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Abstract— As a recursive algorithm, the Kalman filter (KF)
assumes the initial state distribution is known a priori, while
the initial distributions used in practice are commonly treated
as design parameters. In this paper, the influences of initial
states are analyzed under the KF framework. That is, we
address the questions about how the initial mean and variance
affect the subsequent estimates and how much performance is
sacrificed if incorrect values are used. Based upon this, two
initialization methods are developed for the cases with large
initial uncertainties. A drafting stochastic resonator model is
employed to verify the theoretical analysis result as well as the
proposed initialization approach.

I. INTRODUCTION

The Kalman filter (KF) is known as optimal for the linear
Gaussian state-space model in the minimum mean square
error (MMSE) sense [1]. Due to its global optimality and
simple recursive structure, a large number of methods are
proposed based on the KF to modify or extend the original
algorithm to suit certain “unsatisfied” conditions [2]–[5].

According to the Kalman filtering theory, the distribution
of initial state x0 is assumed to be known, and the filtering
procedure generally starts from the mean and variance of x0.
When applying the KF, however, we often face a dilemma
that the available information about p(x0) is insufficient or
even not available. Then, one will eventually end up with
a “guess” of the mean value and increasing the variance
artificially to accommodate for the uncertainties. Obviously,
this is not a systematic solution. When the initial guess
is poor, the errors will propagate through the recursions
as an undiscovered bias [6], resulting in some long lasting
transients. In the applications where state estimate is required
to be fast, this phenomenon is barely tolerated [7].

In view of this, some improved methods have been pro-
posed. For example, a strategy that using the conditional
mean value of state on the first measurement was suggested
in [6]. By tracking the inverse of error covariance, the infor-
mation filter can handel the cases with infinite covariance [1],
[8]. A neural network and a fuzzy logic were combined in
[9] to accelerate the convergence rate in presence of incorrect
initial guessing. In [10], a method based on state partitioning
was given, and the approach for a specific problem can be
found in [11]. Although these methods alleviate the poor
initialization problem to some extend, none of them really
eliminates the negative effect of incorrect initial guessing in
a rigorous way [12]. The main problem we believe is how
the initial states affect the estimate at each time step in the
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KF and how much performance is sacrificed with imprecise
initial guesses have not been well answered.

In this paper, an batch form of the KF is first derived, from
which we search for the answers for the above questions.
Then, two initialization strategies are given for the cases
with insufficient a priori knowledge about the initial state
distribution.

II. PRELIMINARIES AND PROBLEM
FORMULATION

Consider a general linear state-space model

xn = Fnxn−1 +Gnwn , (1)
yn = Hnxn + vn , (2)

where xn ∈ RK denotes the state vector at time n, yn ∈ RP

is the measurement vector, Gn ∈ RK×L is the noise matrix,
Fn ∈ RK×K and Hn ∈ RP×K denote the state transition
matrix and measurement matrix respectively, and wn ∈ RL

and vn ∈ RP are the white Gaussian noises with zero means
and known variances, i.e., wn ∼ N (0, Qn) and vn ∼
N (0, Rn). It is assumed that the initial state x0, system noise
wn, and measurement noise vn are mutually uncorrelated at
every time step. A control input un can be included in this
model, but it is considered as a known variable and can be
omitted for the sake of clarity. To have a stable KF, [Fn Hn]

is assumed to be uniformly detectable and [Fn HnQ
1/2
n ] is

uniformly stabilizable with Q
1/2
n (Q

1/2
n )T = Qn [8].

With model (1) and (2), the KF gives the optimal estimates
in the MMSE sense through the following three steps:

Initialization: With a known initial distribution p(x0) ∼
N (x̄0, P0), start the recursions from x̂0|0 = x̄0 and P0|0 =
P0.

