectively in Eq. (8).  
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2m1m , vv are inputs, 1τ and 2τ  time constants, and 1c , 

2c  gains of the motors.  Defining the state x  and input 
u vectors, Eq. (9a) the model may be expressed as 

( )2141 ,,,..., uuxxfx =& expanded in Eq.(9b).   
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At equilibrium ( )T
reeeee ,,, vθθ ϕ&=x with inputs 

e1mv , e2mv , and ( ) 0f =eeee uuxx 2141 ,,,..., . The 
second equation in Eq.(9) leads to the equilibrium 
condition, 

0tantan e
2
ree =+ ϕv

b
1θg .                   (10) 

Does Eq. (9) have equilibrium, ex ?  From the sign 
convention ϕ  and θ  have opposing signs that 
renders Eq.(10) solvable. The point ( )0,,0 eϕ is a 
possible solution but it is an unstable equilibrium.   At 
this point steering angle is free to assume any angle 
between its limits ( )4,4 ππ− but cannot be zero. A 

bicycle at the state ( )0,,,0 ee ϕθ& is identified with the 
rocking mode.  Small signal linearization in the next 
section clarifies some basic factors contributing to 
instability during rocking.   
 
3.2 Rocking linearized model 
 
Schauder’s fixed-point theorem enables us to 
compensate a nonlinear system using an equivalent 
uncertain LTI model. Jacobian linearization yields a 
rather restrictive incremental model whereas the later 
can have a wider range of application. We have found 
both approaches complimentary as will be clear in the 
discussion of the two controllers beginning with the 
incremental linear model about ex  as expressed in 
Eqs.(11) and (12). 
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For ( )21e4e12 ,,,..., uuxxf  the differential coefficients 

redefined as 1,...,4i,i =a for ( )exJ  and 1,2i,' =ib  for 
( )euJ are easily evaluated from Eq. (9).  The 

coefficients of direct relevance in the discussion are 
given in Eqs. (13) to (15). Other Jacobian coefficients 
are specified in the Appendix. 
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It is convenient to express Eqs.(14) and (15) as 
'
2

1
222 c bτb −= , '

1
1

111 c bτb −= .   The incremental 
transfer function corresponding to Eq. (11) then 
reduces to Eq. (16) and has a block diagram 
representation of Fig.5. 
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Fig. 5. Small signal bicycle linear model. 
 
It is clear that this is a MISO or MIMO load sharing 
problem. Why is a stationary bicycle difficult to 
stabilize? Consider Eq. (16) both its zeros and gain 

1b approach zero as 0re →v .  In this state the steering 
loop is not available to aid tilt stabilization. We need 

02 ≠b  to control tilt via r∆ v  about 0re =v .  That is 
why ϕ  must be free and not zero. First turning the 
handle bar to an initial angle one can skilfully ‘rock’ a 
bicycle around average zero speed. Note that 1b and 

2b are either positive or negative depending on the 
signs of rev or eϕ . 
 
In the next section we explore the possibility of 
rocking controllers. Stabilizing tilt is a means to an 
end.  The real goal is tracking. Three control 
techniques were explored the standard PI, load sharing 
and a nonlinear scheme.  Simulations and analyses are 
presented for the independent load sharing strategy of 
Eitelberg (1999) and a nonlinear to linear mapping 
technique suggested by Eitelberg in a personal 
communication.  The later allows frequency domain 
design and works well with the original nonlinear 
plant.   
 

4. CONTROL STRUCTURE FOR  0=rev  
 
The load sharing scheme in Fig.5. has two supply 
plants ( )sPv  and ( )sPϕ  feeding a common load ( )sPθ . 

( )sPθ  has an unstable mode and possibly other non- 
minimum phase characteristics.  Fig.6 corresponds 
to 0re =v . The steering motor-load loop forward path 
transfer function given in Eq. (17) is denoted ( )sL1  and 
the speed motor-load forward path transfer function in 
Eq. (18) is denoted ( )sL2 . ( )sL1  is of no  present 
concern as it is decoupled from the load due to 1b being 
zero. This is depicted in Fig.6. by the mark ‘×’.  ( )sRv , 

( )sRϕ  and ( )sRϕ  are respective command inputs. 
 
4.1 Tilt control using velocity  
 
Around zero speed, tilt is controlled by velocity at a 
given steering. The challenge is how to tune the loop 
to attain vertical stability. With that done it is easier to 
undertake the path tracking problem. Design of the two 
controllers ( )sG θ2  and ( )sGv  as shown in Fig. 6 is 
outlined in the next section.   
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Fig. 6. Control of bicycle tilt using the velocity loop.  
 

 
In Fig.6, there is an inner loop denoted ( )sLv and an 
outer loop ( )sL θ2 .  These loop transfer functions are 
expressed as 
 
 ( ) vvv PGsL =  (17) 
 ( ) θθθvθθ PsbPPPGsL 22222 , ==  (18) 
 
The open loop transfer function of the inner loop on 
condition that the outer loop is closed is called the 
conditional open loop transfer function, ( )sLsv . 
 

