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Challenges and problems with advanced  
control and optimization technologies 
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Rio de Janeiro, 21949-915, Brazil. 
 

Abstract: Oil & Gas companies continuously try to create and increase business value of their 
installations (platforms, refineries, etc). Particularly the increasing energy consumption on a worldwide 
basis and, as a result, the substantial increase in prices volatility is a major drive for better advanced 
control and optimization technologies. Advanced control and optimization system can play an important 
role to improve the profitability and stability of industrial plants. This paper discusses the problems and 
challenges of advanced control and optimization in petroleum industries nowadays. It emphasizes the 
importance of control performance assessment technology to maintain a good regulatory control and the 
difficulties in using these technologies. It also shows the importance of malfunction detection and 
diagnosis advisory system for critical equipment in order to increase the operational reliability. Model 
predictive control (MPC) has become a standard multivariable control solution in the continuous process 
industries, but there are still many open issues related to accelerate a new implementation and maintain 
the controller with a good performance along the years. Real time optimization tools also impose new 
challenges for Oil & Gas industries application, which are discussed in this paper.  

Keywords: performance assessment, regulatory control, advanced control system, real time optimization  

�

1. INTRODUCTION 

The advanced control and optimization systems in oil & gas 
and petrochemical plants are an industrial reality (Qin and 
Badgwell, 2003). These advanced systems provide many 
advantages for the process units, as improved stability and 
safety, respect to constraints and higher profitability. 
PETROBRAS has been investing in the development of these 
systems for several years. Advanced control system is already 
a consolidated technology in its refineries with many model 
predictive controllers implemented (Zanin and Moro, 2004). 
However, the application of real time optimization (RTO) is 
recent, although this technology can bring great economical 
earnings, besides to increase the energy efficiency and 
minimization of emissions. 
 
To install and maintain these advanced systems with good 
performance is a great challenge. Its performance is 
influenced by instrumentation problems, bad tuning of the 
regulatory and advanced control, unreliable process dynamic 
models (Ender, 1993; Kern, 2007), unmeasured disturbances, 
etc.  
 
This article will discuss the problems and challenges of 
advanced control and optimization in petroleum industries 
nowadays. It discusses some tools for diagnosis and tuning of 

the regulatory and advanced control, and the challenge 
associated with the real time optimizers. In spite of the 
several tools in the market that deal with industrial control 
and optimization solutions, PETROBRAS has decided to 
invest on the development of its own tools and solutions in 
many situations, usually in association with some Brazilian 
universities.  The goal of this paper is to show some 
challenges faced, solutions and results obtained in 
PETROBRAS facilities. 

2. REGULATORY CONTROL LEVEL 

Process control aims to maintain certain variables within their 
desirable operational limits and could be visualized as a 
pyramid. In the base of this pyramid, the first level is the 
regulatory control, that uses PID controllers (Campos and 
Teixeira, 2006; Ogata, 1982) and is configured in the digital 
systems (DCS - Distributed control system or PLC - 
Programmable logical controllers). In a second level, we have 
the advanced control systems that use for instance Model 
Predictive Control (MPC). This algorithm considers the 
interaction between control loops, and includes an 
optimization layer of the industrial plant. These algorithms 
are usually implemented in a process computer that 
communicates with DCS or PLC systems by the use of OPC 
protocol (OPC, 2008). The outputs of this advanced control 
are usually the set points of the PID controllers. The 
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architecture is conceived in such a way that if there is a 
failure in the advanced control level, the plant operation 
continues with the last PID set points in the DCS. 
 
An advanced control system won't reach the expected 
benefits if is turned off constantly for the operators. 
Therefore, the instruments, valves and the regulatory control 
loops (PIDs) should operate appropriately. Hence, the 
performance of the regulatory control is fundamental for the 
success of the advanced control system. An industrial plant 
usually has hundreds of control loops, and less and less 
engineers to maintain the system. Therefore, the industries 
need tools to perform automatic analysis and diagnoses of the 
problems associated with the regulatory control. For example, 
these tools should be able to detect failures with the 
instrumentation (miscalibration, badly sizing, sensor noisy, 
out of scale, measurement resolution, etc.), non linear 
behavior in the process due to changes in the operational 
point, bad PID tuning (oscillation, stability, etc.) and  control 
strategy problems (coupling between control loops, degrees 
of freedom, etc.). 
 
There are several tools in the market that help engineers to 
maintain the regulatory control, but most of them require a 
well-trained engineers to interpret, analyze and  define the 
correct actions, for instance: to change a control valve, tune 
PID controllers or to implement a new control strategy 
(decoupling, feedforward), etc. These engineers should also 
know very well the process in order to evaluate the better 
actions to be taken. 
 
The great challenge for these tools will be to incorporate 
more "intelligence" to help engineers in the definition of the 
better actions. For instance, in certain case, only PID tuning 
could reach 80% of improvement in process variability 
reduction, and in some case, the process performance would 
improve only 10%. A lot of times in industries the engineer 
spends time and money with an action that won't bring great 
results. So, it is clear the importance of a tool that could 
perform the automatic diagnosis and assessment of the 
regulatory control (Farenzena et al., 2006). The most 
important features of this tool should be to have automatic 
ways to prioritize the actions for each process that might 
result in a better performance, and also to provide a 
standardized metric to compare different actions in different 
processes, even in different scales such as economical, 
environmental or safety (Harris, 1989; Kempf, 2003; 
Farenzena and Trierweiler, 2008). These features are a great 
development challenge for these tools. 
 
Despite the several tools in the market, PETROBRAS and 
Federal University of Rio Grande do Sul (UFRGS) have 
developed their own tool, the software called “BR-PerfX”. Its 
main purpose is to compute some universal key performance 
indicators that reduce the subjectivity in the analysis and help 
engineers in their assessments and decisions about problems 
affecting the regulatory control.  
 
In order to face the PID tuning problem, PETROBRAS and 
Federal University of Campina Grande (UFCG) developed 

the software "BR-Tuning" (Schmidt et al., 2008; Arruda and 
Barros, 2003), which is comprised by a group of techniques 
regarding open and close loop identification and the 
proposition of new tuning parameters. It communicates 
directly with the process automation system (DCS or PLC) 
using the OPC protocol. 
 
As it was said previously, the challenge is to develop an 
"intelligent" layer that helps to make a diagnosis based on 
several indexes or indicators. The integration between 
different tools is also an important concern. The use of the 
OPC standard for the exchange of information could be an 
option. So, each tool could make available their indicators to 
others tools through OPC. This way, the engineers' work 
would be facilitated, avoiding losses of time and money. 
 

 
Fig. 1. BR-Tuning interface. 

The challenges in relation to controllers' tuning are associated 
mainly with the identification of the models, the 
determination of the process non-linearities, interaction 
between control loops, as well as defining the desired 
performance for each control loop. 
 
There are some processes where the disturbances’ pattern can 
change with the time, as in some off-shore petroleum 
platform. The slug flow can change its intensity for example 
due to changes in the gas-lift. So, we don't have a PID tuning 
parameters that are good for all these different situations. In 
this case, it was developed an "intelligent" system that 
supervises the process plant and changes the PID tuning 
automatically when necessary. This control strategy is 
equivalent a "gain-scheduling" where the control 
performance (deviation between the process variable and the 
setpoint) is evaluated during a time, and the system decides 
what is the best tuning for that moment. All the possible 
values for the PID tuning are chosen off-line. This system 
was installed in several PETROBRAS' platforms. The figure 
2 shows the system changing the PID tuning parameters and 
the level performance. This project used a tool called MPA, 
which was developed by Catholic University of Rio de 
Janeiro (PUC-RJ) to PETROBRAS. 
 
Another challenge is the development of non-linear 
controllers for some special cases, for example to pH control 
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in certain plants, although PID will continue to be the 
algorithm more used in this regulatory layer control for 
several years. 
 
Researches and developments for the regulatory control level 
are still necessary, and they can bring great economical 
earnings. For example, an application of these tools 
(evaluation, tuning and changes in control strategy) allows an 
increased of about 9% in the production of LGN (Liquefied 
Natural Gas) in a natural gas plant (Campos et al., 2007). 
 

 
Fig. 2. Performance of this control strategy in production 

platform (1 day). 

3. ADVANCED CONTROL SYSTEM 

The multivariable predictive controllers (MPCs) are powerful 
tools for the process optimization and are available in many 
industrial plants. This system can increase feed and preferred 
product rates, reduce energy consumption and waste material. 
These benefits are more visible in complex processes where 
challenging dynamic responses (significant time delays, non-
minimum phase responses, control loop interaction, etc.) due 
to disturbances (feed flow and composition, energy 
integration, usefulness, etc.) that must be dealt with while 
taking into account process constraints and trying to pursue 
the best economic performance. As an example of the 
benefits achieved, figure 3 shows an increase of about 16% in 
the LPG yield due to the implementation of an Advanced 
Process Control (APC) system in a natural gas plant. 
 

 
Fig. 3. LPG yield increase in a natural gas plant due to 

MPC. 

However, even if MPC systems are nowadays seen as a 
commodity, there is still much to be done, due to the 

significant gap between the recent MPC technologies 
development in the academy and those effectively used on 
industrial plants. Most industrial MPC applications are based 
on the most traditional approaches: linear algorithms based 
on step-response models obtained through traditional step 
tests. 
 
MPC maintenance 

MPC performance decay throughout time is a well-known 
and widely reported fact (figure 4). If no maintenance work is 
done, the operators end up turning them off. There are many 
causes for this behaviour: 

� Changes in the units operational objectives;     
� Equipments efficiency losses (fouling);     
� Changes in the feed quality;     
� Problems in instruments and in the inferences;     
� Lacks of qualified personnel for the controller's 

maintenance. 
 

Therefore, the first great challenge associated with MPC 
control is to have reliable tools to keep performance and 
diagnose problems. 
 

 
Fig. 4. Advanced Control Performance during the time. 

Therefore, industry needs better tools to help maintenance 
personnel to answer the following questions: 

� Is advanced control system accomplishing their 
objectives? 

� What is its performance? 
� Is the process optimized? 
� What are the benefits? 
� How is the level of disturbances? 
� What is operational factor of the controller? 
� How are the operators adjusting the limits of the 

manipulated variables? 
� Are manipulated variables very limited? 
� What is the variability of the main controlled 

variable? 
� Is the process operating close to the constraints? 

 
It is necessary a tool not only to answer these questions, but 
the system point out the causes of the bad performance: bad 
models, bad controller tuning, inference problems, non-
linearities, frequent changes in the operation point, new 
constraints not considered in the design? 
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Nonlinear models, Identification and Model mismatch 

Many different and even sophisticated approaches have been 
proposed in order to allow MPC algorithms to cope with 
process nonlinearity. Bequette (2007) presents a recent 
review on the subject. However, despite all this effort, 
industrial Nonlinear MPC (NMPC) applications are relatively 
few, and most of these are based on the simplest approaches. 
 
One possible reason for that might be simply that the 
nonlinear behaviour is not known, and any lack of 
performance is seen as a typical model mismatch.  
 
Another possibility might be that the nonlinear behaviour is 
known, but can not be easily determined with traditional 
plant tests. One way to overcome these problems might be 
the use of rigorous dynamic simulators, to improve the 
understanding of the process behaviour. Information obtained 
with dynamic simulation could be combined to the existing 
linear model in order to provide a reliable nonlinear one. 
Dynamic simulation might be useful also to find out the best 
way to characterize the observed nonlinearity. Once more, 
although there is availability of dynamic simulators, there is 
not much use of them in industrial applications. 
 
Process identification of complex processes is still a hard 
task, where a significant part of the effort on MPC 
implementation is spent.  
 
In order to address this problem, some commercial tools have 
been conceived in this decade for closed-loop identification. 
These tools are based on efficient ways to perform step tests 
allied to modelling strategies for minimization of the model 
order. While this approach has proved to be useful and 
promising, it is still a hard task to apply these techniques to 
complex processes, especially when dealing with noisy data. 
It seems to be a lot of space for development in this area. 
 
Another interesting way to reduce implementation time can 
be the use of algorithms for automation of the plant test.  
 
Tuning 

MPC tuning is another interesting issue, where new 
technologies might help to reduce implementation time and 
also on the maintenance task. 
 
Some interesting ideas have been proposed (Trierweiller and 
Farina, 2003) that try to combine desired and achievable 
performances. However, the controller tuning still consume 
time and is critical points for controller performance. 
Normally, all MPC tuning methods consider a square 
controlled variables x manipulated variables matrix, but, in 
fact all controller has a rectangular matrix that means 
different tuning scenarios depending on which constraints is 
active. 
 
Another big challenge is to reduce the application time and 
maintenance time. For this, it is believed that the main critical 
points are: 

� Tools for the development of inferences: 
o Use of rigorous dynamic simulators, or statistical 

methods for better inferences using less laboratory 
analysis data. 

� Dynamic models identification: 
o Automation of the identification tests, 

minimizing problems and loss of data; 
o Efficient tools for closed loop identification; 
o Characterization and identification of the non 

linearities of the process. 
� Better tools for tuning the predictive controller: 

o How to define the priorities in the several 
operating points of the controller and change 
automatically the tuning parameters. This activity 
is still done by trial and error in many industrial 
cases. 

 
New advanced controllers that contemplate these aspects will 
help the users to implement and maintain these industrial 
systems. 

4. REAL TIME OPTIMIZATION 

Real Time Optimization (RTO) technology is a powerful tool 
for the continuous search of the most profitable way to run 
petroleum and petrochemical process units. Cutler and Perry 
(1983) state that despite being a hard and complex task, its 
potential benefits are relevant and might provide profit 
increases around 6 to 10% when allied to Advanced Process 
Control (APC). 
 
The task of an RTO application is to make the best of an 
existing process unit, adjusting its process variables for every 
new change of external conditions, like operational variables, 
feed compositions and process constraints. The RTO benefits 
are usually associated with the maximization of products and 
minimization of the specific energy consumption and other 
resources, depending on the following factors: 

� Market availability 
� Products prices and feed costs 
� Safety and environmental constraints 
� Product specifications 

 
The central figure of an optimization application is the 
mathematical model. It is expected to represent the process 
behaviour on a wide range of operating conditions with good 
accuracy. It should not only guarantee that the predicted 
potential profitability matches that of the real process, but 
also that when the optimal solution is implemented the 
process constraints must not be violated. Most RTO systems 
used nowadays are based on rigorous, steady-state, first-
principles mathematical models.  
 
The good performance of an RTO system depends on a 
reliable mathematical model and on reliable input data. In 
order to obtain that, many procedures must be executed 
before the economic optimization problem can be solved: 

� Gross Error Detection 
� Steady-state Detection 
� Data Reconciliation  
� Parameter estimation 
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Once that a reconciled data set and a fitted model have been 
obtained, the process optimization can be performed. The 
optimization problem usually consists of the maximization 
the operational profit (or minimization of operational costs) 
subject to a set of constraints. On most situations the 
optimization problem is posed as a non-linear programming 
problem (NLP). Most commercial applications are based on 
variations of the SQP (Successive Quadratic Programming) 
algorithm. This algorithm is also used to solve the previous 
Data Reconciliation and Parameter Estimation problems. 
 
Real Time Optimization at PETROBRAS 

Since 2004, RTO has been classified by PETROBRAS and 
its Strategic Downstream Committee as a “High Sustainable” 
technology. It means that RTO is seen as a key technology to 
improve PETROBRAS performance and profit, and therefore 
significant effort and resources will be spent on this subject. 
 
PETROBRAS implementations on RTO covered a wide 
range of alternatives, focusing both on profitability and on 
the search of the best way to deliver the technology: 

� Fluid Catalytic Cracking (FCC) and Crude 
Distillation Units (CDU); 

� Proprietary and commercial process models and 
RTO systems; 

� Sequential Modular (SM) and Equation Oriented 
(EO) approaches (Alkaya et al., 2003). 

 
The first RTO initiatives were taken using PETROBRAS' in-
house process simulator for FCC, with a small scope 
covering only the reactor/regenerator section. The proprietary 
process model used is based on a Sequential Modular (SM) 
approach. Though many difficulties were found (see next 
section), this initiative made possible to test the technology as 
well as to help our engineers to take a step further. 
 
Distillation Unit / SM approach (2004) 

This implementation took place at the Crude Distillation Unit 
(CDU) and the two Solvents Units of RECAP refinery 
(Gomes et al., 2008).  
 

 
Fig. 5 - Scheme of the CDU and the Solvents Units of  

RECAP/PETROBRAS. 

The process model was built using PETROX, a proprietary 
sequential-modular process simulator from PETROBRAS. 
The simulation comprises 53 components and pseudo-
components and 64 unit operation modules, including the 7 
distillation columns and a recycle stream. All modules are 
built with rigorous, first-principles models.  
 
For optimization applications, PETROX was linked to 
NPSOL, an SQP optimization algorithm. Procedures for 
Steady-state and Gross error detection, Data Reconciliation, 
Parameter Estimation and Economic Optimization were 
implemented. The economic optimization problem consisted 
of the maximization of the operational profit, constrained by 
limits related to product specifications, safety constraints, 
feed rate and performance parameters. The whole 
optimization problem involves 19 decision variables and 21 
constraints. 
 
Most of the reported problems of optimization based on 
sequential-modular models were observed in this application: 

� Low computational efficiency, due to slow recycle 
loops and the numerical derivatives that imply 
running the SM model several times. These 
derivatives are also inaccurate, which slows down 
the optimization process even more. 

� Lack of reliability: the SM model is computed many 
times and must converge always. If a single failure 
happens during the optimization, all the effort is 
lost.  

In order to minimize these problems, a lot of effort must be 
spent on the conception, customization and tuning of the SM 
model. However, that is no guarantee of success. When the 
Data Reconciliation and Parameter Estimation problems were 
implemented, the same problems were observed. 

Fig. 6 - SAO strategy applied to the metamodel-based 
optimisation. 

Metamodel approach 

In order to overcome some of these shortcomings, a 
metamodel approach has been studied. Metamodels or 
surrogate models (Gomes et al., 2008) are reduced models 
whose parameters are obtained with data that is generated 
with rigorous, first principles models. In this work, an 
optimization procedure was developed, combining 
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metamodels and rigorous models with a Sequential 
approximate optimization (SAO) algorithm. The optimization 
problem is solved based on the metamodel that is updated 
with data obtained from the rigorous model throughout the 
optimization procedure. The RECAP optimization problem 
was addressed with this approach, with kriging models and 
neural nets used as metamodels. Accurate results have been 
obtained with considerable reduction of the computational 
effort on most of the studied cases. 
 
Distillation Unit / EO (2005 to 2006) 

This was the first EO RTO project PETROBRAS 
implemented. After an International Bid, where 3 well-known 
companies were invited to submit their proposals, AspenPlus 
Optimizer (Aspentech, Inc.) was selected. The project scope 
included all 3 preheat trains as well as Pre-flash, Naphtha 
Stabilizer, Atmospheric, Vacuum and Pre-vacuum 
distillations towers. The unit was fully modeled with the 
RTO software, which allowed for instance the understanding 
about the implications that changes on the preheat train, like 
feed distribution, have on the Atmospheric tower. Or to study 
the best pumparound heat removal distribution along this 
tower and its effects on the preheat train. In order to do that, 
all pumparounds were modeled as external streams from the 
tower and not as an internal model within its model (see 
Figure 7), as it is common on SM simulators. 
 
The system is running on open loop since 2007. A few 
closed-loop tests were performed, but the unit had some 
operational problems which were solved on this last Oct/08 
turnaround. PETROBRAS intends to close loop in 2009 after 
making model tuning adjustments in order to incorporate the 
new atmospheric trays and other unit improvements. 
Nevertheless, by keeping the system running open loop 
(around 9 runs / day), we were able to improve our 
knowledge of the system itself, how to overcome non 
convergence problems (feed reconciliation and optimization) 
and attaining expertise on how to maintain such a real time, 
strongly data and instrumentation dependent system as well 
as evaluate potential benefits (around 13 000,00 dollars / 
day). 

 
Fig. 7 - Aspen Plus Optimizer Screenshot - Atmospheric 

tower. 

FCC Unit / EO (2007 to 2008) 

Following the success on the distillation unit implementation, 
PETROBRAS moved forward to implement an RTO on 
another very important unit. Again, after an international bid,  

ROMeo (Invensys, Inc.) was selected.. The project scope 
included the Reactor / Regenerator section, Main Fractionator 
and Gas Recovery Plant. Again the unit was fully energy and 
mass integrated modeled. 

 
Fig. 8 - ROMeo screenshot - Reactor/Regenerator Section. 

The system is running on closed loop (around 8 runs / day) 
since June/08 with most of the independent variables active. 
On average, around 60% of the successful runs are being 
accepted by Operations and targets are being sent to 
Advanced Control. PETROBRAS has evaluated an average 
gain of US$ 0.12 / bbl of FCC feed for this application, by 
comparing the unit performance with and without RTO. 
 
A few comments on both projects: 

� Lack of instrumentation on preheat train (FCC) – 
implied on simplifications, which has impacts on 
Main Fractionator heat balance and, thus, must be 
evaluated from time to time; 

� Low feed lab analysis frequency – There is a need 
for a better way to estimate feed characterization; 

� Non-convergence problems - Mainly, due to 
instrumentation faulty and/or out of service heat 
exchanger or other piece of equipment. Although 
there is a kind of standard procedure to deal with 
them, it is not possible to automate it. So each 
problem must be solved on a case to case, hands-on 
basis. 

 
These facts enforce the need for a fully dedicated RTO 
engineer for each application, not only to assess its results 
and make sure they are being implemented, but to keep the 
system running despite of the many daily issues the 
application faces. 
 

Modelling approach 

PETROBRAS experiences showed that the Equation 
Oriented (EO) approach is more suitable for RTO, when 
compared to the Sequential-modular process models, 
especially when process unities of higher complexity are 
addressed. 
 
Challenges associated with RTO 

Non-convergence tracking 

When the optimization process brakes down due to non-
convergence, it is sometimes a hard task to find out the origin 
of the failure, especially when the cause of the problem is not 
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related to instrumentation or well-known process problems. 
Therefore, there is a need for better procedures or even an 
expert system that might identify the numerical failures and 
provide high-level analysis to support the user on the best 
actions to take. 
 
The improvement of the initialization techniques (Fang et al., 
2009) might also be useful to avoid convergence problems, 
especially for the data reconciliation problem. 
 

Scaling 

Scaling of variables is a subjective issue. Despite the 
available heuristic rules provided by the technology licensors, 
the users are sometimes required to define scaling factors or 
limits. However, it is possible that a numerical analysis of the 
system of equations to be solved might provide the best 
scaling factors. 

Integrating multiple process unities  

In order to take the most of process flexibilities, it might be 
important to expand the scope of the optimization problem to 
involve more than just one process unit. However, the 
increase of the problem size and the consequent shortcomings 
can be a challenge to be faced. In this case, the non-converge 
tracking procedures would become a key issue. 

Steady-State detection 

The steady-state detection procedures used nowadays in the 
commercial solutions require the definition of several 
parameters, which is a very subjective issue. This task 
demands from the user not only process experience, but also 
a long time of observation. It would be useful to have 
procedures that could drive a straightforward choice, 
especially when dealing with multiple-process optimization 
applications. 

Multi-scale optimization 

The integration and information exchange between different 
optimization levels is an issue that requires more attention. 
 
Multi-level optimization concepts could be applied in order 
that procedures for model re-fitting or tuning and the 
redefinition of search spaces could be done automatically, 
while the different optimization problems are being solved.   

Dynamic RTO 

Dynamic Real Time Optimization (DRTO) is an open issue. 
The use of rigorous dynamic models for large-scale 
applications might allow the simultaneous solution of process 
optimization and control problems. Ideally it would also 
avoid the requirement of steady-state detection procedures. 
However, with the present resources, DRTO solutions would 
demand a significant computational effort and, possibly, 
many numerical issues should be addressed before this 
technology can be widely used in industrial applications. 

5. CONCLUSIONS 

This article has discussed some challenges associated with 
advanced process control and optimization in petroleum 

industries as well as how PETROBRAS is overcoming them. 
Our vision is that there is still plenty of space for further nd 
research and development on the improvement of those 
technologies. The best accomplishment of this task will come 
if Industry and Academy work together. 

REFERENCES 

Alkaya, D. et al., Generalization of a Tailored Approach for 
Process Optimization, Ind. Eng. Chem. Res., Vol. 39, pp. 
1731-1742, 2003. 

Arruda, G.H.M. and Barros, P.R., Relay based gain and 
phase margins PI controller design, IEEE Transactions 
on Instrumentation and Measurement Technology, Vol. 
52, n. 05, pp. 1548-1553, 2003 

Bequette, B. W, Non-linear Model Predictive Control: A 
Personal Retrospective, The Canadian Journal of 
Chemical Engineering, Vol. 85, pp. 408-415, 2007. 

Campos, M. and Teixeira, H., Controles típicos de 
equipamentos e processos industriais, Ed. Edgard 
Blücher, São Paulo, 2006. 

Campos, M. et al., Ganhos econômicos devidos à melhoria 
no controle de uma planta de processamento de gás 
natural, IV Congresso Rio Automação 2007, IBP, Rio de 
Janeiro, 2007. 

Cutler, C. R. and Perry, R. T., Real-time optimization with 
multivariable control is required to maximize profits, 
Computers and Chemical Engineering, Vol. 7 (5), pp. 
663-667, 1983. 

Ender, D., Process Control Performance: Not as good as you 
think, Control Eng., pp. 180, 1993. 

Fang, X. et al., Mnemonic Enhancement Optimization 
(MEO) for Real-Time Optimization of Industrial 
Processes, Ind. Eng. Chem. Res.,Vol. 48, pp. 499-509, 
2009. 

Farenzena, M. and Trierweiler, J., Fronteiras e desafios em 
gerenciamento de malhas de controle, In: COBEQ 2008 - 
Congresso Brasileiro de Engenharia Química, Recife, 
2008. 

Farenzena, M. et al., Using the Inference Model Approach to 
Quantify the Loop Performance and Robustness, SICOP 
2006 - International Workshop on Solving Industrial 
Control and Optimization Problems, Gramado, 2006. 

Gomes, M.V.C. et al.; Using kriging models for real-time 
process optimisation. Proceedings of the 18th European 
Symposium on Computer Aided Process Engineering, 
pp. 361-366, 2008. 

Harris, Assessment of Control Loop Performance, The Can. 
J. of Chemical Engineering, Vol. 67, pp. 856-861, 1989. 

Kempf, A., Avaliação de Desempenho de Malhas de 
Controle, Dissertação de Mestrado, Departamento Eng. 
Química, Universidade Federal do Rio Grande do Sul, 
UFRGS, 2003. 

Kern, G., Summiting with multivariable predictive control, 
Hydrocarbon Processing, 2007  

Ogata, K., Engenharia de Controle Moderno, Ed. 
Prentice/Hall do Brasil, 1982. 

OPC Foundation, 2008, Site: 
<http://www.opcfoundation.org/>, Accessed in 03/17/08. 

8



 
 

     

 

Qin, S. and Badgwell, T., A survey of industrial model 
predictive control technology, Control Engineering 
Practice 11, pp. 733-764, 2003. 

Schmidt et al., BR-Tuning Ferramenta para sintonia de 
controladores PID, Primeiro CICAP – Congresso de 
Instrumentação, Controle e Automação da 
PETROBRAS, May, Rio de Janeiro, 2008. 

Trierweiler, J. and Farina, L., RPN tuning strategy for model 
predictive control, Journal of Process Control, Oxford- 
Inglaterra - Elsevier, Vol. 13, pp. 591-598, 2003. 

Zanin, A. and Moro, L., Gestão da Automação Industrial no 
Refino, Rio Oil&Gás 2004, IBP, Rio de Janeiro, 2004. 

 

9



Real-time Embedded Convex Optimization

Stephen P. Boyd

Electrical Engineering Department,
Stanford University, 94305 Stanford, CA, USA

E-mail: boyd@stanford.edu.

Abstract: This talk concerns the use of convex optimization, embedded as part of a larger
system that executes automatically with newly arriving data or changing conditions, in areas
such as automatic control, signal processing, real-time estimation, real-time resource allocation
and decision making, and fast automated trading. Such systems are already in use in applications
such as model predictive control or supply chain optimization, with sample times measured in
minutes (or longer); our focus is on systems with much faster dynamics, with execution times
measured in milliseconds or microseconds for small and medium size problems. We describe a
preliminary implementation of an automatic code generation system, which scans a description
of the problem family and performs much of the analysis and optimization of the algorithm,
such as choosing variable orderings used with sparse factorizations, at code generation time;
compiling the generated source code yields an extremely efficient custom solver for the problem
family.
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Abstract: In this age of globalization, the realization of production innovation and highly
stable operation is the chief objective of the process industry in Japan. Obviously, modern
advanced control plays an important role to achieve this target; but it is emphasized here that
a key to success is the maximum utilization of PID control and conventional advanced control.
This paper surveys how the three central pillars of process control – PID control, conventional
advanced control, and linear/nonlinear model predictive control – have been used and how they
have contributed toward increasing productivity. In addition to introducing eminently practical
methods, emerging methods, and their applications, the authors point out challenging problems.
In Japan, industry and academia are working in close cooperation to share their important
problems and develop new technologies for solving them. Several methods introduced in this
paper are results of such industry-academia collaboration among engineers and researchers in
various companies and universities. Furthermore, soft-sensor or virtual sensor design is treated
with emphasis on its maintenance, because soft-sensors must cope with changes in process
characteristics for their continuous utilization. Maintenance is a key issue not only for soft-
sensors but also for controllers. Finally, we will expand our scope and briefly introduce recent
activities in tracking simulation and alarm management. A part of the results of our recent
questionnaire survey of process control are also introduced; the results are extremely helpful in
clarifying the state of the art in process control in Japan.

Keywords: Advanced process control, Alarm management, Industrial application, Model-based
control, Model predictive control, PID control, Process control, Production innovation,
Soft-sensor, Tracking simulator.

1. INTRODUCTION

The Japanese chemical and petroleum refining industries
has focused on production innovation and highly stable
operation. The embodiment of these two concepts is be-
lieved to be indispensable. In fact, production innova-
tion and highly stable operation have led to remarkably
increased productivity at advanced chemical companies.
Daicel Chemical Industries, for example, has tripled the
productivity per plant employee since Intellectual and In-
tegrated Production System was established in the Aboshi
plant in 2000 (Daicel Chemical Industries, Ltd. (2008)).
This reputable activity was motivated by the effort in
Mitsubishi Chemical Corporation (MCC) in the 1990’s
(Shoda (1998)). MCC has developed Super-stable Opera-
tion Technologies (SSOTs) and Super-stable Maintenance
Technologies (SSMTs) to maintain production stability
and prevent facility accidents (Mitsubishi Chemical Cor-
poration (2005)). SSOTs aim to keep stable plant opera-
tion by prevention and prediction of various troubles such
as fouling, plugging, corrosion, and so on, and SSMTs
are facility management technologies used to ensure high
standards of stability.

In the 1990’s, Japanese companies realized that many
skilled operators were approaching retirement age. This

social problem was called ”year 2007 problem” in Japan.
We are in the middle of this. Since the achievement of
stable and efficient operation has largely depended on
skilled operators in Japan, the year 2007 problem has
heightened a sense of crisis and has motivated companies
to initiate production innovation. Production innovation
requires thorough review of personnel training, organiza-
tions, production methods as well as operation control
systems.

To realize highly stable operation, process control plays
an important role. In Japan, a task force was launched in
2007 to sift through problems regarding process control
and investigate solutions. The task force, named ”Work-
shop No.27 Process Control Technology,” consists of 32
engineers from industry and 12 researchers from univer-
sities. It is supported by the 143rd committee on process
systems engineering, the Japan Society for the Promotion
of Science (JSPS). Currently, the following topics are being
investigated by the members.

• Practical closed-loop system identification
• Practical tuning techniques of PID controllers
• Systematization of the control performance improve-

ment activity based on control performance assess-
ment
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Fig. 1. Chronology of project execution in MCC

• Control system design from the viewpoint of plant-
wide control

• Evaluation and maintenance of model predictive con-
trol

• Design and maintenance of soft-sensors

Most of these topics are also covered by the status report
of the IFAC Coordinating Committee 6 (Dochain et al.
(2008)). These are key issues not only in the Japanese
chemical industry but also internationally.

This paper aims to reveal the state of the art in advanced
chemical process control in Japan. First, the projects that
process control sections of a general chemical corporation
of Japan have executed in the last two decades are de-
scribed in section 2. Then, several key technologies are
investigated in more detail: PID control in section 3, con-
ventional advanced control in section 4, model predictive
control (MPC) in section 5, soft-sensor or virtual sensor
in section 6, and other issues including an operation sup-
port system based on an on-line process simulator and
alarm management in section 7. In each section, eminently
practical techniques with successful application results are
introduced, and challenges are clarified. Furthermore, this
paper introduces results of a questionnaire to member
companies of the JSPS 143rd committee on their process
control applications including MPC and soft-sensors. The
results will be extremely useful for grasping the state of
the art in process control.

2. MILESTONE IN THE HISTORY OF PROCESS
CONTROL APPLICATION

There are three phases in process control application
projects in Mitsubishi Chemical Corporation (MCC), to
which the second author had belonged for many years,
as shown in Fig. 1: the advanced process control (APC)
projects for large-scale continuous processes, the improve-
ment activity of the control performance of basic control
systems for small-to-medium-scale processes, and the ad-
vancement of polymer and batch process control.

2.1 Project Chronology

In the first phase in the early 1990’s, multivariable MPC
was applied to large-scale continuous processes such as

olefin production units for generating a large profit. The
APC project was conducted for 15 production units of 5
production sites by using DMCplus R© as a standard tool,
and satisfactory results were achieved. The key to success
is nurturing process control engineers who can accomplish
the projects independently on their own. They learned pro-
cedures and methods of planning, control system design,
plant tests, tuning, and operation. In addition, they joined
seminars on advanced control theory given by prominent
researchers and professors. By accumulating experience on
the projects, they grew into capable engineers who under-
stood theory and had business acumen. These 15 process
control engineers took a leading part and accomplished
APC projects in MCC.

In the second phase, the performance of PID control
systems was assessed and improved. All production units
which APC projects did not cover were targeted. Both
the operation section and the instrumentation section
jointly carried out this project as a daily improvement
activity in cooperation with the process control section.
As a result, the operator workload was reduced through
the improvement in service factors of PID control systems
and a reduction in frequency of alarms and operator inter-
ventions. In addition, the improvement in control perfor-
mance contributed toward the economic profit because it
made operations energy-efficient through optimally chang-
ing set-points. It was also the perfect opportunity for
finding applications of conventional advanced control such
as override control and valve position control (VPC).

In the third phase, the advancement of polymer process
control was investigated. It is important to achieve rapid
grade transition while satisfying quality specification in
polymer plants, because transitions among a wide variety
of products are made frequently. Therefore, an original
control algorithm that is based on precise first-principle
models of polymerization reactions and quality models
relating polymerization reaction conditions and product
quality has been used since the 1980’s. In this phase,
process models such as catalyst activity were reviewed,
and a new nonlinear MPC algorithm was developed and
applied. As a result, the control performance was signifi-
cantly improved, off-specification products were reduced,
and quality was stabilized.

The focus of the process control section has shifted to
problem-solving regarding process control of small-to-
medium-scale processes and the maintenance of APC sys-
tems. The targets include 1) accumulating energy-saving
effects by applying an in-house linear MPC algorithm
to distillation, reforming furnace, and air separation pro-
cesses, 2) developing soft-sensors, which are substituted
for process gas chromatographs, for shortening the con-
trol interval and improving control performance, and 3)
adapting APC systems for reinforcement of process units.

Since the 1990’s, the movement to reform the whole pro-
duction activity has started at advanced chemical com-
panies as mentioned in the introduction. In addition to
integration of control rooms, such production innovation
requires the review of operation management, alarm man-
agement, emergency shutdown system, maintenance man-
agement, etc., and also it requires modernizing the control
information system. Such an activity is triggered by the
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Table 1. Classification of process control
methodologies and the numbers of applications

in the MCC Mizushima plant

classification methodology application

modern linear MPC 54
advanced nonlinear MPC 2
control LQI with preview action 2

feed-forward control
conventional override control

advanced control valve position control 500+
analyzer feedback control
model-based control etc

regulatory control PID/I-PD control 5006

opportunity for DCS introduced in the 1980’s to enter a
renewal period as well as the year 2007 problem. Process
control engineers are or will be involved in this movement.

2.2 Process Control Methodology

Control methodologies which bear the central role in
process control systems can be classified into regulatory
control such as PID control, conventional advanced con-
trol such as feedforward control and override control, and
modern advanced control such as MPC. The number of
applications of these control methodologies in the MCC
Mizushima plant is summarized in Table 1. The ratio of
applications of PID control, conventional advanced con-
trol, and MPC is 100:10:1. PID control is used in 5006
loops in 24 production units. The number of control loops
repeatedly increases and decreases corresponding to new
establishment, reinforcement, or stopping of production
units. Conventional advanced control is effective in many
cases, but the number of its applications is not as many
as expected. MPC has become established as a standard
technique for multivariable control which realizes econom-
ical operation of large-scale processes.

2.3 Survey Result of Control Methodology

A part of the questionnaire survey results of process
control application is summarized in Table 2. This ques-
tionnaire asked control engineers to evaluate the level of
their application of conventional advanced control, model-
based control, adaptive control, modern-control-theory-
based control, knowledge-based control, statistical process
control, and soft-sensor in four grades.

This survey result clarifies the state of the art of pro-
cess control application in Japan. As expected, linear
MPC is the only methodology of modern advanced control
that has been applied practically. Most companies have
not used nonlinear MPC, adaptive control including self-
tuning control, state feedback control, preview control,
H∞ control, or knowledge-based control including neural-
network-based control. These control techniques have not
been used because they are not available as a practical,
easy-to-use tool and in-house development is troublesome.
In particular, self-tuning control is a black box and has
incurred a vague distrust of engineers and operators. In
addition, it is not superior to gain scheduling control or
robust PID tuning, which is more intuitive and under-
standable. On the other hand, the modern control theory
has not been accepted in the chemical and petroleum re-
fining industries. This situation is in stark contrast to that

Table 2. Level of control application (from the
survey JSPS143 WS27 2009)

control methodology level of application
A B C D

conventional advanced control
feedforward control 3 9 6 2
override control 2 6 5 7
valve position control 4 5 6 5
sampled-data control 1 5 9 5
dead-time compensation 0 2 11 7
gain-scheduled PID control 1 1 9 9

model-based control
internal model control 2 5 3 9
linear model predictive control 4 6 6 3
nonlinear model predictive control 0 1 2 16

adaptive control
self-tuning PID control 0 1 1 17
model reference adaptive control 0 0 1 18

modern-control-theory-based control
state feedback control 0 0 4 15
preview control 0 0 1 18
H∞ control 0 0 0 19

knowledge-based control
fuzzy control 0 0 5 14
artificial-intelligence-based control 0 0 2 17
neural-network-based control 0 0 4 15

statistical process control 0 1 3 15
soft-sensor 3 7 4 5

Explanation of level of application:
A: standardized and always applied if necessary.
B: applied, but not standardized.
C: applied sometimes.
D: not applied.
The numbers in this table show the numbers of answers.

in the steel industry, for example, where there are many
applications of modern control such as H∞ control. This
is because there have already been a number of successful
MPC applications in the chemical and petroleum refining
industries; thus control engineers are not motivated to
use more theoretical control algorithms. Knowledge-based
control is useful for complementing PID control and MPC,
but it is difficult to generalize knowledge-based control so
that it can be applied to a variety of processes.

3. PID CONTROL

In Japanese chemical companies, KAIZEN activities aimed
at safe and stable operation are actively continuing. One
important activity is improvement in the control perfor-
mance of PID control systems. The aims of this improve-
ment activity, in which controllers are retuned appropri-
ately, are 1) to realize stable operation by reducing the
influence of disturbances, 2) to realize automatic rapid
transition of operating conditions such as production rate,
3) to gain the ability to achieve economical operation, and
4) to allow operators to be released from taking care of
PID controllers. Additional effects are to find out problems
with sensors and actuators, and to clarify possible targets
of advanced control application.

In the KAIZEN activities, improving the control per-
formance with retuning should be stressed, rather than
spending time and effort to strictly assess the control
performance of PID control loops. The following simple
indexes are sufficient to determine good or bad control
performance: 1) Is the controller in auto mode at all
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times? 2) Are PID parameters in the proper range? 3) Is
fluctuation of the controlled variable and the manipulated
variable sufficiently small? 4) Is the PID tuning agreeable
to the control purpose such as flow-averaging level control?
Other than these, it is necessary to check the range pro-
priety of sensors and actuators, the necessity of filtering
of measurement noise, the presence of stiction of control
valves, and so on.

Experience leads us to believe that 80% of PID control
loops can be successfully tuned with a method based on
rule of thumb and trial and error. For example, initial
settings for PID parameters should be ”wide proportional
band and fast reset time” for flow control and ”narrow
proportional band and slow reset time” for level control.
After the initial PID setting, PID parameters are tuned
gradually to strengthen control action while the control
performance is verified.

The control performance improvement activity introduced
in this section has attracted the attention of many enter-
prises in the chemical and petroleum refining industries in
Japan, and the number of enterprises starting this activity
has increased rapidly. Such a movement seems to be the
result of the process control section not directly recogniz-
ing the reality that the operation section had an awareness
of control performance issues and was dissatisfied with the
control performance.

3.1 Actual Project Examples

The result of a project on a large-scale monomer plant,
which has 190 PID control loops, is introduced here.
In this plant, 90% of the PID controllers were in auto
mode for 30 days. This value outperforms the average
of 70% in the literatures (Desborough and Miller (2001);
Ender (1993)). Operators had adjusted PID parameters to
realize very loose control action. As a result, the process
was easily affected by disturbances and a long time was
required for production rate changes, thus the operators
made frequent adjustments such as set-point changes and
manual operation.

In all, 112 loops having a margin of improvement in control
performance were retuned in 12 days. The standard devi-
ations of controlled variables (CVs), σe, and manipulated
variables (MVs), σu, were reduced by an average of 37%
and 28%, respectively, as shown in Fig. 2. Here σ̃ denotes
the standard deviation before the retuning. The reduction
is almost the same as the value reported by Shah et al.
(2004). A pronounced effect was achieved in tray temper-
ature control loops of distillation columns. Temperature
fluctuation was reduced to one-fourth up to one-seventh,
and composition was also stabilized.

Figure 3 shows PID parameters for 29 level control loops
before and after the retuning. Here PB and Ti denote
proportional band and reset time, respectively. With the
exception of a part such as six loops for a heat recovery
boiler, the purpose of these control loops is flow-averaging
level control (FALC). Operators made the proportional
gain small (wide proportional band) in order for the ma-
nipulated variable not to change. However, the manip-
ulated variable had been oscillatory due to small reset
time. To solve this problem, Ogawa et al. (1998) developed
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a design method of flow-averaging level controllers and
applied it to those loops. As a result, it became possible
to suppress the oscillation of the manipulated variable by
allowing the fluctuation of the level, utilizing the capacity
of the drum, and absorbing flow disturbances. This FALC,
explained in section 3.3, was very effective for decreasing
changes in feed/product flow rate to distillation columns
and lightening the burden of tray temperature control.

The above-mentioned example is the result for MCC.
Generally, each company has its own in-house tool for
assessing and improving PID control performance. In Sum-
itomo Chemical, for example, Kugemoto (2005) developed
a control loop diagnostic tool ”LoopDiag” that can execute
control performance assessment, valve stiction detection,
as well as time series data analysis. LoopDiag is a re-
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sult of industry-academia collaboration in the task force
”Workshop No.25 Control Performance Monitoring” sup-
ported by the JSPS 143rd committee. In LoopDiag, control
performance is evaluated on the basis of the minimum
variance control benchmark concept (Harris (1989)), and
valve stiction is detected by using the methods developed
by Maruta et al. (2005) and Yamashita (2006). By the
year 2005, control performance assessment was carried
out for 300 PID control loops by using LoopDiag, and
performance improvement was achieved. In addition, 12
valve failures were diagnosed in 118 control loops, and four
of 12 valves had actually developed trouble.

Mitsui Chemicals has utilized ”Plant Control Estimation
& Tuning System (PCETS)” (Nishimura and Ootakara
(2007)). The functions of PCETS include 1) control per-
formance assessment based on operation data of controlled
variables, set-points, and manipulated variables, 2) plant
performance assessment, and 3) optimal PID tuning sup-
port. The function of control performance assessment has
been applied to more than 5000 control loops, and more
than 250 control loops whose performance was identified as
poor were retuned by the function of optimal PID tuning
support. The control performance was greatly improved in
most control loops.

In Idemitsu Kosan, one-parameter tuning PID control
has been used (Fujii and Yamamoto (2008)). This unique
technique was developed to integrate control performance
assessment and controller design and to make PID tuning
easier and more intuitive for plant operators. It allows
PID parameters to be tuned by adjusting just one user-
specified parameter that corresponds to control strength
or robustness. So far, one-parameter tuning PID control
has been successfully applied to hundreds of control loops.
This technique clarifies when controllers should be retuned
and enables operators who do not have controller design
experience to tune PID parameters effectively.

These examples would reveal the state of the art in PID
control, which still plays a very important role in chemical
process control. In the following part of this section, a few
practical control techniques are introduced.

3.2 Robust I-PD Controller Tuning

Since most PID controllers have the I-PD algorithm at
least in Japan, Ogawa and Katayama (2001) derived a
robust model-based PID tuning method for the I-PD
controller shown in Fig. 4. This method is suitable for
specific control loops such as temperature and composition
control, which are required a proper control performance
in the presence of plant-model mismatch.

The advantage of I-PD control over conventional PID con-
trol is that I-PD control can realize milder response to set-
point changes than PID control, while both control algo-
rithms achieve the same performance against disturbances.
When the set-point is changed stepwise in PID control
systems, an abrupt change of the manipulated variable is
unavoidable due to derivative and proportional actions.
In practice, such an abrupt change is undesirable. On the
other hand, in I-PD control systems, both derivative and
proportional terms act only on the controlled variable; thus
milder changes in the manipulated variable can be realized.

Here, the I-PD controller tuning method for a first-order
plus time-delay (FOPTD) model is explained. The desired
response Wr(s) of the controlled variable y for the set-
point r is specified by

Wr(s) ≡
y(s)
r(s)

=
1

(1 + TF s)
n e

−TLs (1)

where TF denotes a tuning parameter and n = r + 1 = 2
for the relative order r = 1 of the process model. TL,
Tp, and Kp denote time-delay, time constant, and steady-
state gain of the process model, respectively. By using the
1/1 Pade approximation and ignoring the derivative filter,
the partial model matching method (Kitamori (1981))
provides the following PID setting rule.

Kc =
p− 2q + 4
Kp (p+ 2q)

(2)

Ti =
(p+ 2q) (p− 2q + 4)

2p+ 4
Tp (3)

Td =
p
(
p+ 4q − 2q2

)
(p+ 2q) (p− 2q + 4)

Tp (4)

where p ≡ TL/Tp represents the difficulty of control
and q ≡ TF /Tp is a tuning parameter. Although the
parameter q can be tuned so that ISE (Integral of Squared
Error) is minimized, such tuning is not preferable in
practice. To realize robust PID control that is intuitive
and practical, a constraint on the maximum change of
the manipulated variable u(t) against a stepwise set-point
change is introduced. Given Umax(%), the parameter q is
determined by solving the following equation.

max
q
‖u(t)/u(∞)‖∞ ≤ Umax/100 (5)

where u(∞) is the steady-state value of u(t) after the set-
point change. The relationship among q, p, and Umax is
shown in Fig. 5.

This robust I-PD controller tuning method is derived not
only for FOPTD models but for integral plus FOPTD
models and second-order plus time-delay (SOPTD) models
with/without an unstable pole.

3.3 Flow-Averaging Level Control

Consider a process described by

P (s) =
y(s)
u(s)

=
1
Tps
, Tp =

KmA

Ku
(6)

where Tp (h) denotes reset time constant, Km (m/%)
sensor gain, Ku (m3/h/%) actuator gain, and A (m2)
sectional area.
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Fig. 5. Tuning of robust I-PD controllers
I-P control is used for FALC. Its block diagram is shown
in Fig. 4 and derivative time Td is set equal to 0. The
control response to set-point r (%) and disturbance d (%)
becomes the following second-order standard form.

y(s) =
1

1 + 2ζTns+ T 2
ns

2

(
r(s) +

Tis

Kc
d(s)

)
(7)

The damping coefficient ζ and the natural frequency Tn

are given by

ζ =

√
KcTi

4Tp
, Tn =

√
TpTi

Kc
(8)

By defining the performance index of FALC under a step-
wise disturbance as

min J =
1
2

∫ ∞

0

(
q2y2(t) + r2u̇2(t)

)
dt (9)

and solving the optimization problem similar to the LQI
problem, the control parameters can be related to the
process parameter.

KcTi = 2Tp (10)

As a result, the damping coefficient becomes ζ = 1/
√

2
and the second-order standard form becomes Butterworth-
type.

Given the size of the step-wise disturbance ds and the
maximum allowable level change ys, the proportional gain
and the reset time can be determined as follows:

Kc =

√
2e−π/4

ys/ds
≈ 0.645

η
, Ti =

2Tp

Kc
(11)

Here, η ≡ ys/ds is the disturbance rejection ratio.

This tuning method has been widely used in industry to
improve the performance of level control, in particular, to
achieve FALC with the specified characteristics, because
the calculation of PI parameters is very easy.

3.4 Direct PID Controller Tuning

Discussions with control engineers in the Japanese process
industries confirm that PID controller tuning is still a key

+ 

 -  

yur e
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Fig. 6. Feedback control system

issue. A typical chemical plant has thousands of control
loops whose maintenance is vital to efficient operation
of the entire plant. The conventional approach to tack-
ling this problem is to use an efficient open/closed-loop
identification method and reduce the burden of modeling.
However, any control system based on an identified model
suffers from modeling errors and requires retuning of con-
trol parameters. In addition, identification is still one of the
critical tasks in control system design. Control engineers
and operators would prefer to avoid identification and
manual tuning of PID controllers.

Extended fictitious reference iterative tuning (E-FRIT)
is a new direct tuning method, which can optimize PID
or I-PD control parameters directly from operation data
without a process model (Tasaka et al. (2009); Kano et al.
(2009b)). E-FRIT is a kind of extension of other direct
tuning methods such as iterative feedback tuning (IFT)
proposed by Hjalmarsson et al. (1998), virtual reference
feedback tuning (VRFT) by Campi et al. (2002), and
fictitious reference iterative tuning (FRIT) by Soma et al.
(2004).

E-FRIT is briefly explained here. Figure 6 shows a block
diagram of a feedback control system, where P denotes a
process, C(θ) a controller with parameters θ, r set-point,
and u and y are a manipulated variable and a controlled
variable, respectively. When PID control is used,

C(θ) =KP

(
1 +

1
TIs

+ TDs
)

(12)

θ = (KP, TI, TD) . (13)
In E-FRIT, a virtual output variable is formulated as a
function of PID parameters by using input and output
data together with a reference model. PID parameters are
determined so that the difference between the real and
virtual output variables is minimized. The following is the
PID tuning procedure based on E-FRIT. Here, G(s)x(t) or
Gx(t) is defined by L−1

{
G(s)L{x(t)}}, which represents

the discrete time series data collected at certain sampling
intervals.

[Step 1] After the control system is stabilized with initial
PID parameters θ0, change the set-point and collect
input and output data, u0(t) and y0(t)(t = 1, 2, · · · , N).

[Step 2] Derive the fictitious reference (virtual set-point)
r̃(θ, t) that generates u0(t) and y0(t) even when θ �= θ0.

r̃(θ, t) = C(θ)−1u0(t) + y0(t) (14)
[Step 3] Formulate the reference output ỹ(θ, t) by using

a reference model M as shown in Fig. 7.
ỹ(θ, t) =Mr̃(θ, t) (15)

The closed-loop system is close to the reference model
when ỹ(θ, t) is close to y0(t).

[Step 4] Solve the following optimization problem and
determine the optimal control parameters θ∗.
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θ∗ = arg min
θ
Jext(θ) (16)

Jext(θ) =
1
N

N∑
t=1

{
(y0(t)−ỹ(θ, t))2+λΔũ(θ, t)2

}
(17)

Δũ(θ, t) = ũ(θ, t)−ũ(θ, t−1) (18)
ũ(θ, t) = C(θ) (r0(t)−Mr0(t)) (19)

where λ is a weighting coefficient.

A reference model plays an important role in defining
the desirable control response. It is difficult, however,
to determine an appropriate reference model in advance
without information on the process. Therefore, parameters
in the reference model are optimized together with the
control parameters in E-FRIT. For example, when the
reference modelM is defined as the second-order binomial
coefficient standard form given by

M =
ω2

0

s2 + 2ω0s+ ω2
0

e−LMs (20)

the optimization variables are
φ = (KP, TI, TD, LM) (21)

instead of θ. This extension makes it possible to determine
the reference model that is more suitable for the process.

Kano et al. (2009b) proposed useful guidelines for applying
E-FRIT to industrial processes: 1) use the fourth-order
binomial coefficient standard form with dead time as a
reference model, 2) set a parameter ω0 of the reference
model on the basis of the rise time of the closed-loop
response, 3) optimize the dead time of the reference model
together with control parameters, and 4) use a fixed value
as a weighting coefficient λ for a penalty term for varia-
tion of the manipulated variable. A recommended value
is λ = 0.01 for tight control and λ = 1 for mild con-
trol. E-FRIT with these guidelines was validated through
industrial applications. The results have clearly shown
the usefulness of E-FRIT for chemical process control. A
software tool that can execute E-FRIT was developed as a
result of industry-academia collaboration in the task force
”Workshop No.27 Process Control Technology,” and it has
been used in industry.

4. CONVENTIONAL ADVANCED CONTROL

The status report of the IFAC Coordinating Committee
6 (Dochain et al. (2008)) stated that high performance
multivariable control is key to achieving the desired high
profits and that the technology for the design and realiza-
tion of high performance model-based constrained control
systems at reasonable engineering effort is one of the key
challenges faced by industrial practice. In fact, MPC has
contributed toward achieving high profitability for many
years. However, the profit can also be realized by utilizing
conventional advanced control such as valve position con-
trol and override control in particular. The following ques-
tion arises here: do we make the most use of conventional
advanced control? In this section, let us introduce one

FC
maximum

signal selector

FC

PC

VPC

FCPC

reactorcompressor
reactant

85
(%)

12
(t/h)

5.1
(MPa)

reactant feed rate

(a) control system  based on VPC

70

75

80

6

8

10

4.2

4.5

4.8
discharge press.

0 2 4 6 8 10
time (h) 

654 3.9

4.2
feed valve lift

(b) control result(b) control result

Fig. 8. Compressor-power-saving control

example showing the potential of conventional advanced
control.

Conventional advanced control is effective for various
processes and easy to implement on DCS. However, there
has been a trend for control engineers to take little account
of its application. This is the result that MPC became
a standard tool for the advancement of process control.
However, there is no doubt that production cost can
be decreased by accumulating the effect of conventional
advanced control.

The application of energy-saving control of the compressor
with VPC is described here. As shown in Fig. 8, the feed
gas is pressurized with the turbo compressor and supplied
to three different stages of the reactor. Each flow rate of
the feed gas is controlled. The discharge pressure of the
compressor is controlled by using guide vane opening as
the manipulated variable. To reduce compressor power, the
discharge pressure is lowered gradually with VPC, until
the largest valve opening among three feed flow control
valves reaches the upper limit, while feed flow rate is kept
constant. In this application, the discharge pressure was
decreased from 4.6 MPa to 4.0 MPa by increasing the
largest valve opening from 67% to 80%. As a result, motor
electric power consumption was saved by 16%.

Shinsky (1977) listed the following objects in which there
is an opportunity of the energy conservation by applying
conventional advanced control: 1) excessive reflux of dis-
tillation column, 2) excessive combustion air of furnace,
3) high steam to oil ratio of reactor, and 4) fouled heat
exchanger. In addition to these, excessive compression
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ratio provides an opportunity for the energy conservation
as illustrated.

In the enterprise, it is important to find any loss that
usually has been overlooked, to make the most use of
conventional advance control, and to continue the effort at
minimizing the loss. In comparison with the APC project
of using MPC, profitable results can be obtained much
more quickly without any further expense.

5. MODEL PREDICTIVE CONTROL

In this section, the present state of linear and nonlinear
MPC is described through the typical applications and
the survey results.

5.1 Linear MPC

The process that MPC is applied to most is distillation. A
simple example of MPC for a distillation process is shown
in Fig. 9(a). The controlled variables are the purity of
products extracted from the column top and bottom, and
the manipulated variables are the set-points of temper-
ature PID control at the column top and bottom. The
disturbance variables are flow rate and composition of
feed. The constraints are upper and lower limits of the
manipulated variables and the controlled variables and
upper limits of changes in the manipulated variables.

The economic benefit that MPC brings is illustrated in
Fig. 9(b). Since the achievable performance of PID control
is limited due to interaction, which is a feature of multi-
variable processes, it is assumed that the current operating
region corresponds to region A in the figure. In such a
situation, the operating condition bound has to be set far
from the real constraints to ensure a sufficient margin of
safety. Using MPC can improve control performance and
reduce variation. As a result, the operating region becomes
small from A to B. This improvement makes it possible to
move the operating region from B to C, which is close
to the bound of operating conditions. Furthermore, more
economical operation D can be realized by optimizing set-
points to minimize operational costs. MPC takes on the
responsibility of this set of functions. The benefit is not
only the improvement of the control performance by using
model-based control, but also the realization of stable
operation close to the optimal point under disturbances
by using optimization.

Implementation of MPC releases operators from most of
the adjustment work they had to do in the past because the
optimal operating condition is automatically determined
and maintained under disturbances. In addition, MPC
makes it possible to maximize production rate by making
the most use of the capability of the process and to
minimize cost through energy conservation by moving
the operating condition toward the control limit. Both
the energy conservation and the productive capacity were
improved by an average of 3 to 5% as the result of APC
projects centered on MPC at MCC.

The control performance of MPC depends on the accuracy
of the process model and the appropriateness of tuning,
but MPC has outstanding robustness. For example, stable
operation is realized by MPC in spite of large model
parameter errors of about 50%. However, it is difficult
to assess the control performance of MPC due to a large
number of variables. A plant test for modeling sometimes
requires two weeks. The engineers who have experienced it
can readily understand that the implementation of MPC
including modeling and tuning is a demanding job.

MPC is highly effective, but it has several weak points
(Hugo (2000)). First, it is not good at level control when
the process has an integrator. For such a case, PI control
is easy to design and superior to MPC in control perfor-
mance. Second, the control performance of MPC deteri-
orates against ramp-wise disturbances because the MPC
algorithm is developed by assuming step-wise disturbances
(Lundstrom et al. (1995); Hugo (2000)). In addition, lin-
ear programming (LP) is usually used for optimizing set-
points under constraints, and the optimal point is located
at one of the extreme points of a polyhedron consisting
of linear constraints. When the gradient of the objective
function and that of constraints are similar to each other,
the optimal point jumps from one extreme point to another
and the set-points change suddenly (Forbes and Marlin
(1994); Hugo (2000)). Research and development are con-
tinuing to solve these problems.

Ohshima et al. (1995), who wrote about the state of MPC
application in the petroleum and chemical enterprises
in Japan, reported that 154 MPC controllers were in
operation and 43 under implementation. The total number
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of 197 was 2.5 times as much as the number of 75 in 1990.
At present, the number of MPC controllers is 169 only at
MCC (Ogawa (2006)).

At the very end of this subsection, the MPC application for
energy conservation and production maximization of the
olefins unit at MCC Mizushima plant is briefly explained
(Emoto et al. (1994)). Qin and Badgwell (2003) reported
that this application was the largest MPC application in
the world, consisting of 283 manipulated variables and 603
controlled variables. The process was operated in energy
conservation mode for the first four days in Fig. 10. Since
the productive capacity was beyond the demand, the tem-
perature difference between vapor and coolant in the over-
head condenser was increased by making the column pres-
sure higher. As a result, an amount of heat exchanged was
increased, and the amount of coolant used was decreased.
This operation made it possible to reduce the refrigerator
power. On the other hand, the process was operated in
production maximization mode for the last five days. To
maximize the production rate for fulfilling the demand, the
separation performance was improved by decreasing the
column pressure and increasing the relative volatility. The
feed flow rate to the cracking furnace was increased until
the tray delta-pressure reached its upper limit, that is,
the flooding limit. In this production maximization mode,
the MPC system is large because MPC controllers for
many cracking furnaces and distillation columns function
in cooperation.

A skilled operator made the following comment on this
MPC application: ”We had operated the Ethylene frac-
tionator in constant pressure mode for more than 20
years. I was speechless with surprise that we had made an
enormous loss for many years, when I watched the MPC
decreased the column pressure, improved the distillation
efficiency, and maximized the production rate.” Another
process control engineer said ”I had misunderstood that
set-points were determined by operation section and pro-
cess control section took the responsibility only for control.
I realized MPC for the first time; it makes the most use
of the capability of equipments, determines set-points for
economical operation, and maintains both controlled vari-
ables and manipulated variables close to the set-points.”

Table 3. Statistics of MPC applications (from
the survey JSPS143 WS27 2009)

in-house vs vendor
in-house development 6 %
introduction from vendor 94 %

targeted process
distillation 32 %
reaction 23 %
others 45 %

product
DMCplusR© 46 %
RMPCTR© 36 %
ConnoisseurR© 5 %
SMOCR© 4 %
others 9 %

number of MV, CV, and DV
MV DV CV

0 0 28 0
1 40 45 24
2 57 50 33
3-5 83 103 58
6-9 47 40 59
10-19 59 27 48
20-29 12 5 25
30-39 1 3 29
40-49 1 3 16
50 or more 5 1 13

MV: manipulated variable
CV: controlled variable
DV: disturbance variable

5.2 Nonlinear MPC

Nonlinear MPC has attracted attention in recent years
(Qin and Badgwell (2003)). It is suitable for control of
a nonlinear process operated in a wide range, e.g. poly-
merization reaction processes. In MCC, an independently
developed nonlinear MPC has been applied to polymeriza-
tion reactors at the polyolefin production units, and it has
been put successfully to practical use (Seki et al. (2001)).

