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Abstract: The problems of robust stability of linear discrete-time systems and
controller design via reflection coefficients of the system characteristic polynomial
is studied. It is shown, first, that reflection vectors are placed on the stability
boundary with specific roots placement depending on the reflection vector number
and the argument sign and, second, that the line segments between an arbitrary
Schur polynomial and its reflection vectors are Schur stable. Then a Schur stable
polytope is obtained around a given stable point and a robust controller is found by

quadratic programming approach.
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1. INTRODUCTION

The stability of linear dynamic systems is a
well studied topic of linear differential equa-
tions. However, some serious problems of so-
called robust stability arise when the parame-
ters of systems are not exactly known ( Acker-
mann,1993; Bhattacharyya et al.,1995) .That
is why several stability margins are defined
in different domains: gain and phase margin
in frequency domain, minimal distance from
imaginary axis in pole domain, stability radius
in system parameter domain.

For robust pole placement the domain of char-
acteristic polynomial coefficients is of interest
(Ackermann,1993). Here some kind of stability
margin can be obtained by the Kharitonov
theorem (Kharitonov,1978) or edge theorem
(Bartlett et al.,1988). Unfortunately, the first
one does not hold for discrete-time systems.

In this paper the reflection coefficient stabil-
ity criteria (Oppenheim et al.,1989) is used
to define a Schur stability margin in polyno-
mial coefficient space. The reflection vectors
of an n-th order system will be introduced as
2n specific points on the stability boundary.
The line segments between an arbitrary Schur
polynomial (a point in coeflicient space) and
its reflection vectors will be Schur stable. So
the minimal distance between a polynomial
and its reflection vectors can be used as some
kind of stability margin for linear discrete-time
systems.

The more serious task is: how to find a con-
vex subset of the stability region in system
parameters domain and how to design a robust
controller by reflection coefficient placement.

The paper is organized as follows. In section 2
we recall the stability condition via reflection
coefficients and introduce reflection vectors of



a monic Schur polynomial. Section 3 is devoted
to the roots of reflection vectors. In section 4
the problem of stable simplex building around
a given stable point is considered. At last, in
section 5, the robust controller design problem
will be solved by quadratic programming ap-
proach.

2. REFLECTION COEFFICIENTS OF
SCHUR POLYNOMIALS

A polynomial a(z) of degree n with real coeffi-
cientsa; €E R ,i=0,...,n

a(z) =apz" + ...+ a1z + ap

is said to be Schur if all its roots are placed
inside the unit circle. A linear discrete-time
dynamical system is stable if its characteristic
polynomial is Schur, i.e. if all its poles lie inside
the unit circle.

Besides the unit circle criterion some other
criterias are known for checking the stability
of a linear system. It is interesting to mention
that the well-known Jury’s stability test leads
precisely to the stability hypercube of reflec-
tion coefficients . In the following we use the
stability criterion via reflection coefficients.

Let us recall the recursive definition of reflec-
tion coefficients k; € R of a polynomial a(z)
(Oppenheim et al.,1989):

(i-1) _ a;z) + klag?']

e

a

Reflection coefficients are well-known in signal
processing and digital filters. They are called
also PARCOR coefficients and k-coefficients
(Makhoul,1975). The stability criterion via re-
flection coefficient is as follows (Oppenheim et
al.,1989).

Lemma 1. A polynomial a(z) will be Schur
stable if and only if its reflection coefficients
kit =1,...,n lie within the interval —1 < k; <
1.

A polynomial a(z) lies on the stability bound-
ary if some k; = £1,7 = 1,...,n. For monic

Schur polynomials, a,, = 1, there is a one-to-
one correspondence between the vectors a =
(ag, .oy an_1)" and k = (ki, ..., kn)".