 ( ) ( )
( )sL

sL
sL

θ

v
sv

21+
= .        (19) 

 
( )sG θ2 and ( )sGv are designed by frequency domain 

shaping of ( )sL θ2  and then ( )sLsv in that order.  This 
is the sequential loop closure technique. 
 
 
4.2 Design of tilt controller ( )sG θ2  
 
Nominal values for the model parameters are,    
 
M = 75 kg, a = 0.5 m, b = 1.2m     
l = 1.0 m,     g = 9.81 m/s2, c1= 0.08rad/V    
c2 = 0.7 ms-1/V     
 
Hence 3o ≈ω and 05.02 ±=b . If a fast speed motor is 
assumed then a zero dynamics model approximation 

( ) 2csPv =  may be used. Hence, 
 

 ( ) ( )( )3131
0.05

2 ss
ssP θ −+

−
=             (20) 

 
With ( ) ( )sωksG cθ += 12  and a choice 3c =ω , 
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2 s
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θL2 is closed loop stable provided 1c0.015 2 >k .  If 
3c15.0 2 =k  then 31=k and tilt controller is, 

 
 ( ) ( )ssG θ 31312 +=          (22) 

 
 

4.3 Velocity controller  ( )sGv   

For vG  we shape svL  (19). The outer loop is closed.   
With ( )sωkG cvvv += 1 , 6=cvω  and 

( )231 ckv −=  then,  

 
s
s

Lsv
31−

=   and                         (23) 

 ( ) ( ) ( )ssGv 61c3 1
2 +−= −                        (24) 

      
This technique elegantly illustrates the bandwidth 
limiting effect of unstable zeros and the non-minimum 
phase inherent in the system Åstrøm (1977) and 
Eitelberg (1999).  Overall system gain crossover 
frequency is limited to 1.5 rad/s.  The sensitivity plot in 
Fig.7 depicts the net effect of the proposed designs. By 
virtue of the predominant loop gain in respective 
frequency ranges note that velocity control dominates at 
low and tilt feedback at higher frequencies.  This is as 
expected since tilt dynamics are fastest in this problem. 
 
Simulation results in Fig. 8 indicate that tilt can be 
stabilized when 0re =v and 1.0r <∆v . The controllers 
developed for the incremental model fail when 

4.0r ≥∆v  as stability is lost.  The nonlinear strategy in 
the next section overcomes this problem but only partly 
for positive rv∆ .  A possible reason for the limitation is 
explained in Section 5.  
 
 
5. NON LINEAR TILT CONTROLLER FOR 0re >v  
 
The basic model in Eq.(7) may be expressed as, 
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θ
l
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+=&& , where                          (25) 
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d
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Eq. (25) is linear with respect to ( )tu for any ( )tvr  and 
linear with respect to ( )tu3 for any constant speed. 
Earlier parameter values result in transfer function, 
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By a similar frequency domain loop shaping technique 
we arrive at a controller in Eq. (27). Fig.9. illustrates the 
nonlinear control scheme as defined above.  Results of 
simulation are in Fig. 10. The system is stable 
for 0r >v .  This is because of the impracticality of 
canceling a right half plane pole-zero dipole which 
results when 0r <v .  From Eq.(27) the pole-zero dipole 
is at 3=s and avs er= . 
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Fig.7. Loop transfer plots for θθ 22 , LP and svL   
 

 
Fig. 8. Rocking simulation results for 0re =v , 

4re πϕ = . Speed reference is switched between 
+0.05 and –0.05 m/s. 
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Fig. 9. Eitelberg’s nonlinear tilt control scheme 
 

 
 
Fig. 10. Tilt response to speed step at t = 0 with 

nonlinear controller. 
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It seems plausible that a combination of the schemes 
above can yield a system which can be steered from 
rest to full speed. 
 
The controller gain is set at 2.3 in the two cases shown 
and the reference speed varied as shown in Fig.9.  
Performance degrades at very low speeds and low 
gains.  In such cases tilt increases to large values.  
High speed or high gain in the steering loop is 
required.  Though not presented here it has been shown 
that the conventional PI controller suffers from the 
critical speed limitation Shashikanth. et. al, (2002) for 
similar gains used.  
  

  
7. CONCLUSION 

 
Simulations done demonstrate that rocking can be used 
to maintain bicycle tilt balance at nearly zero forward 
speed.  The extent to which the controllers can be 
applied in practice depend on adaptation to dynamics 
not included in the models and effects of plant 
uncertainty.  It appears that a switched controller 
topology for guidance from rest to speed with tilt 
stability is workable. Thus tilt feedback via the 
pedalling loop suffice to keep the system stable at very 
low speeds and steering loop argumentation is required 
at higher speeds.  Further work is being undertaken to 
weigh these factors against technical instrumenting 
challenges that limit the bandwidth called for. There is 
need for further investigation as the model only admits 
positive re∆ v  otherwise it is unstable. 
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APPENDIX 
 

Some of the Jacobian coefficients in Eq. (12) are 
shown below. 
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