However, application of nonlinear MPC has not spread as
well as was expected. It is difficult to build a nonlinear
model of a process, or process control engineers have
slackened their efforts at modeling nonlinear processes. On
the other hand, most polymer production processes are
operated without any quality problem by existing control
systems supported with operators’ suitable manual inter-
vention. Therefore, it is difficult to justify any benefit of
using nonlinear MPC. These obstacles should be overcome
to expand nonlinear MPC application.

5.3 Survey Result of MPC

A part of the questionnaire survey results, related to MPC,
is introduced here. The total number of MPC applications
answered is 305, which is 1.5 times as much as the number
of 197 in 1995. The statistics of 305 MPC applications
are summarized in Table 3. Most of them are introduced
from vendors; DMCplus R© and RMPCT R© are dominant
tools. Distillation and reaction processes cover half the
applications.

Table 4 clarifies objectives and effects of MPC. In addition
to disturbance rejection and set-point tracking, the time
to achieve the optimal condition and the realization of
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Table 4. Effects of MPC applications (from the
survey JSPS143 WS27 2009)

objective of tuning
disturbance rejection 56 %
set-point tracking 38 %
time to optimal condition 6 %

major effect on control performance
disturbance rejection 43 %
automatic operation 36 %
set-point tracking 18 %
others 3 %

major effect on productivity
saving resources and energy 38 %
increasing production capacity 31 %
reducing operators’ load 17 %
improving product quality 10 %
increasing flexibility toward changes 4 %

major key to success
careful modeling 37 %
suitability for objective 33 %
education of operators and engineers 15 %
suitability for process characteristics 11 %
hardware/software environment 4 %

automatic operation are important. Saving resources and
energy, increasing production capacity, reducing operators’
load, and improving product quality are major effects
achieved by MPC. Furthermore, process control engineers
have identified the following major keys to success: 1) a
process model should be developed with care, 2) MPC
should be suitable for objectives, 3) operators and engi-
neers should be adequately educated, and 4) MPC should
be suitable for process characteristics.

Although MPC has been widely and successfully applied in
the chemical and petroleum refining industries, problems
still remain to be solved as summarized in Table 5. The
major problem would be described as follows. To achieve
desirable performance, it is necessary to build an accu-
rate model and to tune control parameters appropriately.
However, both of them are difficult in practice due to
process nonlinearity and changes in process characteristics.
To keep sufficient control performance and to prevent or
at least cope with performance deterioration, the mainte-
nance of MPC is crucial. Control engineers need to know
the reason of performance deterioration and the effective
countermeasure. In addition, they would like to know
the relationship between model accuracy and achievable
control performance. Modeling of a multivariable process
is an exceedingly laborious engineering task; thus it needs
to be clarified how accurate a model should be to achieve
the goal. Of course, not only clarifying the relationship but
also improving modeling and tuning methods is necessary.
In addition, the implementation of MPC should be easier.
As for the maintenance of MPC, very recently, Badwe
et al. (2008) proposed a model-plant mismatch detection
method by using partial correlation analysis, and Huang
(2008) proposed the used of Bayesian methods. Another
problem is how to transfer engineering technology from
skilled engineers to others. Unfortunately, a lack of process
control engineers aggravates the situation. Furthermore,
it is also crucial in practice to answer the question: how
can we estimate the economical benefit of installing MPC
to justify the project? Most APC suppliers and users are
required to report the benefit to management. Bauer and

Table 5. Problems of MPC applications (from
the survey JSPS143 WS27 2009)

problem: general
low robustness against model error 26 %
difficulty in tuning 23 %
inability to cope with specific objective 15 %
difficulty in modeling 12 %
others 24 %

problem: maintenance
transfer of engineering technology 44 %
response to performance deterioration 33 %
education of operators 7 %
difficulty in tuning 7 %
others 9 %

need for improvement: general
to improve modeling technology 28 %
to clarify method of estimating effect 25 %
to simplify implementation 22 %
to increase process control engineers 14 %
others 11 %

need for improvement: theory
to cope with changes in process characteristics 26 %
to clarify relations between model accuracy 24 %

and control performance
to cope with unsteady operation (SU/SD) 16 %
to incorporate know-how in control system 16 %
to cope with nonlinearity 13 %
others 5 %

need for improvement: response to changes/nonlinearity
to switch multiple linear models 28 %
to improve robustness of linear MPC 25 %
to use time-varying/nonlinear model 18 %
to add adaptive function to linear MPC 18 %
to integrate other technique with MPC 11 %

(e.g. knowledge-based control)

Craig (2008) reported that benefit estimation methods
based on variance reduction are still carried out, but they
are sometimes rudimentary and based on experience.

6. SOFT-SENSOR

A soft-sensor, or a virtual sensor, is a key technology for
estimating product quality or other important variables
when on-line analyzers are not available. In chemical pro-
cesses, for example, soft-sensors have been widely used to
estimate product quality of distillation columns, reactors,
and so on. Artificial neural network (ANN) has been
dominant in the literature since the middle 1990’s, while
partial least squares (PLS) is popular in industry (Kano
and Nakagawa (2008)). ANN is a useful tool for building
nonlinear models and supposed to be suitable for industrial
processes. However, linear models have produced satisfac-
tory results in many cases because industrial processes
are operated within certain range to produce the required
products and linear approximation functions well. In addi-
tion, collinearity has to be taken into account for develop-
ing reliable soft-sensors. Thus, PLS has been very popular
as a tool for soft-sensor design (Mejdell and Skogestad
(1991); Kresta et al. (1994); Kano et al. (2000)). In re-
cent years, support vector machine (SVM), support vector
regression (SVR), and other kernel-based methods have
emerged (Boser et al. (1992); Cortes and Vapnik (1995)).
These methods have attracted researchers’ and engineers’
attention and have been used for soft-sensor design (Yan
et al. (2004); Desai et al. (2006)). Another method for
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developing soft-sensors is subspace identification (SSID),
which can build a state space model from input and output
data (Verhaegen and Dewilde (1992); Overschee and Moor
(1994)). SSID is a useful tool to build a dynamic inferential
model of a multivariable process, and it is suitable for soft-
sensor design because the performance of soft-sensors can
be greatly improved by taking process dynamics into ac-
count (Kano et al. (2000)). Amirthalingam and Lee (1999)
used SSID for inferential control of a continuous pulp
digester. Amirthalingam et al. (2000) developed a two-step
procedure to build SSID-based inferential control models,
in which the stochastic part was idetified from historical
data and the deterministic part was identified from plant
test data. Kano et al. (2009a) proposed two-stage SSID
to develop highly accurate soft-sensors that can estimate
unmeasured disturbances without assumptions that the
conventional Kalman filtering technique must make. Thus
it can outperform the Kalman filtering technique when
innovations are not Gaussian white noises or the properties
of disturbances do not stay constant with time. The superi-
ority of the two-stage SSID over conventional methods was
demonstrated through their application to an industrial
ethylene fractionator.

6.1 Reliability of Soft-sensor

A great deal of research has been conducted to develop
data-based soft-sensors for various processes. A data-based
soft-sensor, however, does not always function well, be-
cause a black-box model is not valid when a process is
operated outside certain conditions where operation data
used for modeling were obtained. The product quality
and process performance will deteriorate if estimates of
the soft-sensor are blindly believed by operators and used
in a control system. On-line monitoring of the validity
of the soft-sensor will avoid such a dangerous situation.
The simplest approach is to check whether an estimation
error exceeds its control limit when a measurement be-
comes available. This approach enables us to detect the
inconsistency between the analyzer and the soft-sensor,
but the cause of the inconsistency cannot be identified.
In industry practice, it is assumed that an estimation
error is caused by inaccurate estimation; however, this
assumption is not always true because analyzers are not
always reliable. For example, when blockage occurs within
a sampling line, a hardware sensor cannot provide accu-
rate measurements. To address such practical problems,
Kamohara et al. (2004) proposed a PLS-based framework
for developing a soft-sensor and monitoring its validity
on-line. The on-line monitoring system was based on the
multivariate statistical process control (MSPC) technique
(Jackson and Mudholkar (1979); Kresta et al. (1991)) in
which the dynamic PLS model designed for estimating
the product quality is used. In addition, simple rules were
established for checking the performance of a process gas
chromatograph by combining the soft-sensor and the sta-
tistical monitoring system. The effectiveness of the devel-
oped system was demonstrated through its application to
an ethylene production plant.

6.2 Changes in Process Characteristics

Generally, building a high performance soft-sensor is very
laborious, since input variables and samples for model con-

struction have to be selected carefully and parameters have
to be tuned appropriately. Even if a good soft-sensor is
developed successfully, its estimation performance deterio-
rates when process characteristics change. In chemical pro-
cesses, for example, equipment characteristics are changed
by catalyst deactivation or scale adhesion. Such a situation
may lead to a decline of product quality. Therefore, from
the practical viewpoint, maintenance of soft-sensors is
very important to keep their estimation performance. Soft-
sensors should be updated as the process characteristics
change, and manual and repeating construction of them
should be avoided due to its heavy workload.

To cope with changes in process characteristics and to
update statistical models automatically, recursive methods
such as recursive PLS were developed (Qin (1998)). These
methods can adapt models to new operating conditions
recursively. However, the prediction performance would
deteriorate if the model is updated with an abnormal
sample. Kaneko et al. (2009) used independent component
analysis (ICA) to detect abnormal situations and improve
the prediction accuracy. Recently, ICA is recognized as a
useful technique for fault detection and diagnosis (Kano
et al. (2003, 2004); Lee et al. (2004)). The combination
between soft-sensors and fault detection is effective to a
certain extent. But, as far as a recursive method is used,
the model will adapt excessively and will not function in
a sufficiently wide range of operating condition when a
process is operated within a narrow range for a certain
period of time. In addition, recursive methods cannot cope
with abrupt changes in process characteristics.

Just-In-Time (JIT) modeling or lazy learning was pro-
posed to cope with changes in process characteristics as
well as nonlinearity, and it has been used for nonlinear
process monitoring as well as soft-sensing (Atkeson et al.
(1997); Bontempi et al. (1999)). In JIT modeling, a lo-
cal model is built from past data around a query point
only when an estimated value is requested. JIT modeling
is useful when global modeling does not function well.
However, its estimation performance is not always high
because the samples used for local modeling are selected
on the basis of the distance from the query point and the
correlation among variables is not taken into account. A
good model cannot be developed when correlation among
input and output variables is weak even if the distance
between samples is small. Conversely, a very accurate
model can be developed when the correlation is strong even
if the distance is large. On the basis of this idea, recently,
correlation-based JIT (CoJIT) modeling was proposed by
Fujiwara et al. (2009). In this technique, the samples used
for local modeling are selected on the basis of correlation
together with distance, and the Q statistic is used as an
index of the correlation dissimilarity. The Q statistic is
derived from principal component analysis (PCA), and
it is a measure of dissimilarity between the sample and
the modeling data from the viewpoint of the correlation
among variables (Jackson and Mudholkar (1979)). CoJIT
can cope with abrupt changes of process characteristics
and also achieve high estimation performance. It can also
cope with process nonlinearity.
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Fig. 11. Schematic diagram of the cracked gasoline frac-
tionator of the ethylene production process at the
Showa Denko K.K. (SDK) Oita plant

6.3 Industrial Case Study of CoJIT

Here, an application of CoJIT to an industrial chemical
process is introduced (Fujiwara et al. (2009)). A soft-
sensor for estimating the aroma concentration was con-
structed to realize highly efficient operation of the cracked
gasoline fractionator of the ethylene production process
at the Showa Denko K.K. (SDK) Oita plant in Japan. A
schematic diagram of the cracked gasoline (CGL) fraction-
ator of the ethylene production process is shown in Fig. 11.
The CGL fractionator is controlled by applying multivari-
able MPC with an optimizer, and the aroma concentration
in the CGL (aroma denotes the generic name for benzene,
toluene, xylene and styrene, etc.) is used as one of the
constraints in the optimizer. Although the operation data
of the CGL fractionator are stored in the database every
hour, the aroma concentration is analyzed in a laboratory
usually once a day because of its long analysis time. For
safety, the process must be operated in a condition that
has a wide margin and is far from constraints. Therefore,
a soft-sensor that can estimate the aroma concentration
accurately in real time needs to be developed for realizing
efficient operation.

In addition to eight variables measured in the CGL frac-
tionator, the coil outlet temperature of the cracking fur-
nace, measured four hours before, was used as an input
variable, since the product composition is affected by the
operating condition of the cracking furnace which is lo-
cated in the upstream of the ethylene production process,
and it takes about four hours for materials to reach the
CGL fractionator from the cracking furnace. The selected
input variables of the soft-sensor are listed in Table 6 and
Fig. 11.

First, the aroma concentration was estimated with recur-
sive PLS. The model was updated every 24 hours when
the aroma concentration was analyzed in the laboratory.
The estimation result is shown in Fig. 12(top). There is
a bias between the measurements and the estimates after
the 100th day when the pressure of the compressor was
changed.

Next, the aroma concentration was estimated with CoJIT.
In the initial state, the operation data obtained from April
30, 2006 to February 23, 2007 were stored in the database.

Table 6. Input variables of the soft-sensor for
the CGL fractionator

No. variable

1 Feed flow rate
2 Tower top temperature
3 Reflux volume
4 Outlet cracked gasoline temperature
5 Outlet cracked gasoline flow rate
6 Outlet cracked kerosene flow rate
7 Tray #4 differential pressure
8 Reboiler flow rate
9 Cracked furnace coil outlet temperature
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Fig. 12. Prediction results of aroma concentration: recur-
sive PLS (top) and CoJIT modeling (bottom)

Then, the soft-sensor was updated and the aroma concen-
tration was estimated for the next 300 days, February 24,
2007 to December 25, 2007. The estimation result is shown
in Fig. 12(bottom). The estimation performance of CoJIT
is high and RMSE (root mean squared error) is improved
by about 28% in comparison with recursive PLS. CoJIT
would have a potential for realizing efficient maintenance
of soft-sensors in the real world.

6.4 Survey Result of Soft-sensor

A part of the questionnaire survey results related to
soft-sensors is introduced here. This questionnaire asked
control engineers the number of soft-sensor applications,
targeted processes, methods for designing soft-sensors, and
problems to be solved. The total number of soft-sensor
applications answered was 439. The number is rapidly
increasing. The survey result is summarized in Table 7.

This survey result clarifies the state of the art of soft-sensor
application in Japan. First, a major targeted process
is distillation (331/439), followed by reaction (86/439)
and polymerization (20/439). Second, a major modeling
method is multiple regression analysis (MRA) (293/439),
followed by PLS (93/439). Nonlinear modeling methods
are rarely used in the Japanese chemical and petroleum
refining industries. It is confirmed that linear regression
such as MRA and PLS can achieve sufficient estimation
accuracy for most distillation and reaction processes. On
the other hand, polymerization reaction processes are more
difficult to model by linear regression than distillation and
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Table 7. Statistics of soft-sensor applications (from the survey JSPS143 WS27 2009)

methodology
process Phys MRA PLS O.L. ANN JIT Gray total

distillation 20 256 41 6 0 5 3 331
reaction 5 32 43 0 0 5 1 86
polymerization 0 4 8 0 3 0 5 20
others 0 1 1 0 0 0 0 2
total 25 293 93 6 3 10 9 439

Phys: physical model
MRA: multiple regression analysis
PLS: partial least squares regression
O.L.: other linear regression
ANN: artificial neural network
JIT: just-in-time model
Gray: gray-box model or hybrid model between

physical model and statistical model

Table 8. Problems of soft-sensor applications
(from the survey JSPS143 WS27 2009)

accuracy deterioration due to changes 29 %
in process characteristics

burden (time/cost) of data acquisition 22 %
burden of modeling itself 14 %
burden of data preprocessing 7 %
inadequate accuracy since installation 7 %
inadequate accuracy due to changes 7 %

in operating conditions
difficulty in evaluating reliability 7 %
unjustifiable cost performance 7 %

other reaction processes. Thus, some companies have used
gray-box models (5/20) or ANN models (3/20).

In addition, we have asked engineers what are problems
related with applications of soft-sensors. The answers
are summarized in Table 8. This result confirms that
the maintenance of models is the most important issue
concerning soft-sensors.

7. RELATED ISSUES

In this section, other important issues related to process
operation are described: tracking simulator and alarm
management.

7.1 Tracking Simulator

As process engineers, we have a dream that one day a
plant simulator based on a rigorous first-principle model is
realized and it provides functions such as 1) estimation and
visualization of all states and parameters, 2) prediction of
plant behavior in the future, 3) optimization of operating
conditions, and 4) detection and diagnosis of abnormal
situations. This plant simulation technology will become
the core of future operation support system and lead to
production innovation.

As mentioned before, the achievement of stable and effi-
cient operation has largely depended on skilled operators
in Japan, and many skilled operators are approaching re-
tirement age. Thus, an advanced operation support system
and an efficient operator training system are required.
A training simulator for teaching operators to cope with
start-up, shut-down, and other operations under abnor-
mal situation has been developed and widely used in the
process industry. The training simulator aims at faithful
reproduction of real plant behavior. On the basis of the
training simulator, a tracking simulator is now under devel-
opment to realize the above-mentioned functions (Fukano
et al. (2007)). The tracking simulator works simultane-
ously with an actual plant, adjusts parameters, estimates
states, analyzes the plant, and optimizes operation by

using plant models and measurements. The tracking simu-
lator consists of a mirror model for visualizing plant states,
an identification model for parameter estimation, and an
analysis model for realizing the other necessary functions.

Such a tracking simulator has been developed by a few
companies and introduced and tested in real plants in
Japan. Further development is required to realize our
dream, and various challenging problems confront us.

7.2 Alarm Management

Recently, alarm management has attracted considerable
attention to achieve highly stable operation in the process
industry. General recognition for current alarm systems in
Japan is as follows (Higuchi et al. (2009)). With the ad-
vance of distributed control systems (DCS) in the chemical
industry, it has become possible to install many alarms
cheaply and easily. While most alarms help operators
detect and identify faults, some are unnecessary. A poor
alarm system may cause alarm floods and nuisance alarms,
which reduce the ability of operators to cope with plant
abnormalities because critical alarms are buried in many
unnecessary alarms.

If an alarm system does not work as designed, the effects
can be very serious. The explosion and fires at the Texaco
Milford Haven refinery in 1994 injured 26 people and
caused around £48 million of damage and a significant loss
in production. The Health and Safety Executive’s (HSE)
investigation (1997) mentions that there were too many
alarms and these were poorly prioritized and the control
room displays did not help operators understand what was
happening.

To improve the quality and safety of industrial plants,
and to reduce cost of the design and maintenance of plant
alarm systems, the Engineering Equipment and Materials
Users Association (EEMUA) provided the general design
and evaluation principles of plant alarm systems (The
Enginnering and Equipment Materials Users’ Association
(EEMUA) (2007)). While this guide gathered many valu-
able plant engineers’ experiences, it is only a general guide,
and some of the design methods are only conceptual, such
as the selection of alarm source signals and the decisions
on alarm limits (Yan et al. (2007)). In addition, the role
of operators in Japan is far different from that in other
countries; thus, it is recognized that direct application
of the EEMUA 191 Guide is not appropriate in Japan.
In fact, a bottom-up approach has succeeded in reducing
the number of alarms, average alarm frequency standards
proposed by EEMUA are achieved in some plants, and
further improvement is required. Generally, Japanese com-
panies are excellent at such a bottom-up approach as TPM
（total productive maintenance), which combines preven-
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tive maintenance with Japanese concepts of total quality
control (TQC) and total employee involvement (TEI). It
is true, however, the alarm management in Japan has
been short of a viewpoint of such a top-down approach
as EEMUA suggested. In Japan, the industry-academia
collaboration task force ”Workshop No.28 Alarm Man-
agement” supported by the JSPS 143rd committee was
established in 2007. This task force aims at developing
new methodologies and standardizing alarm management
by emphasizing distinctive culture in Japanese industries.

8. CONCLUSIONS

The state of the art in process control in Japan was
described in this paper on the basis of the authors’ experi-
ence and the questionnaire survey results. The realization
of production innovation and highly stable operation is
the chief objective of the process industry in Japan. To
achieve this objective and solve the year 2007 problem,
i.e., retirement of skilled operators, process control and
operation need to be further improved. This improvement
does not necessarily mean the adoption of novel advanced
technologies. Rather, it is important to reform the whole
production activity through reviewing it as leading chemi-
cal companies have done and consequently have increased
productivity remarkably.

In Japan, several industry-academia collaboration task
forces have been organized to sift through problems related
to process operation and solve them. Such task forces
include Workshop No.25 Control Performance Monitoring,
Workshop No.27 Process Control Technology, Workshop
No.28 Alarm Management, and so on; they are supported
by the JSPS 143rd committee. More than a few methods
and tools have been developed by task forces and utilized
in various companies. Several examples were introduced
in this paper together with practical methods developed
outside task forces. The topics discussed here include PID
control, advanced conventional control, model predictive
control, soft-sensor, tracking simulator, and alarm man-
agement. The current situation and the problems were
clarified.

In recent years, there has been a strong trend to pro-
duce polymer products having special functions in a small
amount in a batch process. At the forefront of produc-
tion, the necessity of practical technological development
is being recognized: for example, precise control of reaction
temperature, estimation of reaction state, and batch-to-
batch control. Process control engineers have been com-
mitted to continuous process control so far. In the future,
however, they need to open their eyes to batch process
control and to meeting the challenges to its advancement.

This paper has surveyed what process control engineers
have done in the last two decades and what they might
do in the future, especially focusing on the projects at
a Japanese chemical company. The authors expect that
engineers share practical methods and best practice and
also that they spare no effort in developing their own
methods to solve their own problems.
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Abstract: In this talk, we assess the potentials of the approximate dynamic programming
(ADP) approach for process control, especially as a method to complement the model predictive
control (MPC) approach. In the Artificial Intelligence (AI) and Operations Research (OR)
research communities, ADP has recently seen significant activities as an effective method
for solving Markov Decision Process (MDP), which represents a type of multi-stage decision
problems under uncertainty. Process control problems are similar to MDPs with the key
difference being the continuous state and action spaces as opposed to discrete ones. In
addition, unlike in other popular ADP application areas like robotics or games, in process
control applications first and foremost concern should be on the safety and economics of
the on-going operation rather than on efficient learning. We explore different options within
ADP design, such as the pre-decision state vs. post-decision state value function, parametric
vs. nonparametric value function approximator, batch-mode vs. continuous-mode learning,
exploration vs. robustness, etc. We argue that ADP possesses great potentials, especially for
obtaining effective control policies for stochastic constrained nonlinear or linear systems and
continually improving them towards optimality.

Keywords: Stochastic optimal control, constraints

1. INTRODUCTION

Model predictive control (MPC) is a technique in which
the current control action is obtained by minimizing on-
line, a cost criterion defined on a finite time interval.
Nominal deterministic trajectories of future disturbance
signals and uncertainties are necessarily assumed in order
to obtain an optimization problem amenable to on-line
solution via math programming. The solution generates a
control sequence from which the first element is extracted
and implemented. The procedure is repeated at the next
time instant. Owing to its ability to handle constrained,
multi-variable control problems in an optimal manner,
MPC has become the de-facto advanced process control
solution for the process industries today.

MPC is by now considered to be a mature technology ow-
ing to the plethora of research and industrial experiences
during the past three decades. Despite this, it has some
fundamental limitations, which prevents it from being a
panacea for all process control problems. One well-known
limitation is the potentially exorbitant on-line computa-
tion required for solving a large-scale, and potentially non-
convex math program that scales with the dimension of
the state as well as the length of prediction horizon. Re-
cent developments (Laird and Biegler (2008)) have made
some headway in tackling this problem although nontrivial
computational challenges still exist.

� JHL gratefully acknowledges financial support from Owens Corn-
ing and Weyerhaeuser.

The second limitation arises from the fact that the deter-
ministic formulation adopted by MPC is inherently inca-
pable of addressing uncertainty in a closed-loop optimal
fashion. Its open-loop optimal control formulation used to
find the control moves at each sample time means the fact
that information about future uncertainty will be revealed,
this being generally beneficial for control performance, is
not considered. Most of the past attempts at ameliorating
the impact of uncertainty has been reflected in robust
MPCs formulations based on the objective of minimizing
the worst-case scenarios (Scokaert and Mayne (1998)) at
the expense of overly conservative policies. Multi-scenario
formulations (Laird and Biegler (2008)) have also been
developed but the number of scenarios is limited and
they do not give closed-loop optimal policies in general.
Stochastic programming based methodologies (Pena et al.
(2005)) allow for recourse actions at the computational
expense of enumerating an exponentially growing number
of scenarios.

In this paper, we examine the possibility of lessening or
removing the above-mentioned limitations by combining
MPC with an approach called “approximate dynamic pro-
gramming (ADP).” ADP is a technique that surfaced from
the research on reinforcement learning in the Artificial
Intelligence (AI) community (Sutton and Barto (1998);
Bertsekas and Tsitsiklis (1996)). It has its theoretical
foundations in the traditional dynamic programming by
Richard Bellman (Bellman (1957)) but its computational
bottlenecks, termed as “the curse of dimensionality” by
Bellman himself, are relieved through ideas such as intelli-
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gent sampling of the state space through simulations and
function approximation. ADP, due to its root in AI, has
mainly been studied in the context of Markov Decision
Processes (MDPs), which involve discrete finite state/ ac-
tion spaces and probabilistic transitions. Hence, its appli-
cation to process control problems, which typically involve
continuous state/ action spaces, is not straightforward. In
addition, the characteristics of process control problems
are somewhat different from those of robotics, games, and
resource allocation problems. For example, in process con-
trol applications, the idea of “learning by mistakes” for the
sake of efficient learning, may not be tolerated as mistakes
often bring unacceptable consequences in terms of safety
and economics. Hence, extension of ADP to process control
may require significant care and possibly some new tools.

Design of an ADP algorithm involves a variety of choices,
including type of function approximator, pre-decision vs.
post-decision formulation, batch vs. continuous updating
of the value table, and exploration vs. robustness tradeoff.
We will visit these issues, carefully examining the implica-
tions of these choices in the context of designing a learning
algorithm for process control applications. In addition, we
will also consider the complementary nature or synergies
between ADP and MPC.

The rest of the paper is organized as follows. In Section
2, we will briefly review the basics of MDP, ADP and
also present a mathematical representation of the system
we consider for control. In Section 3, we will examine
the various options and choices and their implications for
process control applications. In Section 4, we will present
a few examples, including those involving both linear and
nonlinear stochastic systems. In Section 5, we conclude the
paper and discuss other control-related areas where ADP
can potentially be useful in the process industries.

2. BACKGROUND

2.1 Markov Decision Processes and Approximate Dynamic
Programming

Markov Decision Processes (MDPs) provide a framework
for modeling real world processes that have a stage-wise
structure. The stage can denote a time epoch or other
quantities like location, processing step, etc. At any stage,
the system is recognized as being in a state (designated
as s), which is a set of attributes that aid decision-
making. The set of all possible states is called state space
(designated as S). Starting in state s belonging to S,
there is a set of actions from which the decision-maker
must choose. The set of all possible actions is called action
space (A) and an element of the action space is denoted
by a. When action a is taken in state s, and the system
transitions to the next stage, it ends up in a unique next
state s′ ∈ S in the absence of any uncertainty. However, for
stochastic problems, there is a set of possible next states
for each state-action pair. The probability of transition to
a particular next state in this case is governed by a state
transition probability function, P . In the process, reward
r(s, a, s′) is received, which is determined by the reward
function r. The dependence of r on s′ is often suppressed
by taking a weighted average over all possible states at the
next stage. At each stage, actions are taken so that the

sum of stage-wise rewards is maximized. In the presence
of uncertainty, the expected sum of rewards is maximized.
When infinite stages are present, i.e., extremely large time
horizon, the future rewards are often discounted using a
discount factor γ. When the number of stages is infinite,
the problem is called an infinite horizon MDP as opposed
to a finite horizon MDP for finite number of stages.
In most applications, a stage symbolizes a time epoch.
Therefore, the term time epoch or time step is often used
synonymously with ‘stage’.

More formally, MDP is defined by a tuple (S,A, P,R, γ)
where S is a set of states, A is a set of actions, P : S×A×
S → [0, 1] is a set of transition probabilities that describe
the dynamic behavior of the modeled environment, R : S×
A × S → R denotes a reward model that determines the
stage-wise reward when action a is taken in state s leading
to next state s′ and γ ∈ [0, 1) is the discount factor used
to discount future rewards. A γ value close to 0, places
very little weightage on future rewards, while γ close to 1
results in very little discounting.

One of the fundamental properties of the MDPs is that the
transition and reward functions associated with the stage-
wise transition of state are independent of the past states
and actions. Referred to as Markov property, this memory-
less feature enables the decomposition of the overall opti-
mization problem into separate stage-wise problems. This
is accomplished by using a recursive relationship between
the value of being in a state at any stage.

An important notion in this regard is the so called value
function denoted by V (s), which is defined as the (often
discounted) sum of rewards over a time horizon which can
be either finite or infinite (shown below) and discussed
hereafter:

V π(s) = E

[ ∞∑
t=0

γtr(st, μ(st))|s0 = s

]
(1)

where t denotes the time epoch, st is the state at time t
and π : S → A, is the policy that dictates the choice of
action for a given state at time t.

The goal is to find an optimal policy that maximizes the
value function for all s ∈ S. This is achieved by solving
the Bellman equation (Bellman (1957)) for finite or infinite
horizon problems. The optimal policy can be derived via
dynamic programming. Let a∗(s) be the optimal action
to be taken when the system is in state s, independent
of time t. V ∗(s) is called the optimal value function and
is obtained as the solution to the (Bellman equation) (2),
which must be solved for all s ∈ S:

V ∗(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V ∗(s′)

}
∀s (2)

a∗(s) = π∗(s) Δ= arg max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V ∗(s′)

}
(3)

where symbol p(.) denotes the probability of a quantity. It
is well-known (Putterman (1994)) that for infinite horizon
problems, a stationary optimal policy of the form in (3) ex-
ists, where V ∗(s) is the average discounted infinite horizon
reward obtained when the optimal policy is followed start-
ing from s until infinity (Putterman (1994)). This implies
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that the state to action mapping in the form of optimal
policy is independent of the time epoch. The existence of
stationary optimal policy is conditioned on the properties
of model elements. One of the sufficient conditions is that
there be a finite action space As corresponding to each
state s ∈ S, maximum attainable stage-wise reward is
finite and discount factor γ ∈ [0, 1). The alternative sets of
sufficient conditions for existence of a stationary optimal
policy for discounted infinite horizon MDPs can be found
in (Putterman (1994)).

It must be noted that the set of Bellman equations also
called optimality equations are difficult to solve analyti-
cally because of the presence of the max operator. One
of the popular solution methods is called value iteration
(Putterman (1994)): Starting with an arbitrary value func-
tion V0(s) for each state s ∈ S, the value function is
iteratively improved by successive substitution into (2)
until ε-convergence is reached. The operator for one it-
eration, that is the maximization in (2), can be denoted
as H such that Vn+1 = HVn. The sequence of estimates
of value function V (s), ∀s ∈ S, converges to a fixed point
solution. This is a consequence of Banach’s theorem for
contraction mappings (Putterman (1994)). Since H is a
proven contraction map, the convergence properties hold.

Due to ease of implementation, value iteration is perhaps
the most widely used algorithm in dynamic programming.
Certain other methods like policy iteration (Bertsekas
(2005)), a hybrid between value iteration and policy it-
eration (Powell (2007)) and linear programming method
for dynamic programs (Farias and Roy (2003)) are also
used depending on the problem structure. The complexity
of the value-iteration algorithm grows as a function of
o(|S|2 × |A|). This is attributed to the following three
aspects of the value iteration:

(1) Equation (2) needs to be solved for all s belong to S,
so the solution time is directly proportional to |S|.

(2) The complexity of max operation depends on the size
of the action space |A|.

(3) The calculation of expectation within the max oper-
ator depends on the number of possible next states,
i.e., |S|.

In the presence of very large state and (or) action spaces,
the value iteration algorithm cannot be implemented in
its exact form. Several approximation methods have been
developed to circumvent this difficulty, including: approx-
imate dynamic programming methods using value func-
tion approximations (Powell (2007)), Q-learning, temporal
difference learning (Sutton and Barto (1998)) functions
(Farias and Roy (2003)) and dynamic programming meth-
ods using post decisions state (Powell (2007)).

All the above methods assume that the system state is
completely known or observed at all times. When this as-
sumption does not hold, the equivalent framework is called
a Partially Observed Markov Decision Process (POMDP)
(Cassandra et al. (1994)), for which a significant but less
body of literature exists.

2.2 System Definition: Process Control Problems

Consider the optimal control of the following discrete-time
stochastic system:

xt+1 = f(xt, ut, ωt) (4)

where xt ∈ X ⊆ Rnx refers to the system state at discrete
time index t, ut ∈ U ⊆ Rnu a control or action vector, and
ωt an exogenous, unmeasured, stochastic signal. x may
contain physically meaningful states as well as measured
disturbances, and parameters subject to uncertainty. f
refers to the single-stage transition function. For problems
where the system’s dynamics are represented by ordinary
differential equations, f is then the result of numerical
integration across a single sample-time, with vectors u and
ω held constant. Throughout this paper, it is assumed
that full state feedback is available. In the event that
only output feedback is available, x is interpreted as an
information vector that contains the sufficient statistics
of the state estimate’s probability density function. Such
lifting is possible as the information vector is governed by
another related set of differential equations. (i.e., the filter
dynamics).

Let μ ∈ Γ be a ‘state-feedback policy’ that maps the state
vector to the action vector, where Γ represents the set
of all admissible (stationary) such policies. To distinguish
from the earlier value function V (s), Jμ(x) will be used
to denote the ‘cost-to-go’ function, which is defined as the
infinite horizon, discounted sum of the stage-wise costs
under the policy μ starting from an arbitrary state x:

Jμ(x) = E

[ ∞∑
k=0

γkφ(xk, uk = μ(xk))|x0 = x

]
(5)

where φ represents a pre-specified stage-wise cost (e.g.
φ(x, u) := ||x||2Q + ||x||2R) and γ ∈ [0, 1) is a discount
factor. The goal then is to find the optimal (stationary)
policy μ∗ : X → U , that yields the minimum cost-to-go
function as below:

Jμ∗
(x) = min

μ∈Γ
E

[ ∞∑
k=0

γkφ(xt+k, ut+k = μ(xt+k))|xt = x

]
(6)

Jμ∗
: X → R0+ is the optimal ‘cost-to-go’ function and is

an indication of the attractiveness of a given state in terms
of future rewards. By definition, Jμ∗

(x) ≤ Jμ(x),∀x and
∀μ ∈ Γ.

The main difference between the above and the previously
introduced MDPs is that the state and action spaces are
continuous. However, the fundamental concepts of DP still
apply here. Based on the principle of optimality (Bellman
(1957)), one is able to re-write (6), thereby obtaining
Bellman’s optimality equations:

Jμ∗
(x) = min

u∈U

{
φ(x, u) + γE(ω|x)[Jμ∗

(f(x, u, ω))]
}

=
(
TJμ∗)

(x) (7)

T above represents the single-pass DP operator repre-
sented by the minimization operation. The optimal policy
is implicitly obtained through the solution of the associ-
ated single-stage optimization:

μ∗(x) = arg min
u∈U

{
φ(x, u) + γE(ω|x)[Jμ∗

(f(x, u, ω))]
}
(8)
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In principle, the optimal control problem is solved once
Jμ∗

is known. It is noted that for deterministic problems
(where the expectation operator is dropped), the DP
formalism provides a convenient way of solving multi-stage
problems through an equivalent single-stage optimization.

Unfortunately, analytical solutions to Bellman’s optimal-
ity equations are available for only a small class of prob-
lems, of which the celebrated Linear Quadratic Gaussian
(LQG) problem is one. For situations of practical interest,
numerical techniques are required. Similar to the case of
discrete state and action space, the repeated application
of T on an arbitrarily initialized cost-to-go leads to con-
vergence and underpins the idea behind Value Iteration
(VI).

Jμ∗
(x) = TJμ∗

(x) = lim
i→∞

(T )iJμ(x), ∀μ, x (9)

In process control problems, due to the continuous nature
of the state and action spaces which must be discretized,
numerical solutions become quickly bottle-necked as the
problem dimensions grow. In fact, the growth would be
exponential as the number of discretized points grows with
the dimension as such. Hence, a naive application of VI in
this case is computationally prohibitive and the ‘curse-
of-dimensionality’ is even more apparent in continuous
problems. For problems with continuous state and action
space, one needs to resort to approximations that involve
an intelligent state-sampling/ discretization scheme and/
or an efficient representation of the cost-to-go (Lee and
Lee (2006); Powell (2007)).

2.3 Approximate dynamic programming for problems with
continuous state and action space

Value iteration or policy iteration in general can work with
only finite state space. For systems with continuous state
and action space, one must then work with discretized
state state, either through gridding, or more preferably,
sampling. It is often the case that only a small portion of
X and U will ever be visited under optimal and/ or high-
quality sub-optimal policies. This is especially true when
the dimension of the state space is large compared to that
of the input. Let us denote the subset of the state space
that is ‘relevant’, i.e., visited with non-trivial probability
under the optimal control, as X ∗

REL. Such a set would
be continuous but much smaller-sized than X in general.
The key notion is that if one could identify X ∗

REL or a
parsimonious superset of it, one can sample the set with
sufficient density to perform the dynamic programming at
significantly reduced computation. Of course, the difficulty
is that it is not easy to obtain such a set ahead of time
without knowing the optimal controller itself.

The ADP approach proposed by the authors of (Lee and
Lee (2004, 2006); Tosukhowong and Lee (2009)) for process
control applications, the skeleton of which is described
in this subsection, employs carefully designed simulation
schemes for the sampling of the state space and function
approximation (for the purpose of cost-to-go interpolation)
to this end. For the VI-variant, we have the following off-
line computations:

(1) Identify a finite-sized, ‘relevant’ state-space, Xsam ⊂
X , |Xsam| = N . This is achieved, for instance, by

simulating all possible combinations of sub-optimal
policies (potentially with dithering) and operating
conditions. The latter are defined as all starting states
of interest (for servo problems) as well as potential
values of measured disturbance values. Dithering may
also be introduced for the purpose of exploration.

(2) Assign a cost-to-go for all elements of Xsam, us-
ing the simulation data according to (5). The ini-
tial, finite-sized ‘cost-to-go’ table, denoted by T[0] �{
x, Ĵμ∗

[0] (x)
∣∣x ∈ Xsam}, is obtained. The symbol (̂·) is

used to emphasize the approximate nature of the cost-
to-go sequence, even at its limit. Exact initialization
is not critical per se since the fixed point derived from
the following step is unique.

(3) Obtain converged cost-to-go values for Xsam through
VI, yielding the sequence of value tables {T[0], T[1], . . .}.
Since the VI requires the evaluation of the cost-
to-go function for states (f(x, u, ω)) not necessarily
in Xsam, a well-designed function approximator is
needed to interpolate among the stored values (see
discussion in Section 3.1). A certain choice of function
approximator ensures that each pass of the iteration
is a contraction-map with a unique fixed point (see
Section 3.1). In other words, each step of the modified
VI involves:

Ĵμ∗

[i+1](x) =
(
TF (Ĵμ∗

[i] )
)

(x), ∀x ∈ Xsam (10)

Here F (Ĵμ∗
) denotes the cost-to-go function approxi-

mator based on the stored values {Ĵμ∗

[i] (x), x ∈ Xsam}.
Termination occurs when ‖Ĵμ∗

[i+1]− Ĵμ∗

[i] ‖∞ is less than
a pre-defined tolerance.

(4) Return to step 1, since the relevant domain of the
state-space may not be properly ascertained a-priori.
Otherwise, use the converged values for online con-
trol.

The authors of Ma and Powell (2009) used an approximate
policy iteration scheme where Jμ(x),∀x ∈ X is assumed
to be linear in a set of basis functions (known or otherwise
assumed to be orthogonal polynomials of sufficiently large
degree). The coefficients are learnt through a least-squares
procedure once the system of interest is allowed to evolve
according to the current policy, which is similar to step
(1) where relevant states are collected. The limitation is
that suitable basis functions are difficult to ascertain in
general.

3. ISSUES AND CHOICES

3.1 Function approximation and stable learning

The need for function approximation for the purpose of
generalization has been discussed. Given a training set
T � {xi, Ĵ(xi)}N

i=1, a value table composed of a finite
number (N) of input (xi ∈ X ) and target values (Ĵ(xi) ∈
R), a function approximator, F , whose domain is X , maps
a query point xq ∈ X to a subset of the real line.

The dominant and natural choice for function approxima-
tors has typically involved parametric global approxima-
tors such as neural networks or the use of basis functions
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such as high order orthogonal polynomials or Fourier se-
ries (Tsitsiklis and Roy (1996); Konidaris and Osentoski
(2008)). While this approach has met with some success
in certain applications (e.g. in Backgammon (Tesauro
(1992)), it is not immune from divergent behavior (Lee and
Lee (2004, 2006)) when employed in the context of ADP. In
certain cases, the off-line iteration would fail to converge,
with the cost-to-go approximation showing non-monotonic
behavior or instability with respect to iterations. Thrun
and Schwartz (1993) were the first to attribute the failure
with function approximation to an ‘over-estimation’ effect.
Sabes (1993) demonstrated that sub-optimality can be
severe when a global approximator with a linear combi-
nation of basis functions is employed. Boyan and Moore
(1995) provide insightful illustrations showing the failure
of popular function approximators during off-line learning.

There are considerably fewer papers that address func-
tion approximation schemes for problems with continuous
state and action spaces (Ma and Powell (2009), Lee et al.
(2006)). The problem of linear quadratic regulation, for
which the value function is known to be quadratic in struc-
ture, is a noted exception Bradtke (1993). Ormoneit and
Sen (2002) proposed a kernel-based approach for problems
with continuous states but finite actions and demonstrate
convergence to the optimal cost-to-go value function with
an increasing number of samples and decreasing kernel
bandwidth under a model-free scheme. Ma and Powell
(2009) proposed a provably convergent approximate policy
iteration under the assumption of known basis functions
and other technical conditions.

Stable learning during the off-linear value iteration step of
the proposed ADP strategy is highly desirable as it can
be frustrating to run a large number of iterations only
to have the result “blow up” all of sudden due to some
complicated coupling between the function approximation
error and value iteration. To have provable convergence
of the approximate value iteration (not necessarily to
the optimal value function, however), one needs to use
a function approximator with a certain property called
“non-expansion” . Gordon (1995) discussed the viability
of using such a class of function approximators. With such
a choice, the overall operator composed of value-iteration
and then function approximation results can be shown to
be a contraction map therefore ensuring convergence.

Definition 1. A γ-contraction mapping m defined on a
normed vector space (mapping elements from this space,
V, to itself) is defined as such:
∀v1, v2 ∈ V, ||m(v1)−m(v2)|| ≤ γ||v1 − v2||, γ ∈ [0, 1)

where v1, v2 are arbitrarily chosen elements of V.
Definition 2. When γ = 1, m : V → V is termed a non-
expansion (Gordon (1995)).

From Banach’s fixed-point theorem, it can be easily shown
that every the iterated sequence {v,m(v),m2(v), . . .} con-
verges to a unique fixed point. As explained earlier,
the proposed ADP method starts with initial estimates
Ĵμ∗

[0] (x), ∀x ∈ Xsam. This is followed by function approxi-
mation (recall that this mapping is denoted by F ), and an
application of the DP operator, T to yield Ĵμ∗

[1] . The process
is repeated again. Our experience with the ADP approach

(Lee and Lee (2004, 2005)) has been that stability of learn-
ing and the quality of a learned control policy are critically
dependent on the structure of the function approximator.
A sufficient condition for convergence is to demonstrate
that the overall operator T with function approximator F
is a contraction map. This, in turn, holds true if F is a
non-expansion map.

Proposition 1. T is a γ-contraction map if F is non-
expansive.

Proof. Given arbitrary vectors Ĵ1, Ĵ2 ∈ RN ,

||TF (Ĵ1)− Tμ∗
F (Ĵ2)||∞ ≤ γ||F (Ĵ1)− F (Ĵ2)||∞ (11)

≤ γ||Ĵ1 − Ĵ2||∞ (12)
The first line is true since T is a γ-contraction map defined
on the space of value functions. The second inequality
follows if one employs a function approximator with a non-
expansion property.

Function approximators that employ averaging, as defined
below, can be shown to possesses a non-expansion prop-
erty.

Definition 3. F is an averager if every fitted valued is the
weighted average of of target values, potentially with the
addition of a bias term. Specifically,

F (Ĵ)(xq) = β0(xq) +
N∑

i=1

βi(xq)Ĵ(xi) (13)

Here, {βi}N
i=0 ≥ 0, and

N∑
i=1

βi ≤ 1. Note that the weights

β are allowed to depend on the query point (xq) and input
values ({xi}N

i=1) but not the target values.

That such an averager is a non-expansion (i.e. (12) is true)
is easily demonstrated.

One such type of approximator we have experimented
with extensively is instance-based (Lee et al. (2006))
local averagers, such as k-Nearest Neighbors-based (kNN)
predictors. Instance-based algorithms are non-parametric
representations using stored points ‘close’ to a query
point for making predictions. Closeness is usually defined
according to some distance metric (such as Euclidean
distance). Predictions of the weighted kNN are given by:

F (Ĵ)(xq) = β0(xq) +
∑

xi∈Nk(xq)

βi(xq)Ĵ(xi) (14)

where Nk(xq) refers to the set containing the k points
closest to xq. The weights (normalized by constant c) are
defined as: βi = c((xq−xi)TW (xq−xi))−0.5, i ≥ 1.W is a
feature weighting matrix use to scale and also to emphasize
dimensions that are more important.

3.2 Cautious learning for robustness

It has been demonstrated (Smart and Kaelbling (2000);
Lee et al. (2006)) that simply using a local averager (with
β0 = 0), though guaranteeing convergence, does not neces-
sarily give a converged function leading to a stable closed-
loop behavior. This is because function approximation
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error can be significant, particularly when the training
data is insufficient. Safeguards against ‘over-extrapolation’
during value iteration is often needed for the successful
implementation of the proposed ADP method. For a query
point located in regions with little data present, distance-
weighted averaging may fail to provide meaningful gen-
eralizations of the cost-to-go. Prevention of taking such
a query point may be achieved by including in the cost-
to-go term β0, a penalty that is imposed whenever the
minimization step encounters a query point (xq) far away
from Xsam:

β0(xq) = A.U
(

1
fΩ(xq)

− ρ
)
·
(

1
fΩ(xq) − ρ
ρ

)2

(15)

Here, ρ is a data-density threshold value, A a scaling
parameter, and U , the Heaviside step function that returns
a zero value whenever its argument is non-positive and
unity, otherwise. fΩ(xq) is a measure of data density as
ascertained by fitting a Kernel density estimator over
training set Ω:

fΩ(xq) =
1
NΩ

NΩ∑
i

K

(
xq − xi

σ

)
(16)

where kernel K(·) refers to a zero-mean Gaussian with
variance σ2Inx

. For generality, Ω is allowed to differ from
Xsam. Furthermore, a bound is imposed on β0 whenever it
exceeds a threshold value. Tuning rules for ρ,A, σ can be
found in (Lee et al. (2006)) and are not reproduced here
in the interest of brevity.

3.3 Pre-decision vs. post-decision state formulation

For stochastic control problems, the single-stage optimiza-
tion required during off-line value-iteration (see (7)) and
on-line implementation of the optimal policy (see (8))
requires the generally cumbersome evaluation of an ex-
pectation.

The use of an intermediate post-decision (xp) state, first
introduced by Roy et al. (1997) and employed extensively
by Powell (2007) in solving operations research prob-
lems, oftentimes allows for more computationally effective
strategies. xp refers to the the system state immediately
after the control vector is introduced but before the un-
certainty is realized. As a result, f is decomposed into the
following sub-transitions:

xp
t = f1(xt, ut)

xt+1 = f2(x
p
t , ωt)

where the composition of f1 and f2 is equivalent, in
effect, to f , in (4). Note that f1 describes a deterministic
transition between the pre-decision state variable (x) and
xp. f2 involves the transition due to uncertainty after the
control action is implemented. Consequently, the value
function of xp, Jμ,p(xp), may be expressed in terms of
the value function of x, as such:

Jμ,p(xp
t ) = E(ω|xp

t ) [Jμ(xt+1)] , ∀μ (17)
By considering the optimal policy μ∗, and substituting
(7) into (17), the min and E operators are interchanged,
yielding:

Jμ∗,p(xp
t ) = E(ω|xp

t )

[
min

ut+1∈U

{
φ(xt+1, ut+1) + γJμ∗,p(xp

t+1)
}]

(18)

The single-stage on-line optimization is also streamlined:

μ∗(x) = arg min
u∈U

{
φ(x, u) + γJμ∗,p(f1(x, u))

}
(19)

The introduction of the post-decision state allows the
generally non-commutative min and E operators to be
interchanged. (18), used off-line during value iteration,
consists of an independent collection of deterministic op-
timization problems, which may be run in parallel using
off-the-shelf solvers. It is noted that the latter have been
cornerstone of MPC technology. In this case, differentiable
local averagers such as Kernel regression (Hastie et al.
(2008)) may be employed. In this case, given the training
set {xi, Ĵ(xi)}N

i=1, we have:

F Ĵ(xq) = β0(xq) + 1∑
j=1

K

(
xq−xj

σ

) . N∑
i=1

K
(

xq−xi

σ

)
Ĵ(xi)

(20)

β0(xq) is defined as in (15), where the Heaviside step
function is replaced by a smooth approximator.

In addition to the off-line iteration step, the on-line cal-
culation of the optimal input (in (19)) based on a pre-
computed post-decision state cost-to-go function, is a de-
terministic optimization that does not involve an expecta-
tion operator, much like the one solved for MPC. Again,
an off-the-shelf NLP solver may be employed. Another
benefit, this time, compared to MPC, is that it involves
only a single stage optimization as the cost-to-go function
contains the precomputed optimal cost information for the
rest of the horizon.

As with the pre-decision case, we can define a γ-
contraction Hp so as to simplify (18). The aforementioned
discussion on value-function approximation still holds for
this case.

3.4 Adding new state samples: batch mode vs. continuous
mode learning

In the standard ADP algorithm presented (that is, without
Step (4)), we fix the set of sampled states, Xsam, in the
beginning and do not introduce any more samples as the
learning proceeds. One potential problem with this is that
it may not contain sufficient samples in all the important
regions of the state space.

Additional samples can be introduced as the learning
proceeds in two different ways. First is to perform the
simulation and the value iteration simultaneously, result-
ing in an Xsam that varies with simulation time. This
approach is seen in the methods known as real-time dy-
namic programming (RTDP) (Barto et al. (1995)) and
RTADP (Pratikakis et al. (2009)). In these approaches, one
typically starts with an empty value table and introduces
entries one by one as simulations proceed. Whenever a
“new” state, a state that is not already recorded and does
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not have a “sufficiently close” neighbor recorded in the
value table, is visited during the simulation, it is entered
into the value table and its cost-to-go value is assigned
by evaluating the Bellman equation. The optimal action
suggested by the current value table is implemented and
next state is sampled according to the transition equation.
If a state is revisited or there are sufficient neighbors
close by, the value update for that particular state (or the
sufficiently close neighbor) is performed without adding a
new entry. This goes on until “new” entries are no longer
added to the value table. Just how fast the convergence
happens depends on the level of exploration, which will be
discussed later.

The second way is to alternate between the modes of
simulation and value iteration. A value iteration gives a
converged cost-to-go function, which corresponds to a new
policy. This new policy can be simulated to find a set of
new state samples to be added to the current X i

sam to
yield Xi+1

sam. This continues until the simulation no longer
yields different state samples.

In the case that an accurate simulation model is not
available, one may have to replace the simulation with
an actual on-line implementation. The continuous mode
learning behaves much like adaptive control as the value
table, and therefore the control policy, gets updated at
every sample time. In addition, the performance during
the initial phase of learning, when the value table has very
few entries, may be highly unpredictable and poor. Hence,
it may not be suitable in an industrial setting, whereas
the other option in which the control policy remains fixed
until the next off-line value iteration. Of course, given the
typical constraints of industrial processes, one still has to
exercise caution in implementing only a half-learned cost-
to-go function on-line. The trade-off between exploration
and robustness in this context is discussed next.

3.5 Exploration vs. robustness

The trade-off between exploration and robustness becomes
one of the central issues when one chooses to expand
Xsam as a part of the learning. In general, exploration
gives new information to improve the eventual closed-loop
performance (by expanding Xsam) but at the expense of
slower convergence and decreased robustness. Exploration
can be performed in two ways. First, one can add dither
signals to the input to encourage more randomness in the
state trajectories. Second, one can use an optimistic initial-
ization of the cost-to-go value for previously unseen states,
which will encourage the optimizer to choose actions lead-
ing the state trajectory to those states. If the learning
is to be done directly in closed loop, the latter practice
may be unacceptable for industrial practices as excursion
to previously unseen states could jeopardize the safety
and economics of the on-going operation. In other words,
unlike in applications like robotics, “learning by mistake”
is not a permissible practice for most industrial process
control applications. One can in fact actively prevent such
potentially harmful excursions through “pessimistic” val-
uation of unseen states. The previously discussed penalty
approach in Section 3.2 is one way to achieve this. On the
other hand, carefully chosen dither signals may be able
to generate sufficiently new trajectories without imposing

unacceptable risks or unduely slowing down the conver-
gence.

3.6 Model-based vs. Model-less approach

For many industrial processes, sufficiently accurate models
may not be available. In such a case, one can resort to
empirical models derived from input-output data. In such
as case, the state vector may simply be composed of
the past input and output samples. The model can be
learned separately from the ADP or it can be done as a
part of it. In the latter, one learns instead of the cost-to-
go function a function called Q function, which has the
argument of state-input pair and assigns the cost-to-go to
the pair. In other words, Q function already has the model
embedded in it, which is learned together with the cost-to-
go function. The two approaches are tried and compared
in a recent paper by Lee and Lee (2005).

3.7 Integration with MPC

ADP can be integrated with model predictive control at
several fronts. Some obvious ways include: (1)using MPC
in the initial simulation to sample relevant states, (2)using
the learned cost-to-go function in order to reduce the hori-
zon size, and (3)use of the nonlinear programming solver of
MPC in the post-decision-state formulation. Other meth-
ods may include the dual mode implementation, where
MPC replaces the ADP controller whenever one encoun-
ters a state that is sufficiently new and the information in
the learned value function cannot be trusted. Such states
can be collected separately and added to Xsam in the next
phase of value iteration.

4. EXAMPLES

Here, we demonstrate the proposed ADP algorithm on a
variety of stochastic optimal control problems.

4.1 Example 1: Constrained linear stochastic system-
double integrator problem

We consider the following constrained double integrator
problem studied by (Batina (2004)) in the context of MPC
for stochastic systems:

xt+1 =Axt +But + Υwt

where matrix A = [1 0; 1 1] 1 , B = [1; 0], Υ = [1; 0] and
ωt is zero-mean, white Gaussian noise with its second
moment, E[ωtω

′
t] = 0.2, ∀t. The nominal stage-wise cost

is φ̃(xt, ut) � 0.7||xt||22 +0.33||ut||22. The second dimension
of the state vector is constrained, as is the input vector:
ut ∈ [−0.5, 0.5], x2 ≥ 0.

The goal is to bring the system optimally from an arbi-
trary initial state ([0; 14] in the following simulations) to
the origin, whilst respecting the imposed constraints. We
compare the performance of a Linear Model Predictive
Controller (LMPC) (with prediction and control (p) hori-
zon set to 15) against the proposed ADP approach based
on the post-decision state variable. The post-decision state
1 in Matlab notation
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is defined as the quantity obtained after an action is taken
but before the uncertainty is realized. That is, xp

t � Axt +
But. Since ω is an unbounded signal, we employ a soft-
constraint approach for both LMPC (to avoid running into
infeasibility issues) and the proposed ADP strategy. As is
typically done, LMPC is implemented assuming ω remains
at its nominal value of 0 over the prediction horizon.
Namely, for LMPC, we solve at each time step, t:

min
p∑

k=0

φ̃(xt+k, ut+k) + 100||εt+k||22 (21)

where εt+k ≥ 0 are non-negative auxiliary decision vari-
ables representing the least amount of slack required to
make the LMPC problem feasible. That is, [0 1]xt+k +
εt+k ≥ 0. These inequalities are easily incorporated into
the math program defined by (21). Also, the input vector is
constrained to satisfy the aforementioned bounds of ±0.5.

For the proposed ADP approach, we set the discount
factor to a value close to unity, that is, γ = 0.98 and
modify the stage wise cost to penalize deviations from
the state constraints. Namely, φ(xt, ut) � φ̃(xt, ut) +
100max(0,−[0, 1]xt)2. Hard constraints on u are imposed
during the off-line value iteration process and on-line
implementation of the ADP-based controller.

To construct Xsam, we used an LMPC controller (with
horizon length 5) and conducted closed-loop experiments
bringing the system from 40 different initial post-decision
states to the origin. Note that the initial state used for
on-line testing is excluded from these 40 initial states.
Namely, we consider various combinations of the sets
{−2, 0,−1, 1, 2} and {−4,−2, 0, 2, 4, 6, 8, 10} to create var-
ious values for the first and second dimension of the initial
state respectively. Consequently, a total of 3587 training
points, whose initial cost-to-go values were initialized by
computing the cost for LMPC over a sufficiently long
horizon, was obtained as a result of the initialization
scheme. For the purpose of function approximation, we
employed kernel regression with the bandwidth, σ, set to
0.16. To avoid over-extrapolation, we selected A = 1220,
and ρ = 0.2652. Value-iteration converged within 50 itera-
tions, where the relative error termination criterion is set

to
∣∣∣∣∣∣ Ĵμ∗,p

[i+1]−Ĵμ∗,p

[i]

Ĵμ∗,p

[i]

∣∣∣∣∣∣
∞
≤ 0.1.

Results from 500 stochastic realizations presented as fol-
lows. As can be seen from Table 1, the proposed ADP
controller has an average 2 finite horizon score an order
of magnitude lower than a deterministic approach typified
by LMPC. In particular, LMPC suffers from excessively
high variance in terms of closed-loop performance. A look
at the time series plots of the second dimension of x for
both methods (see Fig. 1) reveals that LMPC results in
significant constraint violation. On the other hand, the
majority of the realizations based on the ADP approach
do not violate the lower bound constraint.

2 based on sample averaging

0 5 10 15 20 25 30
−25

−20

−15

−10

−5

0

5

10

15

20

x 2(A
D

P
)

sample time units

(a) ADP algorithm.

0 5 10 15 20 25 30
−25

−20

−15

−10

−5

0

5

10

15

20

x 2(L
M

P
C

)

sample time units

(b) LMPC.

Fig. 1. Double integrator example: x2 vs. t for 500 realiza-
tions. Lower bound for x2 is 0.

4.2 Example 2: Constrained nonlinear stochastic system -
chemostat problem

Consider the governing equations of an archetypal chemo-
stat.

ẋ1 = x1 μmaxx2
κ+x2

− x1u
ẋ2 = u[x2,f − x2]− μmax

Y
x1x2
κ+x2

where x = [x1;x2] ∈ R2 is the state vector composed of
the instantaneous concentration of the product (x1) and
substrate (x2) respectively. 0 ≤ u ∈ R, the dilution rate,
is the non-negative manipulated variable. x2,f refers to
the instantaneous concentration of the substrate feed. The
maximum specific growth rate μmax is set to 1, the yield
coefficient to 1 and κ to 0.02. For the following simulations,
the sampling rate is set to 0.5.

For the purpose of simulation, we assume that the feed
concentration (x2,f ) fluctuates around a mean value of 1,
and is perturbed by zero-mean, white Gaussian noise (ω):

x2,f,t = 1 + ωt, E[ωtω
′
t] = 10−3 (22)

It is desirable to maximize the productivity of the product,
Pt � x1,tut, whilst ensuring that the conversion of the
substrate, fx2 � 1 − x2

x2,f
, does not go lower than a rela-

tively high value of 95%. Such an economically motivated
constraint is common in several key process industries,
such as bioethanol production. There is a tradeoff between
productivity and conversion. Productivity increases with
dilution rate and then decreases as the system approaches
washout. Conversion, on the other hand, is a decreasing
function of space-velocity or equivalently the dilution rate.
Maximum productivity (P∗ = 0.7543) occurs at a dilution
rate that corresponds to conversion levels significantly
below the required 95% threshold.

We compare the performance of Non-linear MPC (NMPC)
against the proposed ADP strategy. Instead of full-fledged
NMPC, we employ successive-linearization based MPC
(slMPC), a computationally efficient alternative proposed
by Lee and Ricker (1994). For this example, we have found
the closed-loop performance of slMPC to be similar to
that of NMPC. For slMPC, we employed a prediction and

Table 1. Example 1: comparing performance

Score ADP LMPC

E

[
30∑

t=0

φ(xt, ut)

]
1600 10000
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control horizon, p, of 10 sample units. The following math
program is solved at each time instant:

min
p∑

k=0

(||Pt+k − P∗||22 + 100||εt+k||22
)

(23)

where as in the previous example, ε ≥ 0, is a non-negative
variable representing the least amount of slack required
for conversion to be greater than 95%. That is, εt+k +
fx2,t+k ≥ 0.95. The idea is to regulate the system at an
equilibrium point that corresponds to the largest possible
value of the dilution rate without exceeding the conversion
bound so that productivity is maximized. The dynamics
of the system are assumed to be governed by matrices
obtained through linearization of the governing ordinary
differential equations about the current state and past
input vector. This results in a convex quadratic program.

For the proposed ADP approach, γ is set to 0.98 and
the stage-wise cost defined as such: φ(xt, ut) � ||Pt −
P∗||22 + 100max(0, 0.95 − fx2,t)2. To determine Xsam, we
used an slMPC controller (with horizon length of 10 time
units) and conducted closed-loop experiments regulating
the system at an initial state corresponding to a conversion
of 0.95. A total of 300 training points was obtained
from the initialization scheme. We used kernel regression
for function approximation with the bandwidth, σ, set
to 0.15, A to 1.93 and ρ to 0.087 in order to prevent
over-extrapolation. Value iteration terminated within 50
iterations with a relative error tolerance of 0.1.

Results from a typical realization are depicted in Fig. 2.
It is apparent that the ADP-based approach, compared
to slMPC, results in minimal constraint violation at the
expense of slightly lower productivity. It is noted that the
steady-state productivity corresponding to 95% conversion
is 0.68.
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Fig. 2. Example 2. Closed-loop performance of a typical
realization. ADP: solid line (-); slMPC: dotted line(..);
lower bound on conversion: dash-dot (-.)