The transformation from reflection coefficients
k; to polynomial coefficients a;—1,t =1, ...,n is
multilinear. For monic polynomials we obtain
from (1)-(3)

a; = a,,(r:i)i;
(i ks
i. .“ . 4)
) _ (=), 1) (
io=a ko

Lemma 2.(Nurges and Riistern,1999) Through
an arbitrary stable point a = [ap, a1, ..., an_1]
with reflection coefficients k? € (—1,1), i =
1,...,n you can put n stable line segments
A(£1) = conv{alk! = £1}

where conv{alk? = %1} denotes the convex
hull obtained by varying the reflection coeffi-
cient k{ between —1 and 1.

Now let us introduce the reflection vectors of a
monic polynomial a(z). They will be useful for
convex stable subsets building in polynomial
coefficient space.

Definition. Let us call the vectors
a'(1) = (alk; =1),i=1,..,n
positive reflection vectors and
a'(=1) = (alk; = =1),i=1,...,n
negative reflection vectors of a monic polyno-
mial a(z).

It means, reflection vectors are the extreme
points of the Schur stable line segment A¢(+1)
through the point a defined by Lemma 2. Due
to the definition and the Lemmas 1 and 2 the
following assertions hold:

1) every Schur polynomial has 2n reflection
vectors a’(1) and a’(—1),i=1,...,n;

2) all the reflection vectors lie on the stability
boundary (k; = £1);

3) all the innerpoints of the line segments
between reflection vectors a’(1) and a*(—1) are
Schur stable.

3. ROOTS OF REFLECTION VECTORS

In this section we study the reflection vectors
placement on the stability boundary.



Theorem 1. Reflection vectors a’(£1) , i =
1,...,n of a monic Schur polynomial a(z) have
the following ¢ roots r; , 7 = 1,..,i on the
stability boundary:

1) the positive reflection vector a’(1) has
e for i even r; =1,
Tro = -1
and (i —2)/2 pairs
of complex roots on the unit circle,
e for i odd r; =1,
and (i — 1)/2 pairs
of complex roots on the unit circle,
2) the negative reflection vector a‘(—1) has
e for i even i/2 pairs
of complex roots on the unit circle,
e for i odd r; = —1,
and (i — 1)/2 pairs
of complex roots on the unit circle.

The proof is given in (Nurges,2003).

Now we can introduce some kind of a stability
margin via reflection vectors of a Schur poly-
nomial.

Definition : Let us call the distance between a
Schur stable polynomial a(z) and its reflection
vector a’(+1) , i = 1,...,n the stability margin
in direction of i-th reflection vector or simply
i-th reflection vector margin and denote it by
di(£1)

d'(£1) = |a — a’(£1)].

Our aim is to find for an arbitrary stable point
a with k¢ < 1 ,4¢ = 1,..,n a point b on
the stability boundary with |k?| = £1 , i €
{1, ...,n} such that the distance between a and
b is minimal, i.e.

la —bl=p
where p is the stability radius of a .

It can be easily done by a simple search pro-
cedure in directions of reflection vectors taking
into account the background of reflection vec-
tors (according to Theorem 1). Indeed:

e the first positive reflection vector margin
dy (1) gives us the distance to the real
positive root boundary,

e the first negative reflection vector margin
dy(—1) gives us the distance to the real
negative root boundary,

e the second negative reflection vector mar-
gin da(—1) gives us the distance to the
complex root boundary,

e the second positive reflection vector mar-
gin dy(1) gives us the distance to the
two different real root boundary (r; = 1,
ro = —].),

e the third positive reflection vector margin
ds(1) gives us the distance to the real
positive and complex root boundary (r; =
1, r23 =« + Bi7a2 + 62 = 1)7

e the third negative reflection vector mar-
gin ds(—1) gives us the distance to the
real negative and complex root boundary
(rm=-1rs=axpid®+p>=1),

e the higher reflection vector margins give
the distance to the several complex root
boundaries.

4. STABLE SIMPLEX BUILDING BY
REFLECTION VECTORS OF
POLYNOMIALS

Two different approaches can be used for stable
simplex (or polytope) building via reflection
vectors:

1) choose such a stable point that the linear
cover of its reflection vectors is stable;

2) choose an arbitrary stable point and build
the stable simplex by n edges in directions
of reflection vectors of the starting point.