Predication: Use the transition equation and the posterior
estimate associated with the previous state to compute the
prediction probability density function (pdf):

x̂n|n−1 = Fnx̂n−1|n−1 , (3)

Pn|n−1 = FnPn−1|n−1F
T
n +GnQnG

T
n , (4)

Updating: Update the prediction pdf with the likelihood:

x̂n|n = x̂n|n−1 +Kn(yn −Hnx̂n|n−1) , (5)
Pn|n = Pn|n−1 −KnHnPn|n−1 , (6)

Kn = Pn|n−1H
T
n

(
HnPn|n−1H

T
n +Rn

)−1
. (7)

Here, x̂n|n−1 and Pn|n−1 are the predicted (or prior)
state estimation and variance given observations up to and
including time n − 1, Kn is the Kalman gain, and x̂n|n
and Pn|n are the updated (or posterior) state estimation and
variance given observations up to and including time n.
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As can be seen, in KF, the mean x̄0 and variance P0 are
assumed to be known, which is intuitively demanding. In
most cases, the initialization values used are more likely to be
x̃0 = x̄0+e0 and P̃0 = P0+Pe, where e0 and Pe denote the
errors associated with mean x̄0 and variance P0 respectively.
The problem considered in this paper can now be formulated
as following. Given the models (1) and (2) with inaccurate
initial distribution p(x0) ∼ N (x̃0 , P̃0), we will address the
following two questions: (i) how the initial values x̄0 and P0

affect the subsequent estimates from analytical point of view
in the KF? (ii) what is the price (e.g. in terms of accuracy)
one has to pay for if we use x̃0 and P̃e instead of x̄0 and
P0? On the basis of these, we will develop an initialization
method to reduce the negative influence of e0 and Pe.

III. PROPAGATION OF INITIAL STATE

In order to show how x̄0 and P0 affect the estimate x̂n|n
from an analytical point of view, an extended state-space
model that represents the original model (1) and (2) on the
time interval [0 , n] is first constructed, as given below.

A. Extended State-Space Model

Using the forward-in-time solution illustrated in [13], the
state equations at different time steps can be listed as follows:

xn = Fnxn−1 +Gnwn ,

xn−1 = Fn−1xn−2 +Gn−1wn−1 ,
...

x1 = F1x0 +G1w1 .

Substituting xi with the equation associated with xi−1, where
i changes from 2 to n−1, and following a similar trick for the
measurement equation, it is not difficult to find the extended
state-space model on the time interval [0 , n] given by

Xn,1 = Fn,1x0 +Gn,1Wn,1 , (8)
Yn,1 = Hn,1x0 + Ln,1Wn,1 + Vn,1 , (9)

where Xn,1 ∈ RnK , Wn,1 ∈ RnL, Yn,1 ∈ RnP , and Vn,1 ∈
RnP are specified by Xn,1 = [xT

n , xT
n−1 , · · · , xT

1 ]
T , Wn,1 =

[wT
n , wT

n−1 , · · · , wT
1 ]

T , Yn,1 = [yTn , yTn−1 , · · · , yT1 ]T , and
Vn,1 = [vTn , vTn−1 , · · · , vT1 ]T . The extended system ma-
trices Fn,1 ∈ RnK×K , Gn,1 ∈ RnK×nL, Hn,1 ∈
RnP×K , and Ln,1 ∈ RnP×nL are given as Fn,1 =
[FT

n,1 ,FT
n−1,1 , · · · ,FT

1,1]
T , Hn,1 = H̄n,1Fn,1, and Ln,1 =

H̄n,1Gn,1 with

Gn,1 =
Gn FnGn−1 · · · Fn,3G2 Fn,2G1

0 Gn−1 · · · Fn−1,3G2 Fn−1,2G1

...
...

. . .
...

...
0 0 · · · G2 F2,2G1

0 0 · · · 0 G1

 ,

with H̄n,1 = diag
(
Hn ,Hn−1 , · · · ,H1

)
and Fj,i =

FjFj−1 · · ·Fi, i 6 j.
Note that the dimensions of all the vectors and matrices

in (8) and (9) grow linearly with time n.

B. Batch Optimal Estimates

With the extended state-space model available, we illus-
trate the effect of initial states x̄0 and P0 used in the KF
next.

Similar to the least square estimate that handles all the
observations at one time, we construct a linear estimator
of xn using the extended measurement vector Yn,1 and the
initial mean x̄0 by

x̂n|n = Kn,1Yn,1 + Sn,1x̄0 , (10)

where the gains Kn,1 and Sn,1 are determined with some
predefined cost functions. Note that we use the error-free
value x̄0 instead of x̃0 here in order to be consistent with
the KF (3)-(7). The case of x̃0 will be demonstrated latter.