4.3 Other examples in the literature

There are a number of other applications to process
process control problems in the published literature. In-
terested readers may look at the following references for
applications to more complex examples. These include:
integrated reactor-separator system control (Tosukhowong
and Lee (2009)), dual adaptive control (Lee and Lee
(2009)), fed-batch reactor control (Peroni et al. (2005)),
and microbial reactor (Kaisare et al. (2003)).

5. CONCLUSIONS

We have examined the potentials of ADP for process
control and found that it can complement MPC to reduce
the on-line computational load and also address stochas-
tic system uncertainties. ADP offers a number of design
options and one must think carefully through them to
choose the right options for a given application. We have
argued that, for process control problems, post-decision-
state formulation offers the ability to use deterministic
math programming solvers to be utilized, both off-line and
on-line and therefore may be more convenient than the
more conventional pre-decision-state formulation. In addi-
tion, the use of function approximators with nonexpansion
properties offer stable learning. Robustness against over-
extrapolation can be achieved through the use of a tailor-
made penalty function. Finally, to achieve performance
close to optimal ones, we recommend alternation between
the value function update and simulation (or on-line im-
plementation) to increase the sample set as the learning
proceeds.

Though not discussed in this paper, there are a number
of other application areas within process industries where
ADP can prove to be a valuable tool, including resource
allocation and inventory management (Pratikakis et al.
(2008, 2009); Choi et al. (2004, 2006)), design and planning
under uncertainty (Cheng et al. (2003)), scheduling of
multiple controllers (Lee and Lee (2008)), and equipment
/ product inspection (Agrawal (2009)). Raised awareness
of the ADP technique within the process systems engi-
neering research community will undoubtedly bring forth
additional applications that can benefit from it.
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Abstract:  The pharmaceutical industry has entered a new era.  Attention is now being paid to real time 
process monitoring, real time process control, continuous improvement of processes, and quick product 
technology transfer.  Terms like Quality by Design, Design Space, Control Strategy, Process Analytical 
technology, Process Signature reflect the current state.  Multivariate Statistical Analysis has played an 
integral part in several industries, enabling process understanding, process monitoring, utilization of real 
time analysers and real time product release.  It is therefore appropriate to see it as an integral part of the 
pharmaceutical industry effort to address issues like Design Space, Control Strategy, real time process 
signature monitoring, process understanding and correct technology transfer.  In this work it is 
demonstrated that multivariate, data based statistical methods play a critical role in providing solutions to 
these issues.  From determining the acceptability of raw material entering the plant to ensuring quality of 
the product that leaves the plant, the multivariate analysis philosophy should govern all the operations 
that take that raw material and convert it to a final product in a cost efficient way, while meeting safety 
and environmental constraints, from development to manufacturing to site transfer. 

Keywords: Multivariate Process Monitoring, Design Space, process analytical technology, multivariate 
statistical process control, scale  up, latent variables, process understanding 

1. INTRODUCTION 

The pharmaceutical industry has a little secret: Even as it 
invents futuristic new drugs, its manufacturing techniques lag 
far behind those of potato-chip and laundry-
proclaimed the Wall Street Journal in 2003 (Abboud and  
Hensley, 2003).  The article went on to expla n other 
industries, manufacturers constantly fiddle with their 
production lines to find improvements.  But FDA regulations 
leave drug- manufacturing processes virtually frozen in time. 
As part of the drug- approval process, a company's detailed 
manufacturing plan -- and even the factory itself -- must pass 
FDA muster. After approval, even a tiny change to how a 
drug is made requires another round of FDA review and 
authorization, requiring time and paperwork. The process 
discourages updating by the companies, which worry they 
will face a production delay that could cost them heavily .  
The article mentioned FDA as a regulatory agency because it 
was published in the USA, but similar were the situations 
with Pharmaceutical companies and other regulatory bodies 
around the world. 
 

A lot of changes have happened since that article was 
published and the pharmaceutical industry has entered a new 
era.   The FDA guidance on Process Analytical Technology 
(PAT) was introduced in 2004 which aims to improve 
product quality and process performance (manufacturing 
efficiency) in the pharmaceutical industry; it describes PAT 

as: systems for the analysis and control of manufacturing 
processes based on timely measurements during processes of 
critical quality parameters and performance attributes of raw 
and in-process materials and processes to assure acceptable 
end product quality at the completion of the process.  
(Guidance for Industry: PAT  A Framework for Innovative 
Pharmaceutical Development, Manufacturing, and Quality 
Assurance. FDA. September 2004)  

The introduction of concepts like Quality by Design, Design 
Space and Control Strategy are also examples of this change. 
These terms are defined as follows by the International 
Conference on Harmonisation of Technical Requirements for 
Registration of Pharmaceuticals for Human Use (ICH is a 
unique project that brings together the regulatory authorities 
of Europe, Japan and the United States and experts from the 
pharmaceutical industry in the three regions to discuss 
scientific and technical aspects of product registration): 

Quality-by-Design (QbD) is defined as a systematic approach 
to development that begins with predefined objectives and 
emphasizes product and process understanding and process 
control, based on sound science and quality risk management 
(ICH, 2008a). 

Design Space is the multidimensional combination and 
interaction of input variables (e.g., material attributes) and 
process parameters that have been demonstrated to provide 
assurance of quality (ICH, 2008b).  
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Control Strategy: a planned set of controls, derived from 
current product and process understanding that ensures 
(good) process performance and product quality. The controls 
can include parameters and attributes related to drug 
substance and drug product materials and components, 
facility and equipment operating conditions, in-process 
controls, finished product specifications, and the associated 
methods and frequency of monitoring or control (ICH 2008a, 
2008b). 

 
The above definitions and actions indicate that the regulatory 
framework for the Pharmaceutical industry is changing.   
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Figure 1. Projection space.  Raw material properties, 
micronization properties and filling performance are 
projected on a latent variable space.  Product batches 
produced from similar raw material (red) have similar 
filling performance.    

 

 

 

 

 

 

 

Figure 2.  Tablet Product.  Batches produced from raw 
material with similar characteristics, have similar final 
quality.  

 
The ICH definition of the design space reflects a well known 
concept, namely that variability in the input of a process will 
be transferred to the quality of the final product (output) if the 
process is not controlled to compensate for such variability.  
Despite the fact that the concept is well known, it requires 
new ways of thinking in the pharmaceutical industry that was 
used to d  
above mentioned Wall Street Journal article. 

In this work the role of multivariare statistical methods in 
modelling, process control and monitoring under this new 
regulatory framework will be discussed.   Multivariate latent 

variable methods are shown to be most suitable for process 
understanding, modelling for Design Space, multivariate 
statistical process control (MSPC), process control and 
product transfer. The use of these methods for the 
development of the Design Space for multi-unit operations 
will be illustrated in a case where the Tablet Quality is related 
to API, Excipients, Granulation, Drying and Compression 
parameters.  Examples of how the Control Strategy can be 
derived from such models will also be shown.   

Other topics like Process Signature and MSPC, application of 
soft sensors, relation of design space to clinical relevance as 
well as quality by design for analytical methods will be 
discussed. 

 

2. LATENT VARIABLE METHODS 

Latent variables exploit the main characteristic of process 
databases, namely that although they consist of 
measurements on a large number of variables (hundreds), 
these variables are highly correlated and the effective 
dimension of the space in which they move is very small 
(usually less than 10 and often as low as 2).  Typically only a 
few process disturbances or independent process changes 
routinely occur, and the hundreds of measurements on the 
process variables are only different reflections of these few 
underlying events.  For a historical process dataset consisting 
of a (n  k) matrix of process variable measurements X and a 
corresponding (n  m) matrix of product  quality data Y, for 
linear spaces, latent variable models have the following 
common framework :   

 E  P T  X
T           (1) 

 F  Q T  Y
T         (2) 

where E and F are error terms, T is an (n  A) matrix of 
latent variable scores, and P (k  A) and Q  (m  A) are 
loading matrices that show how the latent variables are 
related to the original X and Y variables. The dimension A of 
the latent variable space if often quite small and determined 
by cross-validation or some other procedure.  
 
Latent variable models assume that the data spaces (X, Y) are 
effectively of very low dimension (i.e., non-full rank) and are 
observed with error.  The dimension of the problem is 
reduced by these models through a projection of the high-
dimensional X and Y spaces onto the low-dimensional latent 
variable space T, which contains most of the important 
information.  By working in this low-dimensional space of 
the latent variables (t1, t2, ... tA), the problems of process 
analysis, monitoring, and optimization are greatly simplified. 
 
Multivariate Statistical Process Control is possible utilizing 
latent variable methods. The following charts are used: 

2 for scores (derived either from PCA or 
PLS models on typical production) is calculated as:  
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where sti 

2  is the estimated variance of the corresponding 
latent variable ti. This chart essentially checks if a new 
observation vector of measurements on k process variables 
projects on the hyper-plane within the limits determined by 
the reference data.   
 
As mentioned above the A principal components explain the 
main variability of the system.  The variability that cannot be 
explained forms the residuals (Squared Prediction Error, 
SPE).  This residual variability is also monitored and a 
control limit for typical operation is being established.  By 
monitoring the residuals we test that the unexplained 
disturbances of the system remain similar to the ones 
observed when we derived the model.  When the residual 
variability is out of limit, it is usually an indication that a new 
set of disturbances have entered the system; it is necessary to 
identify the reason for the deviation and it may become 
necessary to change the model.  

 SPEX  is calculated as : 

 
2

,
1

, )( inew
k

i
inewX xxSPE              (4) 

where newx  is computed from the reference PLS or PCA 
model. Notice that SPEx is the sum over the squared elements 
of a row in matrix E in equation (1). This latter plot will 
detect the occurrence of any new events that cause the 
process to move away from the hyperplane defined by the 
refence model. The calculation of the limits for the charts is 
discussed in Kourti (2009). 
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Figure 3. The quality can be modelled as a function of 
input material and process parameters 

 
These two charts (T2 and SPE) are two complementary 
indices; together they can give a picture of the state of the 
system at a glance.  With this methodology, the hundreds of 
measurements collected from the process variables at each 
instant in real time are translated into one point for the T2 
chart and one point for the SPE chart (these two points 
summarize the process at that instant).  As long as the points 
are within their respective limits everything is in order. Once 
a point is detected out of limit, then the so called contribution 

plots can be utilized that give us a list of all the process 
variables that mainly contribute to the out of limit point, and 
hence allow us to diagnose the process problem immediately. 
Contribution plots can be derived for out of limit points in 
both charts.   
 
A detailed discussion on latent variable methodology for 
modelling and process monitoring can be found in Kourti 
(2002, 2005, 2009).  Experiences from industrial practitioners 
can be found in Miletic et al (2004, 2008). 

 

3. PROCESS UNDERSTANDING - EFFECT OF RAW 
MATERIAL ON FINAL QUALITY  

The effect of raw material characteristics in the process 
performance, if the process operating conditions remain 
fixed, is demonstrated for an inhaler product utilizing 
multivariate projection space in Figure 1.  The raw material is 
characterized by several physical and chemical properties.  
Raw material is produced at three supplier locations and 
depending on its origin, the data are coloured red, green and 
blue. The raw material properties are within univariate 
specifications, at all locations.  Projected on a multivariate 
space, however, they form three clusters, indicating that in a 
multivariate sense the material possesses slightly different 
characteristics depending on the location it was produced 
(covariance structure changes with location).  The material 
properties after micronization are projected on principal 
components and it can be observed that the material with red 
coloured origin projects on a different location than the green 
and blue.  The filling performance of the material originating 
from the red location is different than the rest of the material.  
A note here that although the control ellipses shown are set 
by default in the vendor software, they are not interpretable 
when there is clustering; the assumptions for the calculation 
of these ellipses are for process monitoring and not for 
process exploration where there is intentional variation such 
that introduced by design of experiments.  
 
 

4. DESIGN SPACE MODELLING  

The effect of raw material on the quality as it propagates 
through different unit operations is shown for a tableting 
process in Figure 2.  When the raw material properties have 
certain characteristics (marked black) the material projects on 
a different area.  The properties of granules produced from 
raw material with such characteristics (black) are different 
from the rest, and the final quality also shows differences. 

The difference in the quality can be theoretically explained 
based on the physical phenomena that govern the whole 
process.  The idea of the design space is to express these 
phenomena by a model. 

The design space can be established as a model that relates 
input material and process parameters to quality.  The model 
may be theoretical (based on first principles) or empirical, 
derived from design of experiments or, a hybrid.   Together 
with the model one has to specify the range of parameters for 
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which the model has been verified.  The model may cover 
one unit operation or a series of unit operations. 

The design space for the entire tableting process can be 
derived by relating quality to the raw material properties as 
well as to the process parameters of the unit operations 
(Figure 3).  One row in the database depicted in Figure 3 
would include the process conditions and quality experienced 
by the material as it is processed through the units. 
Multivariate projection methods can be used for the empirical 
modelling. 

It should be emphasised here that the Design Space is a 
collection of models that relate 1) the final quality to all 
previous units, raw material and intermediate quality 2) 
intermediate quality to previous unit operations and raw 
material. 

The empirical models derived are causal and based on 
carefully designed experiments (DOE) l 
also be necessary to estimate parameters even if mechanistic 
models are used. 

Batch processes are very common in the pharmaceutical 
industry.  Empirical methods for modelling and monitoring 
batch processes are discussed in Nomikos and MacGregor 
(1994) and in Kourti (2003).    

Foundations for multiblock analysis necessary for multi unit 
operation systems can be found in Westerhuis et al (1998). 

The level of detail in the models varies depending on the 
depth of process understanding one wishes to achieve.  For 
example the variable trajectories of a granulation may be 
described by summary data (min, max, slopes, etc) or by the 
full variable trajectories aligned against time or another 
indicator variable (Kourti, 2003). 

 

 

 

Fig. 4 Control Strategy using Projection Space.  

 

5. CONTROL STRATEGY 

Based on the process understanding derived from the design 
space, control strategy can be derived to assure final quality.  

An example in Figure 4 is used to illustrate the new concepts. 
Control Strategy is devised once the Design Space is 
established.  The example here illustrates a feed forward 
control scheme for Unit N+1 based on input information on 

-of-the-
settings are calculated and adjusted such that the target value 
for Quality Y is met. 

A multivariate model was built (from batch data) to relate 
product quality to the process parameters of unit N+1 and the 

-of-the-intermediate product from Unit N.  From this 
model, a quantitative understanding was developed showing 
how process parameters in N+1 and the state-of-the-
intermediate product from N interact to affect Quality.   

Control of batch processes on multivariate space is discussed 
by Flores-Cerrillo and MacGregor (2004), while product 
transfer is discussed by García-Muñoz et al (2005). 

 

6. PROCESS SIGNATURE AND MSPC. 

It is known from other industries, that sometimes it is not 

  The reason is that for some products we do 
not measure all the possible quality properties (example, 
downstream processability).   T
properties may sometimes be achieved by taking different 
process paths.  In these situations, these different paths may 
affect the properties that are not measured (i.e. 
processability).    To achieve consistency in all the product 
properties (measured quality and ability to process down the 
stream) the process conditions (path to end point) must also 
be kept in statistical control.  When this is not the case, 
although the measured product properties are on target, the 
properties that determine other characteristics (i.e., the 
processability of the product) may not be within acceptable 

also be examined.  
also discussed in the European Regulatory Perspective 

within the industry, the term process signature has been 
understanding of 

this, the EU PAT Team had invited public comments on the 

information that shows that a batch has been produced within 

as examples of process signatures the amount of water added 
in relation to time (wet massing), air flow rate, and bed 
temperature during fall rate drying (fluidized bed drying). 
They concluded that their understanding is that there is no 
unique process signature, but instead a family of process 
signatures with common characteristics (salient features). 

It should be pointed out here that the process signature in the 
multivariate statistical process control context is nothing else 
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but the two multivariate indices Hotel 2 and SPE. As a 
matter of fact, these indices take it to account not one feature 
(e.g., water addition rate or, drying rate) but the combination 
of all the variables affecting the process and product and their 
correlations both at each time interval but also their time 
correlations for the duration of the process (auto and cross 
correlations for the entire batch).  They are therefore a more 

 

Furthermore, these indices can be directly related to the 
concept of the design space, as outlined here. The design 
space model relates raw material characteristics, process 
conditions and quality. Given the characteristics of the raw 
material and the desired quality, the design space model can 
be solved to determine appropriate operating conditions. 
Maintaining T2 and SPE within their good operation limits 
for these appropriate process conditions is nothing more than 
ensuring that the operation is within the design space.  

  

7.  PAT and SOFT SENSORS 

Accurate on-line measurements of quality variables are 
essential for the successful monitoring and process control. 
However, due to measurement difficulties, sometimes 

real time and therefore replace an analyzer.  This is the idea 
of soft sensors.  In many monitoring and control situations 
we are often lacking real time sensors capable of measuring 
many of the responses of interest, because the measurement 
equipment for such quality variables may be very expensive, 
or difficult to put on-line, or costly to maintain.  As a result 
we often try to develop soft sensors or inferential models 
which use other readily available on-line measurements such 
as temperatures, and can be used to infer the properties of 
interest in a real time manner.  In a recent  paper  it was 
demonstrated through application to a benchmark simulation 
of a fed-batch fermentation process that mutli-way PLS can 
provide accurate inference of quality variables, such as 
biomass concentration, that are often difficult to measure 
using on-line sensors. It was also demonstrated that the same 
PLS model can be used to provide early detection and 
isolation of fault conditions within a fermenter (Zhang and  
Lennox, 2004). 

The soft sensors can either replace the hardware sensor 
(analyzer) or be used in parallel with it to provide redundancy 
and verify whether the hardware sensor is drifting or has 
failed; when used in parallel the soft sensor will either 
estimate the property and compare its value with that of the 
analyser, or it will keep track of the correlation between the 
analyser reading and the process measurements.   An 
example where a soft sensor is used to assess the reliability of 
an analyser was presented in Kourti (2005).  Latent variable 
modeling was used for this purpose.  

This idea of using process measurements as a safety net to 
verify analyser reliability but also to monitor an index of 
wellness for the process, to check for unforeseen 
disturbances, is a crucial and important issue for real time 
release (Kourti, 2006a). 

 

8. INTEGRATION OF CLINICAL TRIALS 

As more complex structures of data are being generated,   the 
multivariate analysis offers great opportunities for 
information integration and analysis. 

Manufacturing Data as well as patient histories can be 
integrated and then incorporate into design space the clinical 
trial responses.  (Kourti 2006b). 

Figure 5 shows an example of the possibilities that can be 
explored.  Quality in product Y can be related to past 
information of raw materials, preprocessing and holding 
times, the type of the vessel used, the operator that run the 
process, and other recipe information as well as process 
measurement trajectories and analyzer information. 

The quality Y (and details of manufacturing) as well as the 
patient medical histories and clinical responses can be used to 
establish a better understanding of the design space. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 : Examples of complex data structures emerging 
in industry, that can be mined for a wealth of information. 
(Kourti, 2006b). 

 

9.  QUALITY BY DESIGN IN ANALYTICAL METHODS  

The methodology described for design space can be applied 
in analytical methods. Chromatography, is a laboratory 
method but also a Unit operation in Bio  Pharmaceuticals.  

Process Transfer ideas can be also applied in method transfer 
ideas, that is method transfer  and site transfer could be 
treated with similar principals  (García-Muñoz et al., 2003) 
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Abstract: In this work, the Plantwide Control (PWC) problem of a continuous bio-ethanol process is 
investigated from a Plantwide Optimizing Control (PWOC) perspective. PWOC addresses the plantwide 
control problem integrating real-time optimization and control for optimal operation. Two different 
PWOC approaches have been considered: A Single-Layer Direct Optimizing Control approach (one-
layer) and a Multi-Layer without Coordination approach (two-layer). The performance of these two 
PWOC approaches is compared with more traditional Decentralized architectures, demonstrating the 
benefits of using Plantwide Optimization-based Control strategies in bioprocesses. 
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1. INTRODUCTION 

Nowadays, bioprocess industry is an important part of the 
worldwide economy. Specifically, the bio-ethanol industry 
has experienced a significant growth in the last years since 
ethanol, as an environmentally friendly fuel, is considered an 
attractive alternative energy source. Ethanol production has 
been continuously improved in very different ways in order 
to assure the economical and environmental feasibility of the 
process. Examples of these improvements include 
purification technologies for reducing energy consumption 
during the separation of the ethanol-water mixture (Arifeen et 
al., 2007), and genetic modifications of the microbial strains 
for building more ethanol-tolerant yeast and strains capable 
of carrying out simultaneously saccharification and 
fermentation tasks (Olofsson et al., 2008). From a process 
control point of view, different works have been done 
regarding the modelling, estimation, and control problem for 
the fermentation stage. However, only relatively few works 
(e.g. Meleiro et al., 2008, Costa et al., 2001) have addressed 
the control problem from the Process Systems Engineering 
point of view, considering the process as an integrated 
dynamic production system taking into account more than 
one single process unit (i.e. accounting for interactions 
between fermentation, cells recycle and flash units). In this 
work, the Plantwide Control (PWC) problem for the ethanol 
process is addressed as a large-scale real-time dynamic 
optimization problem due to the following facts: the nature of 
the process is highly nonlinear and dynamic; the process is 
characterized by the coupling of slow and fast dynamics; 
interactions between different operating units can not be 
neglected; and finally, economical feasibility of the process 
can be effectively assured if this is the main control objective 
of the plantwide strategy. PWC has attracted the attention of 
the process control community for more than 40 years, since 
the pioneer work by Buckley (1964). Through these years, 
different architectures have been used for tackling the 
problem of controlling a complete process. The intention of 
this section is to present a brief review of the several options 

reported for addressing PWC. A proposal of classification for 
different PWC architectures is shown in Fig 1, which agrees 
in some points with that presented by Scatollini (2009). 

DECENTRALIZED

DISTRIBUTED

MULTI-LAYER

SINGLE-LAYER

PID

MPC

Communication
based MPC

Cooperation
based MPC

With 
Coordination

Without
Coordination

Performance 
NMPC

Hybrid 
NMPC

Direct optimizing
Control

Incorporation of real process interactions in the model

Fig 1. Plantwide Control Architectures 

In the Decentralized scheme, many different individual
regulators are used in the process without sharing any kind of 
information between them (i.e. each controller operates 
independently of the others), even though the selection of the 
manipulated and controlled variables might take into account 
the interactions in the process. The decentralized approach 
consists usually of SISO PID loops, although MPC 
controllers can also be used. As noted by Stephanopoulous 
and Ng (2000), most of the research activities in the topic of 
PWC up to year 2000, addressed the PWC problem as the 
selection of the best input-output pairing for the formation of 
SISO PID loops. Of course, as in any rule there are 
exceptions, and one of the most relevant examples in this 
case is the work by Garcia and Morari (1984), in which a 
multivariable control scheme based on a Multi-layer PWC 
architecture was proposed for controlling a benzene plant. 
Some of the many works that have addressed the PWC in a 
decentralized manner are Araujo et al. (2007), Larsson et al. 
(2003), Robinson et al. (2001), Zhen et al. (1999), Lausch et 
al. (1998), Luyben et al. (1997) and McAvoy and Ye (1993). 
Most of the works in the remaining three architectures shown 
in Fig 1 make use of a multivariable controller. Two main 
reasons motivated to move the PWC problem from the 

44



     

paradigm of decentralized PID towards different alternatives: 
the performance limitations of the decentralized architecture, 
and the broad industrial impact of the Model Predictive 
Control (MPC) framework (Venkat et al. 2007). In the 
Distributed architecture some information is exchanged 
between the multiple MPC controllers. Two Distributed-
MPC approaches worthy of mention are the communication- 
and cooperation-based, which mainly differ that in the first, 
each controller has a local objective function, whereas in the 
latter the objective function in each controller is a copy of the 
total objective function for the complete plant (Rawlings and 
Stewart, 2008). Representative works addressing the PWC 
from the Distributed perspective are those by Sun and El-
Farra (2008), Venkat et al. (2007), Mercangöz and Doyle 
(2007) and Venkat (2006). Multi-layer architecture is a 
hierarchical structure that follows the guidelines given by 
Findeisen et al. (1980), which classified the hierarchical 
control into multilayer and multilevel. According to 
Findeisen’s work, in the multilayer case, the control of a 
system is split into algorithms (layers), whereas in the 
multilevel case control is divided into local goals and the 
action of each local control unit is coordinated by an 
additional supremal unit. In Fig 1 it is proposed to sub-divide 
the Multi-layer (or hierarchical) architecture into: With 
Coordination (denoted as Multilevel approach by Findeisen) 
and Without Coordination. Multilayer architectures should be 
composed by at least two different layers, in which the task 
of finding the control actions that should be applied to the 
process is split usually into: a Real Time Optimization (RTO) 
layer that computes optimal set point values for the controlled 
variables, and a Control layer which is in charge of tracking 
the optimal set point values (Kadam et al., 2002). In the 
control layer, a PID or MPC controller can be used (Kadam 
and Marquardt, 2004). It is important to notice that as 
mentioned by Biegler and Zavala (2009), the “connection” 
between RTO and MPC layers may suffer inconsistencies 
due to model mismatch (non-linear steady state vs. linear 
dynamic) and conflicting objectives. Therefore, in the last 
years a proposal for replacing the steady state RTO by a 
Dynamic Real Time Optimization (D-RTO) layer has 
emerged (Kadam et al. 2003; Kadam and Marquardt, 2004). 
On the other hand, regarding the Multi-layer with 
coordination architecture, the reader is referred to the work 
by Tosukhowong et al. (2004) in which a coordination collar 
is used to find for each MPC a locally feasible set point close 
to the global solution found by the RTO layer; and to the 
work by Cheng et al. (2007), in which a price-driven method 
is used for coordination between the RTO and the MPC 
layers. Additionally to the references already mentioned, the 
following works include examples of PWC using Multi-layer
architecture: Ochoa et al. (2009), Kadam and Marquardt 
(2007), Lu (2003), Duvall and Riggs (2000) and Ying and 
Joseph (1999). A final mention should be done regarding the 
difference between the Multilayer with coordination and the 
Distributed architectures. As both schemes include 
coordination, in the Distributed case the coordination consists 
on exchanging some information between the local MPCs, 
whereas in the Multilayer with coordination, the local MPCs 
are not communicated between them but communicated to 
the RTO layer. The last PWC architecture in the 

classification shown in Fig 1 is the Single-layer scheme. 
Despite the very common belief that a Single-layer or 
centralized structure will be intractable for PWC (Venkat et 
al., 2007), in the last years some publications from both the 
industrial and the academic side have shown that such 
monolithic approach it is not only possible to implement but 
also gives very good results from an economic point of view 
(Bartusiak, 2007; Zavala et al., 2007; Franke and 
Doppelhamer, 2007). Works using this architecture solve 
online a moving horizon optimization problem, but differ in 
the type of objective function optimized. A first group of 
works denoted as Performance NMPC uses a performance-
type objective function (in which mainly the tracking of a 
reference value is penalized). The second scheme includes 
besides the performance term, an economic penalization term 
in the formulation of the objective function and therefore it is 
denoted here as Hybrid NMPC (Economic+Performance). 
The final scheme denoted in the literature as Direct 
Optimizing Control (Engell, 2007) uses a pure economic 
objective function in which the usual control specifications 
enter as constraints and not as set points, and therefore no 
tracking term is penalized. References showing examples of 
the application of the Single-layer architecture are: Biegler 
and Zavala (2009), Roman et al (2009), Ochoa et al. (2009), 
Engell (2007), Franke and Doppelhamer (2007), Zavala et al. 
(2007), Bartusiak (2007), Manenti and Rovaglio (2007), 
Franke and Vogelbacher (2006), Toumi and Engell (2004) 
and Jockenhövel et al (2003). The main purpose of this paper 
is to present a novel approach for the PWC of the bio-ethanol 
process, in which the main control objective is to maximize 
the profitability of the whole process. The paper is organized 
as follows: Section 2 gives a description of the ethanol 
continuous process from starch, including a brief description 
of the relevant works that have addressed the control of the 
process considering it as composed of more than one process 
unit. Section 3 presents the Plantwide Optimizing Control 
(PWOC) concept proposed in this work and describes the 
main steps of this approach. A new method for shrinking the 
search region during the optimization problem that arises 
when applying PWOC is proposed in Section 4. The Multi-
layer without coordination and the Single-layer direct 
optimizing architectures are used for addressing the PWC 
problem in the continuous bio-ethanol process. These 
approaches are compared in Section 5 to conventional 
decentralized architectures. 

2. BIO-ETHANOL PRODUCTION PROCESS 

The case study addressed is based on the extractive alcoholic 
fermentation process shown in Fig 2. A detailed description 
of this process is found elsewhere (Meleiro et al., 2008). The 
process includes saccharification, fermentation, cells recycle, 
flash separation, distillation and rectification. The end 
product considered is the ethanol obtained at the top of the 
rectification column, which in a further step must be sent to a 
dehydration unit (e.g. molecular sieves). A nonlinear 
dynamic model of the process has been simulated using 
Simulink®. The model consists of a nonlinear DAE system 
comprising 69 differential states and 173 algebraic equations. 
pH, temperature and liquid levels are regulated as usually 
done in industry by means of local SISO loops, which in the 
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following will be denoted as basic control. After closing 
these basic loops, 13 input variables are left, 3 of which are 
identified as disturbances: starch (S0), enzymes (Enz1) and 
fresh yeast concentration (X3) fed into the process. The 
remaining 10 inputs are available for improving the control 
strategy in the process. The process with its basic level 
control loops is shown in Fig. 2 (for simplicity, the pH and 
temperature loops are not shown). In addition to the basic 
loops, an internal biomass control strategy (Ochoa et al., 
2009) is also shown. The combination of the traditional basic 
control loops with this biomass internal strategy is denoted in 
the following as Local Control Strategy. Two main reasons 
motivated implementing the biomass control. First, an 
optimal biomass concentration in the fermentor should be 
always guaranteed in order to avoid a misuse of the substrate 
if a higher concentration than the optimal is available. 
Additionally, if biomass concentration is below the optimum, 
a slower metabolite production rate will occur, affecting the 
productivity of the process. Second, yeast is only involved in 
a closed mass loop comprising fermentation, filter and cells 
recycle; i.e. no biomass is found on the streams up the 
fermentor nor downstream the filter. As already mentioned, 
the process has 10 manipulated variables available for 
improving the control strategy; however, 3 of them (F3, F7,
F10) are used as manipulated variables in the biomass 
strategy. The remaining 7 manipulated variables (F0, F1, F13,
VB1, R1, VB2, R2, which are the starch input flow, enzymes 
input flow, recycle flow from the flash to the fermentor and 
vapour and reflux rates for each column) are potential 
manipulated variables denoted as “Plantwide variables”. 
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Fig 2. Bio-ethanol Process from Starch: Local Control 
Strategy (Basic loops + Internal Biomass Strategy). 

Additionally, it should be noticed that despite the rapid 
increase of the bio-ethanol industry in the last 30 years and 
the high economic risk that this industry faces, no much 
effort has been done in order to improve the efficiency of the 
process from the optimization and control points of view. 
Several works have been published regarding mainly the 
control of the fermentation unit in the process, but to the 
author’s knowledge, only few works have addressed the 
control of the process considering more than the fermentation 
stage. Costa et al. (2001) used Dynamic Matrix Control 
(DMC) for controlling the substrate or the product 

concentrations in the fermentor manipulating the substrate 
input flow or the cells recycle rate. A second contribution by 
Costa et al. (2002), proposes a SISO NMPC for controlling 
the substrate concentration in the fermentor, manipulating the 
substrate input flow. Meleiro et al. (2008) presented a 
multivariate NMPC to control simultaneously the ethanol, 
substrate and biomass concentrations in the fermentor. 
Although the process modelled in these works considers 
interactions fermentor-cells recycle-flash, the control task is 
still focused on tracking or regulating the main state variables 
in the fermentor without considering the optimal economic 
operation of the whole process. Finally, Bartee et al.(2008), 
propose using MPC for controlling the process including 
milling, cooking, distillation etc.; however, no details 
regarding algorithms and implementation are given. 

3. PLANTWIDE OPTIMIZING CONTROL 

Online optimizing control optimizes an economic objective 
over a finite moving horizon during plant operation based 
upon a rigorous nonlinear dynamic model (Küpper and 
Engell, 2008). Plant limitations and product specifications are 
included in the optimization as constraints. This definition is 
used in this section as key concept for developing the basic 
steps of a Plantwide Optimizing Control (PWOC) approach. 
PWOC addresses PWC as a nonlinear dynamic online 
problem, in which the available manipulated variables in the 
process are used for achieving maximum profitability in the 
plant in spite of disturbances. In this way, PWOC calculates 
optimal values for the set of selected manipulated variables, 
in order to maximize a Plantwide Profitability Objective 
function �, instead of maintaining a set of controlled outputs 
at predefined set points. A key feature of PWOC is that input-
output pairing is avoided because the output actually 
controlled in the process is the Plantwide Profitability and the 
available manipulated variables are simultaneously used for 
satisfying that purpose. Online optimizing control has been 
gaining increasing attention in the last years in different 
chemical process applications (Engell, 2007). However, not 
much work has been reported in the open literature on the on-
line optimizing control of bioprocesses. In this work PWC of 
a bioprocess is addressed from an optimizing control 
perspective, considering a large-scale nonlinear Dynamic 
Real-Time Optimization (D-RTO) problem. The proposed 
PWOC approach comprises six main stages, as shown in Fig 
3. In the following, a description of each stage is presented. 

Plantwide Optimizing Control (PWOC)

1. Identification of 
necessary local

control loops

5. Design of the 
Optimization-based 

control strategy

6. Dynamic 
Real-Time

Optimization

4. Statement of the
Plantwide Profitability

Objective Function

3. Design of 
Local Control

strategies

2. Manipulated variables
classification

ulocal and uPW

Fig 3. Plantwide Optimizing Control Stages 

Stage 1: Identification of necessary control loops 

Even though the goal of any chemical or biochemical process 
is to return a maximum profit, there are additional control 
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objectives that should be taken into account before 
establishing a PWOC structure for satisfying this economic 
goal. These objectives are mainly related to safe operation, 
equipment and environmental protection and should be 
achieved independently of the economical performance of the 
plant, i.e. by using local control loops. 

Stage 2: Classification of the Manipulated Variables 

Manipulated variables in the process can be used in the local 
control loops or for the PWOC of the process. Those 
manipulated variables used for satisfying the local control set 
points are denoted as Local manipulated (uLoc), whereas the 
Plantwide manipulated variables (uPw) are those that remain 
available after selecting the uLoc, and that are used for 
maximizing the plantwide profitability objective function. 

Stage 3: Design of Local Control Strategies

After identifying the necessary local control loops in the 
process and the local manipulated variables required for 
satisfying the control objectives at the local control loops, it 
is then necessary to address the design of those local loops 
(i.e. pairing manipulated-controlled variables, selection of 
controller type, controller tuning, etc.), as traditionally done. 

Stage 4: Statement of Plantwide Profitability Function (�)

The next step is to establish a plantwide profitability function 
� and its constraints, in order to formulate a D-RTO 
problem. Statement of the objective function � will depend 
upon the specific process addressed. However, it may contain 
terms related to productivity of the process, raw materials and 
energy consumption, economic losses, etc. Constraints in the 
optimization problem are determined by plant and product 
specifications, and by limitations in the state and input 
variables. Since PWOC addresses the optimizing control 
problem for a complete plant over a finite moving horizon 
during plant operation, it is also important to select the 
prediction horizon �topt over which the objective function and 
constraints will be evaluated. �topt should not be shorter than 
the characteristic response time of the slowest relevant 
dynamic in the process (to avoid unexpected long-term 
performance deterioration), while at the same time it should 
be as short as possible to minimize computational load. 

Stage 5: Design of the Optimization-Based Control Strategy 

PWOC is addressed here using two different architectures: 
Single-Layer Direct Optimizing Control and Multi-Layer 
without Coordination. These frameworks will be referred in 
the following as the one-layer and the two-layer approaches, 
respectively. The structures for both approaches are shown in 
Fig. 4. A detailed description of the building blocks for each 
framework can be found elsewhere (Ochoa et al., 2009). 
Comparing the schemes for the two frameworks (Fig. 4), it is 
possible to see that both approaches have very much in 
common. For example, both approaches are driven by a D-
RTO layer, in which the objective function to be maximized 
is the plantwide profitability �. The main difference between 
the two frameworks is that in the one-layer approach, the 
input variables applied to the real plant are given by the 

optimization layer (uPw=uopt), whereas for the two-layer, the 
inputs applied to the real plant are calculated by a control 
layer (uPw=umpc) that uses as set points, the optimal values of 
the states given by the optimization layer (xopt). In both cases, 
the decision variables of the optimization problem are the 
plantwide manipulated variables uPw. In the two-layer case 
however, a second layer (NMPC controller) is used, in which 
an optimization problem is also solved for minimizing a 
performance-type objective function �, which can be 
composed of three terms: a penalization of the deviation of 
the main state variables from their set points (xopt), a term that 
prevents large changes in the manipulated variables from one 
sample time to the next, and a term that constraints the 
manipulated variables to a small envelope around the 
reference trajectories uopt, given by the optimization layer. 
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Finally, trigger blocks in Fig. 4 deserve special mention due 
to their importance in the implementation of optimization-
based control strategies. These trigger blocks act like 
switches for re-calling the optimization and control layers. 
An optimization-trigger for recalling the D-RTO layer can 
work based on a time criterion (e.g. the optimization is called 
periodically at a predetermined frequency), based on the 
disturbances dynamics (occurrence of a disturbance) or based 
on the performance of the plantwide profitability objective 
function (when � decreases below a certain tolerance). On 
the other hand, the controller-trigger can be based on a time 
criterion or on the state variables deviations from their 
optimal set points. Fig. 5 shows schematically the different 
criteria for activating the optimization and controller triggers. 
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Stage 6: Dynamic Real Time Optimization (D-RTO)

Because a nonlinear dynamic large-scale optimization 
problem arises in the last stage of the PWOC, an efficient 
feasible optimization method should be used in order to solve 
the problem in real time. For this purpose, different types of 
optimization algorithms can be used. However, the use of 
stochastic or evolutionary algorithms is considered here 
because of their reduced computational load (they do not 
need information about derivatives as required by gradient-
based methods) and their relatively simple implementation. 
In this work, a stochastic method (i.e. localized random 
search) is used for solving the optimization problem in the 
PWOC. Independently of the optimization algorithm used, 
the method will search for the optimal solution in the space of 
the decision variables, which is a region bounded by the 
lower and upper limits of each manipulated variable (which 
are the decision variables of the optimization problem). This 
search region may be too large, resulting in long calculation 
times for finding an optimal solution, making difficult the 
solution of the PWOC problem in real time. In order to 
improve the efficiency of the optimization method for solving 
the large scale D-RTO problem, in the following section, a 
new stochastic-based approach for shrinking the search 
region of the optimization problem is introduced. 

4. STOCHASTIC-BASED SHRINKING OF THE SEARCH 
REGION OF THE D-RTO PROBLEM 

The main idea of the stochastic shrinking approach, is that for 
a sample time �t (during which a disturbance took place in 
the process or the profitability function decreased), the 
changes on each plantwide manipulated variable (�uPWi)
required for rejecting a disturbance, should be calculated as a 
function of the changes in the disturbances (�dj) and in the 
profitability objective function (��). Mathematically, this 
can be written as shown in (1). 

),d,...d,d(fuuu j21it,PWitt,PWiPWi �����
�
� ��  (1) 

Where i is the number of plantwide manipulated variables 
and j is the number of disturbances that can be present in the 
process. fi is a function that represents how much the 
manipulated variable i should change to reject disturbances. 
Specifically in this work, the use of a Gaussian distribution 
for describing function fi is proposed. In this way, the 
changes on the manipulated variables are given in (2). 

� �
iuiPWi ,0u �
�   (2) 

Where i(0,�ui) represents a random number obtained from a 
Gaussian distribution with zero mean and standard deviation 
�ui. This standard deviation can be calculated as the maximum 
between different contribution terms, which represent the 
capability of the manipulated variable i for rejecting the 
different known disturbances of the process at time t, and for 
rejecting a decrease in � (that can be caused by both known 
and unknown disturbances), as shown in (3), 

)zw,dw,...dw,dwmax( ijij22i11iui
�����
� ��  (3) 

where wij are gain factors that express how much a change in 
the manipulated variable uPwi can reject (or counteract) the 

occurrence of disturbance dj, wi� is the gain factor for the 
manipulated variable i rejecting the decrease in the 
profitability objective function �, and z� is a dummy 
variable that is only activated when the objective function �
decreases below a given tolerance Tol, that is: 

�
�
�
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������


� Tol)t()tt(,1
Tol)t()tt(,0

z  (4) 

A final mention should be done, regarding the calculation of 
the gain factors used for obtaining the standard deviation �ui.
It would be desirable to calculate these gains mathematically, 
from the nonlinear model of the process as expressed in (5) 
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where �ui/�xk represents the inverse of the open loop gain 
between state variable xk and input ui; and �xk/�di represents
the open loop disturbance gain between xk and disturbance dj.
As the complexity of the process model increases, the 
complexity for calculating the wij factors analytically also 
increases. For this reason, these gain factors are proposed to 
be calculated by using Digraphs. Information regarding 
digraph models is found elsewhere (Maurya et al., 2003). 

u1

Probability
�11

Initial u1

�12

u1min

u1max
u2min

�22

�21

u2

Initial u2

u2max

�1= �11

�2= �22

Probability

Gaussian distributions for rejecting
d1 and d2 using u1.

As ��11> �12, u1 is determined 
by u1=�(0,�11)

Gaussian distributions for rejecting
d1 and d2 using u2.

As ��22> �21, u2 is determined 
by u2=�(0,�22)

u1

Probability
�11

Initial u1

�12

u1min

u1max
u2min

�22

�21

u2

Initial u2

u2max

�1= �11

�2= �22

Probability

Gaussian distributions for rejecting
d1 and d2 using u1.

As ��11> �12, u1 is determined 
by u1=�(0,�11)

Gaussian distributions for rejecting
d1 and d2 using u2.

As ��22> �21, u2 is determined 
by u2=�(0,�22)

Fig. 6. Shrinking approach: Gaussian distributions for a 
system with two manipulated variables and two disturbances. 
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Fig. 7. Shrinking approach: Final Shrunk Search Region vs. 
Original Search Region. 

For concluding this section, a graphical representation of the 
shrinking approach for a system with two manipulated 
variables and two disturbances that occur at the same time, is 
presented in Fig. 6 and 7. Fig. 6 shows the Gaussian 
distributions with standard deviation �11 and �22 for 
describing the manipulated variables u1 and u2 respectively, 
when disturbances occur in the process. Fig. 7 shows the 
Shrunk Search Region for the optimization problem, formed 
by the Gaussian distributions for u1 and u2. It is important to 
notice that despite the maximum standard deviation has been 
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selected for each case, a reduction of the search space for the 
optimization algorithm is achieved because the original 
search region of the optimization problem was only bounded 
by the upper and lower bounds of u1 and u2 (see Fig. 7). The 
stochastic-based shrinking approach is used in section 5 for 
reducing the search region of the optimization problem that 
arises when the PWOC concept is applied to the ethanol case 
study. As it will be shown through this example, the PWOC 
problem has been solved more efficiently by applying the 
shrinking approach than without shrinking. 

5. PWOC FOR THE ETHANOL PROCESS: RESULTS 
AND COMPARISON 

The main purpose of this section is to show the application of 
PWOC to the bio-ethanol process described in Section 2 and 
to compare the obtained results to a typical decentralized 
SISO loops scheme. The decentralized architecture 
implemented for comparison uses seven PID control loops, in 
addition to the Local Control strategy introduced in Section 
2. The paired PID loops (controlled-manipulated variable) are 
the following: E4-G2-F0, G4-F13, xDE1-R1, xBE1-VB1, xDE2-R2,
xBE2-VB2, where E4, G2, G4, are the ethanol concentration in 
the fermentor and the glucose concentration in the 
saccharificator and in the fermentor, respectively. xDE1, xBE1,
xDE2, xBE2, corresponds to the mol fractions of ethanol in the 
top and bottoms of the distillation and rectification columns, 
respectively. A special mention should be done regarding the 
control loop E4-G2-F0, which is a cascade proposed due to the 
fact that the ethanol to be produced depends strongly on the 
glucose concentration (G2) that comes from the 
saccharificator. Finally, it should be noticed that following 
recommendations given by Araujo (2007), and in order to do 
a fair comparison to the PWOC results, the controlled 
variables for the distillation and rectification columns in the 
decentralized loops are concentrations and not temperatures 
(or temperature differences), which are usually the real 
controlled variables at an industry level. On the other hand, 
the main objective of PWOC is to control the profitability at 
its maximum value, and therefore the pairing controlled-
manipulated variable is avoided. In the following, the PWOC 
stages are applied in detail to the bio-ethanol process.  

Stages 1-3: Identification and design of necessary control 
loops. 

For the bio-ethanol process, the following control loops has 
been identified as necessary local loops: level control in all 
tanks, pH and temperature control in saccharificator and 
fermentor, and pressure control in flash, distillation and 
rectification. Additionally to these loops, as explained in 
section 2, a biomass control strategy is used. With exception 
of the loops involved in the biomass strategy, all local loops 
are SISO (e.g. PI or PID). After implementing the local 
loops, the process still has 7 available manipulated variables 
that are used as plantwide manipulated for maximizing the 
profitability of the process. These plantwide manipulated 
variables are: F0, F1, F13,VB1, R1,VB2, R2; corresponding to 
starch and enzymes input flow, recycle flow from the flash to 
the fermentor and vapour and reflux rates for each column. 

Stage 4: Statement of Plantwide Profitability Function (�). 

The following profitability objective function is proposed to 
be maximized for the ethanol process addressed in this work: 
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where wi are weighting factors. The first term in (6) is related 
to the productivity of the process (expressed as the product 
between the ethanol concentration and the distillate flow rate 
in the top of the rectification column); the second term 
penalizes raw material consumption; the third term is a 
quality soft constraint; the following three terms in the 
second line of the equation (accompanied by w4, w5 and w6)
are used for penalizing the energy consumption in the process 
(pumping power and steam consumption). Last part of the 
equation contains a term that penalizes the presence of water 
at the top of the rectification column (related to post-
processing costs in the dehydration unit) and two terms 
associated to economic losses due to the presence of ethanol 
in the bottom of the columns. t0 is the initial time for the 
optimization routine and �topt is the prediction horizon over 
which the objective function and constraints are evaluated. 
�topt=15 hours has been selected taking into account the slow 
dynamic response of the process to changes in its inputs. 

Stage 5: Design of the Optimization-Based Control Strategy 

In order to compare the one- and two-layer approaches, 
PWOC for the ethanol case study is addressed using these 
two approaches shown in Fig. 8. It must be noticed that the 
biomass control is run in cascade with the D-RTO layer (in 
both frameworks), from which it receives the optimal set 
point value that should be locally tracked. In both cases, the 
objective function to be maximized in the D-RTO layer is 
given by (6). The complete formulation of the optimization 
problem addressed in the D-RTO layers is given in (7). As 
can be seen, the decision variables of the optimization 
problem are the values for the uPw. The last inequality 
constraint is used inside the optimization loop for assuring 
that the solution of the optimization problem will guarantee a 
long-term ethanol concentration at the top of the rectification 
column (xED2) equal or higher than the concentration obtained 
if the plantwide manipulated variables were kept constant at 
uPw

* (values of the manipulated variables at the time t0). The 
performance-type objective function � in the NMPC layer of 
the two-layer approach (bottom of Fig. 8) penalizes 
deviations of the ethanol concentration in the fermentor (E4)
and in the top of the rectification column (xED2), respectively, 
from their optimal set points values given by the D-RTO 
layer during a prediction horizon �tmpc=2 hours, as stated in 
(8). The terms Q and R are weighting matrices, which can be 
seen as tuning parameters for the NMPC. Schwartz et al. 
(2006) present a method for determining MPC tuning 
parameters that lead to optimal results from either an 
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operational or financial standpoint. Finally, the trigger 
conditions used in the simulation study for addressing the 
PWOC problem of the ethanol process are shown in Fig. 9. 
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Fig 9. Trigger conditions for the ethanol PWOC: 
Optimization (left) and NMPC (right) layers. 

The D-RTO problem was solved by the direct Sequential 
approach using a Monte Carlo localized random search 
optimization method, which is simple to implement, have 
broad applicability and do not require the computation of 
gradients (Spall, 2003). Basically, the algorithm consists of 
three main steps. First, an initial guess �0 of the optimal point 
is randomly picked and the number of iterations k, is set to 
zero. Second, an independent random vector dk is generated, 
and added to the current optimal value �k. Third, it is checked 
if -�(�k+dk) < -�(�k); if this condition is satisfied, the new 
optimal value is set as �k+1=�k+dk, otherwise, the second step 
is repeated (random generation of dk). The algorithm stops 
when either, the maximum number of iterations has been 
reached or a convergence criterion has been fulfilled. For 
testing the PWOC approach, simulation studies were carried 
out using the nonlinear model of the process as the real plant. 
Results presented in this Section correspond to the simulation 
of the system starting at an optimal steady state. After 6 hours 
of operation at this steady state, a disturbance on the starch 
feed concentration enters the process (20% reduction of the 
starch concentration). At this moment, the optimization 
trigger is switched on and the D-RTO layer is called in order 
to calculate the new values for the plantwide manipulated 

variables that drive the process to optimal operation 
(maximal profitability). The localized random search method 
was used as previously explained for maximizing the 
profitability objective function, subject to the constraints 
given in (7). The optimization algorithm was selected to be 
run each time during 50 iterations after making a balance 
between performance and computational time for real-time 
implementation. The shrinking approach described in Section 
4 was used for reducing the search space of the optimization 
problem. Specifically, the gain factors wij and wi� in (3) were 
calculated using Digraphs. After calculating the gain factors, 
the standard deviation �ui of the Gaussian distribution that 
describes the probability of change of each manipulated 
variable for rejecting the disturbances was calculated as the 
maximum between different contribution terms. Then, 
precisely this Gaussian distribution for each manipulated 
variable was used for generating the vector dk, in order to 
allow the optimization algorithm to make moves only in the 
region described by these distributions. Fig. 10 and 11 show 
the simulation results obtained of applying the PWOC to the 
ethanol case study, in presence of a disturbance on the feed 
concentration. PWOC was run using the two optimization-
based control frameworks shown in Fig. 8. The first of these 
frameworks is the PWOC-one-layer (solid line) and the 
second is the PWOC-two-layer (dashed line). These two 
approaches are compared to the behaviour of the process 
when two different decentralized PID schemes are used, 
which in the following are denoted as: Decentralized 1 
(described at the beginning of this section) and Decentralized 
2. The only difference between both decentralized schemes is 
that in Decentralized 2, the E4-G2-F0 loop is replaced by a D2-
F0 loop, in order to keep constant the flow of product that 
goes to the dehydration unit. At this point it is important to 
remark that all the control approaches compared in this 
section use the Local Control Strategy mentioned in the 
Stages 1-3 of this Section, as part of the local control loops in 
the regulatory level. In the following Figures, the term Two-
layer SP is used for denoting the set point values of the state 
variables E4, xED2 in the NMPC layer and for X4 in the local 
control loop. These set point values are given by the D-RTO 
layer: E4sp=E4,opt, xED2,sp= xED2,opt and X4sp=X4,opt. Also, the set 
point values for the state variables controlled in the 
decentralized schemes (including biomass concentration in 
the fermentor) correspond to the starting steady state values. 
Results shown in Fig. 10 are related to the fermentation 
section. It can be seen that using PWOC (both the one- and 
two-layer) results in a lower ethanol concentration in the 
fermentor than when using Decentralized schemes. 
Decentralized 1 achieves the highest ethanol concentration 
(E4), which is not surprising because one of its control 
objectives is precisely to keep E4 at its set point (original 
steady state value); and it is doing so by feeding a lower 
substrate flow rate (F0), as shown in Fig 10-top-right. Fig 10-
bottom-left shows the dynamic behaviour of the biomass 
concentration. It can be seen that both PWOC approaches 
keep a lower biomass concentration, due to the fact that they 
are actually tracking the optimal set point value, given by the 
D-RTO layer, and not just maintaining a fixed set point value 
(as done in the Decentralized schemes). At this point, 
analyzing the process as conventionally done as if it were 
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conformed just of a fermentation unit, wrong conclusions 
could arise, in which decentralized strategies will be claimed 
suitable enough or even, much better than the optimization-
based approaches. However, it must be noticed that 
independently of the control scheme, the product of a bio-
ethanol plant (after dehydration) is ethanol at purity higher or 
equal than 99.6% wt. Since the profitability of the plant is 
closely related to the net flow of this final product, and the 
latter is proportional to the net flow of ethanol in the 
fermentor output, which is given by E4� � F4 (ethanol 
concentration � total output flow in the fermentor), then it 
can be concluded that the one- and two-layer approaches 
would lead the process to higher cumulative profitability 
values than the decentralized, because their total net flow of 
ethanol at the fermentor output is higher (See Fig. 10-bottom-
right) in spite of their lower ethanol concentration. These 
results are confirmed in Fig 11, where the benefits of the 
PWOC approaches and the drawbacks of the decentralized 
schemes become evident when the profitability objective 
function (Fig 11-top) is compared for the different control 
approaches. Analyzing Fig 11, it is possible to conclude that 
PWOC results in a much more effective response to the 
disturbance than the Decentralized schemes, from an 
economical point of view. Specifically, the PWOC-one-layer 
reaches the highest cumulative profitability for the process, 
having at the same time the highest cumulative production 
rate and a higher ethanol concentration than the decentralized 
architectures. The PWOC-two-layer allows at the beginning a 
small decrease of its objective function (when compared to 
the initial value), despite the fact that this approach drives the 
process towards the highest product concentration (Fig 11-
bottom-left). However, for the first 20 hours after the 
disturbance appearance, the two-layer approach kept the 
profitability on average at the same value than the starting 
steady state, and after this, it was able to improve its 
objective function value, reaching even at the end the same 
optimal value than the one-layer. Furthermore, it can be seen 
that the Decentralized schemes result not only in lower 
profitability, but also in lower product concentration and in 
the case of Decentralized 1, in the lowest cumulative flow of 
product. Of course, it can be argued that the product 
concentration resulting in the decentralized schemes is lower 
because precisely these controllers are doing their jobs 
regulating the controlled variables at their set point values. 
However, it must be noticed that regulation of the controlled 
variables at fixed set points might deteriorate the profitability 
of the process, because when a disturbance enters the process, 
the optimal operating point may also move. How much this 
point moves can not be generalized because it depends on the 
process and the nature of the disturbances, and in many cases 
disturbances can not be predicted. If well it is completely true 
that over the years process industry has been operating under 
fixed set point policies relying on PID SISO loops, without 
reporting enormous economical losses, it is also true as stated 
by Prett and García (1988), that the apparent savings in doing 
so (i.e. minimization of both design effort and maintenance) 
are in majority of cases nonexistent and in the long run result 
in more costs than the use of multivariate techniques. 
Following the analysis in Fig 11, comparing only the 
decentralized approaches, it is clear that Decentralized 2 is 

more convenient from an economic view, because at the end 
of the period, at least it reaches a profitability value close to 
the starting point, despite of resulting in less ethanol 
concentration in the fermentor (Fig 10-top-left). 

Fig. 10. PWOC results vs. decentralized control for the 
fermentation section: Ethanol Concentration (top-left), Starch 
Input Flow (top-right), Biomass Concentration (bottom-left) 
and Ethanol Net Flow (bottom-right). 

Fig. 11. PWOC results vs. Decentralized Control: Plantwide 
Profitability (top), Ethanol concentration in the distillate (left) 
and Distillate flow rate (right) at rectification section. 

A final remark about the PWOC schemes should be done. If 
well both approaches reach the same profitability value at the 
end of the period (50 hours), and the two-layer has an optimal 
behaviour from a performance point of view (which is its 
“final” objective function), it might not be satisfactory at all 
from an economic view. Finally, it is important to highlight 
that independently of the optimization-based control 
framework selected (one or two-layer), the PWOC improves 
the profitability of the process when compared to the 
decentralized control strategies, and thus, it is a promising 
alternative for addressing the plantwide control problem of 
chemical or biochemical processes in which the profitability 
of the process is at risk when disturbances appear. On the 
other hand, in order to evaluate the performance of the 
shrinking approach, several simulation studies applying the 
PWOC with shrinking and without shrinking the search 
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region of the optimization problem were carried out. Fig. 12 
shows the advantages of the shrinking approach. By running 
the optimization algorithm using the same number of 
iterations in the two cases, the shrinking approach has not 
only achieved a higher profitability, but also applied 
smoother control actions, which is an important fact for the 
stability of the process and is in general desirable. 

Fig. 12. One- layer PWOC: Shrinking vs. without Shrinking 
the Search Region. Profitability (top-left), Starch Input Flow 
(top-right), Reflux rate in the rectification (bottom-left) and 
Vapour flow rate to the rectification (bottom-right). 

Analyzing the profiles for F0, R2 and VB2 (Fig 12), it can be 
seen that when no shrinking is used (dashed lines) each 
manipulated variable change in a step-type policy with higher 
amplitude and longer period than when using shrinking (solid 
lines). Finally, it must be noticed that the main advantage of 
using the shrinking approach is that the probability of change 
for each manipulated variable is a function of the capability 
that each of them has for rejecting each disturbance (or the 
number of disturbances that occur at the same time, including 
those unknown), that means that the optimization algorithm 
does not waste time testing large changes in the manipulated 
variables that just reject in a weak way (or are not able to 
reject) the disturbances. When no shrinking is used, each 
manipulated variable is allowed to change from its lower to 
its upper bound, without any restriction, whereas the 
shrinking approach bounds the search region according to the 
standard deviation calculated for each manipulated variable, 
and it is precisely this standard deviation that contains the 
information about the cause-effect relationship between each 
manipulated variable and each disturbance. 

6. CONCLUSIONS 

A Plantwide Optimizing Control (PWOC) approach for 
bioprocesses has been presented based on the Optimizing 
Control concept. The main stages for PWOC and a 
stochastic-based shrinking approach for reducing the search 
space of the optimization problem have been introduced. 
PWOC has been applied to the bio-ethanol process, showing 
much better results from an economical point of view than 
when the process is only controlled by conventional control 
loops. It has been shown that PWOC is a very promising 
alternative for controlling chemical or biochemical processes 

in which the economical feasibility is at risk when 
disturbances appear. Finally, the shrinking approach was 
successfully tested resulting in an improvement of the 
optimization routine for real-time applications (i.e. higher 
productivities were obtained for the same number of 
iterations during optimization). Future work will be directed 
towards extending the shrinking approach for being applied 
with deterministic optimization methods. 
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Abstract: For obvious industrial and theoretical reasons the problem of accounting for the effect of 
impurities in the population balance modelling of solution crystallization processes is a very important 
issue, and yet it has never been reported until today. Meanwhile, several kinetic models are proposed in 
the literature that relate the effect of impurities on the crystal growth and could be used for PBE 
modelling. The goal of the present paper is to address this issue and to present a new method, based on 
characteristics, which is shown to efficiently solve the difficulties raised by the specificity of the 
mathematical formulation of the Population Balance Equation (PBE) in the presence of impurities. 
Indeed, as far as hindering effects of the impurities on the crystal growth are concerned, it turns out that 
the “age” of the particles (i.e. the time they spent in the presence of impurities) might plays a key-role in 
the overall dynamic crystallization process. Accounting for such a new internal variable required a 
specific PBE resolution algorithm to be developed and evaluated. 
Keywords: Chemical industry, Crystallization, Characteristic curves, Nucleation, Modeling, Population 
balance equations, Numerical simulation, Batch processes.  

 
 

1. INTRODUCTION 

1.1  Population Balance Equations (PBE) and crystallization 

The formalism of Population Balances Equations (PBEs) is a 
widely used modelling tool in engineering, with applications 
including crystallization, powder technologies, polymer-
rization processes, biotechnologies, etc (Ramkrhisna and 
Mahoney, 2002). PBEs allow describing the time variations 
of properties of a large number of separate entities, such as 
particles, bubbles or droplets, interacting with each other 
and/or with their environment which usually consists of a 
continuous phase.  The dynamics of complex distributed 
particulate systems is related through the evolution of 
appropriate distribution functions evolving in a p-
dimensional space where p represents the number of internal 
coordinates required to characterize the particles. Internal 
coordinates refer to continuous properties of the individual 
dispersed entities such as size, composition, cristallinity, etc, 
or to discrete features such as the number of primary crystals 
in agglomerates or the number of free radicals in a 
polymerizing particle during emulsion polymerization 
reactions. In addition to internal coordinates, external 
coordinates are necessary to describe the physical location of 
the distributed entities.    

As far as dispersed phases are concerned (i.e. separate entities 
in a continuous fluid phase), the governing equations involve 
the number density of particles, which is defined as follows: 

������ �� 	
� � ��� �� 	
������� � ������ � � ����� (1)

As already mentioned, external and internal coordinates (i.e. r 
and x, respectively) are necessary to characterize the 
“location” and the properties of the particles. Equation (1) 
actually means that the average number of particles in the 
particle state subspace dVxdVr with coordinates (�� �) is 
given by ��� �� 	
�dVxdVr.  

For the sake of simplicity (�� �) is usually referred to as the 
particle state and, as outlined by Ramkrishna (2000), it is 
worth noting that the further definition of  PBEs requires the 
average number density function���� �� 	
to be sufficiently 
smooth for allowing differentiation with respect to the 
coordinates and time.  

According to the previous definitions, the number � of 
particles belonging to a given subset ��� Ω⊂ is given by:  

���� 	
 � � ��� �� 	
����� (2)

The previous mathematical formalism will now be applied to 
the time variations of crystals (i.e. solid particles generated 
during a crystallization process) characterized by some 
internal coordinates x. The rate of variation of � is referred to 
as
����
�  in the following: 

���	 � ��� ���� ��� ��� 	
    

(3)
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where y represents any scalar variables required to quantify 
the possible interactions (e.g. through heat or mass transfer) 
between the particles and the continuous phase.  