The possibility of the first approach is con-
firmed by the following lemma.

Lemma 3. The innerpoints of the polytope
S0 generated by reflection vectors of the origin
a=0
S% = conv{0'(%1), 5)
i=1,..,n}

are Schur stable.

The proof follows from the Cohn stability cri-
terion (Cohn,1922)

n—1
Z |az| <1
i=0

Lemma 3 (or Cohn stability condition) is quite
conservative. The question is: is it possible
to relax the initial condition of Lemma 3 in
some neighborhood of the origin? The answer
is given by the following proposition.

Theorem 2. Let k¢ € (—1,1) and k§ = ... =
k2 = 0. Then the innerpoints of the polytope



S® generated by the reflection vectors of the
point a

S® = conv{a’(£1),
are Schur stable.
The proof is given in (Nurges,2001).

Example 1. Let a(z) = 2% — 0.752%. The
reflection coefficients and reflection vectors of
the polynomial a(z) are following:

k=075 a'(1)=[1 -1 0 o0 |7,

ks =0, a?(1)=1 0 -1 0 ]9

kS =0, a®(1) =[1 —0.75 0.75 —1 1%,
al(-1)=[11 0 0]%

a?(-1)=[1-15 1 0],
a®(~1) =[1 —0.75 —0.75 1],
By Theorem 1 the polytope

St = cgnv{a%(l), at(-1),
az(l)a az(_l)a a3(1)7 CLB(—].)}

is stable.

Remark. Theorem 2 is less conservative than
Lemma 3 because for S® we have

n—1
Z |ai| < 3.
=0

Theorem 3. Let kf € (—1,1), k§ € (—1,1)
and k§ = ... = k = 0. Then the innerpoints
of the simplex S generated by the reflection
vectors of the point a

5% = conv{a,a’((—1)"1),
is Schur stable.
The proof is given in (Nurges,2001).

Example 2. Let a(z) = 23+0.2522—0.5z. The
reflection coefficients and reflection vectors of
the polynomial a(z) are following;:

k¢ =-05, da'(1)=[1-05 05 0 |7,
k¢ =05, a*(-1)=[1 1 1 o],
kS =0, a(1)=[10.75 -0.75 —1]7.

By Theorem 2 the simplex
S = conv{a,a'(1),a®(—1),a®(1)} is stable.

5. ROBUST CONTROLLER DESIGN

In the previous sections we have find some
convex approximations of the stability region
in shape of a simplex or a polytope. Now we
are looking for a robust controller such that
the closed-loop characteristic polynomial will
be placed in the preselected convex stability
region.

Consider a discrete-time linear SISO system.
Let the plant transfer function G(z) of dynamic
order m and the controller transfer function
C(z) of dynamic order r be given respectively
by

b(Z) . bm,lzm’l + -+ biz+ by

a(z) amz™ 4+ -+ a1z + ag

and

Oy = 1B _ @2+ ozt q

r(z) re2" 4+ riz4T0

It means that the closed loop characteristic
polynomial

f(2) = a(2)r(2) + b(2)q(2)

is of degree m + r.

Let us require that the polynomial f(z) will
be placed in a simplex S of coefficient space .
Without any restrictions we can assume that
am = rr = 1 and deal with monic polynomials.

Let us now introduce a stability measure p in
accordance with the simplex S

p=cle

where

c=S"'f
and S is the (m + r + 1)x(m + r + 1) matrix
of vertices of the target simplex. Obviously, for
monic polynomials

n+1

Zci =1
=1

where n = m + r. If all coefficients ¢; > 0
t=1,...,n+1 then the point f is placed inside
the simplex S.

It is easy to see that the minimum of p is
obtained by

1
n+1
Then the point f is placed in the center of the
simplex S.

€l =C = ...=Cpt1 =




Now we can formulate the following problem
of controller design : find a controller C(z)
such that the stability measure p is minimal.
In other words, we are looking for a con-
troller which places the closed loop character-
istic polynomial f(z) as close as possible to the
center of the target simplex S.