According to the orthogonality principle [13], the estimate
(10) achieves the optimality in the MMSE sense if and only
if

E
{
xn − x̂n|n

}
= 0 , (11)

E
{(

xn − x̂n|n
)
Y T
n,1

}
= 0 . (12)

From (8), the state xn can be rewritten as

xn = Fn,1x0 + Ḡn,1Wn,1 , (13)

where Ḡn,1 , [Gn FnGn−1 · · · Fn,3 Fn,2G2] is the first
row vector of Gn,1. Substituting (13) and (10) into the first
condition (11), and taking the expectation, we have

Fn,1E{x0} = Kn,1Hn,1E{x0}+ Sn,1x̄0

= (Kn,1Hn,1 + Sn,1)E{x0} ,

where the facts that E{Wn,1} = 0, E{Vn,1} = 0, and x̄0 =
E{x0} are used. Since E{x0} cannot always be zero, one
consequently gets Sn,1 = Fn,1 −Kn,1Hn,1, which enables
us to represent (10) equivalently by

x̂n|n = Kn,1Yn,1 + (Fn,1 −Kn,1Hn,1)x̄0 . (14)

Now, we consider the second condition (12) that implies
the estimation error xn − x̂n|n should be orthogonal to the
extended measurement vector Yn,1. Replacing xn with (13),
x̂n|n with (14), and Yn,1 with (9), yields

E
{[

Fn,1x0 + Ḡn,1Wn,1 −Kn,1Yn,1 − Sn,1x̄0

]
×
[
Hn,1x0 + Ln,1Wn,1 + Vn,1

]T}
= 0 ,

which further leads to

0 = E
{[
(Kn,1Hn,1 −Fn,1)(x0 − x̄0)

+(Kn,1Ln,1 − Ḡn,1)Wn,1 +Kn,1Vn,1

]
×
[
Hn,1x0 + Ln,1Wn,1 + Vn,1

]T}
= (Kn,1Hn,1 −Fn,1)P0H

T
n,1

+(Kn,1Ln,1 − Ḡn,1)Qn,1L
T
n,1

+Kn,1Rn,1 , (15)
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where

P0 , E
{
(x0 − x̄0)x

T
0

}
= E

{
x0x

T
0

}
− x̄0E

{
xT
0

}
− E

{
x0

}
x̄T
0 + x̄0x̄

T
0

= E
{
(x0 − x̄0)(x0 − x̄0)

T
}
,

Qn,1 , E
{
Wn,1W

T
n,1

}
= diag

(
Qn , Qn−1 , · · · , Qn

)
,

Rn,1 , E
{
Vn,1V

T
n,1

}
= diag

(
Rn , Rn−1 , · · · , Rn

)
.

After some arrangements, (15) becomes

Kn,1Σn,1 = Fn,1P0H
T
n,1 + Ḡn,1Qn,1L

T
n,1 ,

from which we get the required gain Kn,1 by dividing it
with Σn,1 from both-hand sides as

Kn,1 = (Fn,1P0H
T
n,1 + Ḡn,1Qn,1L

T
n,1)Σ

−1
n,1 , (16)

where

Σn,1 = Hn,1P0H
T
n,1 + Ln,1Qn,1L

T
n,1 +Rn,1 . (17)

At this point, we can see that (14) with Kn,1 specified by
(16) provides us the MMSE estimate, where the coefficient
Sn,1 = Fn,1 − Kn,1Hn,1 governs the effect of x̄0 on the
estimate x̂n|n, and the counterpart of P0 is reflected by
Kn,1. However, we still cannot answer the target equations
yet, as the relationship between (14) and the KF (3)-(7) is
not clear. Considering the fact that both methods minimize
the estimation error variance, one naturally expects the
equivalence (or transformation) between them, which will
be demonstrated next.

C. Equivalence to the KF

The algorithmic structure of KF is recursive, while (14) is
a batch form. To show their equivalence, (14) will also be
realized in a recursive form.