Considering that the following operating conditions are 
verified:   
1. The solution crystallization process takes place in a well 
mixed batch reactor, 
2.  new crystals are generated through nucleation phenomena 
only (i.e. according to the “classical” nucleation theory, the 
size of new particles appearing in the dispersed phase is the 
critical size L* which can be assumed negligible. 
Agglomeration and breakage of the particles are both 
neglected),  

the population balance equation relating the time variations 
of the particle state is:  ��	 ���� 	
 �  �!� ���� "�� 	
����� 	
 � #����� "�� 	
 � $
with the following boundary conditions: 

!� �$� �%�� "�� 	
��$� �%�� 	
& �� �'(� ��%� "� 	
��'(����� 	
 ���� )*�"�� 	


(4) 

(5)

where the vector of internal coordinates is decomposed as: � � �'� ��%

The first assumption above implies that the number density 
function does not depend on space coordinates while 
assumption 2 means that, in order to express the source of 
new particles in the system, one has only to define boundary 
conditions to account for the expression of the rate(s) of 
nucleation of crystals (i.e. h(�,y,t)=0 in (4)).  

In the mono-dimensional case where one characteristic size 
of the particle only is considered (e.g. the diameter L of a 
fictitious spherical particle exhibiting the same projected area 
than the crystal under consideration), (4) reduces to the well-
known following partial differential equation allowing to 
compute the time variations of the Crystal Size Distribution 
(CSD). In the following, y is the supersaturation of the 
continuous liquid phase σ, defined by (9), which will now be 
omitted for the sake of simplicity:  

+,,
-
,,.

��'� 	
�	 � /�	
 ��'� 	
�' � $��������������
�'� $
 � $�����01������'� $
 � 2334�������$� 	
 & ��'(� 	
 � )*�	
/�	
 ���������������������

5 (6) 

(7) 

(8) 

The initial condition (7) accounts for the possibility of the 
crystallization to start through primary nucleation (i.e. no 
solid phase is initially present in the crystallizer) or through 
seeding. Seeding consists in the introduction of small amount 
of particles, usually sieved, in the supersaturated solution. 
The seed particles initiate the crystallization process and are 

characterized by their size distribution ψseed.  
RN is the rate of nucleation in  #.s-1.m-3 and G is the crystal 
growth rate in m/s. 

1.2  Growth rates and impurities  

In most published PBE modelling studies —according to 
McCabe’s hypothesis— the growth rate G(t) is assumed not 
to depend on the particle size but essentially on the driving 
force of crystallization, the following absolute definition of 
the supersaturation σ is now defined as: 

σ (t)=C(t)-C* (9) 
 

where C* is the equilibrium concentration (i.e. the 
temperature-dependant solubility of the crystallizing 
compound) and C(t) is the solute concentration.  

Several theoretical or phenomenological expressions can be 
found in the literature to express the supersaturation-
dependency of the growth rate which, more or less, turns out 
to obey the following kinetic law:  

/�	
 � �'�	 � 67�8�	
 9 8(
: � 67;�	
:  (10) 

exponent i was shown to depend on the involved growth 
mechanism(s) which, in particular, depend(s) on the level of 
supersaturation (Mersmann A, 2002; Mullin J.W., 1993; 
Chernov, 2004). In practice, consistently with usual 
theoretical models, most published values of i are given 
between 1 and 2.  

Actually, modeling and control papers published in the field 
of crystallization engineering deal essentially with pure 
solute/solvent systems. As far as one considers the context of 
industrial processes, this is obviously an unrealistic 
assumption. Indeed, it is worth noting that industrial 
processes cannot avoid undesirable impurities to be generated 
during the many chemical reactions preceding the 
crystallization steps. It is well-known that even minute 
concentrations of impurities present in the initial solution can 
affect the crystallization processes (Chernov, 2004; Sangwal, 
1996; Wood, 2001) and induce significant reductions of the 
growth rate (Keshra & Sangwal, 1996; Kubota et al., 2000; 
Kubota, 2001).  

It is also known that impurities can lead to supersaturation 
thresholds below which the development of crystallization is 
completely inhibited (see e.g. Sangwal, 2002). To the best of 
our knowledge, such key-features of “real” industrial 
crystallization processes (i.e. processes performed in the 
unavoidable presence of impurities) were investigated 
through the observation of single crystals, and never 
described using PBEs. Therefore it remains important to 
evaluate quantitatively the distribution and the time-
variations of the detrimental effects of impurities during 
crystallization processes.  

Now, if one considers the variety of the techniques which 
were proposed to solve the PBEs in the case of crystallization 
processes, it appears that few of these methods are based on 
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the method of characteristics (MOC). It is however known 
that MOCs avoid numerical diffusion errors and oscillatory 
solutions caused by the discretization of the involved growth 
term, especially when steep or discontinuous particulate 
phenomena take place in suspension (Kumar and 
Ramkrishna, 1997; Briesen, 2006).  

Quamar and Warnecke (2007) have proposed a numerical 
method for solving PBEs involving nucleation, growth and 
aggregation processes. The scheme combines a method of 
characteristics for computing the growth term, with a finite 
volume technique for calculating aggregation terms. The 
method is compared to a finite volume scheme through the 
modelling of “academic” situations for which analytical 
solutions are available (i.e. combination of crystal growth 
with aggregation or nucleation). The authors show that the 
numerical scheme based on MOC is more efficient than pure 
finite volume schemes, and that it better tracks steep 
variations of number density functions. This interesting 
feature of MOC is attributed to the disappearance of the 
advection term �/<�' from the main PBE.  

Sotowa et al. (2000) compared the numerical resolution of a 
simple crystallization PBE using a finite difference method 
and the method of characteristics. The study aimed at 
evaluating the impact of numerical dispersion on the design 
of feedback controllers. It was finally concluded that, as far 
as the simulation of control systems is concerned, the method 
of characteristics is recommended as a numerical technique 
for simulating crystallization processes.  

More recently, in order to simulate the growth of anisotropic 
particles, Briesen (2006) proposed a reduced two-
dimensionnal PBE model. Here, the MOC approach is used 
to validate the calculations. The application deals with the 
crystallization of potassium dihydrogen phosphate which is 
assumed to exhibit the shape of parallelepipeds terminated by 
two tetragonal pyramids. However, the simulation assumes 
initial seeding of the crystallization process only, i.e. no 
primary or secondary nucleation is taken into account, which 
is a rather questionable assumption. It should also be noticed 
that no specific information is reported about the MOC used.  

It is the goal of the present paper to address the problem of 
accounting for the “birthdate” of crystals in the governing 
crystallization PBE, and to propose a new numerical scheme, 
based on MOC, for the resolution of the latter PBE. In fact, it 
is clear that the approach proposed by Kumar and 
Ramkrishna (1996a,b, 1997) in their series of three papers is 
much more “advanced” than the approach presented here, in 
terms of the accuracy of the used size integration technique 
and with respect to the ability of the method to describe 
agglomeration and breakage phenomena. Nevertheless, the 
present algorithm offers another way of considering
nucleation phenomena and, through its great simplicity, could 
be valuable for applications where fast computation is 
required (i.e. for in-line feedback control applications for 
example).   

2. MODELING THE CRYSTAL GROWTH RATE IN THE 
PRESENCE OF IMPURITIES. 

2.1 The pinning mechanism 

With respect to the growth of crystals in pure solvent, the 
time-averaged advancement velocity of a step in impure 
media appears to be hindered by the adsorption of impurity 
species on the growing crystal surface. Indeed, as Fig. 1 
schematically shows, during the step advancement, kink sites 
can be blocked by foreign species that cannot easily be 
incorporated in the crystal lattice. To allow further crystal 
growth, the growth-step has to circumvent the pinned 
impurity, which obviously reduces the overall growth rate. 
Several models describing such a pinning mechanism were 
early described in the literature (see e.g. Cabrera & 
Vermilyea, 1958). Moreover, it is worth noting that many 
convincing observations of the pinning mechanism were 
reported, using e.g. advanced imaging techniques such as 
AFM (Atomic Force Microscopy, see e.g. Land et al., 1999, 
Thomas et al., 2004).   

Kubota-Mullin’s model (1995) was proposed to describe the 
pinning mechanism through Γ, the ratio between the step 
velocities in pure (u0) and impure (u) media. Γ is given by the 
following expression:  

= � �>>? � @ 9 A BCDEF4G H � @ 9 IH                                 (11) 

where γ is the edge free energy, a is the size of the growth 
unit, T is the absolute temperature, k is the Boltzmann 
constant and θ is the fraction of coverage of active growing 
crystal surface by adsorbed impurities, d is the average 
distance between actives growth sites.  

Fig. 1. Adorption of impurities at kink sites on the growing 
steps after Kubota (2001).

Parameter α  is an effectiveness factor which quantifies the 
efficiency of the impurity specie in hindering the crystal 
growth. It is very important to notice that α does not only 
depend on properties of the involved solid, but also on 
supersaturation.  

The coverage of the crystal surface by impurities is itself a 
stable dynamic process which therefore reaches a steady-state 

�
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θ∗. According to the hypotheses set to describe the 
adsorption process, various theoretical approaches can be 
used to compute the equilibrium coverage parameter θ∗. 

In Kubota-Mullin’s Model (Kubota & Mullin, 1995; Kubota 
et al., 1997), the equilibrium coverage of the growing surface 
is estimated  thanks to Langmuir’s adsorption theory: 

θ *=KCi /(1+KCi)  (12) 

where K is the Langmuir adsorption constant and Ci is the 
concentration of impurity.  

Even though the adsorption process is often regarded as 
instantaneous (i.e., the steady-state coverage θ∗ is reached 
instantaneously), it was shown that the dynamics of the 
adsorption of impurity species on the crystal surface cannot 
always be neglected. This is the reason why, as a first 
phenomenological approximation, the transient behavior of 
the coverage process was proposed by Kubota (2001) to obey 
a first-order dynamics: 

θ = θ * (1-exp(-t/τ)) (13) 

where τ is the time constant of the coverage dynamic process.  
  
As the crystal growth rate is usually assumed to be 
proportional to the step velocity, it finally turns out that G
depends on both time and supersaturation while in “usual” 
crystallization approaches dealing with pure media, G is 
assumed to depend only on σ(t). Combining equations (10) to 
(13) leads to the following expression where ν  is the time at 
which the crystal surface is set in contact with impure liquid 
phase (i.e. the time of nucleation): 

/�	
 � 67;�	
: J@ 9 I K8:@ � K8: L@ 9 MNOJ9 �	 9 P
Q RSR
������ /T�	
 U@ 9 I K8:@ � K8: V@ 9 W�X� U9 �	 9 P
Q YZY (14)

2.2 Expression of the PBEs accounting for Kubota-Mullin’s 
model of impurities adsorption.  

Applying the previous impurity adsorption model (14) is not 
straightforward as it increases the dimension of the problem: 
the time (t-ν) spent by the crystals in contact with impurities 
should now be accounted for. To this effect, we introduce a 
population density function φ depending on the “classical” 
variables, L and t, as well as ν : 

+,,
-
,,.
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�	 � /�	� P
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�' � $���������
[�'� $� P
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(15) 

(16) 

(17) 

The standard definition of the crystal size distribution can 
still be retrieved as: 

�'� 	
 � ] [�'� 	� P
�PT̂ � ] [�'� 	� P
�P_T        (18) 

3.    A METHOD OF CHARACTERISTICS FOR SOLVING 
POPULATION BALANCE EQUATIONS ACCOUNTING 

FOR IMPURITY EFFECTS. 

3.1  A method of characteristics for monodimensional PBEs 
without impurities. 

Actually, the supersaturation σ(t) given by Eq. (9), is the 
driving force of the crystallization process. The decrease of 
the solute concentration C(t)  is caused by the generation of 
crystals: the molecules of solute initially present in the liquid 
phase are transferred through crystallization to the dispersed 
solid phase. The total amount of solid is therefore given by 
the total volume of solid after integrating the whole CSD:  

��82�	
 � `2ab � �'� 	
'c�'^
d(��������������& `2ab ] �'� 	
'c�'T̂                                          (19) 

where ρs (kg/m3) is the density of the solid compound, and ϕp
is a volumetric particle shape factor (ϕp  is equal to π/6 if one 
assumes ideally spherical particles.)  

An elementary mass balance of the solute allows computing 
the evolutions of C(t) and consequently yields σ(t) through 
(9), provided that the solubility curve is known. 

Assuming first that the crystallization takes place in pure 
solvent, the PBE system (6-8) is expressed as follows where 
the growth rate G(t) is a complex function of physical and 
kinetic variables depending on σ(t) and, through the indirect 
size-dependency of the solute concentration Cs(t), on the 
overall current size distribution �'� 	
: 
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(20) 

(21) 

(22) 

In the sequel, it is clear that the process is operated in 
supersaturated conditions (i.e. σ > 0), the following condition 
is therefore always fulfilled: 

e	 � fg, e�P � �$� 	��������/�	
 h $ (23)

Now, the following characteristic curves are considered: 

e	 � fg, ��e�P � �$� 	�� ��������'ij�	
 � ] /�	%
�	%kj    (24)

As represented in Figure 2, the CSD along a given 
characteristic curve is defined as follows: 

�ij�	
 � l'ij�	
� 	m,   so that one can write: 
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(25) 

  
Fig. 2. Schematic representation of the relationship between 
the number of particles nucleated at time ν and the overall 
distribution at time t.

It therefore turns out that ij does not depend on t, which 
implies that the solution of (20) is fully determined by the 
boundary condition (22) and the resolution of (24) describing 
the time evolutions of the characteristic curves:  

e	 � fg, ��e�P � �$� 	�� ���  ������������������������������l'ij�	
� 	m � ij�P
����������������������������������������������������� ij�	
����������������������������������������������������� �$� P

������������������������������l'ij�	
� 	m � )*�P
/�P


(26) 

(27) 

Now, let us show that equation (27) allows determining the 
CSD for every size and time, i.e. every point �'� 	
 in the 
phase space can be represented as l'ij�	
� 	m. To this effect, 
the following application is considered: 

nko��$� 	�� p fg,������P q 'ij�	

����������e	 � fg, nk�is clearly continuous and 

���������e	 � fg, �e�P � �$� 	�� �����4rs4j �P
 � 9/�P

which, given (23), shows that λτ is strictly decreasing and 
therefore invertible from [0,t] to [0,���'iT�	
]. It follows that 
the characteristic curves do not exhibit shock or rarefaction. 

A means of computing the distribution density function is 
therefore given by: 

e	 � fg, e' � �$� 'iT�	
� , 
��������������������'� 	
 � tu�rsvw�d

xlrsvw�d
m ��                                    (28) 

3.2  Semi-discretization of the size population density 
function.  

Considering successive sampling times, the time variable ν is 
discretized as follows: 

e	 � fg, e�P � �$� 	��,  ':�	
 � 'ijy�	
��������������������������������������������z{�|
 � ] �'� 	
�'}~vw�_
}~�_
     (29) 

From (28), and setting the following change of coordinates:  

����P � nk���'
������������������������������������' � 'ij�	
� �'��P � 9/�P
�� 5
we get: 
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As illustrated by Fig.2, it finally turns out that integrating ψ
in size between Li (t) and Li-1 (t), at a given time t, amounts to 
integrating ψ  in ν  between νi-1 and νI , for a given size, and 
that the result of this integration does not depend on time t.  

Consequently, one simply has now to solve the following two 
systems which are coupled by the growth rate G: 

� 4dy4k �	
 � /�	
���':�P:
 � $���������5;    �
4�y4k �	
 � $�����������������������z:�P:
 � ] )*�P
�Pjyjyvw

5  (31)

3.3  Time-discretization.  

Actually, any time-discretization algorithm can be used to 
solve jointly the two coupled systems defined by (31). As an 
example, t can be discretized in the same way as ν, which 
leads to the very simple numerical scheme displayed below.  

Any numerical integration technique can also be used for the 
computation of the time variations of both L and . The 
global accuracy of the final numerical solution will mostly be 
limited by the order of the applied integration scheme. 

�
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3.4 Method of characteristics for monodimensional PBEs 
accounting for impurity effects. 

Now, in order to account for the distribution of growth rates 
resulting from the adsorption of impurities, the general 
system (15-18) is considered. As already explained, the 
growth rate /�	
 is a complex function of physical and 
kinetic variables depending on time and, through the indirect 
size-dependency of the solute concentration, on the whole 
current size distribution: 

/�	
 � � J	��P���(� 82 � � [�'%� 	� P
'�c �	
�'%^
T R   (32)  

where CS  is the overall concentration of crystallized solid 
given by (19).  

The nucleation time of every crystal is introduced in (32) 
because, as explained in Part 2, the growth rate G now 
depends on the time spent by the growing crystal surface in 
the presence of adsorbing impurities.  

As in the “classical” case, it is obvious in the following that 
during the crystallization process the supersaturation remains 
positive: 

e	 � fg, e�P � �$� 	��������/�	� P
 h $  (33)

Now, let us consider characteristic curves defined as follows: 

e	 � fg, ��e��P� �
 � �$� 	��������
��������������������'i��	� P
 � � /�	%� P
�	%k

�
   

(34) 

The distribution along a given characteristic curve is noted as 
follows:   

�[i��	� P
 � [l'i��	� P
� 	� Pm, 
and one can write: 

�[i��	� P
�	 � �[l'i��	� P
� 	� Pm�	

�������������������� ��'i��	� P
�	 ���[l'i��	� P
� 	� Pm�'
��������������������� �[l'i��	� P
� 	� Pm�	
����������������������/�	� P
 ��[l'i��	� P
� 	� Pm�'
�[i��	� P
�	 � $����

(35) 

(36) 

As before, it therefore turns out that [i��	� P
 does not depend 
on t. It can also be concluded that:  

e	 � fg, ��e��P� �
 � �$� 	������
�������[l'i��	� P
� 	� Pm � [i��	� P
�������������������������������������� [i���� P
�������������������������������������� [�$� �� P

������[l'i��	� P
� 	� Pm � \�� 9 P
 )*��
/��� P


(37) 

(38) 

(39) 

3.5  Semi-discretization of the size population density 
function taking the nucleation time into account.  

The time variable μ is discretized considering successive 
sampling times: � � ��:� � � �����and one can define the 
following distribution function: e| � fg, e�� � �$� |��������':�	
 � 'i�y�	� P
����{�|� �
 � ] ���� |� �
��}~vw�_��
}~�_��
             

�������z{�|
 � ] �{�|� �
��_T     

  (40)

      (41)

Using (40) and setting:  

' � 'i��	� P
� 4d�4� ��
 � 9/��� P
                                      (42) 

yields: 

���{�|� P
 � � [�'� 	� P
�'}~vw�_�j

}~�_�j
������������������� � [l'i��	� P
� 	� Pm/��� P
���~
�~vw

(43)

(44)
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���{�|� P
 � � \�� 9 P
�)*��
����~
�~vw

                             

������������������� � ��)*�P
������������������P � ��:���� �:������$������������������������	
���
�������� 5
(45) 

(46) 

(47) 

It follows that: 

z{�|
 � � �:�	� P
�P_
T � � )*�P
�P�~

�~vw    (48) 

The following two systems are thus obtained which are 
coupled by the growth rate G: 

/�	
 � � �	� �:���(� �82 � ���z:��:
: ':c�	
�

� 4dy4k �	
 � /�	
���':��:
 � $���������5 �
4�y4k �	
 � $�������������������������z:��:
 � ] )*��
����y�yvw

5   
(49) 

(50) 

(51) 

The principle of the resolution numerical method is the same 
as previously (see Fig. 2 and Part 3.3). 

4. APPLICATION: SIMULATION OF THE CRYSTALLI-
ZATION OF CITRIC ACID MONOHYDRATE IN THE 

PRESENCE OF IMPURITIES. 

In order to illustrate the resolution method, the crystallization 
of citric acid monohydrate is simulated using kinetic data 
previously published by Févotte et al. (2007). In the absence 
of reported experimental results in impure media, the 
parameters of the Kubota-Mullin model were set arbitrarily in 
order to compare the features of crystallization operations 
performed with and without impurities. The corresponding 
parameters are summarized in Table (1).  

In the following, no effect of the impurities on the nucleation 
kinetics is simulated, which is probably a very rough 
assumption. Actually published data about nucleation in the 
presence of impurities are really lacking and the goal here is 
rather to show the usefulness of the resolution method than to 
investigate real solute/solvent/impurity systems.  

Isothermal desupersaturation crystallization operations were 
simulated at 15°C. In order to initiate the crystallization in 
the supersaturated zone (i.e. Cinit. >C* at 15°C)), a seed mass 
of 10 kg (2% of the expected final mass of solid) is supposed 
to be introduced in a 1 m3 pilot-scale well-mixed crystallizer 
initially feed with a supersaturated citric acid solution. The 
intial solute concentration is: Cinit = 1.825 kg/kg water. After 
seeding, the number of particles increases, due to secondary 
nucleation, and the initial supersaturation is consumed 
through the growth of crystals. Despite the adsorption of 
impurity species at the crystal surfaces, the overall 
concentration Ci is assumed to remain constant during the 

crystallization (i.e. the amount of adsorbed molecules is 
clearly negligible with respect to the dissolved impurities.  

Fig. 3. Simulation of seeded isothermal crystallization of 
citric acid monohydrate in pure water at 15°C. 

Fig. 4. Simulation of seeded isothermal crystallization of 
citric acid monohydrate in water and in the presence of 
impurity at 15°C. The parameters of Kubota-Mullin’s are 
given in Table 1. 

As one can see in Figs. 3 and 4, the computed CSD is smooth 
and does not exhibit oscillatory behaviour, even when coarse 
time intervals are used for the numerical simulation. As 
expected, the presence of impurities has a clear effect on the 
development of the CSD. Fig. 3 shows that the size of the 
biggest particles obtained in pure water is about 1.2 mm 
while it is only 1 mm in the presence of impurities (Fig.4). 
However, Fig.5c shows that the main difference between the 
two final CSDs can be observed in a rather significant 
increase in the number of fines which is expected to have a 
very detrimental effect on the the downstream operation such 
as filtration.  

It turns out that the most significant effects of the impurities 
on the development of the batch process arise from the 
reduction of the supersaturation decrease, as displayed in 
Fig.5a.  

Indeed, as outlined in Part 1.2, due to the pinning mechanism, 
the level of supersaturation remains higher when impurities 
are present in the crystallizing solution. As during the present 
simulation no impurity effect is assumed to affect the 
secondary nucleation of new citric acid particles, higher 
levels of supersaturation lead to a much higher overall 
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number of particles (Fig.5d) while, due to growth rate 
reductions and to the final supersaturation threshold outlined 
previously, the overall production of solid is clearly reduced. 
Figure 5b shows that only 70% of the expected solid is 
obtained at the end of the batch process performed in the 
presence of impurities (0.5 kg/L of crystals was expected 
from the selected values of Cinit and C*).  

Table 1.  Kinetic equations and parameters used for the 

simulation of the crystallization of Citric Acid 

monohydrate. 

�'�	 � /�	
 � 67�8�	
 9 8�( 
:����������������������������������������������� ��@��@$���8�	
 9 8�( 
���                         (52) ������������)*�	
 � K��8¡�	
:¢�8�	
 9 8�( 
£¢   ������������������������� @��¤�@$ �8¡�	
T�¥¦�8�	
 9 8�( 
���¥           (53) 

where     )*�	
  is the rate of secondary nucleation  
                         of monohydrate citric acid, ������������������K�       is a “lumped” kinetic constant  
                         for secondary nucleation, ������������������8�(       is the solubility of monohydrate citric  
                         acid at 15°C (1.35 kg/kg of water), ��������������������§�¨� are exponents expressing the supersaturation   
                         dependency of the growth rate  
                         and nucleation rate, ��������������������       is the exponent accounting for the impact of  
                         solid already present in suspension on  
                         the secondary nucleation rate. 

���������������������82�	
 � `2ab � �'� 	
'c�'^
d(

where    �������������`2= 1545 kg/m3������������ab= π/6 (spherical particles) 

Parameters of Kubota-Mullin’s Model:

K = 1 m3/kg 
Ci = 0.01 kg/m3  
τ   = 500 s 
α  = 10/σ  

Fig. 5 . Simulation of seeded isothermal crystallization of 
citric acid monohydrate in water with (dotted line) and 
without (continuous line) the presence of impurities, at 15°C.  

(a) Desupersaturation profile. (b) Generation of total 
crystallized solid during time. (c) Nucleation rate assuming 
negligible effect of the impurity species on the generation of 
particles. (d) Overall number of crystals.   
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5. CONCLUSIONS 

A method of characteristics for the resolution of population 
balance equations was developed and evaluated using 
published kinetic data on the crystallization of citric acid in 
water. The method can be applied to crystallization processes 
without agglomeration and breakage, and it is intended to 
allow the simulation of growth rate reductions observed 
during solution crystallizations performed in the presence of 
industrial impurities.  

Indeed, the effect of impurities was shown by Kubota and 
Mullin (1995) to depend on the time spent by every crystal in 
the impure liquid medium and, consequently, to depend on 
the “age” of the crystals. Such a particular problem requires 
accounting for an additional time variable in the expression 
of the PBEs and finding a way of solving the resulting PBE 
system.  

From a physical viewpoint, the simulation results are shown 
to be consistent and demonstrate the ability of the model to 
simulate the development industrial crystallization processes 
in the presence of impurities. Such simulation could be 
applied, for example, to the design of optimal temperature 
trajectories aimed at minimizing the detrimental effect of the 
concentration of impurities on the yield of industrial 
crystallization operations.  

As outlined by several authors (Kumar and Ramkrishna, 
1997; Briesen, 2006), despite the apparent simplicity of these 
two processes, the discretization of crystal nucleation and 
growth raises numerical diffusion and stability issues which 
arise from the hyperbolic features of the governing equations 
(6) to (8). From this latter viewpoint it is clear that the 
proposed resolution method allows one to account for 
nucleation and growth rates in a very straightforward way.  

NOMENCLATURE 

C Solute concentration kg solute/kg 
solvent 

C* Solubility concentration kg solute/kg 
solvent 

Ci Impurity concentration kg.m-3  
CS Solid concentration kg.m-3  
G Growth rate m. s-1

i Exponent of the supersa-
turation dependency of the 
crystal growth rate 

[-] 

im Exponent of the dependency 
of the nucleation rate on the 
concentration of solid in 
suspension 

[-] 

jm Exponent of the 
supersaturation dependency 
of the nucleation rate 

[-] 

K Langmuir’s  constant m3. kg-167 Growth rate constant [-] 
K2 Kinetic nucleation parameter  

L Particle size m ���� 	
 Number of particles at time t 
in a given subset 

#.m-3

)* Nucleation rate #.s-1.m-3

t Time s 
u Step velocity m. s-1

  

α 

Greek letters 

Impurity effectiveness factor [-] 
θ Fraction of coverage of 

growing crystal surface by 
adsorbed impurity 

[-] 

θ∗ Fraction of coverage of 
growing crystal surface by 
adsorbed impurity at the 
equilibrium 

[-] 

ν Nucleation time s 
σ  Supersaturation [-] 
τ Adsorption time constant s �'� 	
 Population density function  #.m-1.m-3
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This presentation tries to cover the following two aspects. 
� To show up how milli and micro process technologies contribute to green processing and process 

intensification in chemical industry. Relevant trends in the IMM developments (with some supplements of 
TU/e research) will be given at the focal points catalyst / fabrication / reactor / plant / processes. 

� As outlook and much more briefly, first thoughts on process control for micro processing will be given, 
showing some issues and examples for process analytics in fine chemistry (taken from Paul Watts, 
University of Hull) and some IMM results about dynamic operation in fuel processing. 

Fine Chemical Applications – Process Intensification by Novel Process Windows 

Draw on sustainability for chemical production processes demands the integration of sustainability aspects already 
during process development, whereas further environmental impacts and production costs become predefined. 
Micro and milli process technologies [1,2] can provide novel ways for process intensification combined with 
ecological [3] and economic [4] advantages and first assessments were made here [5], mainly by industry. 
Microstructured reactors have entered the field of fine chemistry with first pilot and production plants; some 
examples being reported [6]. To bring these innovative apparatus to their operational limit and thus to process with 
maximal cost competitiveness and environmental sustainability, the idea of “Novel Process Windows” [7] is 
discussed referring examples of actual research. A recent case study disclosed the key drivers for ecological and 
economic optimisation [5] when intensifying the aqueous Kolbe-Schmitt synthesis in a minicapillary reactor [8] by 
using microwaves as alternative energy source and ionic liquids as alternative solvents. 

[1] Hessel, Hardt, Löwe / Hessel, Löwe, Müller, Kolb, Chemical Micro Process Engineering (2 Volumes), Wiley-VCH, Weinheim, 
2004/2005. [2] Jähnisch, V. Hessel, Löwe, Baerns, Angew. Chem. Int. Ed. 2004, 43 (4), 406. [3] Kralisch, Kreisel, Chem. Eng. 
Sci., 2007, 62 (4), 1094. [4] Krtschil, Hessel, Kralisch, Kreisel, Küpper, Schenk, Chimia, 2006, 60 (9), 611. [5] Hessel, Kralisch, 
Krtschil, Energy Environ. Sci. 2008, 1 (4), 467. [6] Hessel, Löb, Löwe, Industrial Microreactor Process Development up to 
Production, in: Microreactors in Organic Chemistry and Catalysis (ed. T. Wirth), Wiley-VCH, Weinheim, 2008, pp. 211-275. [7]
Hessel, Löb, Löwe, Curr. Org. Chem., 2005, 9 (8), 765. [8] Hessel, Löb, Löwe et al., Org. Proc. Res. Dev., 2005, 9 (4), 479. 

Hydrogen for Fuel Cells by Fuel Processing – Process System Engineering 

For catalysis using microreactors [1], it is essential to have total reaction control at all length scales, ranging from 
mm to nm, which includes smart engineering of reactor plates and microchannels as well as proper setting of 
catalyst coatings and metal clusters in mesopores. Most essential here is the reliable finding of activated catalysts 
and proper introduction of these into the microchannels [2-7]. In continuation, catalytic pilot and production 
microstructured reactors [8,9] demand for solutions on scale-out (system assembly) [8,9], control over flow 
distribution and heat management at multi-plate architecture [10,11], integration of reaction and heat exchange / 
separation, process flow with many coupled reactions and operations (sometimes involving recirculation) [8,9], 
reduction in expenditure for energy and apparatus required for work-up [12], and increase in the service life of the 
catalyst including concepts for catalyst change, e.g. by replacement of entire modules. This is accompanied by the 
development of new microfabrication and joining techniques applicable to large, meter-sized format such as rolling 
/ embossing / etching and brazing / diffusion bonding [13]. System and process design is widely practised at IMM 
for applications in fuel processing for hydrogen production to feed fuel cells [14]. This has led to industrial imple-
mentation already, e.g. the 250 W LPG fuel processor-fuel cell VEGA for leisure vehicles and boats (Truma Geräte-
technik) and a 2 kW diesel fuel processor-fuel cell prototype as auxiliary power unit for trucks (Volvo, DAF; 
assembled by Tenneco) [14]. Applications using fossil fuels being reality, the next step is to explore chances of the 
technology for biofuels with its more complex processing schemes, different logistics and cost structures. 

[1] Kolb, Hessel, Chem. Eng. J., 2004, 98 (1-2), 1. [2] Muraza, Rebrov, de Croon, Schouten et al., Chem. Eng. J., 2008, 135S, S99. 
[3] Mies, Rebrov, Jansen, de Croon, Schouten, J. Catal., 2007, 247 (2), 328. [4] Rebrov, Kuznetsov, de Croon, Schouten, Catal. 
Today, 2007, 125, 88. [5] Pennemann, Hessel, Kolb, Löwe, Zapf, Chem. Eng. J., 2008, 135 (1), S66. [6] Men, Kolb, Zapf, Hessel, 
Löwe, Catal. Today 2007, 125 (1-2), 81. [7] Men, Kolb, Zapf, Hessel, Löwe, Trans IChemE, 2007, 85 (B5), 1. [8] Men, Kolb, 
Zapf, Tiemann, Wichert, Hessel, Löwe, Int. J. Hydrogen Energy, 2008, 33 (4), 1374. [9] Kolb, Schürer, Tiemann, Wichert, Zapf, 
Hessel, Löwe, J. Power Sources, 2007, 171 (1), 198. [10] Rebrov, Ismagilov, Ekatpure, de Croon, Schouten AIChE J., 2007, 53 
(1), 28. [11] Mies, Rebrov, Deutz, Kleijn, de Croon, Schouten, Ind. Eng. Chem. Res., 2007, 46 (12), 3922. [12] Delsman, Uju, de 
Croon, Schouten, Ptasinski, Energy Int. J., 2006, 31 (15), 3300. [13] Hessel, Kolb, Brandner, Microfabrication for Energy 
Generating Devices and Fuel Processors in: Microfabricated Power Generation Devices (eds.: Mitsos, Barton, ), in print (2008).
[14] G. Kolb, Fuel Processing, Wiley-VCH, Weinheim, 2008.
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Abstract: This paper proposes a controller design approach that integrates RTO and MPC for
the control of constrained uncertain nonlinear systems. Assuming that the economic function is
a known function of constrained system’s states, parameterized by unknown parameters and
time-varying, the controller design objective is to simultaneously identify and regulate the
system to the optimal operating point. The approach relies on a novel set-based parameter
estimation routine and a robust model predictive controller that takes into the effect of
parameter estimation errors. A simulation example is used to demonstrate the effectiveness
of the design technique.

Keywords: Adaptive control, Real-time optimization, Model predictive control

1. INTRODUCTION

In this paper, we provide a formal design technique that
integrates RTO and MPC for constrained uncertain non-
linear systems. The framework considered assumes the
economic function is a known function of constrained
system’s states, parameterized by unknown parameters.
The objective and constraint functions may explicitly de-
pend on time, which means that our proposed method
is applicable to both dynamic and steady state economic
optimization. The control objective is to simultaneously
identify and regulate the system to the operating point
that optimizes the economic function. The control input
may also be required to satisfy some constraints.

The method proposed solves the control and optimiza-
tion problem at the same frequency. This eliminates the
ensuing interval of “no-feedback” that occurs between
economic optimization and thereby improving disturbance
attenuation. The RTO layer is tackled via a computational
efficient approach. The constrained economic optimization
problem is converted to an unconstrained problem and
Newton based optimization method is used to develop
an update law for the optimum value. The integrated
design distinguishes between the extremum seeking and
the adaptive tracking of the reference trajectory.

While many advances have been made in nonlinear sys-
tems for the stabilization of one fixed operating point,
few attempts have been made to address the stabiliza-
tion problem for time-varying or non-fixed setpoints. In
Magni (2002), a stabilizing nonlinear MPC algorithm was
developed for asymptotically constant reference signals.
By selecting a prediction horizon that is longer than the
time the reference setpoint is assumed to have converged,
the constant pre-programmed value is used to design the
stabilizing controller parameters, i.e, the terminal stability
constraint Xf and terminal penalty W . The result is lim-
� The authors would like to acknowledge the financial support of the
Natural Sciences and Engineering Research Council of Canada.

ited to reference signals that converge to a-priori known
constant setpoint. The method proposed in Findeisen et al.
(2000), combines a pseudo-linearization technique with a
nonlinear MPC strategy to stabilize a family of (known
and constant) setpoints. While the method provides a pos-
sible solution for tracking changing setpoints, such pseudo-
linearization transformation and feedback is in general
difficult to obtain and involve cumbersome computation.

2. PROBLEM DESCRIPTION

Consider a constrained optimization problem of the form
minx∈Rnx p(t, x, θ) (1a)

s.t. cj(x) ≤ 0 j = 1 . . .mc (1b)
with θ representing unknown parameters, assumed to be
uniquely identifiable and lie within an initially known
convex set Θ0 � B(θ0, z0θ). The functions p and cj are
assumed to be C2 in all of their arguments (with locally
Lipschitz second derivatives), uniformly for t ∈ [0, ∞).
The constraint cj ≤ 0 must be satisfied along the system’s
state trajectory x(t).
Assumption 1. The following assumptions are made about
(1).

(1) There exists ε0 > 0 such that ∂2p
∂x2 ≥ ε0I and ∂2c

∂x2 ≥ 0
for all (t, x, θ) ∈ (R+ × Rnx ×Θε), where Θε is an ε
neighborhood of Θ.

(2) The feasible set
X =

{
x ∈ Rnx | max

j
cj(x) ≤ 0

}
,

has a nonempty interior.

Assumption 1 states that the cost surface is strictly convex
in x and X is a non-empty convex set. Standard nonlinear
optimization results guarantee the existence of a unique
minimizer x∗(t, x, θ) ∈ X to problem 1. In the case of non-
convex cost surface, only local attraction to an extremum
could be guaranteed. The control objective is to stabilize
the nonlinear system
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ẋ = f(x, ξ, u) + g(x, ξ, u)θ � F(x, ξ, u, θ) (2a)
ξ̇ = fξ(x, ξ) (2b)

to the optimum operating point or trajectory given by the
solution of (1) while obeying the input constraint u ∈ U ∈
Rnu in addition to the state constraint x ∈ X ∈ Rnx . The
dynamics of the state ξ is assumed to satisfy the following
input to state stability condition with respect to x.
Assumption 2. If x is bounded by a compact set Bx ⊆ X,
then there exists a compact set Bξ ⊆ Rnξ such that ξ ∈ Bξ

is positively invariant under 2.

3. EXTREMUM SEEKING SETPOINT DESIGN

3.1 Finite-time Parameter Identification

Let x̂ denote the state predictor for (2), the dynamics of
the state predictor is designed as

˙̂x = f(x, ξ, u) + g(x, ξ, u)θ̂ + kw(t)e+ w ˙̂
θ, (3)

where θ̂ is a parameter estimate generated via any update
law ˙̂
θ, kw > 0 is a design matrix, e = x−x̂ is the prediction

error and w is the output of the filter
ẇ = g(x, ξ, u)− kww, w(t0) = 0. (4)

Denoting the parameter estimation error as θ̃ = θ − θ̂, it
follows from (2) and (3) that

ė = g(x, ξ, u)θ̃ − kw e− w ˙̂
θ. (5)

The use of the filter matrix w in the above development
provides direct information about parameter estimation
error θ̃ without requiring a knowledge of the velocity vector
ẋ. This is achieved by defining the auxiliary variable

η = e− wθ̃ (6)
with η, in view of (4, 5), generated from

η̇ = −kw η, η(t0) = e(t0). (7)
Based on the dynamics (3), (4) and (7), the main result is
given by the following theorem.
Theorem 3. Let Q ∈ Rnθ×nθ and C ∈ Rnθ be generated
from the following dynamics:

Q̇ = wTw, Q(t0) = 0 (8a)
Ċ = wT (wθ̂ + e− η), C(t0) = 0 (8b)

Suppose there exists a time tc and a constant c1 > 0 such
that Q(tc) is invertible i.e.

Q(tc) =
∫ tc

t0

wT (τ)w(τ) dτ � c1I, (9)

then
θ = Q(t)−1C(t) for all t ≥ tc. (10)

Proof: The result can be easily shown by noting that

Q(t) θ =
∫ t

t0

wT (τ)w(τ)
[
θ̂(τ) + θ̃(τ)

]
dτ. (11)

Using the fact that wθ̃ = e− η, it follows from (11) that

θ = Q(t)−1

∫ t

t0

Ċ(τ) dτ = Q(t)−1C(t) (12)

and (12) holds for all t ≥ tc since Q(t) � Q(tc).

The result in theorem 3 is independent of the control u
and parameter identifier ˙̂

θ structure used for the state
prediction (eqn 3). Moreover, the result holds if a nominal
estimate θ0 of the unknown parameter (no parameter
adaptation) is employed in the estimation routine. In this
case, θ̂ is replaced with θ0 and the last part of the state
predictor (3) is dropped ( ˙̂

θ = 0).

Let
θc � Q(tc)−1 C(tc) (13)

The finite-time (FT) identifier is given by

θ̂c(t) =
{
θ̂(t), if t < tc
θc, if t ≥ tc. (14)

3.2 Constraint Removal

An interior point barrier function method is used to
enforce the inequality constraint. The state constraint is
incorporated by augmenting the cost function p as follows:

pa(t, x, θ) � p(t, x, θ)− 1
ηc

mc∑
j=1

ln(−cj(x)) (15)

with ηc > 0, a fixed constant. The augmented cost
function (15) is strictly convex in x and the unconstrained
minimization of pa therefore has a unique minimizer in
int{X} which converges to that of (1) in the limit as
ηc →∞ Bertsekas (1995).

3.3 Setpoint Update Law

Let xr ∈ Rnx denote a reference setpoint to be tracked
by x and θ̂ denote an estimate of the unknown parameter
θ. A setpoint update law ẋr can be designed based on
newton’s method, such that xr(t) converges exponentially
to the (unknown) θ̂ dependent optimum value of (15).
To this end, consider an optimization Lyapunov function
candidate

Vr = 1
2‖
∂pa
∂x

(t, xr, θ̂)‖2 � 1
2‖zr‖2 (16)

For the remainder of this section, omitted arguments of pa
and its derivatives are evaluated at (t, xr, θ̂). Differentiat-
ing (16) yields

V̇r =
∂pa
∂x

(
∂2pa
∂x∂t

+
∂2pa
∂x2
ẋr +

∂2pa
∂x∂θ

˙̂
θ

)
. (17)

Using the update law

ẋr =−
(
∂2pa
∂x2

)−1 [
∂2pa
∂x∂t

+
∂2pa
∂x∂θ

˙̂
θ + kr

∂pTa
∂x

]
� fr(t, xr, θ̂)

(18)

with kr > 0 and r(0)=r0∈ int {X} results in

V̇r≤−kr‖zr‖2, (19)
which implies that the gradient function zr converges
exponentially to the origin.

Lemma 4. Suppose (θ, θ̂) is bounded, the optimal setpoint
xr(t) generated by (18) is feasible and converges to x∗pa(θ̂),
the minimizer of (15) exponentially.
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Proof: Feasibility follows from the boundedness of (θ, θ̂)
and Assumption 1.1 while convergence follows from (19)
and the fact that zr is a diffeomorphism.

4. ONE-LAYER INTEGRATION APPROACH

Since the true optimal setpoint depends on θ, the actual
desired trajectory x∗r(t, θ) is not available in advance.
However, xr(t, θ̂) can be generated from the setpoint
update law (18) and the corresponding reference input
ur(xr) can be computed on-line.

Assumption 5. xr(t, θ̂) is such that there exists ur(xr)
satisfying

0 = f(xr, ur, θ̂) (20)

The design objective is to design a model predictive control
law such that the true plant state x tracks the reference
trajectory xr(t, θ̂). Given the desired time varying trajec-
tory (xr, ur), an attractive approach is to transform the
tracking problem for a time-invariant system into a regula-
tion problem for an associated time varying control system
in terms of the state error xe = x − xr and stabilize the
xe = 0 state. The formulation requires the MPC controller
to drive the tracking error xe into the terminal set Xef

(θ̃)
at the end of the horizon. Since the system’s dynamics is
uncertain, we use the finite-time identifier (34) for online
parameter adaptation and incorporate robust features in
to the adaptive controller formulation to account for the
impact of the parameter estimation error θ̃ in the design.

4.1 Min-max Adaptive MPC

Feedback min-max robust MPC is employed to provide
robustness for the MPC controller during the adaptation
phase. The controller maximizes a cost function with re-
spect to θ and minimizes it over feedback control policies κ.

The integrated controller is given as

u = κmpc(t, xe, θ̂) � κ∗(0, xe, θ̂) (21a)

κ∗ � arg min
κ(·,·,·,·)

J(t, xe, θ̂, κ) (21b)

where J(t, xe, θ̂, κ) is the (worst-case) cost associated with
the optimal control problem:

J(t, xe, θ̂, κ) � max
θ∈Θ

∫ T

0

L(τ, xp
e, u

p, ur)dτ (22a)

+W ( τ, xp
e(T ), θ̃p(T ) ) (22b)

s.t. ∀τ ∈ [0, T ]
ẋp = f(xp, ξp, up) + g(xp, ξp, up) θ, xp(0) = x (22c)
ξ̇p = f(xp, ξp), ξp(0) = ξ (22d)
ẋp

r = fr(t, xr, θ), xp
r(0) = xr (22e)

xp
e = xp − xp

r (22f)
ẇp = β(gT (xp, ξp, up)− kwwp), wp(0) = w (22g)

Q̇p = β(wp T

wp), Qp(0) = Q (22h)
˙̂
θp = ΓQp θ̃p, θ̃p = θ − θ̂p, θ̂p(0) = θ̂ (22i)
up(τ) � κ(τ, xp

e(τ), θ̂
p(τ)) ∈ U (22j)

xp
e(τ) ∈ Xe, x

p
e(T ) ∈ Xef

(θ̃p(T )) (22k)

where Xe =
{
xp

e : xp ∈ X
}
, Xef

is the terminal constraint
and β ∈ {0, 1}. The effect of the future parameter
adaptation is incorporated in the controller design via
(22a) and (22k), which results in less conservative worst-
case predictions and terminal conditions.

4.2 Implementation Algorithm

Algorithm 1. The finite-time min-max MPC algorithm
performs as follows: At sampling instant ti

(1) Measure the current states of the plant x = x(ti),
ξ = ξ(ti) and obtain the current value of the desired
setpoint xr = xr(ti) via the update law (18)

(2) Obtain the current value of matrices w, Q and C
from

ẇ= g(x, u)− kw w, w(t0) = 0, (23)

and
Q̇ = wTw, Q(t0) = 0 (24a)
Ċ = wT (w θ0 + x− x̂− η), C(t0) = 0 (24b)

respectively
(3) If det(Q) = 0 or cond(Q) is not satisfactory update

the parameter estimates θ̂ and the uncertainty set
Θ(t) � B

(
θ̂(t), zθ(t)

)
according to Algorithm 3 in

the Appendix.
Else if det(Q) > 0 and cond(Q) is satisfactory, set
β = 0 and update

θ̂ = Q−1(ti)C(ti), zθ = 0
End

(4) Solve the optimization problem (21,22) and apply the
resulting feedback control law to the plant until the
next sampling instant

(5) Increment i = i+1. If zθ > 0, repeat the procedure
from step 1 for the next sampling instant. Other-
wise, repeat only steps 1 and 4 for the next sampling
instant.

Since the algorithm is such that the uncertainty set Θ
contracts over time, the conservatism introduced by the
robustness feature in terms of constraint satisfaction and
controller performance reduces over time and when Θ con-
tracts upon θ, the min-max adaptive framework becomes
that of a nominal MPC. The drawback of the finite-time
identifier is attenuated in this application since the matrix
invertibility condition is checked only at sampling instants.
The benefit of the identifier, however, is that it allows
an earlier and immediate elimination of the robustness
feature.

4.3 Lipschitz-based Adaptive MPC

While the min-max approach provides the tightest uncer-
tainty cone around the actual system’s trajectory, its ap-
plication is limited by the enormous computation required
to obtain the solution of the min-max MPC algorithm. To
address this concern, the robust tracking problem is re-
posed as the minimization of a nominal objective function
subject to “robust constraints”.

The model predictive feedback is defined as
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u = κmpc(t, xe, θ̂, zθ) = u∗(0) (25a)

u∗(.) � arg min
up

[ 0,T ]

J(t, xe, θ̂, zθ, u
p, ur) (25b)

where J(t, xe, θ̂, zθ, u
p, ur) is given by the optimal control

problem:

J(t, xe, θ̂, zθ, u
p, ur) =

∫ T

0

L(t, xp
e, u

p, ur)dτ (26a)

+W (xp
e(T ), zpθ (T )) (26b)

s.t. ∀τ ∈ [0, T ]
ẋp = f(xp, up) + g(xp, up)θ̂, xp(0) = x (26c)
ξ̇p = f(ξp, xp), ξp(0) = ξ (26d)
ẋp

r = fr(t, xr, θ̂), xp
r(0) = xr (26e)

xp
e = xp − xr (26f)
żpe = β(Lf + LgΠ)zpe + ‖g(xp, ξp, up)‖zθ, (26g)
zpx(0) = 0 (26h)
Xp

e (τ) � B(xp
e(τ), z

p
e (τ)) ⊆ Xe, u

p(τ) ∈ U (26i)
Xp

e (T ) ⊆ Xef
(zpθ (T )) (26j)

Since the Lipschitz-based robust controller is implemented
in open-loop, there is no setpoint trajectory xr(θ̂) feed-
back during the inter-sample implementation. Therefore,
the worst-case deviation zpe ≥ maxθ∈Θ ‖xe − xp

e‖ =
maxθ∈Θ ‖x− xp‖. Hence zpe given in (26g) follows from
żpx = (Lf + LgΠ)zpx + ‖g(xp, u)‖zθ, zpx(t0) = 0 (27)

where Π = zθ +‖θ̂‖. We assume an appropriate knowledge
of Lipschitz bounds as follows:
Assumption 6. A set of functions Lj : X×Rnξ ×U → R+,
j ∈ {f, g} are known which satisfy

Lj(X, ξ, u) ≥
min

{
Lj

∣∣∣ sup
x1,x2∈X

(
‖j(x1, ξ, u)−j(x2, ξ, u)‖−Lj‖x1−x2‖

)
≤ 0

}
,

4.4 Implementation Algorithm

Algorithm 2. The finite-time Lipschitz based MPC algo-
rithm performs as follows: At sampling instant ti

(1) Measure the current states of the plant x = x(ti),
ξ = ξ(ti) and obtain the current value of the desired
setpoint xr = xr(ti) via the update law (18)

(2) Obtain the current value of matrices w, Q and C
from (23) and (24)

(3) If det(Q) = 0 or cond(Q) is not satisfactory, set β =
1 and update the parameter estimates θ̂ = θ̂(ti) and
uncertainty bounds zθ = zθ(ti) and zpθ (T ) = zpθ (ti+T )
via equation (29)

˙̂
θ = Γ (C −Q θ̂), θ̂(t0) = θ0, (29)

equation (A.1) and equation (30)

zpθ (τ) = exp−Ē(τ−ti) zθ(ti) τ ∈ [ti, ti + T ) (30)
where

Ē ≥ E(ti) = λmin (ΓQ(ti)) .

Else if det(Q) > 0 and cond(Q) is satisfactory, set
β = 0 and update

θ̂ = Q−1(ti)C(ti), zθ = 0
End

(4) Solve the optimization problem (25,26) and apply
the resulting feedback control law to the plant until
the next sampling instant

(5) Increment i = i+1. If zθ > 0, repeat the procedure
from step 1 for the next sampling instant. Other-
wise, repeat only steps 1 and 4 for the next sampling
instant.

Implementing the adaptive MPC control law according to
Algorithm 2 ensures that the uncertainty bound zθ reduces
over time and hence, the error margin zpx imposed on
the predicted state also reduces over time and shrinks to
zero when the actual parameter estimate is constructed in
finite-time.

4.5 Robust Stability

Robust stability is guaranteed under the standard assump-
tions that Xef

⊆ Xe is an invariant set,W is a local robust
CLF for the resulting time varying system and the decay
rate of W is greater than the stage cost L within the ter-
minal set Xef

in conjunction with the requirement for W
to decrease and Xf to enlarge with decreased parametric
uncertainty.

4.6 Enhancing Parameter Convergence

In min-max adaptive formulation, the terminal penalty is
parameterized as a function of θ̃. This ensures that the
algorithm will seek to reduce the parameter error in the
process of optimizing the cost function and will automat-
ically inject some excitation in the closed-loop system,
when necessary, to enhance parameter convergence. How-
ever, this is not the case in the Lipschitz-based approach
since the control calculation only uses nominal model. To
improve the quality of excitation in the closed-loop the
proposed excitation cost is

JE =
β

1 + Ep
θ (T )

(31)

where
Ep

θ (τ) = λmin{Qp(τ)} or Ep
θ (τ) = νT Qp(τ) ν (32)

with ν ∈ Rnθ a unit vector. Note that any reduction in
the cost function due to JE implies an improvement in the
rank of Qp. Though, the predicted regressor matrix Qp

differs from the actual matrix Q, a sufficient condition for
Q > 0 is for Qp > zQ ≥ ‖Q−Qp‖.

5. TWO-LAYER INTEGRATION METHOD

The integration task can also be posed as a two degree
of freedom paradigm where the problem is divided into
two phases. The first phase deals with generating a state
trajectory that optimizes a given objective function while
respecting the system’s dynamics and constraints, and the
second phase deals with the design of a controller that
would regulate the system around the trajectory.

The MPC controller design follows that of (21) and
(25). The only difference is that rather than solving the
setpoint differential equation (18) inside the MPC loop,
the measurement of xr obtained at sampling instants
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is used as the desired setpoint to be tracked, that is,
equations (22e) and (26e) are replaced by

ẋp
r = 0, xp

r(0) = xr. (33)
The adaptive controllers are implemented according to
Algorithms 1 and 2.

6. MAIN RESULT

The integration result is provided in the following:
Theorem 7. Consider problem (1) subject to system dy-
namics (2), and satisfying Assumption 1. Let the controller
be (21) or (25) with setpoint update law (18) and param-
eter identifier (34)

θ̂c(t) =
{
θ̂(t), if t < tc
Q(tc)−1 C(tc), if t ≥ tc. . (34)

If the invertibility condition (equation 35)

Q(tc) =
∫ tc

t0

wT (τ)w(τ) dτ � c1I, (35)

is satisfied, then for any � > 0, there exists constant ηc
such that limt→∞ ‖x(t) − x∗(t, θ)‖ ≤ �, with x∗(t, θ) the
unique minimizer of (1). In addition x ∈ X, u ∈ U for all
t ≥ 0.

Proof: We know from from triangle inequality that

‖x− x∗(θ)‖ ≤ ‖x− xr(θ̂)‖+ ‖xr(θ̂)− x∗pa(θ̂)‖
+ ‖x∗pa(θ̂)− x∗(θ̂)‖+ ‖x∗(θ̂)− x∗(θ)‖ (36)

where x∗pa(θ̂) denotes the unique minimizer of the uncon-
strained problem (15) for θ ≡ θ̂. Since the MPC controllers
guarantees asymptotic convergence of xe to the origin,
we have limt→∞ ‖x − xr(θ̂)‖ = 0. Also, it follows from
Lemma 4, that ‖xr(θ̂) − x∗pa(θ̂)‖ converges exponentially
to the origin. Moreover, it is well established that x∗pa(θ̂)
converges continuously to x∗(θ̂) as ηc → ∞ (Bertsekas,
1995, Proposition 4.1.1). Therefore there exists a class K
function 1 αc(·) such that

lim
t→∞ ‖x∗pa(θ̂)− x∗(θ̂)‖ ≤ αc

(
1
ηc

)
. (37)

The finite-time identification procedure employed ensures
that θ̂ = θ for all t ≥ tc, with tc < ∞ and thus
limt→∞ ‖x∗(θ̂)− x∗(θ)‖ = 0.

Finally, we have

lim
t→∞ ‖x(t)− x∗(t, θ)‖ ≤ αc

(
1
ηc

)
(38)

and the result follows for sufficiently large ηc. The con-
straint satisfaction claim follows from the feasibility of the
adaptive model predictive controllers.

7. SIMULATION EXAMPLE

Consider the parallel isothermal stirred-tank reactor in
which reagent A forms product B and waste-product C

1 A continuous function μ : R
+ → R

+ is of class K if it is strictly
increasing and μ(0) = 0.

DeHaan and Guay (2005). The reactors dynamics are given
by

dAi

dt
= AinF

in
i

Vi
−Ai

F out
i

Vi
− ki1Ai − 2ki2A2

i ,

dBi

dt
= −Bi

F out
i

Vi
+ ki1Ai,

dCi

dt
= −Ci

F out
i

Vi
+ ki2A2

i ,

where Ai, Bi, Ci denote concentrations in reactor i, kij are
the reaction kinetic constants, which are only nominally
known. The inlet flows F in

i are the control inputs, while
the outlet flows F out

i are governed by PI controllers which
regulate reactor volume to V 0

i .

The economic cost function is the net expense of operating
the process at steady state.

p(Ai, s, θ) =
2∑

i=1

[(pi1si + PA − PB)ki1AiV
0
i

+ (pi2si + 2PA)ki2A2
iV

0
i ] (39)

where PA, PB denote component prices, pij is the net
operating cost of reaction j in reactor i. Disturbances s1,
s2 reflect changes in the operating cost (utilities, etc) of
each reactor. The control objective is to robustly regulate
the process to the optimal operating point that optimizes
the economic cost (39) while satisfying the following state
constraints 0 ≤ Ai ≤ 3, cv = A2

1V
0
1 + A2

2V
0
2 − 15 ≤ 0 and

input constraint 0.01 ≤ F in
i ≤ 0.2. The reaction kinetics

are assumed to satisfy 0.01 ≤ ki ≤ 0.2.

The two-layer approach was used for the simulation. The
setpoint value available at sampling instant is passed down
to the MPC controller for implementation. The robustness
of the adaptive controller is guaranteed via the Lipschitz
bound method. The stage cost is selected as a quadratic
cost L(xe, ue) = xT

e Qx xe + uT
e Ru ue, with Qx > 0 and

Ru ≥ 0.

Terminal Penalty and Terminal Set Design Let x =
[A1, A2]T , θ = [k11, k12, k21, k22]T and u = [F in

1 , F
in
2 ]T ,

the dynamics of the system can be expressed in the form:

ẋ =−

⎡⎢⎢⎣
x1kV 1(ξ1 − V 0

1 + ξ3)
ξ1

x2kV 2(ξ2 − V 0
2 + ξ4)

ξ2

⎤⎥⎥⎦
︸ ︷︷ ︸

fp1

+

⎡⎢⎣
Ain

ξ1
0

0
Ain

ξ2

⎤⎥⎦
︸ ︷︷ ︸

fp2

u−
[
x1 2x21 0 0
0 0 x2 2x22

]
︸ ︷︷ ︸

g

θ,

where ξ1, ξ2 are the two tank volumes and ξ3, ξ4 are the
PI integrators. The system parameters are V 0

1 = 0.9,
V 0

2 = 1.5, kv1 = kv2 = 1, PA = 5, PB = 26, p11 = p21 = 3
and p12 = p22 = 1.

A Lyapunov function for the terminal penalty is defined
as the input to state stabilizing control Lyapunov function
(iss-clf):

W (xe) =
1
2
xT

e xe (40)
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Choosing a terminal controller

u = kf (xe) = −f−1
p2

(
− fp1 + k1xe + k2 g gT xe

)
, (41)

with design constants k1, k2 > 0, the time derivative of
(40) becomes

Ẇ (xe) = −k1 xT
e xe − xT

e g θ − k2xT
e g g

T xe (42)

≤ −k1‖xe‖2 +
1

4k2
‖θ‖2 (43)

Since the stability condition requires Ẇ (xe(T )) + L(T ) ≤
0. We choose the weighting matrices of L as Q = 0.5I and
R = 0. The terminal state region is selected as

Xef
= {xe : W (xe) ≤ αe} (44)

such that
kf (xe) ∈ U, Ẇ (T ) + L(T ) ≤ 0, ∀(θ, xe) ∈ (Θ, Xef

)
(45)

Since the given constraints requires the reaction kinetic θ
and concentration x to be positive, it follows that

Ẇ + L = −(k1 − 0.5)‖xe‖2 − xT
e g θ − k2xT

e g g
T xe ≤ 0

(46)
for all k1 > 0.5 and xe > 0. Moreover, for xe < 0, the
constants k1 and k2 can always be selected such that (46)
is satisfied ∀ θ ∈ Θ. The task of computing the terminal
set is then reduced to finding the largest possible αe such
that for kf (.) ∈ U for all x ∈ Xef

.

The simulation results are presented in Figures 1 to 3.
The phase trajectories displayed in Figure 1 shows that the
reactor states obeys the imposed constraints while Figure 2
shows that the actual, unknown setpoint cost p(t, xr, θ)
converges to the optimal, unknown p∗(t, x∗, θ). Figure 3
shows the convergence of the parameter estimates to the
true values.

1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

x
1

x 2

c
v
= 0

Fig. 1. Phase diagram and feasible state region

8. CONCLUSIONS

This paper provides a formal design technique for integrat-
ing RTO and MPC for constrained nonlinear uncertain
systems. The solution is based upon the tools and strate-
gies developed in the previous chapters. A single layer and
two-layer approaches are presented.
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Appendix A. ALGORITHMS

Algorithm 3. Let E(σ) = λmin (ΓQ(σ)), beginning from
time ti−1 = t0, the parameter and set adaptation is
implemented iteratively as follows:

(1) Initialize zθ(t0) = z0θ , Θ(t0) = B(θ̂(t0), zθ(t0)),
Ē = E(t0) = 0

(2) Implement the following adaptation law over the
interval τ ∈ [ti−1, ti)

żθ(τ) = −Ēzθ(τ) (A.1)
(3) At time ti, perform the updates

Ē =
{
E(ti), if E(ti) ≥ E(ti−1)
E(ti−1), otherwise (A.2)

(
θ̂, Θ

)
=

⎧⎪⎪⎨⎪⎪⎩
(
θ̂(ti), Θ(ti)

)
, if zθ(ti)− zθ(ti−1)

≤ −‖θ̂(ti)− θ̂(ti−1)‖(
θ̂(ti−1), Θ(ti−1)

)
, otherwise

(A.3)
(4) Iterate back to step 2, incrementing i = i+ 1.
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Abstract: This paper studies different decomposition approaches for real-time optimization
of process systems with a decentralized structure where the idea is to improve computational
efficiency and transparency of a solution. The contribution lies in the application and assessment
of the Dantzig-Wolfe method which allows us to efficiently decompose a real-time optimization
problem into parts. Furthermore, the nonlinear system is modeled by piecewise linear models
with the added benefit that error bounds on the solution can be computed.
The merits of the method are studied by applying it to a semi-realistic model of the Troll west
oil rim, a petroleum asset with severe production optimization challenges due to rate dependent
gas-coning wells. This study indicates that the Dantzig-Wolfe approach offers an interesting and
robust option for complex production systems. Moreover, the method compares favourable with
earlier results using Lagrangian relaxation which again was favourable compared to a global
approach.

Keywords: Optimization, Dantzig-Wolfe Decomposition, Petroleum production, Plantwide
control.

1. INTRODUCTION

Development of a petroleum field asset requires planning
on multiple horizons. On a life-cycle horizon, strategic de-
cisions are made on field development such as the choice of
technology and export options, and investment and recov-
ery strategies. For offshore assets the choice of technology
may include subsea solutions, and the issue of processing
the reservoir fluid offshore or onshore (Nygreen et al.,
1998). On a medium time horizon, typically three months
to two years, production targets are decided. Depending
on the life cycle of an asset, decisions may also involve a
drilling program. During for instance the green field stage,
it is important to plan, drill and commision new wells to
reach some pre-defined plateau rate as soon as possible. A
reservoir simulator, containing anything between 100.000
and 1, 000, 000 states, is usually an important planning
tool on the medium time horizon. A reservoir simulator
will be quite complex if the geology is complex, due to
heteregeneities like faults and shale layers, to represent
flow patterns accurately.