In matrix form we have

f=Ge (8)

where G is the plant Sylvester matrix

[ ao 0 ... O bp 0 ... O 1
a1 agp ... 0 bl bo 0
G = Ap—-1 QGp—2 ... Qo bn,1 bn,Q b()

0 Ap—1 ... Qa1 0 bn,1 bl

0 0 wapt 0 0 by

of dimensions (m + r + 1)x(2r + 1) and z is
the (2r + 1)-vector of controller parameters
T = [QO7 ey Qr—1,T05 -y TT‘]T'

The above controller design problem is equiv-
alent to the quadratic programming problem:
find x such that the minimum

minz” GT(SST) " Gz
xr
is obtained by the linear restrictions
S7'Gr >0
1's™ Gz =1

where 17 = [1...1] is an n vector.

Let us now consider the case where the plant
is subject to parameter uncertainty. We rep-
resent this by supposing that the given plant
transfer function coefficients ag, ..., ;1 and

bo,...,b;—1 are placed in a polytope P with
vertices p', ...,pM

P = conv{p’,j=1,..,M}.

Because the relations (8) are linear in plant
parameters we can claim that for an arbitrary
fixed controller z the vector f of closed loop
characteristic polynomial coefficients is placed
in a polytope F' with vertices f',..., fM

F =conv{f’,j=1,..,M}
where
fj = Pig

and P7 is a 2m x 2m matrix composed by the

vertex plant p/ = [a},...,a’ |, boj,...,b) ]

The problem of robust controller design can be
formulated as follows : find a controller x such
that all vertices f7 , j = 1,..., M are placed
inside the simplex S.

This problem can be solved by quadratic pro-
gramming task : find z which minimizes

J = mmina;T]BT(I @ (STYy " H(I ® S~ Pz
by linear restrictions
S™iPig >0,
115 tpig =1, j=1,..,M.

Here I is the unit matrix, ® denotes the Kro-
necker product and PT = [Pl ..., PL].

Example 3. Let us consider an uncertain
second order interval plant

G(z) = bo

22+ a1z + ag
with parameters in the intervals 1.85 < by <
1.95, —1.525 < a; < —1.475, a9 = 0.55 and we
are looking for a first order robust controller.

Let the nominal closed loop characteristic poly-
nomial be

f° =2%-0.2522 4+ 0.03z — 0.001.

Then by pole placement algorithm we can
easily find the controller

~0.7132z — 0.3624

Gl = =172
for the nominal plant
1.9
@) = F 757055

The simplex S will be chosen according to
considerations of section 3.

For the above example we obtain

0 0 0 -1
-0.2 -0.21 -0.6
04 —-081 0.6

1 1 1 1

By the use of MATLAB Optimization Toolbox
and above quadratic programming formulation
we have find the robust controller

1.0993z — 0.6403
O = =17

The minimum of the criterion J,,;, = 0.5467
indicates that the closed loop characteristic
polynomial is placed in the given simplex S
with considerable stability margin.

S =




6. CONCLUSIONS

A new kind of stability margin for discrete-time
systems is proposed in the system character-
istic polynomial coefficient space making use
of, so-called, reflection vectors of monic Schur
polynomials. It is shown, first, that reflection
vectors are placed on the stability boundary
with specific roots placement depending on the
reflection vector number and the argument sign
and, second, that the line segments between an
arbitrary Schur polynomial and its reflection
vectors are Schur stable.

To find a robust controller by quadratic pro-
gramming a stable simplex must be preselected
in the closed loop characteristic polynomials
coefficients space. A constructive procedure for
generating simplexis in polynomial coefficients
space is given. This procedure of stable simplex
(or polytope) building is quite straightforward
because you need to choose only one stable
point with some restrictions for reflection coef-
ficients of it. Then all the vertices of the simlex
will be generated by reflection vectors of this
point.

The procedure of controller design by quadratic
programming is based on a stability measure
p which indicates the placement of a (vertex)
point against the preselected stable simplex.
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