By introducing intermediate variables x̂
(a)
n|n , Kn,1Yn,1

and x̂
(b)
n|n , (Fn,1 −Kn,1Hn,1)x̄0, we decompose x̂n|n by

x̂n|n = x̂
(a)
n|n + x̂

(b)
n|n . (18)

1) Recursion of x̂(a)
n|n: From (16), one can accordingly get

Kn,1 = Dn,1Σ
−1
n,1 ,

where

Dn,1 = Fn,1P0H
T
n,1︸ ︷︷ ︸

D
(a)
n,1

+ Ḡn,1Qn,1L
T
n,1︸ ︷︷ ︸

D
(b)
n,1

.

Using the definitions of matrices Hn,1 and Ln,1, the first-two
components in Σn,1 can be decomposed as, respectively,

Σn,1(P ) , Hn,1P0H
T
n,1

=

[
HnFn,1P0FT

n,1H
T
n HnFnD

(a)
n−1,1

(D
(a)
n−1,1)

TFT
n HT

n Σn−1,1(P )

]
, (19)

Σn,1(Q) , Ln,1Qn,1L
T
n,1

=

[
HnḠn,1Qn,1Ḡ

T
n,1H

T
n HnFnD

(b)
n−1,1

(D
(b)
n−1,1)

TFT
n HT

n Σn−1,1(Q)

]
,

(20)

where the equality

Ḡn,1Qn,1Ḡ
T
n,1 = GnQnG

T
n + FnḠn−1,1Qn−1,1Ḡ

T
n−1,1F

T
n

is used. Substituting (19) and (20) into (17), and considering
Rn,1 is a diagonal matrix, Σn,1 can be rewritten by

Σn,1 = ∆n,1 +Ψn,1 ,

where

∆n,1 =

[
Rn 0
0 Σn−1,1

]
,

Ψn,1 =

[
HnUn,1H

T
n HnFnDn−1,1

DT
n−1,1F

T
n HT

n 0

]
,

Un,1 = Fn,1P0FT
n,1 + Ḡn,1Qn,1Ḡ

T
n,1 . (21)

Using the inverse matrix lemma [14], we get the inverse of
Σn,1 required in Kn,1 by

Σ−1
n,1 = ∆−1

n,1 −∆−1
n,1

(
I +Ψn,1∆

−1
n,1

)−1
Ψn,1∆

−1
n,1 , (22)

as ∆n,1 is invertible.
Another recursion needed is for the matrix Dn,1, whose

components D
(a)
n,1 and D

(b)
n,1 satisfy the following equalities:

D
(a)
n,1 =

[
Fn,1P0FT

n,1H
T
n Fn,1P0H

T
n−1,1

]
,

D
(b)
n,1 =

[
Ḡn,1Qn,1Ḡ

T
n,1H

T
n Fn Ḡn−1,1Qn−1,1L

T
n−1,1︸ ︷︷ ︸

D
(b)
n−1,1

]
.

Combining these two equations gives us the recursion of
Dn,1 as

Dn,1 =
[
Un,1H

T
n FnDn−1,1

]
. (23)

At this point, the gain Kn,1 becomes

Kn,1 =
[
Un,1H

T
n FnDn−1,1

]
×
(
∆−1

n,1 −∆−1
n,1

(
I +Ψn,1∆

−1
n,1

)−1
Ψn,1∆

−1
n,1

)
=

[
Un,1H

T
n R

−1
n FnDn−1,1Σ

−1
n−1,1

]
×
(
I−

(
I +Ψn,1∆

−1
n,1

)−1
Ψn,1∆

−1
n,1

)
=

[
Un,1H

T
n R

−1
n FnKn−1,1

]
Λ−1
n,1 , (24)

where

Λn,1 , I +Ψn,1∆
−1
n,1 =

[
Λ
(1,1)
n,1 Λ

(1,2)
n,1

Λ
(2,1)
n,1 Λ

(2,2)
n,1

]
,

with the corresponding elements specified as

Λ
(1,1)
n,1 = I +HnUn,1H

T
n R

−1
n ,

Λ
(1,2)
n,1 = HnFnKn−1 ,

Λ
(2,1)
n,1 = DT

n−1,1F
T
n HT

n R
−1
n ,

Λ
(2,2)
n,1 = I .