On a shorter time horizon, typically days to weeks, pro-
duction optimization where both the sub-surface part, like
the reservoir and wells, and the surface part like the man-
ifolds, pipelines and downstream production equipment, is
taken into account is important. This is commonly called
the real-time production optimization (RTPO) problem.
Production may be constrained by reservoir conditions
such as coning effects and/or the production equipment
like pipeline capacity or downstream water handling ca-

pacity, and constraints may move from one part of the
system to another part over time. Water production may
e.g. be low early on and increase dramatically during the
decline phase of a reservoir thereby making water handling
capacity an issue. Decision variables in RTPO include
production and possibly injection rates, and routing of well
streams. A typical production system structure is shown
in Fig.1. It has two separate non-connected reservoirs from
which 11 wells feed into three manifolds and pipelines, and
finally into the downstream facilities section. Manifold 1
and 2 belong to one cluster, while manifold 3 belongs to
the other cluster.

RTPO is in use in the upstream industry today. Wang
(2003), Saputelli et al. (2003) and Bieker et al. (2006)
provide readable overviews. It might be noted that these
references focus on the value chain from the reservoir to,
and not including, the downstream processing equipment.
The downstream boundary is typically a constant pressure
on the inlet separator. A few publications on RTPO for the
production chain from the reservoir to export are available;
Foss and Halvorsen (2009), Selot et al. (2007). Commercial
products for RTPO are available, but not widely used.
Two of them are GAP and MaxPro. They model the well
and near well region, and the pipeline system, and solve
the optimization problem using a nonlinear programming
(NP) algorithm like sequential quadratic programming
(SQP).

There are several factors which complicate the RTPO
problem.
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• RTPO may give rise to optimization problems with
both continuous and discrete decision variables. Dis-
crete decision variables are found in routing when
there is a choice to route the fluid from a manifold
to one of several flow lines. The presence of dis-
crete decision variables complicates the optimization
problem by transforming a linear program (LP) or
a nonlinear program (NP) to a mixed integer lin-
ear program (MILP) or a mixed integer nonlinear
program (MINLP), respectively. Güyaguler and Byer
(2007) discusses RTPO in the context of MILP while
Kosmidis et al. (2005) use a MINLP formulation.

• The models in the optimization problem are often
nonlinear, some of which may be highly nonlinear, as
will be discussed later. This includes well models as
well as pressure drop models for the pipelines which
support multiphase fluid transport.

• The optimization problems are usually quite large
and may include several hundred decision variables.
An example is the rate allocation problem at Troll
which in total includes more than one hundred wells
(Hauge and Horn, 2005).

This paper focusses on the RTPO problem for systems
with a decentralized structure meaning that common con-
straints are quite few. Such strucures are quite typical in
the upstream petroleum industries as visualized by Fig.1.
The contribution lies in the application and assessment of
the Dantzig-Wolfe method which allows us to decompose a
RTPO problem into parts meaning that we apply a divide-
and-conquer strategy which is a sound engineering design
principle. This principle has survived ever since complex
systems came into making. The Dantzig and Wolfe prin-
ciple dates back to 1960 (Dantzig and Wolfe, 1960).

A few recent publications apply Dantzig-Wolfe decom-
position (DWD) to process systems. Alabi and Castro
(2009) apply DWD to a refinery planning problem, for-
mulated as a large LP problem, by decomposing it along
the value chain. They show substantial savings in com-
putation time. They also point to the inclusion of binary
decision variables, which will be addressed in this paper,
as a future task. Cheng et al. (2008) propose DWD as
a means for designing a decentralized MPC for plant-
wide MPC coordination. Again substantial computational
savings are reported for the LP formulation chosen. This
paper also gives a very readable introduction to DWD.
Both papers state that DWD is particularly well suited
for large problems with well-structured subproblems and
a small number of linking constraints.

This study will show that the Dantzig-Wolfe approach
offers an interesting and robust option for complex produc-
tion systems wiht certain structural properties. Moreover,
the method compares favourable with earlier results using
Lagrange relaxation (LR) (Foss et al., 2009) on a realis-
tic field case. The nonlinear system will be modeled by
piecewise linear models with the added benefit that error
bounds on the solution of the production optimization
problem can be computed.

The remainder of this paper is organized as follows.
First, the RTPO problem is presented in a mathematical
context before the decomposition approach in general and
the Dantzig-Wolfe method in particular are presented.

Fig. 1. A petroleum production system with two separate
reservoirs from which 11 wells feed into 3 manifold and
3 pipelines. Manifold 1 and 2 belong to one cluster,
while manifold 3 belongs to the other cluster. The
pipeline flows provide input to the processing facilities
where fluids are conditioned for export.

Subsequently, the Troll west oil rim case is presented and
results are shown. Finally, results are discussed and some
conclusions end the paper.

2. FORMALIZING THE RTPO PROBLEM

The RTPO problem will in most cases mean maximizing
oil production while honouring system constraints like
capacities in pipelines and wells, safety regulations and
preventing damage on long-term effects, in particular
recovery of available hydrocarbon resources. The latter
point is important. An example of the interplay between
short term production and long-term recovery was shown
in Naus et al. (2006) in the sense that accelerated short-
term production reduced long-term recovery.

The optimization problem is usually treated in a quasi-
dynamic way by re-optimizing a stationary optimization
problem, typically once a day. The solution of the math-
ematical RTPO will serve as a recommendation to the
operating engineers who may or may not follow the advise.
One reason for neglecting a recommendation may hinge
on the fact that the transition cost of changing from one
routing configuration to another is not included in the
optimization problem. Therefore such a change will only
be implemented if there is a substantial gain by doing this.

Referring again to Fig.1 to explain upstream systems
closer, there are four wells connected to manifold 1 and
3, respectively, and three wells connected to manifold 2.
Well streams from each well are connected to one pipeline.
Hence, each of the wells in manifold 1 and 2 can be
connected to either of the two pipelines transporting the
reservoir streams to downstream processing. There is only
one pipeline from manifold 3, and therefore no routing
decision is necessary in this part of the system. The de-
cision variables on each well are usually one production
choke valve to adjust production and on-off valves linking
a well to one of the pipelines. Further, different well com-
pletions may give rise to additional decision variables like
the injected gas-rate for a gas-lift well, a commonly used
technology to increase well lifetime as reservoir pressure
decreases. Altogether this means that there will be both
continuous as well as discrete decision variables in a typical
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RTPO problem. The well and pipeline system is divided
into clusters. There are two cluster in Fig.1, one covering
manifold 1 and 2, and the second includes manifold 3.
Hence, a cluster may include one or more manifolds.

We focus on production systems with a decentralized
structure where common constraints may include down-
stream processing capacity limitations and common pipe-
lines. In the following we present a system model which
encompasses a large class of upstream production systems.
Some simplifications are made to ease the explanation. For
instance we assume only one manifold for each cluster in
this section. An extension to several manifolds per cluster,
as is the case for manifold 1 and 2 in Fig.1, is however
straightforward. In fact in the Troll case treated later the
clusters have two manifolds each.

We first present a system model for a subsystem, denoted
cluster i, before the integrated optimization problem is
described.

Indexes, constants and decision variables are explained in
Table 1 and 2.

2.1 Modelling a subsystem

In the following we present and comment the model of one
subsystem, cluster i.

• Mass balance is preserved for each phase, i.e. gas, oil
and water, at each node. This means that no phase
transition takes place at the surface of a cluster.

J(i)∑
j=1

qpij = qpi , p ∈ {g, o, w} (1)

• The routing problem is parameterized through binary
variables for each well, one for each line; ylij . If ylij = 1
the well is connected to line l, if not it is zero. Each
well cannot be connected to more than one line, hence

L(i)∑
l=1

ylij ≤ 1, ylij ∈ {0, 1} , j ∈ {1, . . . , J(i)} (2)

This implies that the flow qpi from one cluster is
divided onto L(i) pipelines.

• The well model, or performance curve for gas, oil and
water, are given by the following nonlinear structure

qpij = dpij(p
res
ij , p

wh
ij ), (3)

p ∈ {g, o, w} , j ∈ {1, . . . , J(i)}
where pres

ij and pwh
ij denotes the reservoir pressure

locally at the well and the pressure at the wellhead,
respectively. Depending on the reservoir conditions
near a well the complexity of these well models vary
a lot. The simplest version will be a linear model.
In systems with rate-dependent gas coning however,
as in the Troll oil case (Hauge and Horn, 2005),
nonlinearities can be severe.

• The pressure drop across the production choke is
given by

ylijp
l
i ≤ pwh

ij , (4)

j ∈ {1, . . . , J(i)} , l ∈ {1, . . . , L(i)}
This constraint may only be binding if ylij = 1 since
it is always satisfied for ylij = 0.

• Flow into the pipelines from cluster i to the platform
is given by

qpl
i =

J(i)∑
j=1

ylijq
p
ij (5)

p∈ {g, o, w} , l ∈ {1, . . . , L(i)}
• The pressure drop in a pipeline segment from cluster
i to the inlet separator depends nonlinearily on the
flow of gas, oil and water in the pipe segment. The
nonlinearities are particularly severe during the tran-
sition from one multiphase flow regime to another,
and when a pipeline exhibits slugging. More on mul-
tiphase flow may e.g. be found in Brenne (2005)

psep − pli = dli(q
gl
i , q

ol
i , q

wl
i ), (6)

l ∈ {1, . . . , L(i)}
• There are non-negativity conditions on all flow and

pressure variables, i.e. backflow is not modeled.

It should be added that the downstream boundary condi-
tion is given by a fixed inlet separator pressure psep, and
we assume that it is equal for all L(i) pipelines. Further,
it is straightforward to include additional local constraints
like for instance the flowrate from a well due some exter-
nal reason. This could be well-related problems like sand
production, or reservoir based constraints as discussed
earlier. Such contraints will typically induce relations like
qoij + qwij ≤ qmax

ij

Table 1. The indexes used.

i - cluster i
I - no. of clusters
p ∈ {g, o, w} - phase index - gas, oil or water
ij - well j in cluster i
J(i) - no. of wells linked to cluster i
l ∈ {1, .., L(i)} - line index for cluster i
L(i) - no. of lines linked to cluster i

Table 2. The variables and data used to define
the sub-problem.

qp
i - total mass flowrate of phase p from cluster i

qp
ij - mass flowrate of phase p from well j in cluster i

qpl
i - mass flowrate of phase p through line l in cluster i

yl
ij - binary variable equal to 1 if well ij is routed

to line l
pres

ij - reservoir pressure at well ij

pwh
ij - wellhead pressure

dp
ij - well performance model

dl
i - pipeline pressure drop model

pl
i - pressure in line l subsea in cluster i

psep - separator pressure

2.2 The integrated problem

The RTPO problem is specified below. The objective
function is defined by the total oil production, and the
global constraints are given by gas and water handling
capacities in the downstream part of the value chain.
Hence, the objective function and common constraints are
given by
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max
I∑

i=1

qoi (7)

I∑
i=1

qgi ≤ qg (8)

I∑
i=1

qwi ≤ qw (9)

The objective function and common constraints are linear
and additive and each term qoi =

∑J(i)
j=1 q

o
ij is a function of

only local variables.

The complete RTPO problem consists of I clusters, each
modelled by (1)-(6), or an extension of these equations
due to several manifolds in one cluster, and the integration
through (7)-(9).

The actual decision variables are production choke open-
ings and on-off valves linking a well to a pipeline. The
production choke openings are not directly a part of
the optimization problem. They are calculated using the
pressure drop across the production choke (4) and the
flowrate through the production choke (qgij , q

o
ij , q

w
ij) in an

appropriate valve model.

2.3 Piecewise linearization and SOS2 sets

The optimization problem contains both continuous and
discrete variables. Furthermore, nonlinear well and pres-
sure drop models are present. Hence, this is basically a
MINLP problem. We transform this into a MILP problem
by replacing the nonlinear constraints by linear constraints
and constraints on some auxiliary integer variables. The
procedure is as follows: The nonlinear constraints, (3)
and (6), are replaced by piecewise linear approximations.
These piecewise linear approximations are modelled by
linear constraints and discrete variables, i.e. integer con-
straints, using Special Ordered Sets of type 2 (SOS2).
The discrete variables are necessary to assure interpolation
between neighbouring points only, Williams (2005), as in
any piecewise linear approximation of a nonlinear function.
The number of linear constraints and integer constraints
necessary to replace one nonlinear constraint depends on
the nonlinearities and approximation accuracy. Higher ac-
curacy means more interpolation points and hence more
linear and integer constraints.

3. DECOMPOSITION

3.1 Principle

When a problem becomes too large or complicated to
handle, a decomposition approach can be applied if the
problem structure is suitable. The basic mechanism in
all decomposition principles is to decompose the original
problem into smaller sub-problems which are coordinated
by a ”master” problem. There exists multiple decompo-
sition techniques to solve large problems. Two common
methods are Lagrange relaxation and Dantzig-Wolfe de-
composition.

Both LR and DWD are suited for problems with a block
angular constraint structure which is the case for the

RTPO problem described above. The structure is exploited
when the original problem is split into sub-problems, while
the common constraints remain in the master problem.

In LR (Beasley, 1993) the basic idea is to attach Lagrange
multipliers to the common constraints in the model and
relax these in the objective function, while DWD handles
the common constraints in a master problem. The result-
ing integrated optimization problem will hence fall apart
into I local optimization problems, one for each cluster
i (Fisher, 1985). For (convex) LP problem the solution
of I such local optimization problems provides the same
solution as (1)-(9) provided that the Lagrange multipliers
for the common constraints λg, λw are known. Hence, the
Lagrange multipliers put a common cost to the use of a
scarce resource by each local problem.

3.2 Dantzig-Wolfe decomposition

When applying DWD to the RTPO problem the sub-
problems will be identical to LR. However, while the
Lagrange multipliers are updated by a simple heuristic in
the LR case, the update is now done by solving an LP-
problem.

We start by assuming linear constraints and continous
variables, i.e. an LP-problem instead of a MILP problem.
The master problem is a reformulation of the integrated
problem. By taking advantage of the fact that a convex
combination of basic feasible points, which are corner
points of the feasible set defined by the linear constraints
of the integrated problem, also is a feasible solution,
an alternative formulation can be achieved. Each basic
feasible point in the integrated problem is then represented
as a variable in the master problem. The number of basic
feasible points for any practical problem can clearly be
prohibitively high, and in reality only a small number of
these basic feasible points will ever enter the basis in the
master problem. The idea is then to restrict the master
problem by reducing the number of basic feasible points.
This is called a Restricted Master Problem (RMP).

Hence, we start with a few basic feasible points and check if
the solution of the integrated problem is within a convex
combination of these points. If this is not the case new
basic feasible points are included in a structured way until
the optimal solution has been found (Williams, 2005). This
is usually called column generation and several procedures
are proposed in the literature; either adding one or several
columns, i.e. new basic feasible points, at each iteration
(Dantzig and Thapa, 2002). Some details of the algorithm
are given below with some related comments specific to
the RTPO problem.

Algorithm structure

1. Choose two initial basic feasible points for each local
optimization problem.

2. Specify the RMP as a LP for the given set of basic
feasible points. Then solve it and compute values for the
Lagrange multipliers for the global constraints, i.e. λg, λw.
The RMP is specified in a separate section below.

3. Solve I local optimization problems by using the La-
grange multipliers computed in 2.
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Fig. 2. Iteration structure for Dantzig-Wolfe Decomposi-
tion (DWD) and Lagrangian Relaxation (LR)

4a. For i ∈ {1, . . . , I}: If the solution of a local optimization
problem i extends the convex set defined by the basic
feasible points used in 2, then add these basic feasible
points to the RMP, and go to 2. (This implies that the
feasible region of this new RMP is extended).

4b. If the solutions of all the local optimization problems
are unchanged, the optimal solution has been found; and
the algorithm terminates.

The main iteration loop is shown in Fig.2. This figure
is also applicable for LR if the master problem box is
understood as the updating algorithm for the the Lagrange
multipliers for the global constraints.

In view of our RTPO problem item 1 above implies that
two feasible solutions for each cluster must be determined
to start the algorithm.

3.3 Restricted master- and sub-problem

The procedure is to update the Lagrange multiplier in
a way that the consumption of the relaxed common
constraints converge to their optimal values. Each sub-
problem is defined by (again only including two common
constraints)

max qoi − λgqgi − λwqwi − λCONV EX
i (10)

λ ≥ 0, i ∈ {1, . . . , I}

and the local constraints (1)-(6). λCONV EX
i is the La-

grange multiplier for the convexity constraint in the RMP
defined below. Since no sub-problem variables are asso-
ciated with it, it will only act as a constant in the sub-
problem.

The RMP can now be formulated. zpis represents one basic
feasible point s from sub-problem i. zpis could in principle
include the optimal value of all decision variables for sub-
problem i after solving it given λg and λw. However, only
the variables also present in the objective function and
the common constraints will be relevant for the RMP.
Hence, zpis will for this RTPO problem contain some flow
variables (qoi , q

g
i , q

w
i ), but no pressure variables. μis is

the corresponding weight the master problem will give
this basic feasible point. The objective function of the
master problem is given in (11). Further, (12) and (13)
represents the constrained common resources, while (14)
is the convexity constraint.

max
∑

i

∑
s∈Si

zoisμis (11)

∑
i

∑
s∈Si

zgispμis ≤ qg (12)

∑
i

∑
s∈Si

zwispμis ≤ qw (13)

∑
s∈Si

μis = 1 i ∈ {1, . . . , I} (14)

μis ≥ 0 (15)

3.4 Integer variables

DWD will find exact optimal solutions for feasible LP
problems. If it is extended to a MILP problem, however,
Branch & Price (Desrosiers and Lubbecke, 2006) or some
heuristics have to be applied to handle the integer prop-
erties. When solving the master problem, we have not
imposed integer restrictions on μis, i.e. the RMP is solved
as an LP to achieve Lagrange multipliers for (12) - (14).
The resulting solution may then be infeasible with respect
to the original MILP problem, since a convex combination
of two different basic feasible points is not necessarily
feasible. As mentioned, this could be handled in several
ways. However, if a satisfying number of basic feasible
points are generated up front, a feasible solution could
simply be found by demanding integer values for μis and
solve the RMP as an MIP problem. Vanderbeck (2006)
adresses the use of DWD on mixed integer problems.

3.5 Solution quality

For both LP and MILP problems, upper and lower bounds
on the objective function can be computed. The LP solu-
tion of the RMP plus the sum of the objective values of the
sub-problems will act as an upper bound (Karlof, 2006). In
the LP case, the solution of the RMP alone will give a fea-
sible lower bound, while for the MILP problems a heuristic
has to be applied to create the feasible lower bound. By
using these bounds actively during the optimization pro-
cess, it is possible to terminate the optimization problem
when an acceptable gap is achieved.

4. RESULTS

The Troll field is a huge oil and gas field on the continental
shelf west of Norway. Production allocation is complex as
described in (Hauge and Horn, 2005). We study the Troll
C production system shown in Fig.3 where primarily oil
is produced from an oil rim through more than 50 wells.
Well models and pressure drop models for multiphase flow
in pipelines are based on typical models as encountered in
this application. Hence, the models should be understood
as approximations of the actual well and pipeline models.
Each nonlinear model is approximated by a piecewise
linear model. A well model (3) is typically divided into
somewhere between 10 and 100 linear segments with the
wellhead pressure as its input. The pipeline models require
more linear segments since they depend on three inputs, cf.
(6). There are 8 clusters, and each cluster has a complex
structure in the sense that they contain two manifolds.
Each cluster has 6− 8 wells and the total number of wells
is 64. For the moment only the gas handling capacity is a
binding constraint. Water handling will become an issue
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Fig. 3. Topology for the wells connected to the Troll C
platform

in the near future as the reservoir drains and therefore
produces more water.

The purpose of the numerical study is to investigate the
DWD performance compared to a global strategy and the
LR method proposed in Foss et al. (2009). Three different
strategies were therefore defined:

(1) A global strategy where all clusters are solved in one
large MILP problem.

(2) The LR method proposed in Foss et al. (2009).
(3) The DWD method proposed in this paper.

The computations were performed on an IBM Thinkpad
T60P with a 2.33GHz processor and a tolerance bound
of 0.5% for LR and DWD. The state-of-the-art XPress-
MP software suite is used to solve the MILP problems.
The main results are presented in Table 3. Results are
presented column-wise for different system sizes starting
with two cluster and ending with the full 64 well/8 cluster
system. The gas capacity for each scenario increases with
the number of clusters as shown in line 2. In the next three
lines the number of variables and constraints are listed.
Then follows the results in terms of computation time and
oil production which is the ultimate goal, cf. (7).

Finally, it should be noted that the results in Table 3
represent typical values as observed after several test runs.

Table 3. Results from tests on the model of the
Troll C production system.

No. of clusters 2 4 6 8
Gas cap.[Sm3/day] 3000 12000 18000 24000
Continuous variables 13898 27805 41766 55688
Discrete variables 1029 2134 3725 4819
Constraints 491 981 1639 2185
Strategy 1 - Global
Solution time [min] 0.26 7.38 237.0 720.0
Oil [Sm3/day] 1777 6487 11641 14365
Strategy 2 - LR
Solution time [min] 1.42 8.54 18.2 19.2
Oil [Sm3/day] 1774 6467 11640 14440
Strategy 3 - DWD
Solution time [min] 1.86 1.43 6.16 11.3
Oil [Sm3/day] 1777 6458 11629 14473

5. DISCUSSION

The main observation to make is the fact that the decom-
position stratgies, DWD and LR, outperform the global

method for the combined rate allocation and routing prob-
lem for all but the smallest 2 cluster problem. The global
method does not converge to its termination criteria after
12 hours for the eight cluster case and in general it has
a hard time solving problems consisting of 6 clusters or
more. Furthermore, DWD shows superior performance to
LR.

By taking a closer look at the 2 cluster problem, the global
method is actually fastest. This is not surprising as it is
expected that the global method would be faster for small
problems. For the medium size problem with 4 clusters, the
global method is still working fine, and is actually faster
than LR. DWD is in this case extremely quick, due to few
main iterations. For the larger problems, we observe that
the two decomposition methods are much faster than the
global method, and that DWD is significantly faster than
LR.

The reason why DWD is faster than LR is related to the
updating of Lagrange multipliers. The DWD master prob-
lem finds good multipliers with fewer iterations than the
LR master problem, and on average converges after fewer
iterations. It should be mentioned that the computations
involved in solving the DWD master problem, i.e. the LP-
problem, is small compared to solving the local MILP-
problems. Hence, this is no issue when comparing DWD
and LD.

DWD is more stable with respect to solution time than
LR. Furthermore, DWD has few tuning parameters, and
works well for changing data sets. LR in contrast, is quite
sensitive to perturbations of the data set. A minor change
might result in a doubling of the solution time. However,
extensive knowledge of the problem will give the operator
a good feel for which parameter values result in fast
convergence.

Focussing on solution quality, we observe that the global
method finds the optimal solution for all except the full
field problem with 8 clusters. In that case the method was
stopped after 12 hours, with still a little more than 7.5%
in duality gap. The decomposition methods terminate
with less than 0.5% duality gap for all problems. The
solution time does of course depend on the resolution of the
piecewise linear models. A cruder approximation reduces
run-time and vice versa.

DWD provides a framework for decomposing a problem
and still keep track of the optimal solution for the inte-
grated problem. This approach has potential advantages
in terms of algorithmic efficiency as indicated by the test
case in the previous section. The DWD algorithm, as
well as LR, has some interesting properties. First, the
sub-problems may be solved using different algorithms
or even different software packages. This feature is in-
teresting for integrated optimization applications which
may encompass reservoir, wells, pipelines and processing
facilities. It should be added that the duality gap can only
be computed if upper and lower bounds on the solution
can be found. This is in general not possible if the sub-
problems are nonlinear programs as opposed to MILPs. A
second useful property of the algorithmic structure is the
potential for parallel computing since each sub-problem is
self-contained and has no dependency on the other sub-
problems. If the computational load between the sub-
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problems is well-balanced a parallel implementation will
be particularly efficient.

The optimization problem is usually treated in a quasi-
dynamic way by re-optimizing the stationary optimization
problem, typically once a day. More frequent disturbances
may be handled by selecting a couple of wells for frequent
production changes to compensate variations in for in-
stance gas processing capacity. Well models are typically
updated twice a year by running well tests to collect data
to estimate well parameters. The use of dynamic models
is an issue. Some applications may benefit from dynamic
well models, in particular during start-up of wells. Start-
up may occur quite often since many wells are shut-in from
time to time due to maintenance or operational problems.
Applications with long pipelines may also benefit from
dynamic pipeline models provided the dynamics are im-
portant for optimal performance.

6. CONCLUSIONS

This paper argues that Dantzig-Wolfe Decomposition is
well suited for the well allocation and routing problem
in the upstream industries. There are several reasons for
this. DWD clearly outperforms a global method. DWD has
several similarities to LR. However, as the results show,
DWD gives better performance than LR in all relevant
cases tested herein. This is due to more efficient updating
of the dual variables. Furthermore, an error bound on the
solution of the production optimization problem can easily
be computed. This is clearly information of interest to
any user. Finally, the algorithm is efficient and can be
parallelized for even higher efficiency.

Acknowledgments: We acknowledge the support of the
Center for Integrated Operations at NTNU, Norway.

REFERENCES

Alabi, A. and Castro, J. (2009). Dantzig-wolfe and block
coordinate-descent decomposition in large-scale inte-
grated refinery planning. Computers and Operations
Research, 36, 2472–2483.

Beasley, J. (1993). Modern Heuristics Techniques for
Combinatorial Problems, 243–303. Halsted Press.

Bieker, H., Slupphaug, O., and Johansen, T. (2006). Real-
time production optimization of offshore oil and gas
production systems: A technology survey. SPE 99446.

Brenne, C.E. (2005). Fundamentals of multiphase flow.
Cambridge university press.

Cheng, R., Forbes, J.F., and Yip, W. (2008). Dantzig-
wolfe decomposition and plant-wide mpc coordination.
Computers and Chemical Engineering.

Dantzig, G.B. and Wolfe, P. (1960). Decomposition pric-
niple for linear programs. Operations Research, 8, 101–
111.

Dantzig, G. and Thapa, M. (2002). Linear programming
2: Theory and extensions. Springer Verlag.

Desrosiers, J. and Lubbecke, M.E. (2006). Column Gen-
eration, 1–32. Springer US.

Fisher, M.L. (1985). An application oriented guide to
lagrangian relaxation. Interfaces, 15, 10–21.

Foss, B., Gunnerud, V., and Dueñas Dı́ez, M. (2009). La-
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Abstract: Main features of a performance monitoring systems operating on loops of refinery plants are  
illustrated together with examples of application and  achieved results. The system analyses data recorded 
by the DCS during routine operation and originates verdicts about performance of control loops; also 
indications of causes of low performance and different strategies to adopt are given (retuning, valve 
maintenance, upstream actions). The system architecture is firstly illustrated, with characteristics of  
modules which accomplish different tasks of data acquisition and transfer, system configuration and 
priority assignment, performance analysis and verdicts emission, database query and operator support. 
Examples of field validation are then presented, with illustration of loop performance before and after
actions suggested by the monitoring  system. A synthesis of main techniques adopted in the system is
finally presented.

Keywords: Closed Loop Performance Monitoring, Valve Diagnostic, Identification and Retuning.
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1. INTRODUCTION

Closed Loop Performance Monitoring (CLPM) is widely 
recognized as a primary need in the process industry, as 
product quality, energy saving, waste minimization depend at 
a large extent on the efficiency of the control system. 

The possibility of evaluating loop performance and being 
able to diagnose causes of  deterioration brings to a direct 
improvement of plant performance both in the case of  base 
control (SISO PID loops) and in the case of advanced control 
(MIMO, Optimization), which necessarily relies on good 
performance of  low hierarchy control loops. Different causes 
of scarce performance, as incorrect tuning of controllers, 
anomalies and failures of sensors, presence of friction in 
actuators, external perturbations, should be detected and the 
right actions to perform should be suggested by the CLPM 
system. 

This is a field where academic research and industrial 
applications should  go ahead in tight contact in order to 
focus on real problems and to find solutions which are user 
friendly to be promptly accepted by plant operators. In large 
scale industrial processes, involving thousands of variables 
and hundreds of control loops, a monitoring system needs to 
operate automatically, leaving only key decisions to the 
operators. Also, results of performance analysis  
accomplished by the CLPM system should be presented in a 
very efficient manner to avoid to be seen as an additional 
work to be performed for plant supervision. 

Anyway, even though a completely unattended system can be 
seen as the optimal solution, the right degree of interaction 

with plant personnel is of crucial important in the stage of 
parameter calibration and field validation. Also, the full 
potential of a CLPM system is fully exploited when the 
operator has at least a minimum knowledge of performance 
monitoring issues.

For these reasons, the final system architecture should take 
into account specific needs and requirements, as well as the 
skill of  the user. 

The evolution of academic research can be followed in the 
abundant literature produced in the last decade: two review 
papers (Qin, 1998; Thornhill and Horch, 2007) can give a 
flavour about. Certainly among more important open issues 
must be considered: the definition of significant performance 
indices, the development of simple and reliable techniques
for automatic detection of causes, the diagnosis of root causes  
of perturbations in large scale plants. A very active research 
area is concentrated on methods for automatic diagnosis of 
valve stiction and many new techniques have been proposed 
in the last few years. A first comparison can be found in 
Horch (2006), while Jelali and Scali (2009) compare 11
recently proposed techniques on a benchmark of 93 industrial 
loops. 

The paper illustrates architecture and application results of a 
Closed Loop Monitoring System recently developed and 
implemented in an Italian refinery and has the following 
structure: section 2 presents the overall system, with logic 
and interaction of different modules performing data 
acquisition, data transfer and verdicts archiving; section 3
illustrates main features of the system which accomplishes
performance analysis and diagnostics; section 4 shows basic 
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features of the Data Base and the query system; section 5 
presents some examples of field validation and gives 
examples of achieved improvements; finally conclusions and 
next steps are reported in section 6. An appendix will add 
some details about the techniques adopted for performance 
analysis.

2. THE SYSTEM ARCHITECTURE

A synthetic picture of the system architecture is depicted in 
Figure 1, where different modules, their interconnection and  
physical location are indicated. 

The User Module (MU) starts the whole procedure by
sending a message to the module of scheduling (MS) about 
the sequence of plants (and loops) to be analysed (the 
procedure is repeated periodically). In addition,  it allows to 
see the state of advancement of operations and to send 
queries to the database (DB) for a synthesis of performance 
analysis. The user module also permits the configuration of 
the loops which is the very first step of the performance 
monitoring process.  Loops configuration consists in the 
assignment of loop name, DCS address, loop info (for 
instance: single loop or cascade), priorities and constraints of 
the acquisition. More important loops can have higher 
frequency of acquisition, cascade loops are acquired 
simultaneously, loops of the same process unit are analysed 
in the same data acquisition run.

OPC Server

MA1 MA2 MA3 MAn

MSMIC

SQL MU

OPC Server OPC ServerOPC Server

MA1 MA2 MA3 MAn

MSMIC

SQLSQL MU

OPC Server OPC Server

DB 
server WEB 

server

APPLICATION 
server

MA 
server

Fig.1: The system architecture

The Scheduling Module (MS), once activated by MU, sends
a command to acquisition modules (MAi) which perform 
physically the acquisition of data from the DCS. For each 
loop, specific information are transferred to the Data Base 
(DB) trough MS, such as: loop tag name, controller settings,  
ranges of controlled variable (PV) and controller output (OP), 
saturation limits, loop hierarchy (e.g. master/slave of a 
cascade loop, loops under advanced control), Also 
information about default, minimum and maximum values 
for the duration of acquisition and sampling time (ts) are 
exchanged (default for ts= 10 seconds). Once acquisition is 
terminated, MS receives from MAi, data files which are sent 
to the DB input section. It activates the performance analysis 
accomplished sequentially by the PCU (Plant Check Up) 
module; finally, verdicts about loop status generated by PCU 
are transferred to the output section of the DB.

Acquisition Modules (MAi) interact with DCS, from which 
receive data and updated loop parameters at each sampling 
time; they act in parallel (up to a maximum  number of 7 on
a single server) and sequentially on scheduled loops, 
following priority and constraints  indicated by MS. During 
the acquisition, the quality of each single datum and the 
change of status (man/auto, cascade open/closed) is checked
and a flag is activated. In addition a first analysis is 
performed locally: mainly, the duration may be increased 
from the default (2 hours) to the maximum value (8 hours) in 
order to get a significant number of cycles in the case of very 
slow oscillating loops. 

More about the PCU and DB modules are reported in next 
sections.

3. THE PCU MODULE

The PCU module contains the intelligence of the 
performance monitoring systems: it analyses each loop 
sequentially, interacting with the MS and with the DB from 
which receives raw data  and to which send verdicts. A
schematic representation is reported in Figure 2, where main 
steps and a simplified logical flow of data analysis modules
are indicated. Further details about basic techniques adopted 
inside modules are given in the appendix.

Fig.2: Schematic representation of the PCU module

IM: The Initialization Module imports parameters values 
from file IN1 and performs a first check about loop status; if 
the quality of data is not good, or a change of configuration is 

PCU
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detected, or the valve is operating manually (info contained 
in flags activated by MAi), the analysis stops. In this case, the 
loop receives a (definitive) label (NA: Not Analyzed) and the 
analysis is aborted. Otherwise, recorded data are imported 
from the IN2 file and the performance analysis begins. 

AIM: The Anomaly Identification Module performs a first 
assignment of performance with verdicts: as G (Good), NG 
(Not Good). Loops subject to excessive set point changes (as 
amplitude or frequency) are temporary labelled as NC (Not 
Classified) and send to the identification module (I&RM). 
Valve saturation is checked first and, if detected, the label 
NG (and the cause) is definitive, without any further analysis 
(only duration is indicated). For loops not in saturation, after 
a data  pre-treatment, tests to detect oscillating or sluggish 
loops are executed; these tests refer to the Hägglund approach 
(Hägglund, 1995, 1999), with suitable modifications of 
internal parameters, based on field calibration. In the case of 
both negative tests, the loop is classified as good performing 
and a definitive label G is assigned.   Slow loops can only be 
caused by the controller: therefore they  receive a NG label 
and are sent to the identification and Retuning Module 
(I&RM). Oscillating loops can be caused by aggressive 
tuning, external disturbance or valve stiction: for this reason, 
they  are primarily sent to FAM, for a frequency analysis.

FAM: The Frequency Analysis Module has the scope of 
separating irregular oscillations from regular ones on the 
basis of a power spectrum which computes dominant 
frequencies; irregular loops are labelled  NG, without any 
further enquiring about causes. Regular loops with decaying 
oscillations are sent to the I&R Module, otherwise (loops 
showing permanent oscillations) to the SAM for 
stiction/disturbance detection.

SAM: The Stiction Analysis Module analyzes data of NG 
oscillating loops and performs different tests to detect the 
presence of valve stiction. They mainly consist in the 
application of two techniques: the Relay based fitting of 
values of the controlled variable (PV) (Rel; Rossi and Scali, 
2005) and the improved qualitative shape analysis (Ya+; Scali 
and Ghelardoni, 2008). The two techniques are recalled in the 
appendix. Other techniques proposed for stiction diagnosis
are also applied, when appropriate. Among them: the Cross-
Correlation (Cxy; Horch, 1999), which is the simplest (and 
probably most widely used) test for a first discrimination 
between stiction and disturbance and the Bichoerence (Bic;
Choudhury et al. 2005), which allows to put into evidence 
non linear characteristics of loop data. The appropriate 
application technique is automatically selected by the system,
depending on type of loops, duration of acquisition, etc.. (for 
instance: Cxy is not used for Level Control, Ya+ is reserved 
only to Flow Control loops). Final verdict takes into account 
indications coming from different techniques and from other 
auxiliary indices: to the exit loop, already tagged NG, the 
cause Stiction or Disturbance is assigned in the cases of 
strong evidence, otherwise the cause is Uncertain.

I&RM: The Identification & Retuning  Module accomplishes 
process identification and, if successful, controller retuning 
and evaluation of performance improvements. It analyses 
loops tagged NG, owing to controller tuning (that is sluggish

or too oscillating responses) and loops tagged NC. The two
possibilities of constant and variable Set Point are treated 
differently, the second case being typical of secondary loops 
under cascade control. In the case of constant SP, recorded 
data represent a loop response  under disturbance rejection: 
identification of process dynamics is carried out by means of 
a Simplex based search procedure (Rossi, 2007; Scali and 
Rossi, 2009).  In the case of variable SP, recorded data  
represent a loop response under set point tracking:
identification is performed by means of an ARX algorithm 
(Ljung, 1999). In both cases, if model identification is 
successful, new tuning parameters are calculated according to 
different techniques, the achievable performance 
improvement is evaluated by means of suitable upgrading 
indices and new controller settings are  proposed. Otherwise, 
in the case of impossible identification, the previous assigned 
verdict is confirmed, without any additional suggestion. 

To conclude this synthetic illustration, after the performance 
analysis by means of the PCU module, every loop is 
classified as:

- NA (Not Analysed): Manual valve, invalid data acquisition,
change of loop configuration;

- NC: (Not Classified): impossible identification and no 
preliminary verdict; 

- G (Good Performing);

- NG (Not Good performing ): with an indication of cause 
(saturation, sluggish, too oscillating, stiction, external 
disturbance), or without indication for the cases of irregular 
disturbances or uncertainty between stiction and disturbance 
in the SAM.

As distinctive features of the PCU performance monitoring 
system, the following can be pointed out:

1) it is open to the adoption of new diagnosis techniques;
once the algorithm has been built and checked in simulation, 
it is tested on archived and recent plant data: improvements
of reliability of issued verdict lead to updating of algorithms 
and performance indicators;

2) it has been designed to operate completely unattended and 
for this reason a verdict is assigned and causes indicated only 
in the case of  strong evidence; false indications are carefully 
avoided, at the expense of conservative (too cautious) 
indications: in case of uncertainty, the verdict is postponed to 
next data acquisitions;

3) the calibration of values of key and auxiliary performance 
indicators is made on the basis of operator experience, in 
order to make verdicts as more homogeneous as possible with
their practice.

4. THE DATA BASE ORGANISATION

The Data Base contains all information about each single 
loop: recorded data, controller parameters, loop configuration 
and diagnosis performed by PCU (verdicts). The possibility 
of a fast and efficient consultation from the operator is 
certainly one of main specifications to be achieved for the 
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success of the whole implementation. Therefore, operators 
suggestions and requirements are carefully taken into 
consideration in the design of the Data Base architecture.
Some significant features incorporated in the DB 
management  are illustrated in the sequel.

1) Analyzed loops and issued verdicts for a group of plants
(or all of them) at a certain date, can be immediately 
summarized on the screen and this allows a first evaluation of 
loop status, that is the total number of good performing 
loops, causes of scarce performance, loops in manual, reasons 
for invalid acquisition etc..  (Figure 3). 

Fig.3: Global picture of all plants monitored at a certain date,
with indication of loop status

2) The same type of visualization can be produced for a 
group of plants (or a single plant) for acquisitions repeated in 
a desired interval of time, thus allowing a  first indication 
about the trend of loop performance (Figure 4). 

Fig.4: Global performance of a single plant for repeated 
acquisition at different dates 

3) All plant loops at a desired date can also be visualized with 
individual verdicts (Figure 5).

Fig.5: Single plant loop performance at a desired date

4) Single loop performance can be easily investigated, by 
means of plots and significant performance indices. In the 
case of  successful identification of a loop with incorrect 
tuning, the trends of SP, PV, OP variables show possible 
improvements and required control effort with best tuned 
PI(D) controllers (Figure 6). On this basis (together with 
values of upgrading indices which allow a quantification of 
improvements (shown in a separate page),  the operator can 
take a decision about the opportunity of a controller retuning. 

Fig.6: Screenshot for a loop with incorrect tuning

5) In the case of  a loop affected by valve stiction, the trends 
of loop variables, the value of a Stiction Quantification Index 
(shown in a separate page) allow to evaluate at a glance the 
situation of the loop (Figure 7). This can be further 
confirmed by watching the PV(OP) movie (see Figure 11). 

Fig.7: Screenshot for a case of valve stiction: time trends of
OP, SP, PV.

7) The loops history can be easily tracked: in the case of a 
confirmation of issued verdicts, indications for proper 
actions on the loop can be decided (tuning, valve 
maintenance, upstream action); an example for a case of 
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confirmed verdict with increasing stiction in the last four data 
acquisition is reported in Figure 8.

Fig. 8: Loop history for a case valve stiction

4) Many other features allow easy access to more
information;  for instance: frequency analysis of different 
oscillating loops and the comparison of dominant frequencies 
allows to focus on loops possibly affected by the same root 
cause of oscillations. Other auxiliary performance indexes are 
evaluated and a large variety of reports about loops statistics 
can be obtained right way. 

5. FIELD VALIDATION

Field validation is the key step of the monitoring system 
implementation. As first, it allows a direct confirmation of 
verdicts emitted after loop data analysis, while all indications 
illustrated in previous section must be considered mere 
“predictions”, i.e. based on identified models, techniques 
results and values of performance indices.  As second point, 
this is the step where the operator can give indications for the 
final calibration of threshold values of performance indices 
and get confidence about the reliability of verdicts issued by 
the system. Few illustrative examples are reported in the 
sequel; more than 600 loop acquisitions were checked during 
the monitoring system validation.

1) Loop xxFC01 (PI control, Constant Set Point). The verdict 
from AIM and I&RM modules is NG, indicating as cause: 
sluggish controller. The identification is successful and the 
old settings (Kc=1, Ti=0.65), should be changed to new ones: 
Kc=0.49, Ti=0.13. An increase of integral action is then 
suggested; the upgrade index based on the model (see 
appendix) is: �=0.476. In this case (single FB loop), it is 
possible to check directly the predicted improvements: a
moderate increase to SP  has been given by the operator with 
old settings, followed by a decrease with new settings. The 
improvement is evident from Figure 9 (the small amplitude 
and  high frequency oscillation represents an unidentified 
perturbation present in the plant) and the upgrade index 
evaluated from plant data is �’=0.573. This application 
suggested to reduce the threshold for the  index �0 to 0.40
(initially �0 was assumed equal to 0.50).

Fig.9: Response to a SP change: model prediction (a), field 
validation before and after retuning (b)

Loop xxFC02 (PI control, Variable Set Point). Also in this 
case the verdict from AIM and I&RM modules is NG, owing 
to sluggish controller; old settings: Kc=0.8, Ti=0.7; new 
settings: Kc=2.6, Ti=0.72. A strong increase of the 
proportional constant is proposed in this case, while the 
integral time constant does not change much; the upgrade 
index based on the model is now �����87. Being a 
secondary loop under cascade control, in this case it is not 
possible to give arbitrary set point changes during plant 
exercise. Moreover, being suggested a large increase of the 
gain Kc, the operator applied a gradual increase of gain: 0.8, 
1.2, 1.6, 2.6. The corresponding improvement of response in 
set-point following is evident from Figure 10; the upgrade 
index evaluated from plant data for increasing value of Kc, is 
now evaluated by the index (see appendix) IQI = 0.038, 0.78, 
0.85, 0.94, to confirm the performance improvement. 

Fig.10: Response to a SP change: model prediction (a), field 
validation for increasing values of the gain Kc (b) 

Loop xxFC08 (PI control, slow varying Set Point). This loop 
has been repeatedly indicated as affected by stiction in

before after

(a)

(b)

(a)

(b)
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several analysis. The values of the Stiction Quantification 
Index increased from 0.07 to 0.195 in about one month. The 
presence of stiction is clearly recognizable by the PV and OP 
shapes (close to square waves and triangles, respectively in 
Figure 11a). Moreover, the plot of PV(OP), which can be 
seen as a movie on the screen, shows evident stiction 
characteristics (Figure 11b); because in this case (FC loop),  
the controlled variable PV is proportional to the valve 
opening MV. Valve maintenance brought to an improvement
of performance and a sharp decrease of the stiction index
(Figure 12).

Fig.11: Validation of a loop affected by valve stiction: (a) SP, 
PV, OP trends; b) PV(OP) movie (FC loop)
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Fig.12: Time trend of the Stiction Quantification Index before 
and after valve maintenance 

6. CONCLUSIONS

The Closed Loop Performance Monitoring system described 
in the paper has been developed and built with tight 
cooperation between university and plant personnel. The role 
of plant operators has been crucial for the success of the 
implementation, mainly in the calibration of threshold values 
for key performance indices and in the definition of 
specifications of the Data Base query system  for an efficient 
analysis of  loop  performance. This fact has brought to a 
final version of the system “customized” on user 
requirements.

The design specifications for a “completely unattended” 
system forced to the adoption of conservative (default) values 
for key performance indices and, as a consequence, verdicts 
are emitted only in case of strong evidence, leaving a certain 
number of uncertain/unclassified cases. In the stage of 
assistance to the project, loop analysis was repeated for these 
cases by changing threshold values, allowing to explain many 
of them, thus confirming the advantages of a deeper 
involvement of plant personnel.

The flexibility of the system is an important feature, allowing 
different levels of interaction with the operator: from the 
lowest (analysis of periodical performance reports issued by 
the system) to the highest (actions on loops labelled as poorly 
performing). The inspection of these loops allows to focus on
anomalous situations, both in the case of complete verdicts 
(cause indicated),  and in the case of incomplete diagnosis for 
a deeper analysis based on process knowledge. 

After implementation on a selected plant (about twenty
loops), followed by field validation, it has been applied on 
about fifteen plants, featuring several hundreds loops. A 
further validation is carried on with the scope of a systematic 
evaluation of obtained benefits in the perspective of 
implementation on other group refineries. 

Appendix A. ADDITIONAL DETAILS ABOUT PCU

The PCU (Plant Check Up) is the engine of the performance 
monitoring system and accomplishes an analysis of loop data 
in order to evaluate performance and to diagnose causes. 
Some more details are given here about techniques for  
stiction diagnosis, identification retuning and performance 
improvement evaluation. Necessarily, only a synthetic 
illustration is reported here; full details can be found in the 
references.

A.1  Stiction Diagnosis

Two techniques are mainly used for this scope: the Relay 
fitting of PV values (Rel; Rossi and Scali, 2005) and the 
improved qualitative shape analysis (Ya+; Scali and 
Ghelardoni, 2008).

The Rel technique consists in the fitting of significant half 
cycles of the recorded oscillation by means of three different 
models: a sine wave, a triangular wave and the output 
response of a first order plus time delay under relay control.
The last one is able to approximate the square waves shapes 
generated by the presence of stiction and modified by the 

(a)

(b)
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process dynamics (Figure 13). Relay and triangular shapes 
are associated with the presence of stiction, while a
sinusoidal shape with the presence of external perturbations. 
By comparing  the error between real and fitted data, an 
evaluation of the accuracy of approximation and then an 
indication of the underlying phenomenon can be obtained. 
Once approximations have been performed, a Stiction 
Identification Index (SI) can be defined. Being ES the 
minimum square error obtained by the sinusoidal 
approximation and ERT the one obtained by the better 
approximation between the relay and the triangular waves, SI
is defined as:

)/()( RTSRTSI EEEES ��
 (1)

Here ES, ERT indicate average values of error over the 
number of examined cycles. SI varies in the range [-1; +1]: 
negative values indicate a better approximation by means of 
sinusoids, positive values by means of relay or triangular
approximations. Values close to zero indicate that the two
approximations have similar errors and the procedure gives 
an uncertain answer: the uncertainty region is defined by 
|SI|<0.21.

The technique presents some analogies with the Curve Fitting 
Method proposed by He et al (2007): in this case, assuming
that stiction is associated to a square wave shape in MV, a 
triangular wave shape is looked for as distinctive feature of 
stiction after the first integrator element of the loop. This 
means in OP signal (for self regulating processes – no 
integrators) or in the PV signal (for integrating processes). 

The relay method always analyses the PV signal and uses the 
relay shape as additional primitive.  The global fitting 
procedure is more complex and time consuming, but in all 
cases the elaboration time is absolutely negligible compared 
with the duration of data acquisition. Finally, the method can 
also put into evidence the presence of asymmetric stiction, by 
comparing SI values on positive and negative half cycles.

Fig.13: (a) Wave shape in a loop affected by stiction as 
modified by process dynamics (r����� ���) for a FOPTD 
process. (b) Different wave shapes generated by a relay 
feedback controller on a FOPTD process by �����������

The Ya+ technique is an extension of the technique originally 
proposed by Yamashita (2006), which is based on the 
analysis of trends MV(OP), that is valve output as function of 
the control action. Its applicability would seem low, because 
usually only PV and OP are recorded on industrial DCS; in 
the case of  flow control (FC), the controlled variable can be 
considered known, being proportional to the valve opening. 
As FC loops are a large majority of base control loops (about 
2/3 in the application presented here), the applicability of this 
technique is large. It is much larger for newly designed plants 
(for instance power plants with redundant instrumentation) 
and it will increase in a next future with the diffusion of field 
bus communication systems and related available 
information.

In the presence of stiction, the trend changes from linear to a 
typical parallelogram  shape (Fig.14): the horizontal part 
indicates that the valve opening does not change for 
increasing controller output. 

Fig.  14: Valve position (MV) as a function of the controller 
output (OP) in the presence of stiction (industrial data)

Following Yamashita (2006), the pattern can be 
approximated by means  of three simple symbols:  increasing 
(I), decreasing (D), and steady (S). Possible combinations of 
symbols for the stiction pattern reported above are 
represented in Figure 15, as: ID, IS, II; SD, SS, SI; DD, DS, 
DI.

Fig.  15:  Qualitative shapes observed in sticky valves.

By combining the symbols for OP and MV signals, a 
representation of the development in an (OP, MV) plot over 
time can be obtained. Based on these considerations and 
counting the duration of time sequences, a stiction index �
can be defined; values of �> �°=0.25 (threshold value for a 
random signal)  are indication of possible  stiction in the 
valve. These considerations have been extended to include 
different stiction patterns observed in industrial data, for 
instance the one reported in Fig.16.

(a)

(b)
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Fig.  16: a) A different MV(OP) pattern observed in 
industrial data, in the presence of evident stiction (b) 

Other patterns are possible depending on valve type 
(direct/inverse action) and on DCS configuration, as reported 
in Figure 17.

Fig.  17:  Additional stiction patterns

They can be explained by the presence of a (even small)
delay between OP and MV is present, caused for instance by 
the  combined action of different factors such as: backslash 
phenomena, valve positioner dynamics, signal quantizer  and 
so on. They can be reproduced by simulation by means of a 
widely used stiction model, with suitable modifications
(Choudury et al, 2005). 

Different stiction indices have been defined to be able to
identify their presence in industrial data, namely: �B, �C, �D,
(in addition to a �A=�), accounting for the appropriate 
coupled sequences of  I, S, D primitives (further details in 
Scali and Ghelardoni, 2008).
For a set of 52 data acquisitions, 11 additional loops were 
indicated as sticky, according to the new index �B, while 
would not be indicated by �A, as summarized in table 1
(threshold value is 0.25). During the implementation and 
field validation of this project, only A and B stiction patterns 
were encountered, owing to some practical constraints  
adopted in the DCS configuration; C and D patterns may be 
found in the most general case.

Table 1: Details for the additional 11 sticky loops
Loop # �A �B

xxFC1 0.2459 0.4146

xxFC2 0.1941 0.2648

xxFC3 0.2238 0.3444

xxFC4 0.2303 0.2817

xxFC5 0.1889 0.2961

xxFC6 0.2071 0.4882

xxFC7 0.1352 0.2596

yyFC1 0.1200 0.3621

yyFC2 0.1797 0.3712

yyFC3 0.1614 0.3407

A.2  Identification

The Identification Module receives form the AIM module 
loops with constant SP labelled as NG (No Good) caused by 
improper tuning and loops labelled as NC (Not Classified) 
with variable SP. 

In the case of constant SP, the recorded lops dynamics refer 
to a poor performing response caused by the presence of an
external perturbation (Figure 18). A Simplex based search 
technique has been adopted for the solution of this problem, 
with some modifications to the original algorithm (Nelder 
and Mead, 1964), in order to overcome the  problem of 
getting stuck in local minima and of managing the presence 
of constraints. Further details are reported in Rossi (2007)
and Rossi and Scali (2009).

Fig.  18: Poor loop responses caused by external perturbation

Both process and disturbance dynamics are modelled as
second order plus time delay systems, with parameters K, Kd

(gains); �, �d (delays);  ��	�d (time constants); , d (damping 
factors):
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The identification problem can be stated as the minimization 
over the model parameters vector V, of MSE between 
recorded and computed values (N is the number of samples): 
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In the case of variable SP, an ARX process model is 
identified (Ljung, 1999); in discrete form:

kmLkmLknknkk eububyayay ���
��� ������ �� 1111 (3)

where: y is the output (PV), u is the input (OP), L is the time 
delay, n and m are model order. From past values of y and u,
it is possible to define the output predictor as: 
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Once a time window has been fixed of length equal to N 
sampling times, (details are given below),  a suitable 
quadratic function of the error between predicted and 
recorded values: 
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and, by minimizing VN with respect to model parameters:
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The value of the delay L should be known; this limitation can
be overcome by repeating the computation of 
* for different 
values of L (from 0 to Lmax) and choosing the delay 
*

corresponding to minimum values of  VN. The initialization of 
the predictor requires the knowledge of data for 
N0=max(n,m+ Lmax) sampling times, before k=1.

Several criteria can be defined to evaluate the accuracy of 
identification. Here, a closed loop index has been adopted, as 
the scope of identification is modelling for  control purpose. 
Given the SP sequence in the examined window, values of  
the output  variable vector y’1, ..y’N, for the actual controller 
and the identified model are computed, originating the index:  
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where: ymean represents average value for the output. EVCL
represents an explained variance, with values less than 1 (and 
generally not less than 0). 

The application of the procedure is different according to the 
number of SP changes, for instance primary loops or loops 
under cascade / advanced control. 

In the case of only one SP change, only one time window is 
selected and the procedure is applied as described above. The 
starting point is fixed n0 sampling times before the time of  
SP change, while the final point is taken when the response 
has settled within a 5% of the output value. The identification 
is considered successful if EVCL�	����.

For cases of variable SP, time windows of about 20 minutes 
for FC loops (about one hour for other type of loops) are 
chosen and the identification procedure is applied on each 

window. The step response of the two models having larger 
value of  EVCL are compared, as:
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where: 21, SR
k

SR
k yy are k-th step response coefficient of model 

1 and 2. The identification is considered successful for 
MD���� (and EVCL�0.80). Threshold values have been 
assumed after intensive simulations and applications on loop 
data. Referring to Figure 19 and Table 2, acquired data are 
divided in 8 time windows, identification is heavily wrong 
for windows 2 and 4 (EVCL<0), is not considered reliable 
enough for windows 1,3,5,6 (EVCL<0.80), is considered 
successful for windows 7 and 8 (EVCL����0); for these two 
windows MD=���86 and then the identified model is 
accepted. 

Fig.  19: Variable SP loop and time windows divisions

Table 2: Values of EVCL in the 8 time windows 
t.w. 1 2 3 4 5 6 7 8

EVCL 0.51 -40 0.66 -29 0.58 0.74 0.89 0.80

Identification may be not successful for several reasons, for 
instance: non linearity of real process or not optimal choice 
of  ARX model order (n, m). Nevertheless, main causes of 
failure are to be found in the presence of valve stiction or 
external disturbances. 

In the first case, a failure is “desirable” (a linear model being 
not reliable in this case) to avoid the adoption of an incorrect 
model and a wrong suggestion about cause (retuning instead 
of stiction). 

In the second, it may be possible to find few  time windows 
not heavily affected by disturbances: this is the logical behind 
the choice of comparing models identified in two different 
time windows and requiring large values of MD and EVCL;
more details in Mervi (2007).

A.3  Upgrading Indices 

Once the identification has been successfully carried out and 
a process model is available, the optimal tuning is evaluated 
according to different available techniques, selected at the 
configuration stage. 

1           2            3          4           5           6           7             8
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The performance improvement predicted on the basis of the 
identified model,  is evaluated by means of an upgrading 
index �:

�
� 


�
Act Best

Act Min

IAE IAE
IAE IAE

(9)

where: IAE is the Integral of Absolute Error of the response 
for the actual reguator (Act), for the best controller having 
PI/PID structure (Best) and for the optimal one for the 
identified model (Min). For ��0, the proposed controller is 
closet to the optimal one; for any ��� there are 
improvements, but a threshold has been assumed to 
implement the new retuning (the proposed threshold 
�°=0.50,  has been decreased to 0.40, after field validation). 

Other indices allow to evaluate the real performance  
improvements on the plant, before and after retuning,  in the 
two cases of primary loops (with rare SP changes, mainly 
step-wise) and secondary loops (with frequent SP changes, 
imposed by the primary loop acting on them). 

For primary loops  a new index �’ is defined, having the 
same expression (9), with controllers tagged as Act and Best
substituted by Old and New (to indicate before and after 
retuning) (Figure 20a).

For secondary loops, the IQI (Improvement Quantification 
Index) is defined, to evaluate the error between recorded SP 
and PV values  before and after retuning (Figure 20b): 
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where: N: is the number of sampling times where the tuning 
is maintained as constant, SPi: , PVi , i-th value of SP and PV, 
and, SPave, is the average SP value in the time range where 
tuning parameters are left constant. 

Values of IQI close to 1 indicate perfect control, while small 
or negative values indicate scarce performance.

Fig.  19:  Representation of the upgrading indices for: 
constant (a) and variable SP loops (b)
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Abstract: Linear Model Predictive Control (MPC) continues to be the technology of choice for 
constrained multivariable control applications in the process industry.  Successful deployment of MPC 
requires “getting right” multiple aspects of the problem.  This includes the design of the regulatory 
controls that receive setpoints from MPC, design of the multivariable controller(s) themselves, test design 
for model identification, model development, and dealing with nonlinearities. In the following, we 
highlight approaches and techniques that are successfully applied in practice and provide an overview of 
recent technological enhancements that are being made to MPC.  While significant progress has been 
made in both the technology and practice, there are challenges with MPC, mostly related to the effort 
required to develop an application and to ensure adequate performance over time.  Suggestions for 
addressing these issues are included as possible research directions. 

Keywords: model predictive control, model-based control, constraints, control system design, modeling, 
process identification. 
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1. INTRODUCTION 

Model predictive control (MPC) is a mature technology.  It is 
the standard approach for implementing constrained, 
multivariable control in the process industries today.  MPC 
provides an integrated solution for controlling  interacting 
systems with complex dynamics and constraints.  A key 
aspect of MPC is its ability to deal with degrees of freedom, 
that may arise when there are more or fewer inputs 
(manipulated variables) than outputs (controlled variables), or 
when zone limits for controlled variables are used, which is 
the typical situation in practice.  Broadly defined, MPC refers 
to a control algorithm that explicitly incorporates a process 
model to predict the future response of the controlled plant.   
While the model may be linear or nonlinear, we consider 
linear MPC as it is used in the majority of industrial 
applications in the refining and petrochemical industries 
today (and increasing, in other industries).  For these 
applications, the plant model is identified based on data 
generated from a dedicated plant test.  Today, there are a 
number of technology vendors which provide MPC solutions, 
including software to facilitate the development of MPC 
applications and monitoring of the performance of these 
applications over time.  The last 10-15 years has seen 
significant efforts by technology suppliers to improve the 
usability of MPC products.   

While the “science” of MPC has advanced and the 
technology is now easier to apply, there is still an “art” aspect 
to the application of MPC that largely comes from 
experience.  The success of an MPC application depends on 
the multiple technical decisions that are made by the control 
engineer in the course of an implementation.  In addition, 

there are both technical and organizational issues that are 
critical to ensuring that MPC benefits are sustained in the 
longer term once an MPC is commissioned (Darby and 
Teeter, 2005).  Based on our experience, we find that the 
success rate of MPC across the industry is uneven.  Some 
companies are consistently successful in deploying MPC, 
whereas others are not.  In the following, our main emphasis 
concerns the technical aspects of MPC that arise in the course 
of an implementation. 

MPC is positioned above a regulatory control level as shown 
in Figure 1. The manipulated variables for the MPC are 
typically setpoints of PID controllers, executed in a 
distributed control system (DCS).  The MPC may also 
directly manipulate valve position signals rather than, e.g.,   
flow.  

MPC

targets, limits, objectives

TCPCFC

Planning & Scheduling, RTO

MVs
CVs

� second

� minute

� hours to
days

MPC

targets, limits, objectives

TCPCFC

Planning & Scheduling, RTOPlanning & Scheduling, RTO

MVs
CVs

� second
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� hours to
days

Figure 1. Control hierarchy 
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The DCS executes a at a higher sampling rate than the MPC, 
typically sub–second to multi-second sample time, compared 
to a 30 sec to 2 min execution period  for MPC. 

Certain targets and objectives for MPC come from higher 
level functions such as planning and scheduling, typically 
communicated to the operator in an open-loop fashion, or 
from a real-time optimizer, if present.  Note that there it not 
necessarily a one-to one-translation of decisions from upper 
level functions to targets and limits in the MPC.  Economic 
objectives and priorities may also be involved.  Examples 
include gasoline vs. diesel objectives (winter vs. summer) in 
a refinery and the priority of feed stocks in an ethylene plant.  
In addition, there are day-today issues that may arise such as 
a late shipment, or a product tank becoming full.  

Part of the challenge in implementing MPC is that the 
regulatory control layer is not a given (or should not be taken 
as a given).  The design problem is really one of deciding on 
the best overall structure for the regulatory level and MPC, 
given the control objectives, expected constraints, at least 
qualitative knowledge of the expected disturbances, and 
robustness considerations.  Similarly, the selection of the 
controlled variables for MPC is not one of simply deciding 
which subset of available measurements should be selected. It 
may be that available measurements are insufficient and 
additional sensors are needed.  In addition, not all variables 
that need to be controlled may be available on a frequent-
enough basis; therefore, we have the problem of inferring 
qualities from secondary measurements.  The above decisions 
are by no means trivial and represent key aspects of the 
controller synthesis problem that have attracted significant 
attention over the past four decades (Buckley, 1964; Weber 
and Brosilow, 1972; Morari et al., 1980; Larsson and 
Skogestad, 2000; Stephanopoulos and Ng, 2000).  

Once the regulatory level is decided upon, the remaining 
decisions relate to how to structure the MPC layer: Should 
one controller or multiple MPC controllers be used?  For 
each controller, there is the issue of deciding on the 
manipulated variables, the controlled variables, and the 
feedforward variables. Non-linearities are other issues that 
must also be addressed, if significant in an application.  Note 
that the techniques discussed here are based on approaches 
that retain a linear(ized) dynamic model at the core of the 
MPC engine. 

The typical MPC project sequence is as follows: 

Pretest and Preliminary MPC design. 

Plant Testing. 

Model and Controller Development. 

Commissioning and Training. 

In the pretest phase of work, the key activity is one of 
determining the base level regulatory controls for MPC, 
tuning of these controls, and determining if current 
instrumentation is adequate.  The outcome of this phase is a 
list of issues that must be fixed or resolved before plant 
testing can proceed.  Typical problems that are identified are 

valve issues (sizing and excessive valve stiction), faulty 
instruments, and sensor location.  The other task that begins 
in this phase is one of learning the process and understanding 
the operational challenges and expected constraints.  In 
addition, a preliminary design for the MPC is typically 
performed, i.e., identification of controlled and manipulated, 
and  number of MPCs. 

Plant testing consists of generating plant data for model 
identification.  Additional process knowledge and insight 
comes from this phase of work.  Testing requires moving all 
inputs that may be manipulated variables for the MPC.  
Testing may be performed manually or automatically.   
During this phase of work, frequent lab measurements are 
collected, if an inferential model of product qualities is 
required. 

In the next phase or work, modeling of the plant is 
completed, including any required inferential s and non-linear 
compensators.  It is here that the models are analyzed for 
consistency.  The final design for the controller or controllers 
is completed and simulations performed to test the model and 
tune the controller.   

Commissioning involves turning on the controller and 
observing its performance on the plant and making tuning 
adjustments as needed to obtain a properly functioning 
controller.  Training of operations staff on the live controller 
is begun in this phase.   

In the following, we provide a high level description of MPC, 
MPC, without much emphasis on the particular theoretical 
properties of the MPC algorithm, for which there is already a 
substantial body of work (Mayne et al., 2000.).  
Subsequently, we present a detailed discussion of the key 
tasks and decisions that are made in the course of an 
implementation.  Where appropriate, current practice is 
highlighted and guidelines are given.  The impact of recent 
technological enhancements that have appeared are 
discussed.  Lastly we suggest areas where improvements may 
be made. 

2.  MPC OVERVIEW 

A simplified block diagram of the typical MPC is shown in 
Figure 1.  Key functionality of the components shown in the 
figure are described below. 

Target Selection: Target selection determines the best 
feasible, steady-state operating point, ,s s

k kx u  based on steady-
state gains of the model.  It can be implemented on the basis 
of minimizing deviations from desired steady-state “resting 
values” or as the result of an economic-based steady-state 
optimization, typically either a linear program (LP) or a 
quadratic program (QP). 

Controller: The controller determines optimal, feasible future 
inputs to minimize predicted future errors, over a moving 
horizon, from targets determined by target selection.  Tuning 
parameters (e.g., weights) are used to establish the dynamic 
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objectives and trade-offs.  A QP is typically used to perform 
the controller optimization. 

Estimator: The estimator updates the model estimate to 
account for unmeasured disturbances and model errors.  It 
includes a deterministic part that models the effect of 
controller-manipulated process inputs (and other measured 
process inputs) on the process outputs, and a stochastic part 
(which may only be implicit) that models the effect of 
unmeasured disturbances on the process outputs.  The 
simplest form for the estimator is the original MPC output 
correction (and still widely used today), where the current 
offset between the measurement and the model prediction is 
used to bias future model predictions.  A state space model 
represents a more general and flexible approach to modeling 
unmeasured disturbances in the estimator. 

 

Figure 2. Simplified MPC block diagram 

Various model forms are used in the various MPC products 
available today.  Most common are the finite step response 
(FSR) or finite impulse response (FIR), but state space model 
formulations are also found.  Recent controller products 
suggest a trend towards increased use of state space model 
formulations, because of the flexibility they offer to represent 
stable, integrating, and unstable processes in a single 
structure. 

Our intent is not to delve into differences between the 
formulation and options of the various products.  The 
interested reader is referred to Maciejowski (2002) and Qin 
and Badgwell (2003) Suffice it to say that differences exist 
among the products as to the approaches taken, but that they 
address important features such as prioritization of  
constraints, economic objectives and tuning parameters to 
influence CV vs. MV variance trade-offs. Most MPC 
controllers today force consistency between the sequence of 
input moves generated by the controller and the steady-state 
solution determined by the target selection.  This consistency, 
which is equivalent to the imposition of a terminal constraint, 
provides nominal and robust stability (Genceli and Nikolaou, 
1993; Rawlings and Muske, 1993; Ying and Joseph, 1999) 

1. DCS STRATEGY 

In deciding upon an appropriate DCS strategy for the MPC, 
there are several factors that need to be considered and 
balanced.  Major factors are disturbance rejection, process 

interaction, robustness to model errors, and constraint 
considerations.   Another factor is the influence of the DCS 
strategy on the settling time of the system, which affects the 
control horizon in MPC. 

Fortunately, when implementing MPC, an existing DCS 
strategy is in place that can be evaluated and changed, if 
necessary.  We are aware that some practitioners choose to 
use existing DCS schemes “as is” as opposed to modifying or 
pairing the PID loops in a different way.  However, such 
modifications can have a significant impact on both MPC 
control performance and the ease of implementation (e.g., 
testing).  Note that with modern DCS systems a different 
DCS strategy (“fall-back”) may be used when MPC is 
switched off or fails.  

 A typical decision concerns whether to incorporate a 
cascade, such as temperature to flow cascade on a distillation 
column, or a temperature to pressure cascade on a direct-fired 
heater.  As we have discussed, the DCS typically operates at 
a higher sample frequency than the MPC; therefore an 
existing cascade, if tuned well, will likely have much better 
disturbance rejection capability than the MPC.  An additional 
advantage is that a cascade may help to linearize important 
CVs controlled by the MPC (because of the linearizing effect 
of feedback in the inner loop in a cascade scheme).  This can 
be advantageous in providing acceptable control over a wider 
range of, e.g., plant feed rates. 
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The thinking with respect to cascades with MPC has clearly 
evolved over the years. In earlier days of MPC, it was often 
thought preferable to “break” an existing TC cascade and 
design the MPC to manipulate flow controllers. The 
motivation was that this would lead to simpler (overdamped) 
models and allow the interaction to be addressed by the 
MPC.  What was missed with this approach was the rejection 
capability of the DCS via the higher sampling frequency, and 
the robustness that results from incorporating a TC into the 
MPC strategy.  Consider the case of the two-by two 
subsystem associated with the product purities of a binary 
distillation column, controlled in the reflux-boilup 
configuration (so called L-V configuration).  Consider two 
cases: 1), MPC control of compositions via L and V and 2) 
MPC control of the compositions via L and a stripping 
section TC controller that manipulates boilup.  We assume 
that the controlled temperature correlates well with the 
bottoms product composition.  The model relationships for 
these two cases are 
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Due to its lower triangular structure, L-TC is a more robust 
formulation compared to a full decoupling strategy with 
manipulated variable L and V, especially if the process is ill-
conditioned, or more accurately, has large RGA elements 
(Skogestad and Morari, 1987).  In most cases a temperature 
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cascade would be retained if it performs well.  In a 
distillation column, it may be necessary to select another tray 
temperature if the existing one does not correlated well with 
product quality.  Note that dual-ended temperature controls 
would normally be avoided because of interactions and the 
potential for the controllers to wind up (i.e., saturate) , if a 
section of the temperature profile shifts to a region of 
insensitivity (e.g., due to a feed composition change).  

Another cascade decision concerns level to flow cascades, 
associated with feed drums, reflux accumulator drums and 
distillation column sumps.  The questions is: should a flow be 
controlled directly by the MPC (with the associated level 
controlled by the MPC)?  A motivation for doing so is to 
obtain a direct handle on inflows, without the dynamics of the 
level controller.  Such an approach is useful when a plant 
capacity constraint exists, such as column flooding, and unit 
feed rate is also manipulated by the MPC. By directly 
manipulating column feed, tighter control of a plant capacity 
constraint can be achieved by taking advantage of liquid 
holdup in intermediate drums.  Additional justification is to 
shorten system settling time by removing the dynamics of 
level controllers.   

A disadvantage of including levels in the MPC is that levels, 
which are integrating variables with respect to flow, are that 
they harder to keep in bounds during an open-loop plant test.  
Levels are affected by both material and energy balance 
effects. While material balance effects may be 
straightforward to model, energy balance contributions 
affects must also be modeled, which tend to contribute over a 
longer time frame.  Part of the challenge with integrating 
variables is related to the identification problem, as it is   
common to identify the first difference of an integrating CV, 
which decreases the signal-to-noise content.  Note: in some 
FIR-based ID methods a double difference is used - one 
difference for the integrator and an additional difference (for 
both inputs and outputs) to remove integrating or slow 
disturbance effects.  An additional challenge is that it is 
common for an MPC controller to contain logic to switch off 
if an integrating variable cannot be balanced (zero difference) 
at steady state., thus making integrating variables more 
sensitive to measurement spikes.   

An alternative to controlling the level in MPC is to keep the 
level cascade in the DCS and manipulate the level setpoint to 
influence the corresponding flow rate (taking advantage of 
buffering capacity).  In this case, the level measurement 
could also be brought into the MPC as a CV (and controlled 
within bounds).  For this situation, model relationship 
between level setpoint and flow is zero gain (i.e., dynamic 
response only, zero steady-state gain). We should note that 
practitioners are divided on what is the best approach, 
although most of the experience is with FIR- or FSR-based 
MPC.  Examples of step response models for these two cases 
are shown in Figure 3. 

We should note that the theory and experience-to-date 
indicate that integrating variables are more easily handled 
within a state-space formulation, as it allows more flexibility 
in the unmeasured disturbance model – i.e., selection of the 

disturbance channels and incorporation of additional output 
measurements (Qin and Badgwell, 2003; Froisy, 2009).  
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Figure 3. Step response models for integrating level: open-
loop vs. closed-loop with PID 

An important issue concerns valve positions of PID loops 
that are directly manipulated by MPC or that are affected by 
other manipulated variables of the MPC.  For example, 
manipulating an FC controller setpoint will affect the valve 
position associated with the FC as well as the valve position 
associated with a downstream pressure controller.  When a 
valve approaches a saturated state (either fully open or 
closed), not only is PID control lost for its associated 
controlled variable, but model mismatch (and nonlinearity) is 
introduced to all MPC-controlled variables that depend on the 
PID controller response.  As a result, the MPC needs to keep 
PID controller outputs in a controllable range.  This can be 
achieved by bringing the PID controller output into the MPC 
as a controlled variable.  This approach is illustrated in Figure 
3a.  In this case, MPC manipulates the setpoint of the PID 
controller setpoint as necessary to keep the controller output 
in range.  How well the PID output can be controlled and 
how close to saturation the MPC limit can be placed depends 
on: PID tuning, disturbances characteristics, and the degree 
of nonlinearity.  It may be necessary to retune the PID loop 
based on the response of the controller output (a smooth 
response in the valve, without significant proportional “kick” 
is desirable).   

co vpsp

MPC co Processvp

MPC ProcessPID

(a)

(b)

co vpsp

MPC co Processvp

MPC ProcessPIDPID

(a)

(b)
Figure 4. Alternate MPC strategies for maintaining valve 
positions in controllable range – (a) MPC to PID and (b) 
direct output to valve. 
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If a valve associated with a PID controller saturates more 
than 25% of the time, or if economics dictate operation at a 
fully open or closed-loop state, it may be preferable to 
directly manipulate the controller output directly, as shown in 
Figure 3b. In this way, the valve limit can be strictly 
enforced, resulting in control closer to the true valve limit.  In 
this situation, additional disturbances may result from 
opening the PID loop that need to be addressed by the MPC 

Regardless of the strategy, valves issues often arise in a 
project.  Significant valve stiction (if greater than say 2%) 
must be corrected.  In addition, valve nonlinearities may 
require compensation as part of the MPC strategy. 

Example To illustrate how the various considerations 
discussed previously influence the MPC design, consider the 
two-column configuration shown in Figure 5, which is to be 
part of an MPC application that maximizes plant feed rate 
(not shown).  

The following convention is used: ZC.sp denotes the setpoint 
of a PID loop to control Z; ZC.pv denotes the process 
variable or feedback variable for loop ZC; and ZC.op 
represents the output signal sent to the valve position.   

For this example, assume it is known that the second column 
is susceptible to flooding, as indicated by a high value in 
DP1.pv, and that PC2op often saturates fully open.  Because 
flooding is a constraint for column two, we would consider 
breaking the LC2 cascade and directly manipulating flow 
FC3.sp in the MPC.  Due to the saturation potential of PC2, 
we would also consider directly manipulating its valve via 
PC2.op and controlling pressure within the MPC.  If both 
temperature controllers perform well and the associated 
temperatures are good indicators of composition, they would 
be retained.  These considerations then lead to an MPC with 
the following manipulated variables: 

FC2.sp - column 1 reflux flow controller setpoint. 

TC1.sp - column 1 temperature controller setpoint. 

PC1.sp - column 1 pressure controller setpoint. 

FC3.sp - column 2 feed flow controller setpoint. 

FC5.sp - column 2 reflux flow controller setpoint. 

TC2.sp - column 2 temperature controller setpoint. 

PC2.op - column 2 pressure controller output. 

Figure 5. Example process to be controlled by  MPC 

 

2. PLANT TESTING 

 

The plant test and subsequent model identification are the 
most important steps in an MPC project, and incur the most 
time, often representing more than 50% of the total project 
time.  The importance of the accuracy of the plant model for 
MPC cannot be overstated. One cannot simply tune an MPC 
controller to compensate for a poor model.  Further the effort 
involved in testing and identifying an MPC model is not a 
one-time event.  To ensure adequate performance of an MPC 
application and sustain its benefits over time, it is necessary 

to re-perform plant testing to update the MPC model (all or in 
part) when control performance deteriorates due to a process 
change such as a process revamp. 

Until the mid 90’s, it was typical practice to conduct manual, 
open-loop tests, concentrating on the testing of one 
manipulated variable at a time, but moving other process 
inputs as necessary to maintain process operation in a desired 
region.  Automatic testing via uncorrelated binary sequences 
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such as PRBS or GBN increased in popularity in the mid to 
late 1990’s, and closed-loop testing approaches started 
appearing in the early 2000’s.  Today we are witnessing 
increased use of multivariable closed-loop testing methods in 
the industry as a means to reduced costs (human effort and 
time) and improved model accuracy due to richer data sets.  
Of course, an initial model must be available to perform a 
closed-loop test.  An initial model may be available from an 
existing controller; otherwise, an initial model may need to 
be developed (e.g.,  from pretest data). 

All of the above testing methods continue to be used today.  
Some MPC engineers continue to advocate manual testing 
methods, arguing that it is more conducive to developing 
process knowledge.  While this is indeed an important step, 
we believe that sufficient process knowledge can come from 
the pretesting phase and the early stages of an automatic or 
closed-loop test, where the testing may start with just a few 
inputs.   

Regardless of the testing approach, it is important to generate 
data in the frequency range of interest. This requires varying 
the pulse widths of the input signals, e.g., from 10% to 125% 
of the estimated settling time.  A typical guideline is to 
achieve an average pulse width of an (uncorrelated) input 
signal equal to 1/3rd of the open loop settling time of the 
process. Automatic signals can easily be generated to achieve 
a desired average pulse width.  Input amplitudes are selected 
to keep process inputs and process outputs within desired 
ranges, but should be large enough to overcome valve stiction 
limits.  Larger amplitude moves are preferred as long as the 
process responses remain within a linear range (unless 
linearizing transformations are used).  A goal is to obtain a 
signal-to-noise ratio of at least 6-to-1. 

The closed-loop testing approaches that have been developed 
for MPC also utilize uncorrelated binary signals.  In Zhu 
(2001), generalized binary signals (GBN) (Tulleken, 1990) 
are applied to selected manipulated variables as dithers 
(added to MPC-generated manipulated variables) and to 
certain MPC-controlled variable setpoints.  In Kalafatis et al. 
(2006), a closed-loop testing approach is described in which 
GBN binary signals are generated within the multivariable 
controller to maximize MV amplitude while keeping 
predicted CVs within preset constraints.  Control action is 
only applied when predicted CVs exceed their limits. 

Important quantities not measured online may require 
development of an inferential model.   Generating data for 
inferential model development represents a much better 
approach than using only historical data, which typically has 
insufficient excitation and feedback effects.  To ensure 
adequate data for model development, the process is moved 
to different steady-state operating values during the course of 
the plant test.  Note that it is important to get accurate time 
stamps of the lab samples so that the data can be properly 
synchronized with measured plant test data for model 
identification. Due to the importance of the plant model, it is 
important not to stop a plant test prematurely.  As a result, it 
is good practice to perform model identification throughout 
the testing phase until model quality is deemed adequate. 

3. IDENTIFICATION METHODS 

Dynamic Modeling. Various model structures are routinely 
used in the identification of models for MPC. Low order, 
parametric techniques continue to find application; however, 
these are nonlinear approaches, which require specification of 
model order (which is not straight forward).  Processes with 
heat integration, recycle and/or embedded PID loops 
typically require higher order models to capture the resulting 
complex input-output behavior.  As a result, we continue to 
find that finite impulse response (FIR) and high-order ARX 
(auto-regressive with exogenous input) models remain 
popular in MPC applications, both of which can be identified 
with linear least squares methods.   For the FIR structure, 
smoothing techniques are used to reduce parameter variance 
(e.g., Dayal and MacGregor (1996)). Model reduction 
techniques are typically used with high-order ARX models to 
reduce parameter variance  (see, e.g., Zhu (1998)). 

We have witnessed increased use of subspace identification 
methods in industrial MPC applications over the past 10 
years.  This follows the development of these algorithms in 
the 90’s (Larimore, 1983; Larimore, 1990; Overschee and De 
Moor, 1994).  A key advantage of a subspace method is that 
it directly yields a multivariable state space model, which is 
an advantage for a state-space controllers.  However, even for 
FIR- or FSR-based MPC, a subspace method offers 
advantages as it considers the correlation of the output 
measurements in the identification, thus leading to a 
potentially more accurate and robust model.   Industrial 
experience with a subspace identification method has been 
discussed in Zhao et al. (2006).  Their experience has shown 
that complex relationships can be accurately modeled with a 
state space model of relatively modest order (range of 5 to 
15), which captures both slow and fast dynamics.  
Advantages compared to a parametric technique are that the 
model order selection can be automated and only linear 
methods are required.  Compared to FIR models, their 
experience has shown that subspace leads to more accurate 
estimates of gain and gain ratios, which are critical to 
capturing the true degrees of freedom in the MPC and 
ensuring reliable LP performance.  

For the closed-loop situation, traditional subspace methods 
are biased; thus, special treatment is required.  Modifications 
can be made to subspace methods that lead to consistent 
estimates (as summarized in (Qin, 2006)), although in theory, 
prediction error methods (e.g., ARX) lead to estimates with 
lower parameter variance.  A challenge with closed-loop 
identification (using a direct approach) is the importance of 
obtaining an accurate noise model, which is problematic in 
practice, since typical process disturbances cannot be 
captured by white noise, passed thru a linear filter.  In 
practice, one can attempt to minimize the bias by  
“overwhelming” noise feedback in the frequency range of 
interest (Jorgensen and Lee, 2002).  

Important decision made during the model identification step 
relate to the following: 
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Data slicing Determining the sections of data should be 
included/excluded in the identification. 

Data pre-processing  Includes such option as spike removal, 
offset correction, prefiltering/detrending options, and shifting 
data based on known delays.  

Selection of input and outputs – inputs include both candidate 
manipulated variables and measured disturbances. 

Model Structure This includes decisions such as FIR model 
length, model orders of ARX or subspace, integrating 
variable or not 

Nonlinearities Do nonlinearities warrant additional 
modeling? 

Each of the above steps are typically iterative.  With data 
slicing, the important issue is removing data that would 
otherwise lead to model bias.  This includes time periods 
with significant unmeasured disturbances or plant upsets, 
such as pump shutdown, or where valve saturation occurs 
with PID loops.  Prefiltering/detrending, can significantly 
impact the identification results.  It is important to pre-
filter/detrend to suppress slow drifts and minimize their 
contribution to model bias.  In some MPC identification 
packages user options for prefiltering/detrending are not 
provided.  Data differencing is often used, but since it 
suppresses low frequency information can lead to model gain 
errors.  

In the selection of inputs and outputs, one will have a good 
idea of which are the manipulated and controlled variables, 
but it may not be as clear as to which other inputs should be 
selected as disturbance variables.  Note it may be desirable to 
include a disturbance variable simply as part of the 
identification step to improve the quality of the models to the 
key manipulated variables, and not use it as a feedforward 
variable in the controller.  With a subspace identification 
method, due to the fact that it explicitly considers the 
correlation of the outputs, the proper selection of output 
variables can improve the model accuracy of a given input-
output channel, regardless of whether the additional outputs 
are used in the controller.  

An aspect of model structure selection is whether to model a 
controlled variable as an integrating variable.  Many times, 
process knowledge will guide this decision (such as liquid 
level to flow).  However, slow responding stable variables 
(slower than the controller prediction horizon of the 
controller) often lead to improved control if modeled as an 
integrator, especially if they are subjected to input-type of 
disturbances.   

Nonlinearities are typically handled with a static linearizing 
transformation on inputs and/or outputs.  This is the familiar 
Hammerstein and Weiner model structures, as shown in 
Figure 6.  In typical MPC practice, these static nonlinear 
functions are SISO (one-to-one) as opposed to MIMO.  This 
is because a MIMO structure would be problematic when 
constraints are imposed.  With physical insight, one may have 
knowledge as the functional forms such as valve-flow 
relationships or logarithm of distillation product impurity. 
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Figure 6. General Hammerstein-Wiener model structure; Hf  

is the Hammerstein static nonlinear transformation, Wf  is the 
Weiner  static nonlinear transformation. 

For the general case, when a specific nonlinear 
transformation is unknown, a piece-wise linear relationship 
can be empirically derived, assuming testing is over a range 
wide enough to capture the nonlinearity.  An example is 
shown in Figure 7 for the case of a valve position (controller 
output) and an associated measurement (e.g., flow). This 
transformation could be used with either of the valve position 
scenarios shown in Figure 4.    
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Figure 7.Example piece wise linear transformation 

Many of the commercial MPC include the necessary pre- and 
post-processing capability to handle Hammerstein and 
Weiner transformations.   To deal with dynamic nonlinearity 
one can use multiple models and “schedule” these based on 
knowledge of the operating point.  Although this would be an 
easy thing to do, it is not commonly done with empirical 
models.  An example of where multi models are routinely 
used is in ethylene applications, where there is a different 
furnace model for each major feed type. 

Inferential modeling.  For the situation where an inferential  
model must be developed for product qualities that are not 
measured online (measured infrequently by lab), a couple of 
approaches can be used.   

The most common is to develop a regression model of the 
quality from directly measured variables such as flow, 
temperatures, and pressure.  It is common for the multiple 
measurements (for example temperatures) used as inputs to 
the regression to be correlated.  This requires multivariate 
regression techniques such as principal component regression 
(PCR), principal component analysis (PCA) and partial least 
squares (PLS).  The key idea is to project the measurement 
values into a reduced number of important directions 
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(number of directions less than the number of measurements) 
to avoid problems associated with correlation/ill-
conditioning. Improved regression modeling is possible if a 
steady-state simulation model is available.  In this case, 
measurements can be selected to minimize steady-state offset 
in the primary variables (lab measured) for expected 
disturbances and setpoint changes (Pannocchia and 
Brombilla, 2003; Hori et al., 2005). 

The other approach to inferential modeling utilizes a 
simplified, fundamental (nonlinear) model of the processes,  
where parameters in the model are tuned (or optimized) to 
best fit the model to lab samples.  In this case, the nonlinear 
model provides feedback to the MPC.  The advantage of this 
approach (assuming the model is adequate) is that less 
process testing is required to fit the inferential model and the 
model can be expected to operate satisfactorily over a wider 
range of operation compared to a purely regression model.  
See, e.g., Friedman  (2001), where a static nonlinear model is 
used for prediction of distillation product compositions. 

4. CONTROLLER  DEVELOPMENT 

An MPC application is typically applied to a unit such as a 
fluid catalytic cracking unit (FCCU) or ethylene unit.  A 
single MPC or multiple MPC controllers may be applied, 
depending on the unit objective and constraints.  Consider as 
an example the FCCU shown in Figure 8.  If the unit 
objective is to maximize unit feed and downstream 
throughput constraints exist, such as DC4 flooding, one 
would consider a single controller.  If there are no throughput 
constraints in the downstream columns, one would consider 
two MPC controllers: one for the reactor/regenerator/ main 
fractionator/wet gas compressor, and one for the all of the 
downstream distillation columns.  

Figure 8. Fluid catalytic cracking unit. 

A single unit controller is harder to implement and maintain, 
and if not implemented properly, or if sufficient engineering 
expertise is not available onsite, the result may be low MPC 
service factors or a controller that does not meet economic 
objectives.  When a controller is not performing correctly or 

is not understood by operations, operators will typically 
“pinch” manipulated variables (set upper and lower limits 
close to each other) to overly constrain the MPC in order 
keep control within a region that the operator feels 
comfortable.  When limited resources available are available, 
an alternative would be to first implement distributed 
controllers and later consolidate controllers after experience 
and confidence is gained. 

It is good practice to develop models on an individual 
equipment basis.  For example model reactors and distillation 
columns separately and build up the overall model from the 
various sub-models.  Thus, the modeling should not be 
treated as one black-box, linking all inputs to all outputs  
(Haarsma and Mutha, 2006).  If the modeling of the 
individual equipment is done properly, the key manipulated 
and controller variables have been identified and modeled 
and the manipulated variables for the overall model is the 
super set of MVs and CVs for the sub-models.  Note that 
feedforward variables in the sub-models need to be truly 
independent variables from the viewpoint of the assembled 
model for the MPC. 

With the above approach, it is typical to develop a sub-model  
based on its feed measurements (e.g., the feed rates to the 
primary absorber / stripper in Figure 8), but the overall MPC 
may require a model expressed in terms of unit feed. In this 
case, one can develop the required model from a  convolution 
of the primary absorber sub-model and a model from unit 
feed to primary absorber feed.  Note that the model prediction 
errors in the predicted feed to primary absorber feed can be 
used as a feedforward variable to the primary absorber / 
striper and DC4 with this arrangement.  This is sometimes 
known as a prediction error feedforward in MPC jargon. 

It is good modeling practice to ensure that the MPC model 
satisfy material balances (delta flows in equal delta flows 
out).  When levels are controlled in MPC, the material 
balance consistency implies that the rate of change of levels 
and flows equal zero at steady state.  Another area of 
consistency is where embedded PID loops imply a unity or 
zero gain. 

As we have mentioned previously, the accuracy of the 
steady-state gains is critically important as they determine the 
steady-state operating point (target selection layer in Figure 
2).  This, in turn, can have a significant effect on the control 
layer as both target selection and dynamic control are 
executed at the same frequency.  The challenge is that gains 
from an empirical model may not represent the true degrees 
of freedom that exist in the plant.  As a result, the target 
selection layer may exploit fictitious degrees of freedom, a 
problem that tends to get .worse with problem size (due to the 
increased number of possible submatrices).   

Consider the case that an LP is used as the target selection.  
At each execution , the LP will invert a square sub-matrix of 
the overall gain matrix.  If the sub-matrix is ill-conditioned, 
the resulting changes to the plant may be excessive, possibly 
leading to cycling or instability.  This normally becomes an 
issue when key manipulated variable handles are constrained 
(and therefore unavailable) and weaker manipulated variables 
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must be used.  Note that a degree of freedom can be removed 
from the LP by fixing gain ratios (forcing exact colinearity). 
A key modeling issues is deciding whether a degree of 
freedom exists or not.  This decision can be guided by the 
models themselves and their uncertainty) or from engineering 
insight.  Two approaches are used in practice to help with this 
problem.  One approach is to analyze various sub-matrix 
combinations of the gain matrix in terms of singular value 
decomposition (SVD or the relative gain array.  Sub-matrices 
with high condition number or large RGA elements become 
candidates for forcing a collinear relationship, particularly 
when expected gain errors suggest a co-linearity.  Another 
approach is an online method that automatically disregards 
small singular values in the sub-matrix inverse, based on user 
defined tolerances (Qin and Badgwell, 2003).  In the authors’ 
opinion, neither approach is completely satisfactory.  
Analyzing sub-matrices can be a time consuming task and 
tuning with singular value tolerances can lead to unexpected 
effects.  

During the controller development phase, initial controller 
tuning is performed.  This relates to establishing criteria for 
utilizing available degrees of freedom and control variable 
priorities.  In addition, initial tuning values are established for 
the dynamic control.  Steady state responses corresponding to 
expected constraint scenarios are analyzed to determine if 
they behave as expected, especially with respect to the 
steady-state changes in the manipulated variables.  This step 
may force additional analysis and treatment of gains and gain 
ratios.  

5. COMMISSIONING 

One reason we want to execute the various project steps well 
is to minimize rework in the commissioning phase.  In the 
best case, commissioning of the controller involves simply 
making tuning adjustments and observation of the controller 
under different constraint situations and plant disturbances.  
In the worst case, control performance is unacceptable and 
the control engineer is forced to revisit earlier decisions such 
a base level regulatory strategy or plant model quality.  Both 
of these can lead to retesting and re identification of at least 
portions of the plant model, resulting in delays and possible 
cost overruns. 

During commissioning it is typical to revisit model decisions 
and assumptions, and switch out certain models, or modify 
gains, to obtain acceptable control. Typically, 50-70% of the 
commissioning effort deals with models..  Commissioning 
typically takes place over a 2-3 week period.  In reality, 
commissioning is an ongoing effort, although the subsequent 
effort is normally treated as controller support and 
maintenance.  During the commissioning phase there are only 
so many different constraint and operating scenarios that can 
be considered.  Certain operating scenarios and constraint 
sets can only be observed certain times of the year due to 
seasonal effects.  It is therefore important that the operating 
company have in-house expertise that can be used to answer 
questions (“whys is the controller doing that?”), troubleshoot, 
and resolve  problems that arise over time. 

Once a controller is commissioned, it is important to monitor 
controller performance to ensure benefits are maintained.  
Unfortunately, multiple factors can contribute to controller 
performance deterioration.  A change in the operating point 
or a plant modification may invalidate portions of the plant 
model.  Performance degradation of other control systems 
(PIDs and MPCs) can lead to poor performance.  For 
example, a PID loop associated with, or upstream of, an MPC 
may develop a cycle resulting from valve stiction.  While 
technology can help with the diagnosis, ultimately expertise 
must be brought to bear to resolve and correct the problem.  
Left uncorrected such problems lead to low service factors, or 
worse, an MPC being permanently switched off. 

6. TRENDS AND SUGGESTED RESEARCH 
DIRECTIONS 

The impact of faster and multi-core processors are being seen 
in MPC products.  Increased processing speed is allowing an 
increased number of future moves to be calculated over the 
control horizon and also allows for much faster controller 
execution.  In Barham (2006), an MPC approach is described 
in which all manipulated variables are valve positions.  It is 
applied to an entire FCCU, and executes on a six-second 
interval. Transformations are used to linearize the 
relationship between valves and controlled variables.  In 
Froisy (2006), a new state space controller is described that is 
based on an infinite horizon move plan,  Notable features 
include model assembly of smaller submodels into one large 
overall MIMO state space model, and an automation feature   
that simplifies the configuration and tuning of disturbance 
estimators within a dynamic Kalman Filter framework. We 
are also seeing increased offerings of MPC at the DCS level 
where it can execute at a 1 second interval. However, unit 
wide or multi-unit MPC implementations are still most often 
implemented in a separate, dedicated computer.  

 In the remainder we provide suggestions for areas of 
improvement, including ideas for how this might be 
accomplished. General themes are of facilitating 
improvements at the various steps in an MPC 
implementation, maximizing the use of data and a priori 
knowledge, and minimizing the impact of changing or 
modifying key design decisions. 

6.1  DCS Strategy

As we have discussed, decisions related to structure selection 
of the combined MPC-DCS system are multifaceted.  
Fortunately, there is experience with many of the major 
refinery and chemical units that can guide these decisions, 
although specific experience may not always be sufficient for 
a particular plant (due to idiosyncrasies of the particular 
plant).  This is of course problematic for processes or 
industries where MPC has not been previously applied.  As a 
result, the path to an acceptable MPC controller may involve 
iteration.  It is therefore advantageous if rework can be 
minimized in light of design changes. It is also clear that 
methods that rely on systematic design rather than trial and 
error only would be valuable. 
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In recent years, techniques and products have been developed 
which apply multivariable identification methods to develop 
models that are in turn used to tune PID loops.  Such 
approaches can be used to improve the performance of PID 
loops associated with an MPC system with reduced 
engineering effort (Zhu, 2003; Harmse et al., 2009).  Note 
that once a multivariable model is available (relating the 
effect of PID controller outputs on PID controlled variables), 
one could use standard techniques such as relative gain array 
(RGA) or block relative gain (BRG) (as a function of 
frequency) to focus on the most promising PID loop pairings 
and simulate various suggested pairing possibilities. 
Experience has shown that testing and developing a 
multivariable model for the typical loops found at the DCS 
level can often be completed within a day for the typical 
loops that are found at the DCS level (Darby and Harmse, 
2009). 

Changing the PID loop pairings or tuning parameters (if 
behavior is significantly different) requires a change to the 
affected models in an MPC system.  Historically, such 
changes have required plant retesting.  However, with 
completed knowledge of the models at the PID level 
(including the PID controllers themselves), it is theoretically 
possible to convert the MPC models to reflect a different PID 
configuration or tuning), potentially avoiding an expensive 
retest.  Such an approach is described in Rejek et al. (2004).  
One major claim for this approach is that one could perform 
the plant test in one DCS configuration, but implement the 
MPC in another configuration as in Barham et al. (2006). To 
our knowledge, various options for solving this problem have 
not been investigated. Open questions concern accuracy and 
robustness issues as to how best to perform this model 
conversion. 

6.2 Plant Testing

It is well known that that independent binary input test 
signals are generally inadequate (inefficient at best) for the 
identification of ill-conditioned systems.  The reason is that 
the weak process directions (e.g., separation changes in a 
distillation column) are poorly identified in the presence of 
noise. The solution is to use correlated inputs, which can be 
generated in open or closed loop (Anderson and Kummel, 
1992; Koung and MacGregor, 1994; Li and Lee, 1996).  For 
example, in a distillation column, large changes in both reflux 
and reboil flow rates are required to adjust separation in any 
significant way.  As discussed previously, ill-conditioning is 
often found in the MPC steady-state gain matrix.  Properly 
designed input sequences can be expected to improve 
estimation of ill-conditioned sub-matrices. Recent results 
show that independent binary signals can also be inferior for 
well-conditioned systems, depending on the active 
constraints. In  Darby and Nikolaou (2008a, b), using a 
criterion which maximizes the likelihood of satisfying 
integral controllability, optimal inputs (both amplitudes and 
covariance of the inputs) are shown to depend on both the 
system’s conditioning and the specific active constraints.  
While correlated inputs can be achieved with independent 
perturbations of controller CV setpoints or limits, such an 

approach may translate into ineffective input perturbations 
due to the influence of the target selection layer. A closed-
loop experimental design approach for MPC would be 
desirable, although treated rigorously, would require 
knowledge of the feedback law. This would be problematic 
for MPC as each constraint set represents a different control 
law. A possible approach is to replace the binary test signals 
that are currently used in closed-loop MPC with a traditional 
or control-relevant experimental design.  An experimental 
design could be performed consistent within a feasible region 
established for the target selection layer and implemented 
through the controller to ensure constraint satisfaction. This 
might be done in a manner similar to that used in Sagias 
(2004) for PRBS signals, where the dynamic objective 
function is modified to the allow trade-off of control and test 
objectives.  The other aspect of experimental design concerns 
frequency content. This aspect would need to be investigated 
as well. We note that with current MPC practice, the 
frequency content is specified indirectly based on the type of 
binary signal chosen and the specified average pulse width.  
Extending this concept further, if basis functions with desired 
frequency content were pre-specified, this might allow the 
experimental design to be expressed in terms of input 
amplitudes and covariances. 

6.3 Identification

As mentioned earlier, there are multiple consistency 
relationships (e.g. gains and gain ratios) that should be 
enforced in the constructed MPC model.  Instead of imposing 
these conditions by altering the identified model as a post-
processing step, it would be better to incorporate these as 
constraints in the identification.  Within the context of least 
squares, imposition of linear constraints results in parameter 
estimators with smaller variance (Seber and Lee, 2003). 

Other consistency relationships could be incorporated. 
Material balance consistency has been discussed, but 
consistency can be extended to component balances.  For 
example, for binary distillation columns, relationships can be 
derived which link the steady-state gains associated with top 
and bottom purities for a given regulatory control structure 
(Häggbloom and Waller, 1988). 

Another area that should be exploited is a priori information 
available in the form of physical models.    Such an approach 
was discussed for a steady-state inferential predictor.  The 
basic idea is to combine available model information and data 
in a grey-box identification problem. The key motivation is 
one of getting better models with less data and effort, not 
necessarily one of capturing the nonlinear behavior.  A 
linearized model from a fitted nonlinear model may well be 
adequate.  However, it the nonlinearity were significant, the 
nonlinear model could be used to update models in the MPC. 
We should mention that in our view (for the foreseeable 
future) a full nonlinear model is not needed or feasible for the 
majority of control problems common found in industry 
(polymer applications and batch applications being notable 
exceptions). Tools to empirically determine the Hammerstein 
and Wiener static compensators would be useful (such as 
described in Zhu (2000) for the case of cubic splines). One 
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could also consider combing the dynamic identification step 
with piece-wise linear transformations in a single 
identification problem.  We might expect that nonlinear 
models could be developed for certain submodels of an MPC, 
if the improvements or costs saving to develop the model are 
significant. The online implementation might be posed as a 
constrained estimation problems using techniques such as 
found in Rawlings and Bakshi (2006), where the estimator 
would provide feedback (and possibly future predictions) to 
MPC.  An example of a common situation where nonlinear 
affects are often encountered is variable liquid hold-up (e.g., 
reflux accumulator), which causes a variable dynamic 
response in downstream composition signals. 

6.3  Improved Disturbance Estimators

A key advantage in utilizing a general state space formulation 
is improved (unmeasured) disturbance modeling.  For 
example, it is well known that the output bias approach, 
traditionally used for the MPC model update step, can lead to 
sluggish response to an input disturbance (Shinskey, 1994).  
A properly designed estimator overcomes this limitation 
(Muske and Badgwell, 2002; Pannocchia and Rawlings, 
2003). An additional advantage of state space disturbance 
model is that of incorporating additional output 
measurements.  A typical example is shown in Figure 9.  The 
variable u represents the MPC manipulated variable and y is 
the MPC controller variable; yI is an intermediate variable.  
Examples include: 

Case  1: u is plant feed rate, yI a downstream flow 
measurement and y is a downstream controlled 
variable. 

Case 2: u is column reflux flow rate, yI a tray 
temperature, and y a product analyzer. 

Case  3: u is a PID setpoint,  yI is the PID error and, 
y is an MPC controlled variable.. 

Case 1 represents the example considered earlier (cf section 
6). Case 2 provides structure similar to a traditional cascade 
control (Froisy, 2006).  Case 3 models the behavior of the 
base level PID, e.g., a time series model of the PID error, 
which has the advantage that unnecessary moves are not 
generated by MPC when the base layer is capable of rejecting 
the unmeasured disturbance (Haarsma and Mutha, 2006).  
Improved disturbance modeling could also be applied to the 
situation where MPC is directly manipulating a valve (and 
local flow, temperature, and/or pressure measurements are 
available). 

2G1G yu Iy
2G1G yu Iy

 

Figure 9. Plant model with intermediate variable yI. 

While it is possible to replicate such approaches within 
traditional FIR- and FSR-based MPC, they involve ad-hoc 
solutions.  An interesting possibility is the use of improved 
disturbance estimators within traditional FIR- or FSR-based 

MPC (Badgwell, 2009). What is unclear is the extent to 
which these improved estimators are actually being used 
within existing state space controllers.  Anecdotal evidence 
suggests a gap between these capabilities and actual usage by 
MPC engineers. Part of the challenge in developing these 
more general estimators is that it requires linking 
disturbances to particular model channels. Tools and 
techniques to facilitate or simplify this step would be helpful. 

6.4 Robustness

 Model errors impact performance of MPC at both the target 
selection layer and the dynamic controller, although, as we 
have seen, the problem is more acute with the steady-state 
target selection layer.  While the target selection layer offers 
advantages in terms of constraint control, economic 
optimization, and dealing with non-square systems, it 
represents a source of challenges for an MPC 
implementation, ones that grow with the size of the 
controller. The goal is to prevent the optimizer from 
exploiting fictitious degrees of freedom, and from exploiting 
true degrees of freedom that may exist, but lead to large 
steady-state moves for only small economic improvement.  
Another challenge is minimizing the impact of effects that 
can lead to chatter in the steady-state targets (Shah et al., 
2001; Kozub, 2002). This includes high frequency noise 
associated with controlled variables, unmeasured 
disturbances and/or model error.  An approach that has been 
used industrially to minimize change from the optimizer layer 
to the dynamic layer is based on a minimum-movement 
criterion (to achieve all control objectives) in the dynamic 
layer and to invoke a QP optimization once all predicted 
controlled variables are within a pre-defined funnel (Lu, 
2003). 

Given the importance of the steady-state gain matrix in the 
optimizer, Kassman et al. (2000) proposed a robust LP 
formulation based on ellipsoidal uncertainty of the gain 
matrix. An advantage of their approach is that the resulting 
optimization problem is convex.  An open question is how 
well their approach addresses problems with ill-conditioning.  
Note that we have avoided mentioning worse case 
formulations due to their tendency to provide overly cautious 
control for the average case. 

The challenges outlined above could benefit from additional 
research.  Pertinent questions are whether it is possible to 
avoid inverting the gain matrix for the entire plant and 
whether techniques could be used to avoid exploiting 
uncertain (and undesirable) degrees of freedom. These issues 
might be considered with the general problem of how to 
coordinate multiple MPCs, which is currently receiving 
increased research attention. .We note that when the plant 
optimum is consistent with maximum throughput, a 
simplified coordinator can be used (Aske et al., 2008).  Such 
an approach explicitly limits the degree of freedom that are 
used in the plant wide control scheme. 
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7. CONCLUSION 

The MPC algorithm is a mature technology and there is good 
understanding of the algorithm's properties and behavior.  
But as discussed, there are facets of the technology that could 
be improved.  As one would expect, the performance of MPC 
systems does not depend only on the "control law" (MPC 
tuning) but on successful completion of all of the following 
steps: articulation of control objectives, selection of 
measurements and manipulations, configuration of controller 
structure (i.e. interconnections among MVs and CVs), and, 
finally, design of the control law (Stephanopoulos, 1984).  
Even though the control law can be designed in a fairly 
systematic way, completion of the design steps above it is 
less systematic, and offers a margin of creativity.  Process 
understanding remains indispensable for these steps.  
Improving the ability to systematically complete these steps 
would certainly contribute towards designing better MPC 
systems.  Industry and academia can continue collaboration 
towards this end, with full understanding of the need for 
sanitized academic solutions to bear industrial relevance and 
that common practice may not necessarily be best practice. 
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Abstract: The exothermic continuous stirred tank reactor (CSTR) is a classical yet complex
case study of nonlinear dynamical systems. Power-shaping control is a recent approach for the
control of nonlinear systems based on the physics of the dynamical system. In this paper we
present a general methodology to apply the power-shaping control approach to the exothermic
CSTR study case. It results in a global Lyapunov function for the exothermic CSTR. This
Lyapunov function is then reshaped by the means of a controller in order to stabilize the
process at a desired temperature. Some considerations on the local and global convergence to
the desired state are presented.
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1. INTRODUCTION

Thermodynamic systems, and among them chemical re-
action systems, are usually nonlinear dynamical systems.
They can therefore have a complex behaviour and be
difficult to analyze and to control. Stability analysis of non-
linear systems requires the use of abstract mathematical
tools such as the two Lyapunov methods or the passivity
theory. Over the past years, several works have combined
those abstract concepts with the underlying physical phe-
nomena giving rise to the dynamical behaviour of the
system. These works include for instance the study of port-
Hamiltonian systems (Dalsmo and van der Schaft (1998),
Maschke and van der Schaft (2005), Eberard et al. (2006)),
energy-balancing passivity based control (PBC) (Ortega
et al. (2001), Jeltsema et al. (2004)) or the introduction
of the contact formalism for expressing the dynamics of
systems in which irreversible phenomena arise (Eberard
et al. (2005), Eberard (2006), Favache et al. (2007)).
The exothermic continuous stirred tank reactor (CSTR)
is a classical study case of nonlinear systems. Indeed,
the dynamical behaviour shows complex features, such as
multiple equilibrium points. Up to now no exact physical
interpretation of the complex behaviour of the exothermic
reactor has been found (Favache and Dochain (2009)).

Power-shaping control (Ortega et al. (2003)) has been
developed in the past years as an extension of energy-
balancing passivity-based control (Ortega et al. (2001),
Jeltsema et al. (2004)). In energy-balancing passivity
based control, the controller reshapes the energy function
of the system so that it has a minimum at the desired
equilibrium point. The controller provides to the system

� The work of A. Favache is funded by a grant of aspirant of Fonds
National de la Recherche Scientifique (Belgium).

a finite amount of energy so as to drive the system to
the desired state. This concept has been widely applied to
electro-mechanical systems (Ortega et al. (1999), Maschke
et al. (2000), Ortega et al. (2002)) but also to thermody-
namic systems where the storage function is the entropy
instead of the energy (Alonso et al. (2002), Otero-Muras
et al. (2006)). Nevertheless energy-balancing passivity-
based control can only be applied to systems without per-
vasive dissipation, i.e. systems where the power provided
by the controller is equal to zero at the desired equilibrium
point. To overcome this difficulty the concept of power
shaping control was introduced firstly for the stabilization
of nonlinear RLC circuits (Ortega et al. (2003)). Contrary
to energy-balancing passivity-based control, the storage
function used for the control is related to the power and
not to the energy. Power-shaping control has subsequently
been applied to the control of mechanical and electro-
mechanical systems (Garcia-Canseco et al. (2008)). Power-
shaping control is based on a particular formulation of the
system dynamics, namely the Brayton-Moser equations
(Brayton and Moser (1964a), Brayton and Moser (1964b)).
Although the first systems which have been described
using this formalism are electrical circuits, it is shown
in Jeltsema and Scherpen (2003), Jeltsema and Scherpen
(2007) and Garcia-Canseco et al. (2008) that mechanical
systems can also been expressed in this form.

As the work of Alonso, Ydstie and coworkers (see e.g.
Alonso et al. (2002), Antelo et al. (2007), Farschman et al.
(1998)), the present research is basically motivated by the
objective to connect thermodynamics with process control
design (see also Favache and Dochain (2009)). In this paper
we apply power-shaping control to the exothermic CSTR
case study with the aim of bringing more physical insight
in its dynamical behaviour. After a brief presentation of
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the main principles of power-shaping control in Section 2
and of the CSTR case study in Section 3, we shall apply
the power-shaping control theory to our example. First
we shall use the power-shaping approach to analyze the
open-loop behaviour (Section 4) and then to design a
control action (Section 5). Finally Section 6 presents some
general comments on the possibility of extending the
power-shaping approach to more complex systems, namely
systems with more than one reactant, and/or more than
one reaction.

2. POWER-SHAPING CONTROL

In this section, we briefly explain the principles of power-
shaping control. The statements are given without any
proof. For more details, the reader can refer to Jeltsema
and Scherpen (2003), Ortega et al. (2003), Jeltsema and
Scherpen (2007), Garcia-Canseco et al. (2008).

2.1 The Brayton-Moser formulation

Let us consider a dynamical system of dimension n
with m inputs. The state of the system is given by
the vector x ∈ Rn and the input is given by vector
u ∈ Rm. The power-shaping control theory is based on the
Brayton-Moser formulation of the system dynamics (Bray-
ton and Moser (1964a), Brayton and Moser (1964b)). In
this formulation the system dynamics are of the following
form:

Q (x)
dx

dt
= ∇P (x) +G (x)u (1)

where Q (x) : Rn → Rn × Rn is a non-singular square
matrix, P (x) : Rn → R is a scalar function of the state
and G (x) : Rn → Rn × Rm. Additionally the symmetric
part of the matrix Q (x) is negative semi-definite, i.e.:

Q (x) +Qt (x) � 0 (2)
The function P (x) is called the potential function. In
electrical and mechanical systems, the potential function
has the units of power. In electrical systems it is related
to the so-called content and co-content of the resistances
(Ortega et al. (2003), Jeltsema and Scherpen (2007))
while it is related to the Rayleigh dissipation function
(Jeltsema and Scherpen (2003)) in mechanical systems. In
both cases, the potential function P (x) is related to the
dissipated power in the system.

Let us now assume that the system dynamics are given by
the following relation:

dx

dt
= f (x) + g (x)u (3)

where f (x) : Rn → Rn and g (x) : Rn → Rn × Rm. The
system (3) can be written in the form (1) if there exists
a non-singular matrix Q (x) fulfilling (2) and that solves
following partial differential equation:

∇ (Q (x) f (x)) = ∇t (Q (x) f (x)) (4)
This condition is equivalent to the existence of the po-
tential function P (x) (i.e. if the potential function P (x)
exists, its Jacobian matrix must be symmetric). This one
is the solution of the following partial differential equation
system:

∇P (x) = Q (x) f (x) (5)

Finally the function G (x) is given by the following rela-
tion:

G (x) = Q (x) g (x)

2.2 Power-shaping control

Let us assume that the system dynamics can be expressed
using the Brayton-Moser equations presented above. The
desired equilibrium state is denoted by x∗. The rationale
of power-shaping control is to choose the input u (x) such
that in closed loop the system dynamics are given by the
following relation:

Q (x)
dx

dt
= ∇Pd (x)

where Pd (x) : Rn → R is the reshaped potential func-
tion. The desired equilibrium point x∗ must be a local
minimum of the potential function Pd (x) in order to be
locally asymptotically stable. The function Pd (x) cannot
be arbitrarily chosen since the following relation has to be
fulfilled:

g⊥ (x)Q−1 (x)∇Pa (x) = 0 (6)
where g⊥ (x) : Rn → Rn−m × Rn is a full-rank
left annihilator of g (x) (i.e. g⊥ (x) g (x) = 0 with
rank

(
g⊥ (x)

)
= n −m) and Pa (x) = Pd (x) − P (x). The

condition (6) ensures the existence of a function u (x) such
that:

Q (x) (f (x) + g (x)u (x)) = ∇P (x) +∇Pa (x)
Under these conditions, the control input u (x) that
achieves to reshape P (x) into Pd (x) is the following one:

u (x) =
(
Gt (x)G (x)

)−1
Gt (x)∇Pa (x) (7)

where G (x) = Q (x) g (x)

3. THE EXOTHERMIC CONTINUOUS STIRRED
TANK REACTOR (CSTR)

In our research, we have applied the power-shaping
methodology to a classical process control case study:
the exothermic continuous stirred tank reactor (CSTR),
illustrated in Figure 1. The reaction that is taking place
is A → B. In order to simplify the model, the following
assumptions have been considered:

• the reactor is liquid phase and the volume V is
constant.

• the density ρ and the specific heat cp of the mixture
are constant (i.e. independent of the temperature or
of the composition).

• the reaction heat is independent of the temperature.
• the reaction is irreversible.
• the reaction kinetics obey to the mass action law,

i.e. r = k (T )nA where k (T ) is the kinetic constant,
depending only on the temperature T and nA is the
number of moles of component A. The function k (T )
is assumed to be monotonically increasing. Moreover
let us assume that 1 lim

T→0
k (T ) = 0, lim

T→∞
k (T ) = k0

and
lim
T→0

dk

dT
= lim

T→∞
dk

dT
= 0

• the dynamics of the jacket can be neglected.
1 These assumptions on k (T ) are for instance fulfilled by the
commonly used Arrhenius law.
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Fig. 1. Schematic view of the CSTR

• the heat exchange between the reactor and the jacket
is proportional to the temperature difference between
them, with h the heat exchange coefficient.

• the system is controlled by the cooling fluid flow rate.
It acts directly on the heat transfer coefficient h.
Therefore we shall consider in the sequel that the
control input is the quantity h

ρcpV .

Under these assumptions the dynamic model of the system
is given by following equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dnA

dt
=
ql
V

(
Cin

A V − nA

)− k (T )nA

dT

dt
=
ql
V

(Tin − T ) +
(−ΔrH)
ρcpV

k (T )nA

+
h

ρcpV
(Tw − T )

(8)

where ql is the volumetric inlet and outlet flow rate, Cin
A is

the inlet concentration of A, Tin is the inlet temperature,
(−ΔrH) is the reaction heat and Tw is the temperature of
the cooling fluid. Using the notations of (3), we have:

f (x) =
(
δ
(
Cin

A V − nA

)− k (T )nA

δ (Tin − T ) + γk (T )nA

)

g (x) =
(

0
Tw − T

)
with x = [nA, T ]t, u = h

ρcpV , δ = ql

V and γ = (−ΔrH)
ρcpV .

It can be shown that this system can have up to three
equilibrium points in open loop (i.e. for u = 0), depending
on the numerical values of the parameters (see e.g. Aris
and Amundson (1958), Uppal et al. (1974)). Here we shall
consider the case with three equilibrium states, two being
stable and one being unstable.

4. THE OPEN LOOP BEHAVIOUR

The methodology described in Section 2.1 has been applied
to the system described in Section 3. The first step was
to find the square matrix Q (x) that meets the required
properties (2) and (4). The partial differential equation
(4) for the open-loop CSTR is written as follows:

− q11nA
dk

dT
− q12δ + q12γnA

dk

dT

+
∂q11
∂T

(
δ
(
Cin

A V − nA

)− knA

)
+
∂q12
∂T

(δ (Tin − T ) + γknA)

= −q21δ − q21k + q22γk +
∂q21
∂nA

(
δ
(
Cin

A V − nA

)− knA

)
+
∂q22
∂nA

(δ (Tin − T ) + γknA)

(9)

where qij is the entry in position (i, j) of the matrix
Q (nA, T ). We first transformed (9) into an algebraic
equation by restricting ourselves to a subset of possible
matrices Q (nA, T ). This algebraic equation then has been
solved and a possible matrix has been found 2 . In our
case, the symmetric part of matrix Q (x) was found to
be definite negative.
Remark 1. Indeed a family of possible matrices Q (nA, T )
has been found that both satisfy (2) and (4). But since
they all have a similar form apart from a constant pa-
rameter, we shall treat them in the sequel as one unique
matrix.

Next the potential function is found by integrating (5).
The general form of the potential form is given by the
following expression:

P (nA, T ) =
∫
p (T ) dT

+ ω
[
γ
(
Cin

A V − nA

)
+
(
T in − T )]2 (10)

where ω is a positive constant and p (T ) : R → R is a non-
linear function of k (T ) and T . The quadratic term of (10)
is clearly linked to the convection phenomena, whereas the
integral term is related to the reaction kinetics.
Remark 2. Actually the function p (T ) is not unique. It
depends directly on the matrix Q (x). Since we have found
a family of matrices Q (x), there is a corresponding family
of functions p (T ) that are similar apart from a constant
parameter.

Let us now consider the equilibrium points x̄ =
(
n̄A, T̄

)
of

the open-loop CSTR:

Q (x̄)
dx

dt

∣∣∣∣
x̄

= ∇P (x̄) = 0

Since the matrix Q (x) is non-singular, the equilibrium
points x̄ are also critical points of the potential function
P (x) (i.e. ∇P (x̄) = 0) and conversely. The analysis of
the Hessian matrix of the obtained potential function (10)
at each of the equilibrium points shows that the stable
ones are local minima of the function P (x) whereas the
unstable one is a saddle point. The level curves of the
function P (x) are given in Figure 2.

The variation of function P (x) along the trajectories of
the system are given by the following relation:

2 Calculation details can be found in Favache and Dochain (2008).
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Fig. 2. Level curves of the potential function

dP

dt
=∇tP (x) f (x)

=∇tP (x)Q−1 (x)∇P (x)

=
1
2
∇tP (x)

(
Q−1 (x) +

(
Qt (x)

)−1
)
∇P (x)

Since the symmetric part of Q (nA, T ) is negative def-
inite, we have dP

dt ≤ 0 where the equality holds only
for ∇P (x) = 0, i.e. for the equilibrium points. As a
consequence P (nA, T ) is decreasing along the trajectories.
Moreover P (x) is radially unbounded. Therefore the po-
tential function P (nA, T ) is a global Lyapunov function
for the system (Khalil (2002)).

5. POWER-SHAPING CONTROL OF THE CSTR

5.1 Controller design

Let us denote by x∗ = [n∗A, T
∗]t the desired equilibrium

state. Since the input has an effect only on the temperature
dynamics, the values of n∗A and T ∗ cannot be chosen
independently. This is stated in the following lemma:
Lemma 1. Let us consider some control input u (x) such
that the closed loop system has at least one equilibrium
point. The equilibrium points of the closed loop system
are contained in the following set:

(n∗A, T
∗) ∈

⎧⎨⎩(nA, T )

∣∣∣∣∣∣nA =
δCin

A V

k (T ) + δ
T ∈ ]0,+∞[ \ {Tw}

⎫⎬⎭ (11)

Proof. Let x∗ = (n∗A, T
∗) be an equilibrium point of the

closed loop system for the control input u (x). By definition
of an equilibrium point, we have:⎧⎪⎪⎨⎪⎪⎩

0 =
ql
V

(
Cin

A V − n∗A
)− k (T ∗)n∗A

0 =
ql
V

(Tin − T ∗) +
(−ΔrH)
ρcpV

k (T ∗)n∗A
+u (x∗) (Tw − T ∗)

(12)

The first equation can be directly rewritten as follows:

n∗A =
δCin

A V

k (T ∗) + δ
Let us now assume that T ∗ = Tw is a possible equilibrium
of the open loop system. If we replace in the second
equation of (12), we find the following relation:

0 =
ql
V

(Tin − Tw) +
(−ΔrH)
ρcpV

k (Tw)
δCin

A V

k (Tw) + δ
This relation implies that Tw is an equilibrium point of
the open-loop system. But, except an unlikely particular
case, there is no reason that the temperature of the cooling
fluid is exactly equal to an equilibrium temperature of
the open-loop CSTR. Hence Tw cannot be an equilibrium
temperature of the closed-loop system. �
Lemma 2. (11) is a necessary condition for x∗ = (n∗A, T

∗)
to be a local minimum of Pd (x).

Proof. A necessary condition for x∗ to be a local minimum
of Pd (x) is the following one:

∇Pd (x∗) = ∇P (x∗) +∇Pa (x∗) = 0
By replacing ∇P (x) and ∇Pa (x) by their expressions, the
following relation is obtained:

−∇P (x∗) =−Q (x∗) f (x∗)

= ∇Pa (x∗) =Q (x∗) g (x∗)u (x∗)

Since Q (x∗) is invertible, this can be rewritten as :
f (x∗) + g (x∗)u (x∗) = 0 (13)

When replacing f (x) and g (x) by their respective ex-
pression, (12) is obtained. Thus the rest of the proof of
Lemma 1 also applies here. �
The control action is then found by applying the method-
ology described in Section 2.2. First we solve (6) using the
previously found expression for the matrix Q (x). The left
annihilators of g (x) are given as follows:

g⊥ (x) = [ϕ 0]
with ϕ ∈ R∗. (6) is thus written as follows:

ϕ

detQ (x)

(
q22 (nA, T )

∂Pa

∂nA
− q12 (nA, T )

∂Pa

∂T

)
= 0

where q12 (nA, T ) and q22 (nA, T ) are the elements of Q (x)
in position (1, 2) and (2, 2), respectively. With our matrix
Q (x) the solution of this partial differential equation is
given as follows:

Pa (nA, T ) = fa

(
nA +

∫
w (T ) dT

)
where w (k (T )) is a rational function of the kinetic co-
efficient k (T ). fa (z) : R → R can be any smooth real-
valued function. In our case we have chosen fa (z) to be a
second order polynomial. Using now (7), the control action
of the following form is obtained for stabilizing the desired
equilibrium point:

u (nA, T ) =
−μ (nA − n∗A +WT∗ (T )) + u∗ (Tw − T ∗)

Tw − T
(14)

where WT∗ (T ) : R∗+ → R is given by the following
expression:

WT∗ (T ) =
∫ T

T∗
w (k (τ)) dτ
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Obviously WT∗ (T ∗) = 0. μ ∈ R is a parameter of
the controller and u∗ is the value of the input at the
equilibrium state:

u∗ (Tw − T ∗) = −δ (Tin − T )− γδ (Cin
A V − n∗A

)
In order to ensure that x∗ is a local minimum of Pd (x∗),
μ has to be lower bounded. The bounds are obtained by
imposing that the Jacobian matrix of Pd (x∗) is positive
definite at the desired closed-loop equilibrium point. The
control action u (x) acts in (8) via the term

g (x)u (x) =
(

0
−μ (nA − n∗A +WT∗ (T )) + u∗ (Tw − T ∗)

)
which does not depend on (Tw − T ) anymore. This means
that the actual control input is the transferred heat which
is equal to:

−μ (nA − n∗A +WT∗ (T )) + u∗ (Tw − T ∗)

5.2 Considerations on local and global convergence

The controller designed in the previous section only guar-
antees a local convergence to the desired set point, i.e. the
system will converge to desired point if and only if the ini-
tial conditions are close enough to it. Global convergence is
ensured if and only if the shaped potential function Pd (x)
does not have other local minima, i.e. if and only if x∗ is
a global minimum of the function Pd (x).