Since Λ
(2,2)
n,1 is invertible, the Schur complement [15] can be

employed, by computing the inverse of Λn,1 with

Λ−1
n,1 =

[
Λ̃
(1,1)
n,1 −Λ̃

(1,1)
n,1 Λ

(1,2)
n,1

−Λ
(2,1)
n,1 Λ̃

(1,1)
n,1 I + Λ

(2,1)
n,1 Λ̃

(1,1)
n,1 Λ

(1,2)
n,1

]
, (25)
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where

Λ̃
(1,1)
n,1 = (Λ

(1,1)
n,1 − Λ

(1,2)
n,1 Λ

(2,1)
n,1 )−1

= (I +HnNnH
T
n R

−1
n )−1 ,

Nn = Un,1 − FnKn−1,1D
T
n−1,1F

T
n . (26)

Substituting (25) into (24), performing the multiplication,
and making some arrangements, we get

Kn,1 =
[
Jn FnKn−1,1 − JnHnFnKn−1,1

]
,

where
Jn = NnH

T
n

(
Rn +HnNnH

T
n

)−1
. (27)

Using the definition of x̂
(a)
n|n, the corresponding recursion

turns out to be

x̂
(a)
n|n = Fnx̂

(a)
n−1|n−1 + Jn

(
yn −HnFnx̂

(a)
n−1|n−1

)
. (28)

2) Recursion of x̂(b)
n|n: Following a similar line, the second

term x̂
(b)
n|n can be computed by

x̂
(b)
n|n = Fn(Fn−1,1 −Kn−1,1Hn−1,1)x̄0

−JnHnFn

(
Fn−1,1 −Kn−1,1Hn−1,1

)
x̄0

= (I − JnHn)Fnx̂
(b)
n−1|n−1 . (29)

3) Recursion of x̂n|n: Combining (28) and (29), the
recursive implementation of x̂n|n is

x̂n|n = Fn(x̂
(a)
n−1|n−1 + x̂

(b)
n−1|n−1)

+Jn(yn −HnFn(x̂
(a)
n−1|n−1 + x̂

(b)
n−1|n−1))

= Fnx̂n−1|n−1 + Jn(yn −HnFnx̂n−1|n−1),(30)

which has the same structure as the KF. That is, the term
Fnx̂n−1|n−1 predicts the estimate from the previous estima-
tion, and the filter gain Jn corrects the predicted values. By
setting n = n+1 and using (21) and (23) again, the recursive
expression of Nn involved in Jn can be found as

Nn = FnNn−1F
T
n +GnQnG

T
n − FnJn−1Hn−1Nn−1F

T
n ,
(31)

with initial value N1 = F1P0F
T
1 +G1Q1G

T
1 .

Comparing (27), (30) and (31) with the KF, we complete
our proof that the batch estimate (14) is equivalent to the KF
with the following notational transformations:

Jn ⇔ Kn , Nn ⇔ Pn|n−1 .

D. Effect of Initial States

Now, we summarize the main results and address the
questions by the following theorem.

Thorem 1: Given the linear state-space model (1) and (2)
with known initial distribution p(x0) ∼ N (x̄0, P0), and
uncorrelated white Gaussian noises wn ∼ N (0, Qn) and
vn ∼ N (0, Rn), the traditional KF can be equivalently
transformed to x̂n|n = Kn,1Yn,1+

(
Fn,1 − Kn,1Hn,1

)
x̄0,

where Kn,1 is specified by (16). The term x̂
(b)
n|n = (Fn,1 −

Kn,1Hn,1)x̄0 implies the effect of x̄0 on the estimate x̂n|n,
whose recursion form is provided by

x̂
(b)
n|n =

(
I −KnHn

)
Fnx̂

(b)
n−1|n−1 , (32)

where Kn is the Kalman gain calculated at time n.
Proof 1: The proof has been given from section III-A to

section III-C.
Considering (14), it shows that the influence of P0 is

reflected through the gain Kn,1 in an indirect way, while x̄0

affects x̂n|n directly. This is why the KF is more sensitive
to the initial mean used, compared with the variance. In
the cases with imprecise initial distributions N (x̃0, P̃0),
accordingly, the corrupted estimate x̂′

n|n can be obtained by

x̂′
n|n = K̃n,1Yn,1+

(
Fn,1 − K̃n,1Hn,1

)
x̃0 ,

where K̃n,1 is specified as (14) by replacing P0 with P̃0.
Then, the the price in term of accuracy we pay for the
incorrect initialization can be evaluated by

∆xn|n = x̂′
n|n − x̂n|n .

Up to now, the required solutions are all found. A step
forward is to eliminate the negative effect of x̃0 and P̃0 to get
satisfied estimates as quick as possible after filtering starts.

IV. INITIALIZATION STRATEGIES

From Theorem 1, we see that the sensitiveness of x̂n|n
to x̄0 is due to the term Sn,1x̄0, which acts as a bias with
a direct impact. To overcome this problem, we suggest two
different strategies below.

A. Strategy One

The first strategy is to minimize the MMSE with the
unbiasedness constraint (11). That is, solve the optimization
problem

arg min
Kn,1

trE
{
[xn − x̂n|n][xn − x̂n|n]

T
}

subject to Fn,1 = Kn,1Hn,1, where tr means the trace
operation and x̂n|n is specified by (14) that can be further
rewritten as x̂n|n = Kn,1Yn,1 due to the constraint. This
problem has been solved in our recent paper [16], leading to
a linear optimal unbiased filter.

B. Strategy Two

The second strategy is that we remove Sn,1x̄0 artificially,
and get a new linear estimator as

x̂n|n = K̄n,1Yn,1 . (33)

Here, the compensation used for the neglected term is to
recompute a new gain K̄n,1 by solving

arg min
K̄n,1

trE
{
[xn − x̂n|n][xn − x̂n|n]

T
}
, (34)

Substituting xn with (13) and x̂n|n with (33), we get

arg min
K̄n,1

trE
{[
(K̄n,1Hn,1 −Fn,1)x0

+(K̄n,1Ln,1 − Ḡn,1)Wn,1 + K̄n,1Vn,1

][
· · ·

]T}
.
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Comparing with the strategy one, the first term K̄n,1Hn,1 −
Fn,1 cannot be omitted since we do not have the constraint
K̄n,1Hn,1 = Fn,1. On the other hand, comparing it with the
former minimization problem associated with the estimator
(14),

arg min
Kn,1

trE
{[
(Kn,1Hn,1 −Fn,1)(x0 − x̄0)

+(Kn,1Ln,1 − Ḡn,1)Wn,1 + K̄n,1Vn,1

][
· · ·

]T}
,

one can see that in the KF, the gain Kn,1 is designed for
x0 − x̄0 as x̄0 is assumed to be available, while K̄n,1 is
designed for x0 itself in the proposed method (33). With
this difference, the direct influence of x̄0 will be changed
to be indirect (same as P0), and better robustness is thus
achieved.

Using the lemma given in [16], the solution to (34) can
be obtained by

K̄n,1 = (Fn,1Θx0H
T
n,1 + Ḡn,1Qn,1L

T
n,1)Σ̄

−1
n,1 , (35)

where

Σ̄n,1 = Hn,1Θx0H
T
n,1 + Ln,1Qn,1L

T
n,1 +Rn,1 , (36)

Θx0
= E{x0x

T
0 } = x̄0x̄

T
0 + P0 . (37)

Since K̄n,1 has the same structure as Kn,1, we can get its
recursion form by (28) easily. Here, however, more attentions
should be paid on the initial values of K̄n,1. Using the
definitions of Hn,1, Ln,1 and Ḡn,1 with n = 1, we have

K̄1,1 = (F1Θx0F
T
1 +G1Q1G

T
1 )H

T
1

(
H1(F1Θx0F

T
1

+G1Q1G
T
1 )H

T
1 +R1

)−1
, (38)

where Θx0 = x̃0x̃
T
0 +P̃0 as the true value (37) is not known.

Then, the first estimate x̂1|1 can be calculated by (33) using
Yn,1 = y1. Once x̂1|1 is obtained, the subsequent estimates
can be recursively computed with (28) starting from N1 =
F1Θx0F

T
1 +G1Q1G

T
1 .