Let us assume that the point x# =
[
n#

A , T
#
]t

is another
local minimum of the function Pd (x). For the same reasons
as stated before, the following relation has to be fulfilled:

n#
A =

δCin
A V

k (T#) + δ
(15)

Moreover, for x# to be a closed loop equilibrium of (8),
the following relation has to be fulfilled:

δ
(
Tin − T#

)
+ δγ

(
Cin

A V − n#
A

)
+ u∗ (Tw − T ∗)− μ

(
n#

A − n∗A +WT∗
(
T#

))
= 0 (16)

By analogy with (15), let us define the function T̃# (nA)
by the following implicit relation:

k
(
T̃# (nA)

)
=
δCin

A V

nA
− δ

Consider the following function:

Δ (nA) = δ
(
Tin − T̃#

)
+ δγ

(
Cin

A V − nA

)
+u∗ (Tw − T ∗)− μ

(
nA − n∗A +WT∗

(
T̃#

))
where the dependence of T̃# (nA) on nA has been omitted
for sake of clarity. The equilibrium points x∗ and x# are
zeros of the function Δ (nA). Therefore x∗ is the unique
convergence point if it is the unique zero of Δ (nA) .

The function Δ (nA) is linear in the parameter μ. There-
fore it can be written as follows:

Δ (nA) = Δ0 (nA) + μΔμ (nA)
Remark 3. In Favache and Dochain (2009), we have pre-
sented several old and new results that aim at linking
the thermodynamics and the system theory concepts via

0

Quantity of A [mol]

Δ (n
A
)

increasing μ

Δ0(nA)

x*

Fig. 3. Influence of μ on Δ (nA)

the CSTR study case 3 In this paper we have introduced
a function of the state, denoted Δeq (T ). By integrating
the notations and assumptions of the present paper, this
function is given by the following expression:

Δeq (T ) = k (T )nAV (−ΔrH)
− ρcpV

[
u (nA, T ) (T − Tw) + δ

(
T − T in

)]
It can be seen directly that Δeq (T ) and Δ (nA) are linked
by the following relation:

Δ (nA) =
Δeq

(
T̃# (nA)

)
ρcpV

It can be shown that the assumptions on the form of k (T )
described in Section 3 and the existence of three open
loop equilibria implies that Δ0 (nA) is increasing for low
and high temperatures, but decreasing on one determined
interval 4 As a consequence, Δ (nA) can have several zeros,
depending on the term μΔμ (nA).

If the function w (T ) has been adequately chosen, then
Δμ (nA) > 0 for nA > n

∗
A and Δμ (nA) < 0 for nA < n

∗
A.

This means that if μ is chosen sufficiently large and
positive, then the term μΔμ (nA) reshapes the initial
function Δ0 (nA) so as to make the two undesired zeros
to vanish (see Figure 3). As a conclusion, there is a
lower bound on the parameter μ in order to ensure global
convergence.

5.3 Simulation results

In this section we present some simulation results of the
controlled system. First the performance of the controller
for reference tracking is shown in Figure 4. Then Figures
5 and 7 show the cases where only local convergence and
global convergence, respectively, to the desired equilibrium
point is ensured. These figures show the temperature evo-
lution for different initial conditions. The corresponding
level curves of the potential function Pd (x) are shown for
3 In Favache and Dochain (2009) we have considered a CSTR with
a reversible reaction, but the results can be applied directly for an
irreversible reaction by setting the kinetic reaction coefficient of the
reverse reaction equal to zero.
4 This can be deduced from the form of Δeq (T ) in Favache and
Dochain (2009) using the fact that T̃# (nA) is a strictly decreasing
function.
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Fig. 4. Reference tracking
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Fig. 5. Temperature evolution for different initial condi-
tions (local convergence)
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Fig. 6. Level curves of Pd (x) (local convergence)

both cases in Figures 6 and 8, respectively. It can be clearly
seen on Figure 5 that there exist two convergence points,
depending on the initial condition. This is confirmed by
the level curves of the function Pd (x) in Figure 6 where
two local minima can be distinguished.
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Fig. 7. Temperature evolution for different initial condi-
tions (global convergence)

380 400 420 440 460 480 500 520 540 560 580 600
0

10

20

30

40

50

60

70

80

Temperature [K]

Q
ua

nt
ity

 o
f A

 [m
ol

]

desired equilibrium point

locus of possible equilibrium states
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5.4 Robustness analysis

The control law given in (14) requires the complete state
feedback. Moreover it also requires the knowledge of the
temperature dependence of the kinetic coefficient k (T )
that appears in the expression of WT∗ (T ). In most prac-
tical applications, the kinetic coefficient is determined
experimentally and the on-line measurement of the con-
centration is not always achievable. In this section we
shall analyze the effect on the closed-loop convergence and
stability of modeling errors in the kinetic coefficient k (T ).

Let us assume that there is a modeling error on the kinetic
coefficient. The aim is to stabilize the state (n∗A, T

∗). The
controller is designed using the function k̂ (T ) instead of
the real kinetic coefficient k (T ):

k̂ (T ) = (1 + ξ (T )) k (T ) (17)
with ξ (T ) > −1.
Assumption 1. Despite the error on k (T ), the equilibrium
value of nA is known:

n∗A = neq
A (T ∗) = δ

Cin
A V

δ + k (T )
�= δ C

in
A V

δ + k̂ (T )
Assumption 2. Despite the error on k (T ), the equilibrium
value of the control input u∗ is known:
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u∗c =−δ (Tin − T ∗)− γk (T ∗)n∗A
�=−δ (Tin − T ∗)− γk̂ (T ∗)n∗A

Assumption 3. The control input has been designed such
that, based on the estimated value of the kinetic coeffi-
cient, the desired equilibrium is asymptotically stable.

From (14), the control input applied to the system is given
by the following expression:

uc (Tw − T )

= μ

(
n∗A − nA −

∫ T

T∗
ŵ (τ) dτ

)
+ u∗c (Tw − T ∗)

where we have introduced the following notation, for the
sake of clarity: ŵ (T ) = w

(
k̂ (T )

)
. Assumptions 1 and 2

imply that (n∗A, T
∗) is still an equilibrium of the closed-

loop system. Assumption 3 implies that the function w (y)
and the parameter μ have been chosen such that the
following matrix is negative definite:

Λ̂ =

⎛⎜⎜⎜⎜⎝
−
(
δ + k̂∗

)
−n∗A

dk̂

dT

∣∣∣∣∣
T∗

γk̂∗ − μ −δ + γn∗A
dk̂

dT

∣∣∣∣∣
T∗

− μŵ (T )

⎞⎟⎟⎟⎟⎠
Λ̂ is the matrix of the linearized system around the desired
equilibrium state if the kinetics was indeed equal to k̂ (T ).
As a consequence we have:

tr Λ̂ < 0 and det Λ̂ > 0

The actual matrix of the linearized system around (n∗A, T
∗)

is written as follows:

Λ =

⎛⎜⎜⎝− (δ + k∗) −n∗A
dk

dT

∣∣∣∣
T∗

γk∗ − μ −δ + γn∗A
dk

dT

∣∣∣∣
T∗
− μŵ (T )

⎞⎟⎟⎠
The trace and the determinant of Λ are given by the
following relations:

tr Λ = Ψ∗ − δ − μŵ (T ∗)

det Λ =−δΨ∗ + μ
[
(δ + k∗) ŵ (T ∗)− nA

dk

dT

∣∣∣∣
T∗

]
with

Ψ∗ = − (k∗ + δ) +
dk

dT

∣∣∣∣
T∗
γn∗A (18)

Using (17), we can define the following quantity Ψ̂∗ by
analogy with (18):

Ψ̂∗ = γn∗A
dk̂

dT

∣∣∣∣∣
T∗

−
(
k̂∗ + δ

)
= Ψ∗ (1 + ξ∗) + γn∗Ak

∗ dξ
dT

∣∣∣∣
T∗

+ δξ∗

where ξ∗ = ξ (T ∗). As a consequence the trace and the
determinant of Λ(cl) can be rewritten as follows:

0 5 10 15 20 25 30
390

400

410

420

430

440

450

460

Time [s]

Te
m

pe
ra

tu
re

 [K
]

reference

increasing μ

Fig. 9. Influence of the modelling error on k (T ) for
different values of μ

(1 + ξ∗) tr Λ = Ψ̂∗ − δ − μŵ (T ∗)︸ ︷︷ ︸
tr Λ̂(cl)<0

−
[
dξ

dT

∣∣∣∣
T∗
γk∗n∗A + 2ξ∗δ + μξ∗ŵ (T ∗)

]
By applying the same development on the determinant,
the following expression is obtained:

(1 + ξ∗) det Λ = det Λ̂ + ξ∗δ (δ + μŵ (T ∗))

+ n∗Ak
∗ dξ
dT

∣∣∣∣
T∗

(γδ + μ)

The closed-loop equilibrium is asymptotically stable if and
only if the trace is strictly negative and the determinant
is strictly positive. Using the inequalities of Assumption
3, this means that if ξ∗ > 0 and dξ

dT

∣∣∣
T∗

≥ 0, the
closed-loop equilibrium is asymptotically stable. But if
these two conditions are not fulfilled, then the closed-
loop equilibrium can become unstable. Nevertheless, if the
function w (y) has been taken sufficiently large such that:

(δ + k∗) ŵ (T ∗)− nA
dk

dT

∣∣∣∣
T∗
> 0

then det Λ(cl) is increasing with μ such that there is a lower
bound on μ that ensures the local asymptotic convergence
(see Figure 9).

6. EXTENSION TO MORE COMPLEX SYSTEMS

The power-shaping approach has given interesting results
on the simplified CSTR case study. It is therefore of
major interest to see if this approach can be extended to
more complex systems, and more particularly to systems
with more than one reacting chemical species and/or with
multiple reactions.

We keep the same assumptions as before, but we consider
more complex kinetics. Under these assumptions, the
general form of the dynamics of a non-isothermal CSTR
can be deduced from (8).

Let us now consider a CSTR with Nr independent re-
actions. From all the chemical species in the mixture, it
is only necessary to consider those that intervene in the
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kinetics of the reactions. Let Nc be the number of chemical
species which intervene in the expression of the reaction
kinetics. For each species i the time evolution is given by
the following differential equation (with i = 1, . . . , Nc):

dni

dt
= δ

(
Cin

i V − ni

)
+

Nr∑
l=1

Γilrl (T, n) (19)

where Γil is the stoichiometric coefficient of species i in the
reaction l. The temperature dynamical equation becomes
as follows:

dT

dt
= δ

(
T in − T )+

Nr∑
l=1

γlrl (T, n)

where γl = (−ΔrH)l

ρcpV and (−ΔrH)l is the reaction heat of
the reaction l. The time evolution equations of nA and T
have a similar form and the dynamics of the system can
be written as follows (see Dochain et al. (1992)):

dx

dt
= δ

(
xin − x)+ Γr (x) (20)

where x = [nA, . . . , nNc
, T ]t, . Γ ∈ RNc+1×RNr is a matrix

that contains the stoichiometric coefficient of species i in
the reaction l in position (i, l) if 1 ≤ i ≤ Nc and that
contains γl in the lth column if i = Nc + 1.

We shall now apply the same approach as in Section 4,
i.e. we shall first look for a matrix Q (x) that fulfills the
conditions (2) and (4). By using (20), we have the following
relations (i, j = 1, . . . , Nc + 1):

(Q (x) f (x))i =
Nc+1∑
k=1

qik
(
δ
(
xin

k − xk

)
+ Γklrl (x)

)
and thus:

(∇ (Q (x) f (x)))ij = −δqij +
Nc+1∑
k=1

[
qik

Nr∑
l=1

Γkl
∂rl
∂xj

]

+
Nc+1∑
k=1

∂qik
∂xj

(
δ
(
xin

k − xk

)
+ Γklrl (x)

)
Consequently, condition (4) can be rewritten as follows:

− δqij +
Nc+1∑
k=1

[
qik

Nr∑
l=1

Γkl
∂rl
∂xj

]

+
Nc+1∑
k=1

∂qik
∂xj

(
δ
(
xin

k − xk

)
+ Γklrl (x)

)
= −δqji +

Nc+1∑
k=1

[
qjk

Nr∑
l=1

Γkl
∂rl
∂xi

]

+
Nc+1∑
k=1

∂qjk

∂xi

(
δ
(
xin

k − xk

)
+ Γklrl (x)

)
(21)

for all i, j = 1, . . . , Nc + 1.

In the simplified CSTR case, we have first restricted the
set of possible matrices Q(x) to find a solution for (4)
by transforming the partial differential equation into an
algebraic one which is simpler to solve. The same can be
done in the more complex case by adequately restricting
the set of possible solutions.

A general solution of the algebraic form of (21) has not
been found yet. Despite of this, some characteristics of the

solution (if it exists) have already been derived in Favache
and Dochain (2008). We shall now look at some particular
cases of more complex reactions to get a first intuition of
the existence of non-singular and negative semi-definite
solutions of the algebraic form of (21). The detailed
solution for the three particular cases (namely parallel
reactions, reactions with two reactants and consecutive
reactions) is given in Favache and Dochain (2008). In the
three cases it has been assumed that the kinetic functions
can be expressed as powers of the concentration of the
reactants, i.e.:

rl (n, T ) = kl (T )
∏
i∈Θl

(ni)
ζil

where Θl is the set of reactants of reaction l and ζil is some
positive constant.

6.1 Parallel reactions and reactions with two reactants

In this case a solution has been found, but the obtained
matrix has not a negative semi-definite symmetric part.
Thus the corresponding potential function cannot be used
as a Lyapunov function for the open-loop system because
they are not decreasing along the system trajectories.

As shown in Garcia-Canseco et al. (2008), given a matrix
Q (x) that fulfills (4), other solutions to (4) can be built
departing from the first one. Applying this methodology on
the matrices that have been found could lead to another
matrix Q (x) that would be negative-definite and hence
give a Lyapunov function for the open-loop system.
Remark 4. In the particular case of parallel reactions with
first order kinetics, another solution for the matrix Q (x)
has been found. This solution does not exist for higher
order kinetics. This particular solution has a very similar
form of that of the matrix proposed for the case with one
reaction. This seems to indicate that the matrix Q (nA, T )
that has been used in Section 4 is a particular solution of
(9) that exists only in the case of first-order kinetics.

6.2 Consecutive reactions

In this case the algebraic form of (21) has no non-
singular solution. This does not mean that the dynamics
cannot be put into the Brayton-Moser form. But if the
Brayton-Moser form exists, then the partial differential
equation (21) has to be solved.

7. CONCLUSION

A general description of the power-shaping control ap-
proach of the CSTR has been given in this paper. The
main results that were obtained by this approach have
been presented and illustrated by some simulation results.
A detailed mathematical analysis is provided in Favache
and Dochain (2008). Contrary to previous works and ap-
proaches, a global Lyapunov function for the exothermic
CSTR has been found using the power-shaping approach.
This Lyapunov function could then be used to design a
controller for stabilizing the reactor at a desired tempera-
ture. Some results about the local and global convergence
of the controller have also been shown.

The Lyapunov function that was found is the potential
function of the Brayton-Moser formulation of the CSTR
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dynamics. Although the potential function has a physical
meaning for the Brayton-Moser formulation of electrical
or mechanical systems, a precise physical interpretation of
the potential function of the CSTR has still to be found.
This interpretation should give more physical insight on
the reasons of the existence of multiple open loop equilib-
ria, and also on the action of the controller.

The controller obtained by the power-shaping control ap-
proach depends on the on-line measurements of the con-
centration and of the knowledge on the reaction kinetics.
Both quantities are usually not exactly known. We have
shown, that if the parameters of the controller are ade-
quately chosen, the control action is robust with respect
to modeling errors on the kinetics. But a robustness study
on the influence of the concentration measurement errors
should also be of great interest before applying it to a real
reactor.

Finally we studied the possibility of extending the previous
work to more complex systems, and more precisely to
CSTRs with multiple reactions and/or multiple reactants.
The extension seems to be rather complex, even for simple
cases such as two parallel reactions or two consecutive
reactions with mass action law kinetics. Indeed, in the
simple CSTR case with a single first-order kinetics re-
action, the solution of the partial differential equation
needed to write the system dynamics in the Brayton-Moser
form has been found by transforming it into an algebraic
one. For the three considered particular cases the corre-
sponding algebraic equation system has either no non-
singular solution (consecutive reactions) or an indefinite
solution (parallel reactions, reaction with two reactants).
The study presented here is only embryonic since it does
not imply that the power-shaping control approach cannot
been applied. But the Brayton-Moser form of the dynamics
(if it exists) actually needs the solution of the partial
differential equation, and not of its simplified version which
is the algebraic equation. Nevertheless in the cases where
an indefinite matrix has been found, the work presented
in Garcia-Canseco et al. (2008) offers the possibility of
finding an alternative negative semi-definite matrix with-
out having to solve the partial differential equation. Also
in this study we have only considered a particular form of
the kinetics, namely we have assumed that the kinetics can
be written as a product of powers of the concentration (i.e.
a more general form of the mass action law) and a kinetic
term. This is only a restricted class of the possible kinetic
laws. Indeed it could also be interesting to apply the
power-shaping control to other forms of kinetics such as
the Monod kinetics (biological systems) or the Michaelis-
Menten kinetics (enzymatic reactions), for instance.
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Abstract: Cancer immunotherapy is one of the emerging therapies for cancer treatment where immune
cells are guided to fight against cancer. Clinical immunologists are proposing different ideas to stimulate
the immune cells and dendritic cell therapy is one among them. Like, other treatment modalities, the
challenge in dendritic cell therapy is when and how much dendritic cells should be administered. In this
work we use a mathematical model which elucidates the activation of the helper T-cells and cytotoxic T-
cells by the intervention of dendritic cells. The objective is to minimize the tumor cells for a given input
of dendritic cells. Then multi-objective optimization is applied on the model to design the treatment
planning in order to achieve the objective.
Keywords:  Cancer, Immune system, Dendritic cell therapy, Mathematical model, Multi-objective
optimization

�

1. INTRODUCTION

Cancer stands next only to heart disease in the list of most
fatal diseases in the world. From Fig.1, it is obvious that the
decrease in death rate for cancer patients over the years 1950-
2003 has been minimal as compared to other major diseases.
Cancer related deaths have been escalating meteorically - 
according to World Health Organization, 7.6 million people
died of cancer (out of 58 million deaths overall) in 2005.
They speculate that cancer deaths will increase to 18% and
50% by 2015 and 2030 respectively. Recently, the American
Cancer Society reported that around 1.5 million new cancer 
cases and 0.6 million cancer death cases occurred in the US
in 2007. According to another report on worldwide cancer 
rates by the WHO’s International Agency for Research on
Cancer (IARC) (Paola Pisani, 2002), North America leads the
world in the rate of cancers diagnosed in adults, followed
closely by Western Europe, Australia and New Zealand. In
1994, in Britain, almost one in three were expected to 
develop the disease over their survival period and it is 
estimated to increase to one in two by 2010 with reference to
the trends at that time (Imperial Cancer Research Fund).
Another publication from the Australian Institute of Health
and Welfare (1999) projects that, based on the incidence rates
existing in 1999, one in three men and one in four women
would be directly affected by cancer in the first 75 years of 
life. Moreover, a loss of 254,000 potential years of life to the
community each year was estimated as a result of people
dying of cancer before the age of 75. As a whole, cancer is
currently responsible for 29% of male deaths and 25% of 
female deaths in Australia.� In Singapore, the proportion of
cancer deaths among all causes of death rose steadily from
14.8% (in the years 1968-1972) to 27.1% (in the period 1998-
2002) reflecting a worldwide trend. The above mentioned
figures are alarming and have drawn the attention of

researchers to understand the mechanism of cancer and come 
out with better therapies.

�

Fig.1. Change in death rates of different diseases in US from
1950 to 2003

The main characteristics of the cancer cell are its
uncontrolled and unregulated growth (Hanahan and
Weinberg, 2000; Martins et al., 2007). It is caused by the
external factors such as UV radiations, carcinogenic
chemicals as well as transfer of the cancer prone genes from
parents. When a normal cell interacts with these external
factors, its information system (DNA) gets damaged and the
normal cell transforms to a cancer cell. Initially, the clump of 
the cancer cells is confined to particular location and it is 
regarded as being benign. If the cancer is not diagnosed and
treated in the benign stage, it will change into a malignant
form, and the cancer cells could migrate to different parts of
the body and ultimately may lead to the death of the patient.
So, it is better for the cancer patients to be provided suitable
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treatment at the early stages itself so as to prolong and
enhance the quality of their life. 

1.1 Cancer treatment modalities

Over the past 50 years, many cancer treatment modalities
have been discovered. The most prominent of these are
surgery, chemotherapy, and radiation therapy. Some of the
emerging therapies are immunotherapy and viral therapy.
However, a specific therapy for all types of cancer is still
missing and the available therapies have their own 
advantages and shortcomings. Surgical techniques to remove
tumors have been in practice even thousand years ago. 
Usually, surgery is favoured to remove the tumors diagnosed
at the very early stages ensuring almost complete cure.
Surgery can be very difficult if the tumor location is near 
critical locations in the body (e.g. brain); furthermore,
surgery is not a preferred option if the cancer had already
metastasized by the time of diagnosis. In any case, complete
clearance of the tumor cells is not assured with surgery.
Radiation therapy is an alternative to surgery in order to kill
the localized tumor cells. In radiation therapy, high energy
radiations are used and its dosage is determined such that the
normal cells near the tumor are spared. Thus, radiation
therapy also depends on the location of the tumor and
sensitivity of the tumor cells to the radiation.

As a result, surgery is followed by chemotherapy or radiation
therapy to suppress further tumor growth. In the case of
chemotherapy and radiation therapy, precise care should be
taken to avert the damage to normal tissues. Among these
two therapies, chemotherapy is preferred because it is a 
systemic therapy. In systemic therapy, the drug flows
throughout the body and destroys the migrated cancer cells
along with residual cancer cells near the surgery location.
Chemotherapy is always given as a course in cycles based on
the patient health status rather than as a one-time treatment.
This is done so as to maintain the drug concentration within 
the dosage limits in the body and kill the remaining cancer
cells in the subsequent treatments (Dua et al., 2008).
However, the side effects of the chemotherapy are significant
and sometimes they become serious than the disease itself. In
contrast to chemotherapy and radiation therapy,
immunotherapy has fewer side effects, because, typically, the
patient’s own cells are modified and used as therapeutic
agents.  The prime objectives of any therapy are to keep the
number of cancer cells below a lethal level and avoid the side
effects caused by the therapeutic agents. This can be achieved 
by optimal scheduling and the optimal administration of the 
therapeutic agents if the dynamical characteristics of the
system are known.

2. CANCER IMMUNOTHERAPY

From the above discussion, we can infer that key elements for
immunotherapy are antibodies, cytokines, and the natural
immune cells. On this basis, immunotherapy is classified into
three main schemes, monoclonal antibody therapy (MAT),
adoptive cellular immunotherapy (ACI) and vaccines (Adam
et al., 2003). MAT involves the introduction of externally
developed tumor specific antibodies into the patient’s body
using hybridoma technology. ACI constitutes the 

The role of the immune system in cancer treatment was first 
observed by William Coley, a New York surgeon. Cancer 
immunotherapy is the stimulation of immune cells to fight the
tumor cells. The main function of the immune system is to
fight against the abnormal changes in the body, and the

successful functioning of it lies in its ability to distinguish the 
“self” and “non-self” based on the self-marking molecules.
The immune system recognizes the abnormality with the help
of antigens presented by the injured or abnormal cells. If the
immune system exhibits a response based on antigen
recognition, then antigens are called immunogenic. However,
not all antigens are immunogenic. For example, if the tumor
is larger in size, immune cells may not respond to it. Before 
studying the tumor-immune interactions, it is informative to 
take a brief look at the mechanisms of the immune system. In
this regard, the review paper by Adam et al., (2003) provides
a comprehensive discussion on the immune response in
cancer.

In our body, the immune action is carried out by specialized
cells called lymphocytes which are mostly present in the
blood. The common lymphocytes are macrophages, dendritic
cells, natural killer (NK) cells, lymphokine activated killer
cells, B-cells and T-cells.  Immune response is categorized as
natural immunity, humoral immunity and cellular immunity
based on the lymphocytes. Macrophages, dendritic cells, and
natural killer cells are responsible for natural immunity, in
which these cells directly attack the infected cells (cancer
cell) and act as antigen presenting cells (APC). Antigen is an
agent which can easily be recognized by immune cells. Thus, 
APC highlights the infected cells and alerts the T-cells for 
further action against the infected cells. In humoral
immunity, antibodies produced by B-cells encounters the
infected cells. Each B-cell has a specific antibody of a 
particular shape. The concept of antibody-antigen interaction
resembles the mechanism of lock and key. When the shape of
an antibody of a B-cell matches exactly with the shape of the
antigen corresponding to the infected cells, B-cell proliferates 
and produces plasma cells which actively secrete the
antibodies. These antibodies neutralize the activity of the
infected cell by inhibiting their cell division process, by
producing a lethal group of enzymes called complement and 
by opsonization.  In opsonization, antibodies coat the infected 
cells in order to make them easily recognizable by the killer
lymphocytes. This process is known as antibody dependent
cell-mediated cytotoxicity.  In cellular immunity, the key
players are T-cells which are further classified as helper T-
cells (CD4+) and cytotoxic T-cells (CD8+). Helper T-cells
gets activated by the natural immune cells and regulates the
production of the cytokines. Cytokines are the enzymes
which keep the momentum of all the immune cells as per
their requirement. Interleukins and interferons are regarded as
the important cytokines to fulfil the immune action.
Cytotoxic T-cells directly attack the infected cells after its
activation by the cytokines.
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modification of the lymphocytes (helper T-cells, cytotoxic T-
cells, NK cells) by using cytokines like interleukin (Kirschner
and Panetta, 1998). This ultimately ameliorates the anti-
tumor activity of the lymphocytes. This is done in two ways
namely, lymphokine-activated killer cell (LAK) therapy and
tumor infiltrating lymphocyte (TIL) therapy. In both 
therapies, the lymphocytes are activated externally and later
they are injected back at the tumor site. In LAK therapy, the
lymphocytes are obtained from the in vitro culturing with
high concentration of IL-2 which is extracted from the
patient’s blood. Conversely, in TIL therapy, lymphocytes are
taken from the patient tumor sites and cultured with the high
concentrations of interleukin in vitro.

Generally, cancer vaccines are in the form of cells, molecules
or micro-organisms. They facilitate the quick recognition of 
tumor cells by the immune cells. In other words, tumor
associated antigens (TAA) are made tangible to the immune
cells.  Consequently, tumor-immune interactions are 
enhanced thereby achieving the goal of cancer
immunotherapy.

3. TUMOR-IMMUNE INTERACTION MODELS

Tumor-immune interaction models explain interactions
between different types of immune cells and the tumor. There
are many tumor-immune interaction models and a few of
them will now be described. In the model proposed by De
Boer and Hogeweg (1986), interactions between
macrophages, T-lymphocytes and tumors are considered. The
macrophages and T-lymphocytes are given in different
dosages. This model captures the “sneaking through”
phenomenon i.e. when lower dosages of tumor is introduced,
the immune system may not recognize it and then the tumor 
grows to a bigger size; however, the immune cells reject the
tumor when they are given in higher quantities. Another
successful model (Kuznetsov et al., 1994) was developed 
based on the studies of the B-lymphoma BCL1 in the spleen
of mice. The model is very simple, and considers only two 
states (effector and tumor cells). Effector cells represent any
of the killer immune cells.  In this model, the parameters
were estimated using in vivo data. Then, bifurcation analysis
was performed to find the critical parameters for sneak
through phenomenon. This model was further extended and
modified (Kirschner and Panetta, 1998) by including the
dynamics of the interleukin. Based on bifurcation analysis,
this work emphasized that tumor immunogenicity is an 
important parameter. Their work also discussed about the
effects of immunotherapy (adoptive cellular therapy and
interleukin) through mathematical analysis. Models such as
those by (Castiglione and Piccoli, 2007; de Pillis et al., 2005;
de Pillis et al., 2006), consider the natural killer cells and
cytotoxic CD8+T cells as different states rather than
considering them under the same family as effector cells. In 
de Pillis et al. (2005), the authors focus on the impact of NK
cells and CD8+ T cells on tumor growth. Their model is in the
form of a system of ODEs. Parameters of the model were
estimated and validated with the published mice and human

data. In addition, sensitivity analysis was done on the model.
The sensitivity analysis concluded that the variable to which
model is sensitive is patient-specific. This model was
extended with slight modifications in the functional forms of 
growth and death terms of the immune cells (de Pillis et al., 
2006). The model was also used for understanding the effects
of combination therapy (chemo-immuno and vaccine
therapy) for different patient parameters.  Other models have
included the dynamics of NK cells, B cells, helper and
cytotoxic T-cells , and LAK cells (Szymanska, 2003). In this
work, dendritic cell vaccine (DCV) is considered. DCV is 
produced by the process called dendritic cell transfection. In 
this process, some TAA are configured and cultivated with 
autologous dendritic cells that is extracted from the patient
itself (Cappuccio et al., 2007; Castiglione and Piccoli, 2007;
Piccoli and Castiglione, 2006). The resulting vaccine is
injected back into the patient. Here, we consider the
mathematical model proposed by Piccoli and Castiglione
(2006) because this is the only model which includes the
dynamics of dendritic cells and apply multi-objective
optimization using non-dominated sorting genetic algorithm
(NSGA) to find the optimal scheduling of dendritic cell
vaccine interventions.

4. MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization (MOP) is the optimization of 
two or more conflicting objectives of a system represented in
the form of a mathematical model subjected to certain known 
constraints. Most practical problems such as product and
process design, finance, aircraft design, automobile design,
and medical applications have multiple objective scenarios.
In these problems, an optimal decision needs to be taken in
the presence of trade-offs between the conflicting objectives. 
In MOP, there may be a number of solutions in the feasible
region, and the decision maker has to analyze all the solutions
based on the prior knowledge of the system before a final
solution is adopted (Tamaki et al., 1996).

Suppose there are ‘n’ decision variables and ‘p’ objectives.
MOP tries to find a point x = (x1,……..,xn ) which minimizes
(or maximizes) the values of the objective functions f =
(f1,…..,fp ) within the feasible region F of x. In contrast to 
single-objective optimization problems, an exact solution
may not exist for the MOP problems because of the trade-off
characteristics among the objectives. Hence a concept of the
Pareto-optimal set was introduced for MOP problems.
Pareto-optimal set is, ’a family of points which is optimal in
the sense that no improvement can be achieved in any
objective without degradation in others’.

Definition (Tamaki et al., 1996): Let x0, x1, x2 .F

1. x1 is said to be dominated by (or inferior to) x2, if f(x1) is
partially less than f(x2), i.e.,

fi(x1) �  fi(x2), i/ =1,…..,p, and fi(x1) > fi(x2), 1,...... .i p
0
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2. x0 is the Pareto-optimal (or non-dominated), if there
doesn’t exist any x.F such that x dominates x0

As Pareto-optimal solution is a logical strategy to the MOP, 
the prime goal of solving the MOP is to obtain a Pareto-
optimal set. The Pareto-optimal solutions can be obtained by
solving on a one-at-a-time basis using single objective
optimization methods like weighted sum method and the 1 -
constraint method. Unlike the conventional methods,
population-based methods (e.g. evolutionary algorithms) such
as genetic algorithm, particle swarm optimization, simulated
annealing and differential evolution can generate Pareto-
optimal set simultaneously. The searching strategy of
different evolutionary algorithms is different and they are 
based imitating some natural processes. However, the
common theme of all the evolutionary algorithms is to search
the whole hyper-domain of decision variables and find the
best possible solution. Population based methods are further
subdivided into non-Pareto approaches and Pareto
approaches. In non-Pareto approach, the 
selection/reproduction of the new population in the
subsequent generations are based on the objective function
values whereas in Pareto-approaches, the new population is 
generated not only on the basis of the objective value
themselves but also on their dominance property. In this
work, we used the Pareto-based approach known as non-
domination based genetic algorithm (NSGA-II) which was
proposed by Deb et al., (2000) because of its elitism and
minimal computational complexity. Genetic algorithms
(GAs) which imitate the process of natural evolution have
shown successful results in many optimization problems
which are difficult to solve by the conventional methods of 
the mathematical programming (Nemhauser et al., 1989).

4.1 Non-domination based genetic algorithm for multi-
objective optimization

A brief introduction to the NSGA algorithm (Deb et al., 
2000) is provided here. The algorithm is initiated with
suitable values for population size and number of
generations. The stopping criterion of the algorithm is the 
maximum number of generations. Broadly, the prime steps
involved in the algorithm in each generation are selection, 
offspring production and recombination. First, the population
is initialized randomly within the bounds of the decision
variables. Once the population is initialized, they are sorted
into separate fronts based on non-domination as discussed
earlier. Among these fronts, the first front members
completely dominate others in the current population and the
second front members are dominated by only the first front
members and so on. Each individual in the front is given a
rank (fitness) based on the front in which they are present.
The first front individuals are assigned a fitness value of 1 
and second front individuals are assigned fitness value of 2
and so on. Apart from this, a parameter called crowding
distance is calculated for each individual. The interpretation
of the crowding distance is the closeness of an individual to
its neighbours. A larger crowding distance indicates the 
diverse nature of the population. Crowding distance is 

compared only when the individuals belong to the same front.
Thus, best N parent individuals are selected from the current
population based on the rank and crowding distance, where N
is the population size. Then, in the offspring production step,
the selected parent individuals are used to generate offspring
via the crossover and mutation operators.  Finally, in the
recombination step, the offspring population is combined
with the current generation population and the combined
population is used as an initialized population for the next
generation. In this way, the procedure is repeated until the
maximum number of generations. Thus, the important tuning
parameters in this algorithm are the number of generations,
indices for crossover and mutation processes. The schematic
representation of the algorithm is shown in Fig. 2.

Fig.2. Non-dominated sorting genetic algorithm

5. MATHEMATICAL MODEL

The model taken from Piccoli and Castiglione (2006)
describes the interactions among the tumor cells, helper and
cytotoxic T-cells, dendritic cells and interleukin. The model
assumes that tumor cells are immunogenic and do not 
metastasize. In other words, tumor cells are recognized by
dendritic cells and are presented to cytotoxic T-cells. The
interactions between the cytotoxic T lymphocytes and the
tumor cells are described by a kinetic scheme and are
presented in the form of ordinary differential equations. The
states in the system are denoted by

� H(t), helper T-cells (CD4+)

� C(t) , cytotoxic T-cells (CD8+)

� M(t), tumor cells

� D(t), dendritic cells 

� I(t) , interleukin

The pharmacodynamics is represented by the term  in 
equation (3) and the pharmacokinetics is captured in equation
(4). In equation (4), ‘u’ is the input rate of the dendritic cells.
Once the dendritic cells are injected, the CD4+ cells, CD8+
cells, and interleukins are triggered as shown in equations (1,
2 & 5) respectively by the following terms. (

2e MC

0 0 0( , )c Dd H f2 ,

, ). The first two terms in 
equations (1) and (2) correspond to the natural evolution of 

1 1 1)( ) ( ,c I M D d C f2� 4a HD
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the cytotoxic T-lymphocytes. In the same way, the second
and third terms in equation (5) explain the loss of interleukin
(IL-2) due to its interactions with CD8+ cells and its natural
decay respectively. The model assumes that tumor growth 
follows the logistic equation with the constants ‘d2’ and ‘f2’
in the absence of immune interactions. Another assumption in
the model is that externally administered DCV is the only
source of dendritic cells. The initial value of tumor is M(0) = 
0.1, the initial level of helper and cytotoxic T-cells are taken
to be their equilibrium values H(0) = a0/b0 and C(0) =a1/b1. It
is assumed that there is no immune response before the
treatment and therefore I(0) and D(0) are taken to be zero. 

5.1 Model equations

0 0 0 0 0( , ),dH a b H c Dd H f
dt

2
 � �  (1)

1 1 1 1 1( ) ( ,dC a b C c I M D d C f
dt

2
 � � � ), (2)

2 2 2( , ) ,dM d M f e MC
dt

2
 � (3)

3 ,dD e DC u
dt


 � �  (4)

4 4 ,dI a HD c CI e I
dt

 � � 4  (5)

where ( , ) (1 / )x c x x c2 
 �

5.2 Problem formulation:

Objective 1:
( )

0
min ( , ( )) ( )

f

i

t

i fu t
M t u t dt M t�� (6)

Objective 2: (7)
( )

min ( ( ( , ( ))))
i

iu t
Max M t u t

 tf  is the final time i.e. the planning horizon and ti is the ith

time injection of the dendritic cells. 

Constraints:

Equations (1) through (5) i.e. the mathematical model and

1 1 , 1, 2....,9i i it t t i� �� � 

In this paper, two objectives are considered based on the
typical goals sought by oncologists. Objective 1, as given by
equation (6), seeks to minimize the summation of the running
load and final load of tumor cells. Objective 2 (equation (7))
seeks to minimize the maximum possible value of the tumor
cells in the given time horizon. If only objective 1 is taken 
into consideration, it may so happen that the tumor cells may
shoot up to a very high value at a particular time while
remaining at lower values at other times. This sudden shoot

up of tumor cells to a higher value may lead to later stages of
cancer which is very difficult to treat. So, in order to maintain
the tumor in the benign stage, objective 2 is also considered.
The time horizon considered to implement the multi-
objective optimization is 4500 hours (approximately 6
months). In the given time horizon, the plan is to give
injections of DCV ten times. Thus, the decision variables of
the problem are the time of injections. It is assumed that the
duration of injection every time is one hour and total vaccine
quantity given in each injection is 0.5. Thus, u(ti) is equal to
0.5 c mm-3 h-1.

Table 1. Parameter values

Parameter Description Value Units
(c=cells,
h=hours)

a0 CD4 T birth rate 10-4 c h-1 mm-3

b0 CD4 T death rate 0.005 h-1

c0 Max. proliferation of
CD4 T 

10

d0 ½ saturation constant
of CD4 T

10-2 c -1 h-1 mm3

f0 Carrying capacity of 
CD4 T 

1 c mm-3

a1 CD8 T birth rate 10-4 c h-1 mm3

b1 CD8 T death rate 0.005 h-1

c1 Max. proliferation of
CD8 T 

10

d1 ½ saturation constant
of CD8 T 

10-2 h-1 (mm-3/c)2

f1 Carrying capacity of 
CD8 T 

1 c mm-3

d2 ½ saturation constant
of tumor

0.02 h-1

e2 Killing by CD8 of
tumor

0.1 c -1 h-1 mm3

f2 Carrying capacity of 
tumor

1 c mm-3

e3 CD8 T killing of DC 0.1 c -1 h-1 mm3

a4 IL-2 production by
CD4 T 

10-2 c -1 h-1 mm3

c4 IL-2 uptake by CD8
T

10-7 c -1 h-1 mm3

e4 IL-2 degradation rate 10-2 h-1
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6. RESULTS AND DISCUSSION

We used MATLAB’s implementation of NSGA-II to solve
the multi-objective optimization problem as outlined above.
The algorithm starts with an initial population of possible
solutions within their mentioned bounds and in each 
generation, the solutions are updated based on the genetic
principles. In this work, we considered the population
number to be 40 and the maximum number of generations as
40.

Finally, the algorithm provides the best Pareto curve as 
shown in Fig.3. It can be seen from the Fig.3 that there are
gaps in the Pareto curve in spite of the problem being
continuous. These gaps can be filled by increasing the
population number and the number of generations of the
genetic algorithm, but at the cost of higher computational
effort.  Then, one of the solutions can be chosen from the 
Pareto curve as per the requirement. Here, solution marked in
Fig 3. is chosen because it corresponds to the least value of
objective 1 (tumor burden) among all points of the Pareto 
curve. The time of injections for the chosen point from the
Pareto curve is given in Fig 4. According to this treatment
plan, DCV is injected and the evolution of the tumor cells, T-
cells, interleukin, and dendritic cells are shown in figures 5
through 8 respectively.

From Fig.4, it is observed that injection timings are almost
close during (1700-1800 hours, 2850-2900 hours, and 3700-
3750 hours).  The reason is the increase of tumor cells during 
these periods. So, in order to bring them down immediately,
the frequency of injection times is increased. Thus, the
treatment planning seems to be reasonable and logical.

From figures 5 through 8, the first intervention of dendritic
cells is considered. This intervention is given in the second
hour. Because of this intervention, the helper T-cells, 
interleukin, and cytotoxic T-cells reach their highest value at 
around 200 hours (8 days), 221.9 hours (9 days), 349.7 hours
(15 days) respectively from the time of intervention of DCV. 
At the same time, tumor cells reach a lower value at around
440.6 hours (19 days) due to the first intervention. Similarly,
tumor cells took around 15 days to reach its lower value after
second intervention of DCV. Thus, for the given input of
DCV, the time gap between the interventions should not be
more than 3 weeks in order to avoid the peak value of the
tumor cells. Moreover, it takes more time for the helper T-
cells and cytotoxic T-cells to get activated before reacting to 
the tumor cells. This activation time can be reduced by
injecting more DCV (but within the threshold range) or by
introducing the interleukin therapy (approved by FDA) where
interleukin is also given externally. One of our future plans is 
to consider a combination of dendritic cell therapy and
interleukin therapy.

7. CONCLUSIONS

We have applied multi-objective optimization to find the
optimal schedule of dendritic cell therapy for a given input of

dendritic cells. The freedom of choice of any one solution as
per the requirements is a major advantage of multi-objective
optimization strategy. The obtained treatment planning seems
to be reasonable in controlling the tumor cells from reaching
a higher value. Further analysis suggests that the time gap
between the interventions should be less than 3 weeks in 
order to achieve the objective.  Thus, the obtained protocol
design can guide caregivers in treating cancer subjects.
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Abstract: The purpose of this paper is to stress the importance of selecting the right plantwide control 
structure and the need for a formalized approach that can encompass the many issues that arise in 
plantwide control design.  Since the concept of process control design based on a holistic view of the 
process came about, the variety of procedures and approaches to the design problem have illustrated the 
difficulty of a unified approach. Using examples, a formal design approach is presented to help put in 
context the need and advantages of using such an approach. The examples deal with disturbance 
rejection, throughput maximization and economic optimization of plants consisting of parallel units. 
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1. INTRODUCTION 

 
Industry uses a variety of approaches to accomplish 
plantwide control design. The range of tools used spans from 
engineering judgment to the applications of complex model 
based algorithms.  Over the last 40 years the field of research 
in this area has attacked this design problem on various 
levels. Larsson and Skogestad (2000) provide a good review 
of the various approaches.  Design heuristics based on 
experience, design rules based on case studies, algorithms for 
objective function minimization, etc. have all contributed to 
the improvement of how designs can be accomplished (e.g., 
Downs, (1992), Narraway and Perkins (1993), Luyben 
(1998), Zheng, Mahajanam and Douglas (1999), Kookos and 
Perkins (2002), Chen and McAvoy (2003), Vasbinder and Ho 
(2003), Skogestad (2004), Konda et al. (2005), Ward et al. 
(2006)).  However, the complex nature of the problem and 
the various depths to which it needs to be solved have 
resulted in a design procedure that is difficult to piece 
together from the various approaches that have been put 
forth.  This is not a new issue and almost 20 years ago the 
“Tennessee Eastman challenge problem” (Downs and Vogel, 
1993) was put forward so that various approached could be 
tested against each other.  Nevertheless, today in industry, 
much of the research in this area has still not gained traction 
to have the profound influence possible.  The purpose of this 
paper is to stress the need for a formalized yet simple 
approach that can encompass the many levels that arise in 
plantwide control design.   
 
In section 2 industrial aspects of plantwide control design are 
discussed and two examples illustrate how industry may 
approach the plantwide control problem using a single 
criterion for design guidance.  This points to the need for a 
more formal procedure which is presented in Section 3.  In 
Section 4 the inclusion of plantwide economic variables is 
presented and illustrated in Section 5.  The paper concludes 

that the formal approach presented is a step in the direction of 
helping to organize the design procedure for plantwide 
control.  This paper also illustrates the application of the 
formal procedure to more complex examples that illustrate 
plantwide design involves many issues and one-criteria 
approaches may not be sufficient. 
 

2. STATUS IN INDUSTRY 

 
The traditional approach for designing process control 
strategies for chemical plants has been to set production rates 
by setting process feed rates and then to design automatic 
control systems around each unit operation sequentially 
through the process.  For processes having significant in-
process inventory and not too much in the way of recycles, 
this approach can be used successfully.  However, as 
processes become more complex and at the same time have 
less in-process inventory, the design of a plant-wide control 
strategy becomes a more important part of the overall process 
control design problem.  The interrelation of the plant-wide 
control strategy with the process chemistry and economics 
requires both control theory and also process knowledge.  It 
has become apparent that the design of plant-wide control 
strategies involves not only the development and application 
of process control theory but also, in a more fundamental 
sense, the development of a methodology one uses to 
approach the plant-wide control problem. 
 
While we usually think about material balance and energy 
balance equations applying to a unit operation, they also 
apply to whole processes and to entire chemical complexes.  
The time it takes to accumulate and deplete inventories may 
be longer for large processes or chemical complexes, but the 
laws of accumulation and depletion of material hold 
nonetheless.  Whereas for a process, we assume the rate of 
accumulation of each component to be zero, the fact that the 
control system must ensure that to be the case is often 
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overlooked.  The manipulation of flows, utilities, and the 
readjustment of process operating conditions to maintain a 
balance of material and energy entering and leaving an entire 
process is one of the overriding priorities for the control 
system (Buckley, 1964).  The material balance must be 
maintained not only from an overall viewpoint but also for 
each component in the system. 
 
While traditional control theory can be used to approach the 
control problem as, "Given a process described by a model of 
the form ... ", the plant-wide control problem requires much 
more in the development of the problem statement itself.  It is 
not intuitively obvious at the outset what the underlying 
control problems are - much less how they should be solved.  
As researchers have begun to explore the plant-wide control 
area, the application of methods and techniques as applied to 
case studies has elucidated issues that are difficult to quantify 
and are in need of further discussion and research. 
 
Despite the ever-increasing incentive, segregation of the 
process design and control tasks is still common.  Two 
contributing factors to this segregation are: (1) the difficulty 
of changing from the historical approach of fixing the process 
design before the control engineer becomes involved, and (2) 
the difference in the thought pattern of design and control 
engineers.  In addition it can be costly and time consuming to 
address controllability and operability in a rigorous way at 
the design stage.  The common notion is that process 
economics are solely determined by the steady-state process 
design.  While the nominal steady-state design point is very 
important, it loses its distinction if one is unable to maintain 
plant operation at the design point.  Design decisions are 
often based on steady-state analysis without consideration of 
controllability, process and product variability, or plant-wide 
control issues.  The basic thought pattern in the design stage 
usually follows the form, "Given these conditions, create a 
design to perform this function" (design question), as 
opposed to, "Given this design, how well will it perform its 
intended function?" (rating question).  As existing plants are 
pushed to produce greater throughputs, an additional question 
becomes important, “Given this plant, how can I maximize 
profit?” (optimization question).  
 
Current industrial practice is usually focused on unit 
operation control.  This viewpoint emanates from the 
overriding issue of reliable operation.  These unit control 
strategies are simple and understandable by operators and 
engineers alike and lead to operations that when “sick” can 
usually be healed without the capabilities of experts.  This 
approach has worked reasonably well for many years.  
Furthermore, the high costs of building new facilities have 
led to more retrofits and plants producing products that they 
were not designed to produce.  As plants are campaigned to 
produce a wider variety of product specifications, control 
strategies that are simple and perhaps applicable to many 
different operating points, can result in more reliable 
operation.  
 
This current design practice is being challenged as process 
economics drive toward fewer new designs and more 

operation of existing facilities in new ways.  Techniques for 
plant wide process control design are needed (1)  that result 
in processes that are operated in near optimal fashion while 
not employing complex control technology and (2) that do 
not require the care and feeding of control experts.  Several 
approaches that address the attainment of optimal operation 
of plants while not requiring implementation of complex, 
perhaps difficult to understand control systems, have 
emerged.  Two of these, self optimizing control design 
(Skogestad, 2000) and operational strategies based on process 
chemistry (Ward et al., 2004, 2006) have found particular 
appeal at Eastman.   
 
The importance of being able to discriminate how process 
variables need to behave to achieve optimal operation is 
fundamental when designing plantwide strategies.  Often the 
underlying unit operation strategies can be kept simple and 
usually SISO while the overall plant wide strategy is 
optimizing plant operation in a more natural fashion.  This 
approach has wide appeal when plant reliability and control 
system understandability are required.  Each of these 
approaches builds into the control system a natural “self-
optimizing” that is part of normal operation.  Contrasted with 
the centralized approach of using models to determine an 
optimum and then driving a process to that optimum point, 
optimization designed in from the bottom up provides the 
important robustness and reliability component. 
 
From start-up the primary objective for a new plant is to 
achieve nameplate capacity in a reliable and predicable way.  
Often times the need for optimization of plant operations 
comes after the facility has been operational for a few years.  
By this time top down optimization strategies can be 
implemented, provided the plant has a good regulatory 
control system.  If the optimization strategy is 
counterintuitive, then operator understanding can suffer.  We 
can all attest to the uphill battle to achieve routine usage of a 
control system that, while driving the process to the correct 
economic conditions, does so in an unusual or difficult to 
understand fashion. 
 
The importance of having plantwide control strategies that 
are optimizing in a natural, fundamental way can have long 
term effects.  Operator training and understanding during the 
early years of plant operation sets thought patterns for years 
to come.  When the need for plant optimization arises, the 
basic building blocks of how the control system 
automatically drives plant operation are in place.  The 
process optimizer at this time may only have to make small 
adjustments to a process that is close to optimum already.  
The trick, of course, is that these strategies must be basically 
simple and for the most part SISO.  Our experience is that for 
plants where “self-optimizing” regulatory control strategies 
have been build in from the beginning, we have been 
successful with process optimization projects that have been 
undertaken.  On the other hand, for older processes which 
have control strategies not designed with optimization in 
mind, we may struggle for years working to gain operator 
acceptance to a new strategy.  Even the simple idea of setting 
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process throughput at a place other than the process feed can 
become a difficult endeavour. 
 

Example 2.1 - Changing the production throughput 

manipulator (TPM) for an esterification plant:  Eastman 
operates many processes that have produced chemicals for 
over 50 years.  Esterification chemistry is well known and 
has been a workhorse for the company.  Units that were built 
50 years ago were typically designed with the process 
throughput set at the feed to the process.  Control systems 
consisted of pneumatic single input / single output controllers 
that were difficult to change and had a long operating history.  
As production rates increased over the years due to demand 
growth and incremental process improvement, the original 
plantwide strategy would become limiting.  The original plant 
had the standard scheme with the throughput manipulator 
(TPM) located at the feed as illustrated in Figure 2-1. 
  

 
 
In the late ‘70’s and early ‘80s’ Eastman benefited from 
implementing a change in the TPM location on numerous 
plants.  Early adoption of this significant change was difficult 
because of (1) an ingrained mindset toward needing process 
feeds constant, (2) operator understanding of an “inventory-
to-feed” strategy, and (3) the difficulty of reversing the 
control decision using pneumatic hardware.  Today at 
Eastman, the notion of setting the TPM at a location other 
than the process feeds is common and is driven by variability 
propagation and ease of operation requirements.  The benefits 
of choosing the best location for the TPM have also become 
realized in our capital design process. 
 
For the esterification process the first change was to move the 
TPM from the process feed rate to the distillate flow rate 
leaving the first distillation column as shown in Figure 2-2.  
This strategy worked well for many years because many of 
the disturbances entering the reactor were directed away from 
the more sensitive separation portion of the process.  The 
extraction step of the process was intended to wash unreacted 
alcohol from the ester product.  As the extraction step became 
the process bottleneck, it became evident that its behaviour as 
a function of organic feed rate was very nonlinear.  This 
nonlinearity stemmed from the fact that increasing organic  

 
 
feed rate resulted in an increasing composition of the alcohol 
taken from the extractor to the final distillation column.  The 
increase in distillate rate needed to remove the alcohol from 
the final product would aggravate the situation by increasing 
the feed rate to the extractor (stream “R” in Figure 2-2).  The 
point at which the process would enter this “windup” varied 
with the amount of unreacted alcohol reaching this part of the 
process.  This windup in the recycle loop is similar to 
Luyben’s “snowball effect” (Luyben, 1994), but the cause in 
our case is a limitation in mass transfer rate whereas in 
Luyben’s case it is a limitation in reaction rate.  For this 
process, the windup condition usually took 12-24 hours to get 
fully engaged.  This made it difficult for operators to 
confidently set the production rate.  In addition, what may be 
a maximum and stable rate today might result in the windup 
condition tomorrow.  The outcome of this uncertainly 
resulted in operations setting a lower than optimum 
production rate to guarantee process stability. 
 
A further improvement in locating the TPM occurred when it 
was relocated to be the feed to the extraction system (Figure 
2-3).  Obviously, this eliminated variability from propagating 
to the extractor, but more importantly, it resulted in a self 
regulating system that avoids the windup should the operator 
set the TPM too high.  In particular, if the TPM is set too 
high and excess alcohol leaks to the final distillation system, 
take note of the system response to the extra distillate flow 
recycled to the extractor.  Namely, it results in less flow 
being drawn from the front end of the process and the 
extractor, while not at the optimum feed rate, does remain 
stable.  This situation is quite recoverable by operators who 
note that production rates have fallen, and realize that they 
have set the extractor feed rate too high.  We found that the 
operators were capable of optimizing the operation once fear 
of setting the extractor feed too high was removed.  
 
The principle that proved most useful is the idea that the 
optimum did not lie against or close to a process cliff.  The 
original strategy was very unforgiving once the process was 
pushed too far.  Extractor flooding, loss of liquid/liquid 
immiscibility, and flooding of the final distillation column 

Figure 2-2.  Esterification process.  Inventory control 
strategy with column 1 distillate rate used as the TPM. 
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Figure 2-1.  Esterification process.  Inventory control 
strategy with column 1 feed rate used as the TPM. 
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meant several hours of lost production.  The ability to 
experiment with the process without the penalty of passing 
this “point of no return”, gave operators confidence in the 
control system to recover if they ended up pushing rates too 
high. 
 

 
 

Example 2.2 - Control strategy for a liquid-liquid 

extraction process:  During the control design phase one 
may chose from a variety of criteria to drive the control 
strategy design and the criterion chosen is usually based upon 
engineering judgement.  The importance of the criterion 
choice is often not appreciated.  The objective of this 
example is to illustrate how the choice of a design criterion 
that aims to propagate disturbances to insensitive locations 
results in a particular design.  The resulting control strategy 
can then be compared with those obtained using a more 
methodical approach.   
 
Consider the extraction process in Figure 2-4 where acid is 
transferred from the water/acid feed (F) to the extract (E) by 
use of a solvent (S).  The remaining water is the raffinate 
product (R).  The total inventory is self-regulated by 
overflow of extract, but the interface level (component 
inventory) does not self regulate.  How should this inventory 
be controlled?  Two alternatives are shown in Figure 2-5. 

 
 

Strategy I.  Let aqueous feed F control interface level (with 
constant outflow R) 
Strategy II.  Let aqueous outflow R control interface level 
(with constant feed F). 
  
Both of these structures have been used for extraction control 
in various services including the example given here.  
Obviously, both structures work and give the same result if 
everything is constant (no disturbances).  How do the two 
strategies differ when there are disturbances?  To understand 
the difference we ask the question: “Where does the 
disturbance go”?  
 
Let x denote the acid fraction, and consider variation 
(disturbance) in the acid feed fraction xF by ±1% (30±1%).  
For strategy I, the resulting variation in the acid composition 
of the extract product (xE) is  ±0.856% (21.4 ±0.856%) and 
for strategy II it is  ±0.506% (21.4 ±0.506%).  For details see 
the mass balances in Table 1.  Thus, strategy II is the 
preferred strategy of the two if the objective is to have small 
variations in extract composition, xE. 
 

In summary, for strategy I the variation in xF results in 
variations in the feed flow, F, and in xE (with gain 0.856), 
while for strategy II the variation in xF results in variations of 
the outlet flow, R, and to a lesser extent in xE (with gain 
0.506).  Strategy II is the preferred strategy of the two if the 
main objective is to have small variations in xE.  This 
example suggests that different inventory strategies may 
result in process variability being transferred to portions of 
the process that are insensitive to variation or portions in 
which variability is harmful.  The idea of propagating 
disturbances to insensitive locations gives good insight and 
can result in good designs.  However, for more complex 
problems and for less experienced engineers a more 
systematic approach is needed. 

 

Figure 2-4.  Liquid-Liquid Extraction Process 

Figure 2-5.  Alternative Control Strategies for Liquid-
Liquid Extraction 
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Figure 2-3.  Esterification process.  Inventory control 
strategy with extractor feed rate used as the TPM. 
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 Feed, F S Extract, E Raffinate, R 

Case Base I II III,IV All Base I II III,IV Base I II III,IV 

Water 70 70.568 69 66.774 0 10 10.568 10.33 10 60 60 58.67 56.77 

Acid 30 
(30%) 

31.705 
(31%) 

31 
(31%) 

30 
(31%) 0 30 

(21.4%) 
31.705 

(22.3%) 
31 

(21.9%) 
30 

(21.4%) 0 0 0 0 

Solvent 0 0 0 0 100 100 100 100 100 0 0 0 0 

Total 100 102.273 100 96.77 0 140 142.273 141.33 140 60 60 58.67 56.77 

 
Table 1.  Mass balances for extraction process: Base case (xF = 30%) and with disturbance (xF = 31%) for control strategies I, 

II, III, and IV.  (Assumption: Equilibrium relationship Acid/Water = 3 in extract, E.) 
 

3. A PLANTWIDE CONTROL DESIGN PROCEDURE 

 
No matter what approach we use, the following decisions 
need to be made when designing a plantwide control strategy: 
  
Decision 1.  What to control? Selection of controlled 
variables (CVs) to achieve  

a. Good steady-state performance (economics), and  
b. “Stable” operation with little dynamic drift (including 

selecting CVs related to inventories) 
 
Decision 2.  Where to set the production rate? Placement of 
throughput manipulator (TPM)  
 
Decision 3.  How to control the inventories? How to pair the 
loops? That is, selection of a control configuration that 
interconnects CVs and MVs.   
 
Often in industrial practice all issues are considered 
simultaneously without making formal decisions that answer 
the above three questions.  For the extraction process in 
Example 2.2 the need for good extract composition raised the 
question of how best to control the aqueous inventory.  This 
naturally leads one to consider the same issues on a broader, 
plantwide scale.  To be effective, a more systematic 
procedure is helpful.  
 
The plantwide control structure design procedure of 
Skogestad (2004) consists of the following seven steps: 
 
I.  Top-down part 
 
Step 1. Define operational objectives (economics) and 

constraints.  
Step 2. Identify degrees of freedom (MVs) and optimize 

operation for important disturbances (offline 
analysis) 

Step 3. Select primary (economic) controlled variables 
  - Decision1a 
Step 4. Select location of throughput manipulator 
  - Decision 2  
 
 

II.  Bottom-up part 
 
Step 5. Structure of regulatory control layer (including 

inventory control) 
a. Select secondary (“stabilizing”) CVs (Decision 1b) 
b. Select “pairings” between CVs and MVs (Decision 3) 

Step 6. Structure of supervisory control layer 
(decentralized, MPCs?) 

  - Related to Decisions 1a and 3 
Step 7. Structure of (and need for) optimization layer (RTO) 
  - Related to Decision 1a 
 
The top-down part (steps 1-4) is mainly concerned with 
economics and steady-state considerations are often 
sufficient.  Dynamic considerations are required for steps 4 to 
6.  
 
Steps 1 and 2 involve analysis of the optimal operation of the 
plant, and should form the basis for the actual decisions in 
Steps 3 to 7.  A detailed analysis in steps 1 and 2 requires that 
one has available a steady-state model and that one performs 
optimizations using the model for various disturbances.  This 
is often not done in industrial practice.  The model used for 
design may not be suitable or available, the working 
relationship between the design and control functions may be 
weak, or there may not be time to perform this analysis. 
 
Nevertheless, one should at least perform a simplified 
engineering version of steps 1, 2, and 3 where one thinks 
through the economics of the present and future operation 
with aim of using process insight to propose which variables 
to control, keep constant, from a steady-state economic point 
of view.  In particular, a good engineer can often easily 
identify the “active constraints” that the control system 
should maintain.  That is, where should one optimally stay at 
maximum or minimum values of flow, temperature, pressure, 
composition, etc?  
 
Simplified Step 1-3.  Identify degrees of freedom and main 
disturbances.  Based on process insight, select variables to 
keep constant at steady-state in order to achieve close-to-
optimal economic operation (in spite of disturbances). 
 - Decision 1a  
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There have been many applications of the above design 
procedure, e.g. see Araujo et al. (2007), but most of them on 
academic problems.  There exist several other procedures for 
plantwide control (e.g., Luyben et al., 1998), but they focus 
mainly on the bottom-up part, and in particular on Step 5.  
However, making good decisions in step 5 can be difficult 
without having first gone through the top-down plantwide 
economic analysis in steps 1 to 4.   
 
Step 4 (location of TPM) was addressed in Example 2.1, and 
this issue is further discussed in the recent PhD thesis by 
Aske (2009); see also Aske et al. (2008).  
 
The focus of the rest of this paper is on step 3 (economic 
CVs).  In this respect it is important to notice that the best 
control structure may vary, and, depending on market 
conditions, there are two main modes of operation: 
 

Mode I.  Maximize efficiency (for a given throughput). 
 

With a given throughput (production rate), the value of the 
products is usually known, and provided there are degrees of 
freedom left after satisfying the constraints (specifications), 
the economic objective is to minimize the use of utilities, 
maximize raw material yield, and to minimize waste 
treatment costs.  These and other issues that increase specific 
production costs are the same as maximizing the efficiency.  
As discussed in section 2 on the industrial status, the control 
system for a new plant is usually set up to handle this mode 
of operation well.  Changes in production rate are considered 
a disturbance. 
 

Mode II.  Maximize throughput (with production rate as a 
degree of freedom). 
 

When market demand is good and product prices are high, 
the profit is maximized by running the plant at maximum 
throughput.  In fact, the first thing that the operation people 
usually focus on after startup of a new plant is to increase 
capacity because the opportunities for extra profit in mode II 
are usually much larger than in mode I (In spite of this there 
is usually no effort during the design phase to design a 
control system that can operate at maximum throughput).  
Operation at maximum throughput usually corresponds to 
using all degrees of freedom to satisfy active constraints.  
There will be a bottleneck somewhere in the plant against 
which operation at maximum throughput will run.  Trying to 
increase the throughput will result in infeasible operation in 
the bottleneck unit.  The maximum flow through the 
bottleneck unit is then an active constraint, and operation in 
mode II should be focused on keeping this flow at its 
maximum (Aske, 2009). 
 