V. SIMULATIONS

In this section, we test the proposed initialization methods
(mainly on the strategy two since the performance of strategy
one has been demonstrated in [16]) using a randomly drifting
stochastic resonator [17] as an example, which is specified
by (1) with Gn = I and

Fn =

1 0 0
0 cos(αn∆n) sin(αn∆n)/αn

0 −αnsin(αn∆n) cos(αn∆n)

 ,

where ∆n = 0.5s is the sampling interval and αn takes
value from {0.05 , 0.06} according to a Markov chain with
a transition probability matrix whose diagonal elements are
0.9. The noise in resonator is zero mean white Gaussian with
variance δ2w1 = δ2w2 = δ2w3 = 1.

The measurement equation is given by (2) with Hn =
[1 1 0], where the measurement noise vn is white Gaussian
with zero mean and variance δ2v = 100. The process starts
from p(x0) ∼ N (x̄0, P0) with x̄0 = [8 ,−2 ,−2]T and P0 =
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Fig. 1. RMSEs of different algorithms with x̃0 and P̃0 based on 100
Monte-Carlo runs: (a) the second state and (b) the third state, where “SO”
is the abbreviation of strategy one.

[P0,1 , P0,2 , P0,3] with P0,1 = [5 , 0 , 0]T , P0,2 = [0 , 5 , 0]T ,
and P0,3 = [0 , 0 , 5]T .

As can be seen, the first state is uncorrelated with the other
two states, and thus is generally considered as a drafting
source in a resonator model. Therefore, we mainly focus on
the estimation of the second and third states. Considering that
x̄0 and P0 are not precisely known and we use a poor initial
guess x̃0 = [8 , 100 , 80] and P̃0 = [P̃0,1 , P̃0,2 , P̃0,3] with
P̃0,1 = [5 0 0]T , P̃0,2 = [0 10 0]T , and P̃0,3 = [0 0 10]T to
test both the strategy one (SO) and KF (denoted as KF-W)
to demonstrate the trade-off.

The average root mean square errors (RMSEs) of different
methods based on 100 Monte-Carlo runs are provided in
Fig. 1, where the ideal KF with correct initial distribution is
also employed as a benchmark. It shows that, considerable
improvements on accuracy are achieved by the SO, especially
in the initial estimation phase, while the Kalman estimates
converge to the true states at a slower rate, due to the long
lasting negative effect of poor x̃0. One also immediately
notices that the difference between SO and the ideal KF is
minor, which can be neglected completely in practical ap-
plications. This provides us another proof from the opposite
angle that the SO can be used in place of the KF when
initialization is uncertain.

By introducing an coefficient as qP̃0, we next compare SO
with KF using different initial covariances, where q takes
value from {5 , 30 , 80}. The main reason for this design
is that the initial performance of KF with incorrect initial
states can be improved by amplifying the corresponding
covariance, and we would like to see whether this rule is
valid for the proposed algorithm or not. Based on 100 Mento-
Carlo runs, the average RMSEs with respect to different
q are shown in Fig. 2. As expected, the KF is sensitive
to the q used, and the negative effect of x̃0 in the KF
decreases with the increase of q considerably. For the SO,
although similar phenomenon can be observed in Fig. 2(b),
it is not significant. Comparing it with the KF, we can see
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Fig. 2. Average RMSEs of different algorithms with respect to q: (a) the
second state and (b) the third state.

that the accuracy of SO with p = 5 is even higher than the
counterpart of KF with p = 80, which can be considered as
a distinctive advantage of the proposed method.

VI. CONCLUSIONS

In this paper, the effect of initial states used in the
KF is analyzed. It is shown that comparing to the initial
variance P0, the initial mean x̄0 introduces a bias in the state
estimation in a more direct way. Two initialization strategies
are introduced. One is to minimize the error variance with
the unbiasedness constraint, and the other is to remove the
term with respect to the initial mean artificially and modify
the gain optimally. Using a drafting stochastic resonator as
an example, we demonstrate that the proposed approach can
be used as an alternative to the KF when there is uncertainty
in the initial conditions.
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