The esterification plant in Example 2-1 is a case of operating 
in mode II with the extraction section being the bottleneck.   
 

Example 3-1 - Application of the design procedure to  

Example 2-2:  The design criterion for Example 2-2 was that 
disturbances should be propagated to insensitive locations.  
At this point we want apply the more systematic plantwide 

procedure.  The process is very simple, so we use the 
simplified approach for selection of controlled variables 
(there are no degrees of freedom left for economic 
optimization once the specifications are satisfied). 
 
Simplified Step 1-3.  Identify degrees of freedom (MVs) and 
main disturbances and based on process insight, select 
primary controlled variables (Decision 1a).  
 
The extract product flow (E) is on overflow, so there are 3 
MVs that can be used for control; the two feed flows (F and 
S) and the raffinate R.  However, at steady state there are 
only 2 degrees of freedom because the interface level, which 
has no steady-state effect, needs to be controlled.  Further, the 
throughput is assumed to be given (mode I), which consumes 
another degree of freedom.  We are then left with only 1 
steady-state degree of freedom, and thus need to decide on 1 
“economic” CV.  From process insight it is important to 
maintain a constant product composition (xE) so we decide 
that this should be controlled.  There are then no degrees of 
freedom left for economic optimization. 
 
Decision 1a: The acid product composition xE should be kept 
constant.  The “economic” CV is therefore CV1 = xE. 
 
Step 4.  Select location of throughput manipulator (TPM) 
(Decision 2). 
 
The location of the TPM influences the structure (pairing) of 
the inventory control system in Step 5.  The throughput is 
often located at the main feed, but could generally be 
anywhere in the process.  Since the two proposed control 
strategies both have a constant solvent feed flow, we assume 
here that the solvent feed S is the throughput manipulator 
(Decision 2).  
 
Step 5.  Structure of regulatory control layer (including 
inventory control) 
 
Decision 1b: The total inventory is self-regulated by 
overflow, but also the interface level between the two liquid 
phases must be controlled.  Thus, CV2 = interface level. 
 
We must next decide how to control the interface level.  With 
solvent feed rate S as the TPM, we have left two candidate 
MVs: Feed F and outflow R.  The main issue for regulatory 
control is usually dynamics, and from this point of view there 
does not seem to be any significant difference between the 
two choices.  Another issue for regulatory control is to avoid 
saturation of the MV, and this tells us that we should prefer 
the largest flow, which is the feed F.  However, one should 
also think ahead to Step 6, which is the structure of the 
supervisory layer.  Here, the concern is to control acid 
composition (CV1 = xE) which depends directly on the feed F 
but only indirectly on the outflow R.  Thus, we would like to 
“save” F for the supervisory layer. 
 
Decision 3.  Use R to control the interface layer (MV2 = R).  
This gives inventory control in the direction of flow, which is 
normal with the throughput set at the feed. 
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Step 6.  Structure of supervisory control layer  
 
Decision 3, continued.  The remaining MV1 = F is used to 
control acid composition (CV1 = xE).  The final control 
structure is shown as strategy III in Figure 3-1. 
 
Note that we assumed that the product composition xE

 can be 
measured (CV1 = xE), but this may not be possible in practice.  
We then need to find something else to “control” (keep 
constant).  This is what we indirectly did in the previously 
proposed strategies where we selected 
 
Strategy I: Keep CV1 = R constant (and use F to control the 
interface level) 
 
Strategy II: Keep CV1 = F constant (and use R to control the 
interface level) 
 
However, both of these strategies give undesired variations in 
the product composition xE; we found ΔxE/ ΔxF = 0.856 for 
strategy I and ΔxE/ ΔxF = 0.506 for strategy II.  It is possible 
to add a supervisor layer, where one adjusts R (strategy I) or 
F (strategy II) such that xE is kept constant.  This 
modification to strategy II is shown as Strategy III in Figure 
3-1. 
 

However, assume there is no online measurement of the 
extract composition xE.  One option would then be to 
estimate xE using a model and available measurements (“soft 
sensor”), but this is a bit complicated.  Is it possible to find a 
simple strategy (maybe a combination of strategies I and II) 
that gives ΔxE/ ΔxF = 0 ? Yes, it is! 
 

Strategy IV: Keep the flow difference CV1 = F – R constant 
(while at the same time adjusting F and R to control interface 
level).  One possible implementation is shown in Figure 3-1.  
 
Why does strategy IV give constant composition xE? 
Controlling the interface level (which indirectly depends on 
the feed composition xF) closes the material balance at 
steady-state.  From the total material balance we have E = S 
+ (F-R) so by keeping F-R constant, we have that the flow E 
remains constant (because the throughput S is constant) and 
assuming equilibrium it follows that the composition of E 
must remain constant (again assuming S constant).  If the 
throughput S varies (disturbance) then all flows should be 
scaled by S to keep xE constant, so by process insight we 
derive that an “improved strategy IV” is to keep the variable 
CV1 = (F-R)/S constant.   
 
Strategy IV is a special case of a “self-optimizing” 
measurement combination, as discussed below.  In fact, since 
we have nd = 1 disturbance (xF) and nu = 1 steady-state 
degrees of freedom, we have from the nullspace theorem 
(Alstad and Skogestad, 2007) that self-optimizing control can 
be obtained by controlling a combination of nd + nu = 2 
independent measurements.  The flows (MVs) R and F are 
here candidate “measurements”, so a possible controlled 
variable is CV1 = h1 F + h2 R, where in general the optimal h1 
and h2 can be found from the nullspace theorem.  In this 
example, we found by process insight that the optimal choice 
is h1 = 1 and h2 = -1 (strategy IV).  
 

4. SELECTION OF ECONOMIC (PRIMARY) CVs 

 
In the above example, we found that the flow difference F-R 
is a good primary CV.  How do we select primary (economic) 
CVs in a systematic manner (step 3)?  
 
We make the standard assumption here that a steady-state 
analysis is sufficient for studying the economics.  The 
question is: How can we turn optimization into a setpoint 
problem? The issue is to find some “magic” variable, c, to 
keep constant.  The obvious “magic” variable is the gradient 
of the cost function, Ju = dJ/du, which should be zero at the 
optimum point, independent of disturbances.  However, 
before we look at this idea, let us look in a bit more detail in 
Steps 1 to 3 in the proposed procedure for selecting economic 
CVs. 
 
Step 1.  Define operational objectives (cost J) and constraints 
 
In many cases a simple economic cost is used: 
 

Profit = - J = value products – cost feeds – cost 
utilities (energy) 

 
Other operational issues, such as safety and environmental 
impact are usually formulated as constraints.  For cases with 
good marked conditions we often have a constrained 
optimum and the cost function can be simplified to J = - TP 
(mode II, maximum throughput).  

Figure 3-1.  Self-Optimizing Strategies for Extraction 
Process 
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Other cost functions are also possible.  For example, consider 
the extraction process.  Here, the optimum is to keep a 
constant product composition xE, but this is not possible, 
even at steady-state, because there is no online measurement.  
We therefore want to control something else that gives 
indirect control of the primary output (Hori et al., 2005).  The 
cost function is then J = (xE – xES)2. 
 
Step 2.  Identify degrees of freedom and optimize operation 
for various disturbances. 
 
One approach is to use a steady-state flowsheet simulator, if 
available, to optimize operation (with respect to the degrees 
of freedom) for various disturbances.  In many cases, simpler 
models and approaches may be used.  Typical “disturbances” 
include feed composition, feed rate, reaction rate constants, 
surroundings, values of constraints and prices. 
 
Step 3.  Select primary (economic) controlled variables 
 
The issue is to select the primary (economic) controlled 
variables (CVs).  That is, for what should we use the (steady-
state) degrees of freedom? What should we control?   
 
1.  Control active constraints.  The active constraints come 
out of the analysis in step 3 or may in some cases be 
identified based on physical insight.  The active constraints 
should be selected as CVs because the optimum is not “flat” 
with respect to these variables.  Thus, there is usually a 
significant economic penalty if we “back off” from the active 
constraints, so tight control of the active constraints is 
usually desired.  
 
Specifically, in mode II the feed rate should be adjusted to 
keep the bottleneck unit operating at its active constraints.  
Any back-off from the active constraints will reduce the flow 
through the bottleneck unit and give a loss in feed flow 
(production) which can never be recovered. 
 
2.  Identify “self-optimizing” variables related to the 
(possibly) remaining unconstrained degrees of freedom.  

These are “magic” variables which when held constant result 
in close-to-optimal operation (with a small loss), in spite of 
the presence of disturbances.  The term “magic” is used to 
signify that the choice may have a significant effect on the 
economics (loss), and that it is not generally obvious what a 
good choice is.  A good self-optimizing variable should give 
a “flat” optimum, which means that tight control of these 
variables is usually not required (as opposed to the active 
constraints).  Note that the different self-optimizing variables 
must be found for each region of active constraints. 
 
There are two main possibilities for selecting self-optimizing 
CVs: 
 

1. Select single measurements as CVs (however, it is 
difficult to find single measurements in a systematic 
manner, so one must often use the “brute force” 
approach) 

 
2. Use measurements combinations as CVs (here, 

methods exist to find optimal combinations). 
 
To identify good candidates for a controlled variable, c, we 
may use the following four requirements (Skogestad, 2000): 
 

Requirement 1.  Its optimal value is insensitive to 
disturbances (so that the optimal variation Δcopt is small). 

Requirement 2.  It is easy to measure and control 
accurately (so that the implementation error n is small). 

Requirement 3.  Its value is sensitive to changes in the 
manipulated variable, u; that is, the gain, G, from u to c is 
large (so that even a large error in controlled variable, c, 
results in only a small error in u.  Equivalently, the optimum 
should be ‘flat’ with respect to the variable, c. 

Requirement 4.  For cases with two or more controlled 
variables, the selected variables should not be closely 
correlated. 

All four requirements should be satisfied.  For example, for a 
marathon runner, the heart rate may be a good “self-
optimizing” controlled variable (to keep at constant setpoint).  
Let us check this against the four requirements.  The optimal 
heart rate is weakly dependent on the disturbances 
(requirement 1) and the heart rate is easy to measure 
(requirement 2).  The heart rate is relatively sensitive to 
changes in power input (requirement 3).  Requirement 4 does 
not apply since this is a problem with only one unconstrained 
input (the power). 
 
In addition to the above requirements, some systematic 
approaches to evaluate and find good “self-optimizing” CVs 
(especially associated with the unconstrained degrees of 
freedom) are:  
 

Approach 1 - Brute force.  Conceptually, the simplest 
approach for finding candidate CVs is the “brute force” 
approach where one considers the economic loss imposed by 
keeping a candidate set of CVs constant when disturbances 
occur (rather than re-optimizing their values),  
 
 Loss = J(CV = constant, d) – Jopt(d) 
 
The term “brute force” is used is because one must do a 
separate evaluation of each candidate set of CVs.  The “brute 
force” approach is the most general and exact method, but 
also the most time consuming method because there are 
essentially an infinite number of possible CVs (at least if 
measurement combinations are included) that can be 
suggested, and for each of them we need to do computations 
to find the cost for each disturbance.  
 
The “brute force” approach was essentially what we initially 
tried with strategies I and II for the extraction process, where 
we evaluated the change in product composition (ΔxE/ ΔxF) 
resulting from a disturbance in feed composition. 
 
Approach 2 - Use analytic expressions or insight about 

the optimum.  This is not a general approach, but it may be 
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very effective for cases where it works.  One useful method is 
to start from the fact that at the optimum the gradient of the 
cost J with respect to the degrees of freedom should be zero: 
 

At optimum: Gradient = Ju = dJ/du = 0  
 
These are also known as the necessary condition of the 
optimum (NCO) (Srinivasan, et al).  It seems obvious that the 
gradient CV = Ju is the “ideal” self-optimizing variable 
(Halvorsen and Skogestad, 1997), However, it may be 
difficult to obtain the expression for Ju or it may depend on 
non-measured variables.  
 
Approach 3 - Exact local method and optimal 

measurement combinations.  The details are found in 
Halvorsen et al (2003), Alstad and Skogestad (2007) and 
Alstad et al. (2009).  For the case single measurements as 
CVs, this is a “local” version of the brute force approach.  
However, the evaluation is much more efficient.  In addition, 
the “nullspace method” can be used to find truly optimal 
measurement combinations, as was done in strategy IV for 
the extraction process. 
 
Approach 4 - Maximum gain rule.  The maximum gain rule 
(Halvorsen et al., 2003) says that one should control 
“sensitive” variables with a large scaled gain |G|/span(CV).  
This captures two main concerns:  
 

1. The optimal value of the CV should be 
approximately constant (independent of 
disturbances), that is, span(CV) should be small.  

2. The CV should be sensitive to changes in the 
unconstrained degrees of freedom (to ensure a flat 
optimum), that is the gain G = ΔCV / ΔMV should 
be large. 

 
The maximum gain rule can be derived from the exact local 
method by making some not too serious assumptions.  An 
important advantage of the maximum gain rule is the insight 
that it gives.   
 

5. OPTIMAL OPERATION OF PARALLEL UNITS 

 
Let us return to an important problem, often encountered in 
industrial practice.  During the life of production of a 
product, a company often times expands capacity as demand 
grows.  Early plant design may involve process designs based 
on incomplete data as time to market drives 
commercialization timelines.  Once operation begins, 
improved operating conditions, equipment designs, and 
process topology emerge.  When capacity expansion takes 
places the new capacity may come simply by adding 
equipment to the existing process or by construction of a 
parallel plant.  The new plant is seldom run in a “stand alone” 
fashion, but instead may share some unit operations with the 
existing facility.  As expansion continues, the complexity of 
the topology among the plants can lead to plant wide control 
problems. 
 

In its simplest form, consider a number of plants operating in 
parallel, each of differing ages, and each with its own 
efficiency and yield relationships that are dependent on 
throughput.  How should we optimally load each plant to 
achieve a target production while minimizing the total 
production costs?  We can derive useful result from the 
necessary optimality condition Ju = 0.  We derive that, 
provided the total production rate is given, it is optimal to 
load the units such that we have equal marginal costs in all 

units (which corresponds to Ju = 0). 
 
Proof.  To derive this result, consider n independent parallel 
units with a given total load (e.g., given total feed).  Let the 
total cost be J = Σ Ji and let the total feed (or some other 
limited load for the units) be fixed, F = Σ Fi.  The necessary 
conditions of optimality is that Ju = δJ/δu = 0 where u in this 
case is the vector of feed rates Fi.  Since the total feed is 
fixed, there are n-1 independent degrees of freedom Fi, and 
we assume these are the Fi’s for n-1 first units (and for unit n 
we have � �

��
1-n

1i in FFF  ) The units are assumed to be 

independent which means that the cost in unit i, Ji, depends 
only on the flow into unit i, Fi.  However, note that when we 
make a change in Fi, we also need to change Fn, and we have 
dFn = - dFi.  The optimality condition δJ/δFi = 0 for variable 
Fi then becomes  
 

δJ/δFi = δ(J1 + J2 + … Ji + … Jn)/δFi = δ(Ji + Jn)/δFi  
= δJi/δFi � δJn/δFn = 0 

 
or δJi/δFi = δJn/δFn.  Since this must hold for all i units, we 
have proved that one should operate such that the marginal 
cost δJi/δFi is the same in same units.  End proof. 
 
Urbanczyk and Wattenbarger (1994) applied this criterion to 
the maximization of oil production of wells that produce both 
oil and gas, but where the total gas handling capacity is fixed 
(limited).  In their application Ji is the oil production and Fi is 
the gas production in well i, and the idea is to operate the 
wells such that δJi/δFi is the same for all wells; that is, by 
increasing the gas production by a given amount δFi one gets 
the same benefit in terms of extra oil production δJi in all 
wells. 
 
Good self-optimizing variables are then the difference in 
marginal cost between the units (which should be zero).  
Below we discuss two industrial applications of this idea. 
 
Example 5-1 – Operation of parallel refining systems: 
Eastman received an industry award for its application of 
advanced control to optimally load three parallel refining 
systems.  Each system consists of four distillation columns 
used to refine crude reactor product.  The application uses 
process data to establish operating costs for processing 
material from crude reactor effluent to saleable product.  
Based on operating costs, process operation limits, and utility 
availability, the feed rate to each refining train is adjusted to 
match reactor production with refining system production.  
The allocation of load to each system is adjusted to achieve 
equal marginal refining costs. 
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Example 5-2 – Syngas production in parallel furnaces: 
For many years Eastman produced synthesis gas by reacting 
methane and steam in reforming furnaces.  The process 
consisted of 15 furnaces operated in parallel, see Figure 5-1.  
The effluent gas from the furnaces was combined as feed to 
three carbon dioxide removal systems.  The product syngas 
from the three carbon dioxide removal systems was 
combined to form a single product gas used in downstream 
chemical production.  The 15 reforming furnaces, constructed 
over the span of three decades, each had different energy 
efficiency characteristics as well as different yield 
performance as technology advanced.  In addition, the three 
carbon dioxide removal systems were of varying efficiency 
and performance.  Newer systems were better instrumented, 
had valves that performed better, and had on-line analytical 
measurements.  At any time, there were one to three furnaces 
down for routine maintenance. 
 

The optimum operation of the plantwide system to coordinate 
pressure and production among the interconnected gas flow 
network was a significant challenge.  The simple objective of 
matching production of syngas with consumption often ended 
up varying the production rate on the newest furnace because 
it could most gracefully handle the needed changes.  From an 
optimization point of view this approach usually resulted in 
the most efficient units not being operated at their maximum 
rates.   
 
Normally with units in parallel, an expected “self-
optimizing” strategy is to operate with the same outlet 
conditions (temperatures or compositions) of all parallel 
units.  This would have been a good strategy if the reactors 
were identical, but, for this example it is more economical to 
operate each furnace differently based on its particular 
efficiency and yield profile and then ensure that the 
combination stream met the total stream specifications.  In 

particular, the newer more efficient furnaces were able to 
produce a much purer product for the same cost as the older 
units producing a much less pure product.  The purity of the 
product from each furnace was a relatively weak function of 
feed rate.  The final layer of complexity arises from the 
efficiency of the carbon dioxide removal system.  Each 
system was connected to a designated set of furnaces so that 
it was beneficial to operate furnaces linked to the better 
performing carbon dioxide removal system. 
 
The optimization layer to coordinate the total process 
production and the allocation of that production to various 
parallel units was complicated by the presence of crossover 
lines.  These lines added operational flexibility but created an 
ever increasing complexity of the optimization problem.  
Local MPC controllers for furnace operation and supervisory 
control for the carbon dioxide removal systems allowed for 
near optimal operation at the local level illustrated in Figure 
5-2.  Overall optimization was approached by production 
loading strategies and coordination using a supervisory MPC 
controller.  As solutions to this problem were developed, it 
became clear that technology to guide us on the appropriate 
degree of decentralization was sparse.  Developing a 
centralized system with all the CV’s and MV’s in  
 

 
 

the same MPC was problematic due to the routine on-
line/off-line operation of the furnaces.  Being able to 
gracefully add and remove systems from the overall control 
system was critical to success.  In addition, measurement 
reliability often resulted in some furnaces being operated in 
“local’ mode; i.e., not connected to the centralized MPC.  
The eventual control system needed to be developed and 
commissioned in reasonable time, needed to be implemented 
on available hardware, needed to be understood by plant 
operating staff, and had to be maintainable as process 

Figure 5-1.  Syngas process with fifteen furnaces and 
three CO2 removal systems. 
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improvements were made.  This led to a decentralized 
strategy choice as shown in Figure 5-3. 
 

 
 

Figure 5-3.  Coordination MPC supervising fifteen local 
furnace MPC controllers. 

 

These examples illustrate the complex nature of an industrial 
plantwide control problem.  The use of a formalized 
procedure can make known improved strategies that may go 
undetected when using only one or two design criteria for 
guidance.  The ability to weave in practical issues that 
complicate implementation is paramount.  Using a formalized 
procedure can help unscramble the vast array of decisions 
that can overwhelm designers and cause them to continue 
reliance upon a unit operation focus. 
 

 

6. DISCUSSION 

 

The design of plantwide control strategies can be seen from 
two viewpoints.  These are (1) the design of control strategies 
for the regulation of plant material and energy inventories 
and (2) the design of control strategies for process economic 
optimization.  The design of inventory control strategies 
determines the manipulated variables that remain for process 
economic optimization.  Concepts are needed that guide the 
design of the inventory control strategy such that the design 
of the process economic optimization strategy is made easy.  
It is clear that if a good job is done during the design of the 
inventory control strategy, such as setting the TPM near the 
bottleneck, then the remaining process economic 
optimization strategy design is made easier.  On the other 

hand, if the inventory control strategy results in key 
optimization variables being far away from available 
manipulated variables, then strategies for optimizing process 
economics will be difficult if not impossible to implement. 
 
The examples illustrate that the inventory control strategy 
design not only affects the dynamics between manipulated 
and controlled variables used for optimization, but also can 
change the gain as well.  The emphasis upon placement of the 
TPM for a process has long been recognized as a key 
decision in the resulting inventory control strategy.  It is 
becoming more evident that this decision also determines the 
difficulty of the remaining process economic optimization 
strategy design.  Techniques to determine self-optimizing 
control variables can be effectively and easily employed if 
the variables available to optimize the process have good 
dynamic linkage with their manipulated variable 
counterparts. 
 
The examples also illustrate that the application of 
optimization from a top down viewpoint may guide one to 
select manipulated variables that should remain free for 
economic optimization while other should be used for 
inventory control.  The formalization of a procedure to 
organize the design of these two phases of control includes 
the concepts of: (1) TPM location within the process, (2) 
control of unit operation process variables against their local 
constraints, and (3) the development of measurement 
combinations whose control implies nearness to the economic 
optimum. 
 
The application of plantwide control design procedures for 
new plants is certainly an obvious direction of growth.  
However, the redesign of plantwide control structures for 
existing plants has been shown to be very beneficial.  The 
known locations of process bottlenecks, known market 
conditions and product demands, and the operating nuances 
of a running process all make the plantwide design procedure 
more understandable and manageable.  Using a procedure to 
determine alternate control structures can lead to new ideas 
for control that may have been missed for existing processes.  
As noted, the migration from tried and true control, but 
inferior, control strategies to new and unfamiliar strategies 
can be difficult. 
 
 

7. CONCLUSION 

 
Since the concept of process control design based on a 
holistic view of the process came about, the variety of 
procedures and approaches to the design problem have 
illustrated the difficulty of a “one size fits all approach.”  The 
examples presented illustrate the application of a few 
industrial design approaches.  A more formal design 
procedure is presented and it is applied to the industrial 
examples.  The importance of addressing process economics 
in the control design procedure is discussed and the industrial 
need to run plant at their maximum feed rate (mode II) is 
emphasized.  The use of a plantwide design procedure that 
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incorporates and organizes the variety of concerns and 
technical issues in this important area is demonstrated. 
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Abstract: An industrial implementation of a coordinator MPC to maximize throughput at the
large-scale K̊arstø gas plant is described. The “coordinator MPC” coordinates the flows through
the network and not the local MPCs. It uses as degrees of freedom (MVs) the flows not used by
the local MPCs (feeds, crossovers), and maximizes the throughput subject to the keeping the
remaining capacities in all units zero or positive. A key idea is to use the local MPCs to estimate
the remaining capacities in the units (Aske et al., 2008). Although not fully implemented, the
coordinator MPC is found to be a promising tool for implementing maximum throughput.

Keywords: Model based control, throughput, implementation, optimization, capacity.

1. INTRODUCTION

This paper describes an actual industrial implementation
of the method for maximum throughput proposed earlier
by Aske et al. (2008). The application is the K̊arstø
gas processing plant located in Norway, which receives
rich gas and unstabilized condensate through pipelines
from more than 30 producing offshore fields. This set
high demands, not only to the plant efficiency and its
regularity, but also to the plant throughput. Limited gas
plant processing capacity means that one or more fields
must reduce production or even shut down. Therefore,
it is important that the K̊arstø plant does not become
a “bottleneck” in the Norwegian gas transport system.
The K̊arstø plant has no recycles or reactors, but it has
several independent feeds and parallel flows that make it
possible to have multiple bottlenecks at the same time.
The bottlenecks may move due to disturbances, thus the
throughput maximizing is a dynamic and multivariable
problem.

The overall feed rate (or more generally the throughput)
affects all units in the plant. For this reason, the through-
put is usually not used as a degree of freedom for control
of any individual unit, but is instead left as an “unused”
degree of freedom (uc) to be set at the plant-wide level.
The throughput at the K̊arstø plant is presently set by
the operators who manipulate the feed valves to satisfy
orders from the gas transport system (operated by another
company). The objective of this work is to coordinate the
throughput manipulators (uc) to achieve economic optimal
operation.

In general, to optimize the economic operation of a plant,
one may use real-time optimization (RTO), normally
based on (rigorous) steady-state models. Standard RTO

methods require the plant to be close to steady state before
performing a reoptimization based on data reconciliation
or parameter estimation (Marlin and Hrymak, 1997). How-
ever, many plants are rarely at steady state or important
economic disturbances occur more frequent than the con-
trolled plant response times. At least in theory, it is then
more suitable to use dynamic optimization with a non-
linear model, which may be realized using dynamic RTO
(DRTO) or non-linear model predictive controller (MPC)
with an economic objective, e.g. Engell (2007); Strand
(1991).

In this study, a different approach is used. We assume
that optimal economic operation is the same as max-
imizing plant throughput, subject to achieving feasible
operation (satisfying operational constraints in all units)
with the available feeds. This corresponds to a constrained
operation mode with maximum flow through the bottle-
neck(s). At maximum throughput, all throughput manip-
ulators (uc) are used to satisfy active constraints (bot-
tleneck). Thus a nonlinear model of the entire plant is
not needed, and instead linear MPC may be used. One
option is to combine all the MPCs in the plant into a
single application. However, here we choose to decompose
the problem by keeping the local MPC applications and
introducing a coordinator MPC (Aske et al., 2008) to
maximize throughput. The coordinator uses the remaining
degrees of freedom (uc) to maximize the flow through
the network subject to satisfying given constraints. The
remaining degrees of freedom (uc) include feed rates, feed
splits and crossovers. The constraints are the feasible re-
maining capacities of the individual units (Rk > 0). The
feasible remaining capacity Rk is how much more feed unit
k can receive while operating within its constraints. For
most units, Rk is not a quantity that can be measured,
because it depends on the operation of the unit. For
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Fig. 1. Plant decomposition by coordinator MPC. The lo-
cal MPC applications uses ul to control the local tar-
gets yls, whereas the coordinator uses the throughput
manipulators (uc = TPMs) to control the remaining
capacity (yc = R) in the units.

example, the capacity may be increased by producing less
pure products. A key idea in the approach of Aske et al.
(2008) is to use the local MPC to estimate Rk. By esti-
mating Rk for each unit, the plant-wide control problem
is decomposed and the application becomes smaller in size
and hence easier to understand and maintain. The plant
decomposition is illustrated in Fig. 1.

This paper considers about half of the K̊arstø gas pro-
cessing plant. The application presently includes 12 dis-
tillation columns, 2 compressor stages, 4 feed valves and
2 crossovers (splits). The main reason for not including
the entire plant is that local MPC applications are yet
not implemented on all units. All MPC applications at the
K̊arstø plant use the in-house SEPTIC technology (Strand
and Sagli, 2003).

This paper is organized as follows. The local MPC con-
trollers for the individual units are discussed briefly in
Section 2. The local MPCs adjust the local degrees of
freedom (ul) such that the operation is locally feasible.
However, local feasibility requires that the feed rate to
the unit F l

k is below its maximum capacity, F l
k,max, and

one of the tasks of the plant-wide coordinator is to make
sure that this is satisfied. The maximum capacity for a
unit (F l

k,max) may change depending on disturbances (e.g.
feed composition) and needs to be updated continuously.
To estimate F l

k,max by using the already existing models
in the local MPCs is discussed in Section 3. Section 4
discusses the coordinator MPC, including control design
choices, model development, tuning issues and test runs.
Experience from the implementation at the K̊arstø site
is summarized in Section 5. An extended version of this
paper is found in Aske (2009, Ch. 6)

2. LOCAL MPC APPLICATIONS

Presently, all the local MPC applications for the coordina-
tor are on two-product distillation columns. The main con-
trol objective for each distillation column is to control the
quality of the distillate- (D) and bottoms (B) products. In
addition, the column must be kept under surveillance to
avoid overloading, where column differential pressure (Δp)
is used as an indicator.

The local MPCs are configured with the following con-
trolled variables (CVs), manipulated variables (MVs) and
disturbance variables (DVs):

CV (set point + max constraint): Impurity of heavy
key component in D.

CV (set point + max constraint): Impurity of light
key component in B.

CV (max constraint): Column differential
pressure (Δp).

MV: Reflux flow rate set point (L).
MV: Tray temperature set point (Ts).
DV: Column feed flow.

These MVs correspond to the local degrees of freedom
(ul) and the CVs correspond to the local outputs (yl),
see Fig. 1. Some of the columns have additional variables,
but in principle, all the columns have the same control
configuration.

The local MPC problems are solved at each sample time
using a standard two-step approach, where first a steady-
state problem is solved with constraint relaxation until
the predicted final steady state is feasible, and then the
“standard” dynamic MPC problem is solved with the pos-
sibly recalculated (reachable) set points and constraints.
The high limit differential pressure has the highest priority,
followed by impurity limits and then impurity set points.
This priority hierarchy may leads to a relaxation of the
impurity set points (and in worst case the limits) to avoid
exceeding the differential pressure high limit. By using
relaxation, the column can handle the given feed rate
without flooding the column, but note that the exceeding
the limits may result in an unsellable product. In the
dynamic optimization part, constraints are handled by
adding penalty terms to the objective function.

The local MPC applications are based on experimental
step response models. The prediction horizon is 3 to 6
hours and the sample time is 1 minute.

3. ESTIMATE OF REMAINING CAPACITY

In this section, the procedure used by the local MPCs
for estimating the remaining capacity in each unit (Rk)
is explained.

The remaining capacity for unit k is the difference between
the current feed F l

k and the feasible maximum feed F l
k,max

Rk = F l
k,max − F l

k (1)

The feed to the local unit F l
k is assumed to be a DV in

the local MPC application. The maximum feed to the
unit k is then easily obtained by solving an additional
steady-state LP-problem subject to the present initial
state, linear model equations and constraints used in the
local MPC. F l

k,max is calculated using the end predictions
(steady-state model) for the variables. This to include
both past MV moves, disturbances and future MV moves
for the local MPC. This indirectly assumes that the
closed-loop response time for the local MPC is faster
than for the coordinator. Note that F l

k,max can change
due to updated measurements, disturbances (e.g. feed
compositions changes), changes in the constraints and
model changes in the local MPCs. The current feed to the
unit (F l

k) is measured, either by a flow transmitter or by a
level controller output (valve opening) if a flow transmitter
is not available.

The accuracy of the estimated remaining capacity depends
on:
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• The validity of the models used in the local appli-
cation. The algorithm uses the end prediction and
therefore the steady-state gain is in particular impor-
tant.

• The appropriate use of gain scheduling for CV-MV
pairs with larger nonlinearities. Here “gain schedul-
ing” means that the model gain is updated (scaled)
based on the current operation point.

• The CV constraints must reflect the true operational
limits and the MV constraints must be reasonable.

Let us explain the first two points in more detail. An
incorrect steady-state gain leads to a poor estimate of
the remaining capacity and because the coordinator MPC
has slow dynamics, it will take a long time before the
feedback can correct for the error. A too high remaining
capacity estimate lead to a oscillating behavior because
of the long delays in the flow network. Another issue is
that the operators will not trust the remaining capacity
estimates if the estimates are far away compared to their
own experience.

The remaining capacity estimate uses the CV constraints
and not the CV set points. For a distillation column this
implies that the distillate and bottoms quality constraints
are used instead of the CV set points because set point de-
viations are acceptable if the alternative is feed reduction.
This leads to an estimated capacity that is often larger
than expected by the operators.

For units with several feeds, the LP optimization will
maximize the feed with the smallest steady-state gain
(smallest predicted effect on capacity), whereas the other
feeds will go to zero. However, some feeds cannot be set to
zero, because they are outlet from an upstream unit with
no possibility for routing it elsewhere. In this case, the LP
optimization is set to maximize the feed from the flow line
the unit must process and the other feeds are held constant
in the optimization.

Compressors are also included in the application, but at
present there are no MPC applications implemented on
these. To estimate the remaining capacity of the compres-
sors one option could be to consider the percent load (given
by the speed). However, it may not always be possible
to reach 100% load due to other constraints, for instance
the turbine exhaust gas temperature. To consider several
constraints, we therefore use MPC applications with no
control tasks, but with only CVs and DVs and the models
between them to estimate the remaining capacity. A co-
pressor stage consists of several copressors, but local con-
trol handles the distribution between parallel compressors
(equal distance to the compressor control line), therefore
is only one remaining capacity needed at each compressor
stage.

At present, the estimates are based on experimental mod-
els. However, rigorous models for local units can also be
used to predict the remaining capacity. This is attractive
for units where experimental modelling is difficult, for ex-
ample, due to nonlinearities. This illustrates the flexibility
with this decomposition where the best available model
can be used to predict the remaining capacity.

4. COORDINATOR MPC

4.1 Objective, variables and constraints

The K̊arstø plant is shown in Fig. 2 where most of the CVs,
MVs and DVs for the coordinator MPC are indicated. The
coordinator MPC maximizes sum of the total plant feed
which is the sum of the feeds to train 100 (T100), train
200 (T200), train 300 (T300), train 400 (T400) and the
dew point control unit (DPCU). The application consists
of:

• 6 MVs: 4 feed rates, 1 crossover, 1 feed split.
• 22 CVs: Remaining capacity of 12 distillation columns

and 2 compressors stages, 7 other constraints plus
the main objective: total plant feed with a high,
unreachable set point with lower priority.

• 7 DVs: 3 feed rates, 2 feed compositions, 1 crossover,
1 feed split.

The “other” 7 CV constraints are related to the use of
MVs, that is, levels constraints to avoid filling or emptying
of buffer tanks and sump volumes, pressure constraints
in the pipelines and pressure controller outputs. The CV
“total plant feed” is the sum of the plant feeds and is given
by
TOTALFEED = 20FC1001A + 20FC2001A + 27FC3108
+ 27FC3208 + 21FC4125A + 21FC4225A + 21FC5219

(2)
where the variables are marked in Fig. 2. In general, the
feeds could have different weighting, but at present, their
weights are equal. Of the 22 CVs, only the total plant feed
is set point controlled; the other CVs are constraints.

The MVs (throughput manipulators) are the feed rates,
a crossover between parallel trains (from T100 to T300)
and a feed split to T300. Other throughput manipulators
that affect the CVs in the sub-application are included as
DVs. Later, if the coordinator MPC is extended to the
whole plant, most of these DVs will become MVs. The
feed compositions (DVs) reflects the gas/liquid split, and
determine the split between gas flow to the compressors
and liquid flow to the fractionation and are estimated from
flow- and temperature measurements.

The objective function in the SEPTIC MPC algorithm
is quadratic, while the objective function for the the
maximum throughput problem is linear. To obtain a
quadratic objective function that fits directly into our
quadratic MPC algorithm, we have used the common trick
of introducing a quadratic set point deviation term with
a high and unreachable set point with a lower priority
than the capacity constraints. (Of course, the actual case
function used by the coordinator MPC has additional
terms and weights). The first step of the coordinator MPC
solution will then result in a recalculated (reachable) set
point for the total feed.

Each variable (CV, MV and DV) belongs to one or
more sub-groups that will be deactivated if one critical
variable in the sub-group is deactivated. For instance, if
a local MPC application is turned off, the corresponding
remaining capacity CV is deactivated, and this critical
variable suspends the whole sub-group. By using this
condition-based logic, the coordinator MPC can operate
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Fig. 2. Overview of the K̊arstø plant, including the coordinator MPC variables.

even if parts of the plant are not running or not available
for throughput maximization.

The decomposition requires that the coordinator receives
three variables from each of the 12 local MPC applications:

• Estimated remaining capacity (value)
• Quality of the remaining capacity value (good/bad)
• Status of the local MPC (on/off)

If the estimated remaining capacity has a bad value, that
is, the LP formulation is not feasible, then the status
of the remaining capacity CV is set to ERROR and the
corresponding MVs, given by the sub-grouping in the coor-
dinator, are then suspended. If a local MPC application is
deactivated, then the unit remaining capacity CV is set to
OFF in the coordinator and the sub-group in the coordina-
tor is suspended. The coordinator still runs, but the MVs
in the sub-group are deactivated. This is done because we
require that the local MPC application is active before the
coordinator can manipulate on the corresponding unit feed
rate.

4.2 Dynamic modelling for the coordinator MPC

The model for the coordinator MPC is a linear dynamic
model for the flows through the plant network with the
local MPC applications in service. The current imple-
mentation of the coordinator uses individual (SISO) step
response models, or more precisely a single-input multiple-
output representation of a multi-input multi-output sys-
tem. The advantage with SISO models is that it is easy to
adjust the models independently for input-output pairs.

However, SISO models imply that the structure of the
model is lost and, for instance, disturbances may not
propagate as they would in a state-space model. The loss
of structure leads to some additional variables around the
DPCU.

The models are obtained from step tests and historical
plant data. The steady-state gains found from step-tests
are verified by calculating the gains using typical feed
compositions.

The sampling time for the coordinator MPC is 3 minutes.
The prediction and control horizon are set to 6 hours,
whereas the longest response models reach steady state
at approximately 4.5 hours.

4.3 Tuning the coordinator MPC

The tuning of the coordinator MPC is a trade-off between
robustness and MV (e.g. feed) variations on one side and
keeping the flows through the bottlenecks close to their
maximum on the other side. The coordinator MPC was
gradually operating in closed-loop and tuned in several
tests in February 2008.

MV tuning From the early tests, it became clear that
the trick of using a CV of total plant feed with a high,
unreachable set point to maximize throughput, requires
ideal values on the MV plant feeds to obtain satisfactory
dynamic performance. The ideal values that are added to
the MV plant feeds are high and unreachable with a lower
priority than the total plant feed set point and have a low
penalty on the deviation from the ideal value. The ideal

135



values are needed to avoid that all MVs that constitute
the CV total plant feed (see (2)) are reduced dynamically
to reach the new recalculated set point for CV total plant
feed.

When ideal values (IV) for the MVs are introduced,
the rate of change towards the ideal value is specified
to obtain ramping rate independent of the penalty on
the deviation from ideal value (Strand and Sagli, 2003).
The ideal ramping rate is typical set to 500-750 kg/h.
Maximum increase and decrease of the MV at each sample
is chosen based on typically rate changes operators choose
to implement.

CV tuning The most important tuning variables for
the CVs are the penalties on constraint violation used
in the dynamic step of the MPC algorithm. The con-
straint violation is “balanced” by using penalties on MV
moves to obtain a satisfactory dynamic behavior when
CV constraints are violated. Even though a CV constraint
is violated, the use of MVs should not be too aggressive
to avoid unnecessary throughput variations. Importantly,
the CV constraints are not absolute because back off is
included to handle disturbances and imperfect control.
Specifically, the lower value of the remaining capacities
is not set to zero, but rather to a positive back off value,
Rl

k > back offk > 0. The value of the back off is a tuning
parameter decided by disturbance handling and model
accuracy.

The coordinator MPC has four integrating CVs; two
buffer volumes (levels) and two pipelines pressures. For
an integrator, the horizon length is a tuning parameter. A
shorter horizon length will give a larger slope and allow
for larger feed rate changes. The integrating variables
have a prediction horizon of 3 hours, which is half the
prediction length to the other variables. The prediction
horizon is shortened because it is likely that disturbances
occur within the 6-hour period that counteracts the change
in the integrated variable.

5. EXPERIENCE FROM IMPLEMENTATION

Some experiences from the implementation at the K̊arstø
site are summarized in this Section.

5.1 Estimate of remaining capacity

For distillation columns that frequently operate close to
their capacity limit, the estimated capacity is generally
good. For these units we have more experience in the
actual operation range, and the models in the local MPC
applications are typically obtained in this range. For
some columns, the differential pressure is included in
the remaining capacity calculation and this improves the
estimate.

For control, the initial response for the models is most cru-
cial to obtain good performance. For remaining capacity
estimate, the steady-state model gain is most important. A
systematic evaluation of the inferential models (estimators
of product quality) and models in the local MPC applica-
tions is necessary to obtain satisfactory performance of the
coordinator MPC. Since some of the local MPC applica-

tions were commissioned several years ago, a validation of
the models was found necessary.

One observation is that when a large disturbance occurs,
the predicted steady-state values may violate their limits
and, if this violation is sufficiently large, the LP optimiza-
tion does not find a feasible solution and the estimate
of maximum capacity (F l

k,max) fails. The end prediction
values are in such cases often not reasonable because
the MPC application assumes that the disturbances will
maintain constant (possible reduced with a low-pass filter)
throughout the prediction horizon, which is rarely the case.

To improve the estimation of remaining capacity, several
approaches are used:

• With a known, measured, short-time disturbance:
The maximum capacity (F l

k,max) is held constant
during the period of the disturbance. For example,
this is used for the disturbances that occur at each
dryer exchange.

• For each unit, a minimum value of the maximum
capacity (F l

k,max) is included.
• CV constraints included in the local MPCs that

should not limit the throughput were replaced with
wider constraints. This applies to “non-physical” con-
straint that may have been added in the MPC for
tuning reasons.

• Gain scheduling is included for some differential pres-
sure models.

The main structural weakness in the estimation of remain-
ing capacity is that the LP solver may “give up” to find
a solution because there is no possibility for relaxation of
constraints. When the LP solver does not find a solution,
it returns a “bad quality” value to the coordinator and its
variable subgroup is turned off. It would be preferable that
the coordinator finds the best possible solution instead of
“giving up”. This can be realized with a LP solver that
includes relaxation of the constraints. This improvement
of the LP algorithm is planned to be included in the future.

5.2 Experience with the coordinator MPC

A test run of the coordinator MPC from 07 Feb. 2008
is displayed in Fig. 3. The coordinator is turned on at
t = 18 min and the coordinator starts to increase the
feed to T100 (Fig. 3(a)) until the pipeline pressure in
Statpipe reaches its low constraint (Fig. 3(b)). During
this start-up period, the crossover flow ramps towards
its ideal value (Fig. 3(c)). The remaining capacity in the
butane splitter T100 reaches its low constraint (Fig. 3(d))
and the crossover increases again to avoid reduction in
the throughput. However, the use of the crossover is
“aggressive” and actually generates oscillations in the
downstream remaining capacities. The model gain was
almost doubled around t = 250 minutes and the crossover
is now able to control the remaining capacity towards its
low constraint. The adjustment of the model gain was
based on comparing the model prediction (not shown) and
actual value.

The accuracy of the estimate of remaining capacity for
demethanizer T100 (Fig. 3(e)) was poor. The model gain
from column feed to differential pressure was increased at
t = 320 minutes, and the new value seems to give a more

136



correct estimate of the remaining capacity for the column.
Again, the adjustment of the model gain was based on
comparing model prediction and the actual value. Note
that the remaining capacity of the demethanizer T100
became close to zero at about t = 330 min and the lower
constraint value (back off) was increased at t = 500 min
to obtain larger operation margins.

Feed composition changes are important disturbances and
affect the remaining capacity to the units. The feed com-
position in the Statpipe (T100) (Fig. 3(f)) is rather stable
until t = 580 min when the feed becomes significantly
heavier and thereafter (at t = 610 min) significantly
lighter. In this case, the coordinator uses the crossover
(Fig. 3(c)) and the T100 feed rate (Fig. 3(a)) to control the
remaining capacity for the butane splitter T100 (Fig. 3(d))
at its constraint.

When in closed loop, the coordinator MPC manipulates
directly on the plant production. This directly involves
the shift manager at K̊arstø and close cooperation with
the manager at the gas pipeline network (operated by
another company) is necessary. The plant is operated
by three control panels, so a close dialog between the
operator personnel and the shift manager is crucial. The
coordinator MPC introduces a “new way of thinking”
for both operators and shift managers. The coordinator
introduces the back off constraint as a new handle in
addition to pressure pipeline constraints, instead of the
feed valves.
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(dotted).

137



Coordination of Distributed Model
Predictive Controllers for Constrained

Dynamic Processes �

Natalia I. Marcos ∗, J. Fraser Forbes ∗ and Martin Guay ∗∗

∗ Department of Chemical and Materials Engineering, University of
Alberta, Edmonton, Alberta, Canada T6G 2V4

∗∗ Department of Chemical Engineering, Queen’s University, Kingston,
Ontario, Canada K7L 3N6

Abstract: In this paper, a coordinated-distributed model predictive control (MPC) scheme
is presented for large-scale discrete-time linear process systems. Coordinated-distributed MPC
control aims at enhancing the performance of fully decentralized MPC controllers by achieving
the plant-wide optimal operations. The ‘price-driven’ decomposition-coordination method is
used to adjust the operations of the individual processing units in order to satisfy an overall
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are used to efficiently update the price in the price-driven decomposition-coordination method.
The efficiency of the proposed control scheme is evaluated using a model of a fluid catalytic
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1. INTRODUCTION

Since the late seventies, the design of chemical processes
has evolved towards integrated operations that have in-
creased plant’s efficiency. The improvement in the design
of chemical processes included, among other things, energy
and mass integration, and the use of recycle streams. As
a result, processes became more complex and processing
units became more tightly interconnected. Control of such
integrated large-scale processes has been typically per-
formed with decentralized schemes because of the diffi-
culties in implementation and maintenance of centralized
control frameworks.

Centralized and decentralized control are two distinct con-
trol strategies. In centralized control, no real distinction
is made among processing units. The centralized control
framework is formulated as a monolithic control problem
that incorporates all process variables with no unit-level
decomposition. While a centralized strategy can lead to
optimal plant-wide performance, it presents some dis-
advantages (e.g., the large-dimensionality of the control
problem and lack of flexibility in terms of operation and
maintenance), which make centralized control unsuitable
for industrial processes. In decentralized control, each en-
gineering unit is optimized separately by neglecting the
interactions with the other units. The decentralized ap-
proach is the most commonly used in the industry because
of its robustness and its resiliency to systems failures.
Nevertheless, decentralized control does not generally lead
to the desired plant-wide optimal operations (Lu (2003);
Sun and El-Farra (2008)).
� This work is supported by Natural Sciences and Engineering
Research Council of Canada (NSERC) and Alberta Ingenuity.

A compromise between centralized and decentralized con-
trol is desired in order to improve plant operations. Dis-
tributed control has emerged as a promising control strat-
egy that can lead to the plant-wide optimal operations,
while keeping manageable controllers for each subunit
in the plant. In the distributed control framework, it is
assumed that each subsystem computes its own optimal
solution while considering all or certain degree of inter-
actions with the other subsystems. To attain the desired
control performance, information related to each subsys-
tems’ optimal solutions is generally exchanged among
the subsystems. In this work, we present a coordinated-
distributed model predictive control (CDMPC) framework
for constrained dynamic processes. In CDMPC control,
data is exchanged with each individual MPC controller
via a ‘coordinator’ or ‘master’.

1.1 Distributed MPC Control

Distributed MPC control has attracted the attention of
many researchers in recent years. Dunbar and Murray
(2004) formulated MPC platforms for nonlinear inter-
acting subsystems (multi-vehicle formations) whose state
variables are coupled in a single objective function. For lin-
ear interconnected systems, Venkat et al. (2005) proposed
a communication-based MPC that can converge to a Nash
equilibrium. The communication-based MPC was further
improved by a cooperation-based MPC that leads to the
Pareto optimal feasible solution. Cheng et al. (2008, 2007)
proposed a coordinated scheme for MPC steady state
target calculation based on Dantzig-Wolfe decomposition
and price-driven coordination methods, respectively.
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The main contribution of this work is to propose the
price-driven decomposition-coordination algorithm, as de-
scribed in Cheng et al. (2007), for the control of con-
strained process systems whose dynamics are represented
by discrete-time models. The CDMPC control scheme
presented in this paper achieves the centralized optimal
operations and can be implemented when step-response
models are available for the process. Since our control
formulation uses models obtained from step-test data, it
does not need estimation of unavailable process variables
(as it might be required when formulating MPC controllers
based on state-space models). Furthermore, the proposed
CDMPC control scheme allows for bias correction in the
predicted outputs through feedback.

An illustration of CDMPC is shown in Fig. 1. The price-
driven decomposition-coordination method is used in the
formulation of the CDMPC controllers. In the price-driven
decomposition-coordination method, the coordinator sets
up a price, ‘p’, for the subsystems’ interacting variables
(Fig. 1). The price provided by the coordinator is then

Fig. 1. Illustration of CDMPC Control

adjusted to alter the subunits’ calculated control actions
towards the overall plant optimum. In this work, the price,
p, is updated based on Newton’s method. An iterative
procedure is established between the coordinator and the
subunits until the desired plant-wide optimal solution is
achieved.

2. CDMPC CONTROL FOR DYNAMIC PROCESS
SYSTEMS

In this section, the CDMPC control scheme is presented.
Since we consider the centralized performance as the ideal
benchmark, we begin the CDMPC control formulation
by decomposing the centralized control problem into N
smaller subproblems that are easier to solve. Then, an
efficient mechanism is used to achieve the same solution
as the one obtained in the centralized control problem.

2.1 Process Model

Consider the overall plant process, modelled by step-
response coefficients:

yz(k + l) =

T−1X
h=1

rX
w=1

Szw,hΔuw(k + l − h) +

rX
w=1

Szw,T uw(k + l − T ), (1)

∀z = 1, . . . , m,

where yz (∀z = 1, ..., m) ∈ �m denote the process out-
puts; uw ∈ �r and Δuw ∈ �r (∀w = 1, ..., r) denote the
manipulated variables and the change in the manipulated
variables, respectively. The coefficients S11,h, ..., Smr,h rep-
resent the step-response coefficients for hth time step. The
step-response weight S11,h is the coefficient between Δu1

and output y1 for the hth time step. In a similar manner,
Smr,h is the coefficient between Δur and output ym for the
hth time step.

2.2 Centralized MPC Formulation

For the centralized MPC implementation, it is convenient
to arrange process model (1) in a matrix form as following:

Ŷ (k + 1) = SΔÛ(k) + Y 0(k + 1) + D̂(k + 1), (2)
where the output variables, input variables and change in
input variables predicted along the prediction horizon Hp
and control horizon Hu are defined as:8>>>><
>>>>:

Ŷ (k + 1) = [ŷ(k + 1|k)�, ..., ŷ(k + Hp|k)�]�,

ŷ(.) = [ŷ1(.), ..., ŷm(.)]�,

ΔÛ(k) = [Δû(k|k)�, ..., Δû(k + Hu − 1|k)�]�,

Δû(.) = [Δû1(.), ..., Δûr(.)]�, û(.) = [û1(.), ..., ûr(.)]�.

(3)

The m × Hp vector of unforced responses Y 0(k + 1) is:(
Y 0(k + 1) = [y0(k + 1)�, ..., y0(k + Hp)�]�,

y0(.) = [y0
1(.), ..., y0

m(.)]�.
(4)

The vector D̂(k+1) has been incorporated in (2) to correct
through feedback the discrepancies between the measured
and predicted outputs. The vector D̂(k + 1) is defined as:

D̂(k + 1) = [Im, ..., Im]�| {z }
Hp times

[y(k) − ŷ(k|k − 1)],

where Im is the m×m identity matrix. It is assumed that
the difference between the measured and predicted outputs
at time k remains constant throughout the prediction
horizon.
In (2), the matrix of step-response coefficients S is defined
as:

S =

2
6666666664

S1 0 . . . 0
S2 S1 0 0
...

...
. . . 0

SHu
SHu−1 . . . S1

...
...

. . .
...

SHp
SHp−1 . . . SHp−Hu+1

3
7777777775

, (5)

where Sh is the m × r matrix of step-response coefficients
for the hth time step (∀h = 1, ..., Hp):

Sh =

2
64

S11,h S12,h . . . S1r,h
... . . . . . .

...
Sm1,h . . . . . . Smr,h

3
75 . (6)

The centralized MPC controller is formulated to mini-
mized the following objective function:

139



min
Ŷ ,ΔÛ

J =
1

2

“
(Ysp − Ŷ (k + 1))�Q(Ysp − Ŷ (k + 1)) +

ΔÛ(k)�RΔÛ(k)
”

(7)

subject to:8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Process model (2)-(6), and

û(k + l|k) =
lX

h=0

Δû(k + h|k) + u(k − 1),

Δû(k + h|k) = 0, Hu ≤ h ≤ Hp − 1,

ymin ≤ ŷ(k + l + 1|k) ≤ ymax,

umin ≤ û(k + l|k) ≤ umax,

Δumin ≤ Δû(k + n|k) ≤ Δumax,

∀l = 0, . . . , Hp − 1, and ∀n = 0, . . . , Hu − 1,

(8)

where Ysp is the vector of desired set-points, Q = diag{Q(l+
1)} and R = diag{R(n)} are positive definite matrices of
appropriate dimensions.

2.3 Decomposition of Centralized MPC Formulation

We propose a decomposition of the overall optimization
problem (7)-(8) into N subproblems ‘i’. We consider that
the plant dynamics and constraints can be decomposed
into N subunits, followed by a block decomposition of the
tuning matrices Q and R. As a result of the centralized
problem decomposition, each subunit i (∀i : 1, . . . , N)
solves its own optimization problem given by:

min
Ŷi,ΔÛi,V̂i

Ji =
1

2

“
(Yi sp − Ŷi(k + 1))�Qii(Yi sp − Ŷi(k + 1)) +

ΔÛi(k)�RiiΔÛi(k)
”

+ p�ΘiZi(k) (9)

subject to:

Ŷi(k + 1) = SiiΔÛi(k) + V̂i(k) + Y 0
i (k + 1) + D̂i(k + 1), (10)

V̂i(k) = SijΔÛj(k), ∀j �= i, (11)
and8>>>>>>>>>>><

>>>>>>>>>>>:

ûs
i (k + l|k) =

lX
n=0

Δûs
i (k + h|k) + us

i (k − 1),

Δûs
i (k + h|k) = 0, Hu ≤ h ≤ Hp − 1,

ys
i min ≤ ŷs

i (k + l + 1|k) ≤ ys
i max,

us
i min ≤ ûs

i (k + l|k) ≤ us
i max,

Δus
i min ≤ Δûs

i (k + n|k) ≤ Δus
i max,

∀l = 0, . . . , Hp − 1, and ∀n = 0, . . . , Hu − 1.

(12)

The vector ŷs
i is a subset of the plant predicted outputs

(ŷs
i ⊂ [ŷ1, ..., ŷm]) and represents the predicted output

variables of subsystem i, ∀i = 1, ..., N . Similarly, the
vector ûs

i is a subset of the plant predicted inputs (ûs
i ⊂

[û1, ..., ûr]) and represents the predicted input variables
of subsystem i, ∀i = 1, ..., N . According to the proposed
decomposition, the predicted change in input variables
and predicted outputs can be arranged in vector form as
ΔÛi(k) = [Δûs

i (k|k)�, ..., Δûs
i (k + Hu − 1|k)�]� and Ŷi(k +

1) = [ŷs
i (k + 1|k)�, ..., ŷs

i (k + Hp|k)�]�, respectively.

In (10) and (11), the matrix Sii corresponds to the step-
response coefficient matrix between ΔÛi(k) and predicted

output variables Ŷi(k+1); while the matrix Sij corresponds
to the step-response coefficient matrix between the inter-
acting variables ΔÛj(k) and predicted output variables
Ŷi(k + 1). The matrices Sii and Sij can be obtained by
decomposing matrices (5) and (6) into N subsystems.

Finally, the variables V̂i(k) represent the interacting or
linking variables among the different subunits in the plant.
The interacting variables account for the effect that inputs
from unit j have on unit i, with i �= j. In the objective func-
tion (9), Zi(k) = [Ŷi(k + 1)�, ΔÛi(k)�, V̂i(k)�]� represents
the vector of decision variables for subunit i; the matrix
Θi is the coefficient matrix for the linking variables, which
is constructed according to (10) and (11), and p is a price
vector provided by the coordinator.

For simplicity, we re-write problem (9)-(12) as:

min
Zi

Ji =
1

2

“
Zi(k)�ΥiZi(k)

”
+ Φ�

i Zi(k) +

p�ΘiZi(k) (13)

subject to:(
B

eq
i Zi(k) = b

eq
i ,

B
ineq
i Zi(k) ≤ b

ineq
i ∀i = 1, ..., N.

(14)

The optimization problem (13)-(14) can be straightfor-
wardly obtained by arranging (9)-(12) in a matrix form
for the entire prediction and control horizons. The op-
timization problem described by (13)-(14) forms part of
the price-driven decomposition coordination method. The
price-driven decomposition-coordination method was dis-
cussed in Jose and Ungar (2000, 1998) to solve algebraic
optimization problems such as resource allocation or auc-
tion problems. This method was successfully adapted and
implemented in Cheng et al. (2007) to solve the MPC
steady-state target calculation problem. In this work, we
use the price-driven method to solve MPC dynamic calcu-
lation problems.

2.4 Coordination of CDMPC Controllers

In the previous section, a decomposition of the overall
problem into N smaller subproblems was presented. A
key step in the formulation of CDMPC controllers is to
design an efficient coordination mechanism that ensures
convergence of the distributed optimal solutions to the
centralized optimum. In this section, we extend the results
obtained in Cheng et al. (2007) for the MPC steady-state
target calculation to the MPC dynamic calculation.

As discussed in Jose and Ungar (2000), a large-scale
problem:

max
z1,...,zn

nX
i

fi(zi)

s.t.

nX
i

Ri(zi) ≤ R̄, zi ∈ Ωi,

with zi ∈ �ni decision variables, Ri vector of shared
resources, and vector R̄ representing the availability of
shared resources, can be decomposed into N subproblems:
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max
zi∈Ωi

fi(zi) − (p + qRi(zi))
�Ri(zi). (15)

In (15), ‘p’ represents the price vector, and the variable q is
a nonnegative scalar that could be assumed to be zero for
quadratic programming problems. In this work, we assume
q = 0.

It was shown in Jose and Ungar (2000) that, when the sub-
problems present concave objective functions and compact
convex feasible sets, they can be successfully coordinated.
Moreover, at equilibrium, the following condition is satis-
fied:

ΔR(p, q) =
X
i

Ri(p, q) − R̄ ≤ 0,

with p�(ΔR(p, q)) = 0, and p ≥ 0.

Coordination of subproblem (13)-(14) for i : 1, ..., N to
achieve the plant-wide optimal solution can be performed
by using an efficient price-update technique, such as New-
ton’s method. Based on Newton’s method, the price vector
can be updated as follows (Cheng et al. (2007)):

p[κ+1] = p[κ] − αJ−1ΔR[κ], (16)
provided that the matrix J is invertible. In the price
update mechanism (16), the superscripts ‘[κ]’ and ‘[κ + 1]’
denote the iteration steps; α is the step size in Newton’s
method, ΔR[κ] = ΔR(p, q), and J can be calculated as:

J =
dΔR[κ]

dp[κ]
=

X
i

dR
[κ]
i

dp[κ]
. (17)

For the problem formulation described by (13)-(14), the
shared resources or linking constraints are defined as
R

[κ]
i = ΘiZ

[κ]
i , with Z

[κ]
i representing the decision variables

at each iteration step ‘κ’. Therefore, the Jacobian matrix
J in (17) becomes:

J =
X
i

dR
[κ]
i

dp[κ]
=

X
i

Θi
dZ

[κ]
i

dp[κ]
. (18)

The Jacobian matrix (18) requires information of the sen-
sitivity matrix dZ

[κ]
i /dp[κ]; that is, in order to efficiently

adjust the price vector, the coordinator should be aware
of how the price affects the decision variables Z

[κ]
i at each

iteration. A sensitivity analysis was proposed in Wolbert
et al. (1994) for an algebraic optimization of a process
flowsheet, and it was extended in Cheng et al. (2007) for
the MPC steady-state target calculation. This approach
can be followed to solve problem (18). By performing a sen-
sitivity analysis, the matrix dZ

[κ]
i /dp[κ] can be calculated.

This requires solving the following system of equations:

Γi

2
664

∇pZi(k)
∇pλi
∇pAμi
∇pIσi

3
775 = −

2
664

Θ�
i
0
0
0

3
775 , (19)

where

Γi =

2
66664

Υi B
eq�
i AB

ineq�
i 0

B
eq
i 0 0 0

AB
ineq
i 0 0 0

IB
ineq
i 0 0 I

3
77775 , (20)

assuming that Γi is full-rank. We refer the reader to Cheng
et al. (2007) for a detailed derivation of equations (19) and
(20).

2.5 Implementation of CDMPC Control Scheme

In the traditional MPC implementation, a control action
sequence is determined at each sampling interval by op-
timizing an objective criterion over a finite-time horizon.
Only the first control signal is applied to the process, while
the rest of the calculated control inputs are discarded
(Camacho and Bordons (1999); Maciejowski (2002)). At
the next sampling interval, new process measurements are
available and the optimization is repeated to calculate a
new control action sequence.

In a CDMPC control platform, the coordinator imposes an
extra step to the traditional MPC implementation. Before
the control input is applied to the process, the control
action calculated by each distributed MPC controller
needs to converge to the optimal centralized control action.
Convergence of the CDMPC solutions to the centralized
performance can be achieved by allowing the coordinator
to iteratively adjust the price vector, and therefore the
optimal solution of each subsystem, according to the plant-
wide objective.

Implementation of the CDMPC controllers is carried out
according to the following steps:

(1) Initialization: The coordinator sets up an initial
price vector p[κ] for the interacting variables (ΘiZi,
∀i = 1, ..., N) and sends that information to every
subsystem.

(2) Optimization performed by each subsystem:
Based on the price provided by the coordinator,
each subsystem solves its own optimization problem
(13)-(14) and calculates the resources R

[κ]
i = ΘiZ

[κ]
i ;

as well as dZ
[κ]
i /dp[κ], according to (19)-(20). This

information is communicated back to the coordinator.

(3) Price update: The coordinator gathers the infor-
mation from each subsystem; it calculates ΔR[κ], and
J given by (18). Then, the coordinator determines
the step size α (with 0 < α ≤ 1) and updates the
price vector p[κ] as per (16). The new price vector is
informed to each subsystem.

(4) Iteration until convergence: Steps (2)-(3) are re-
peated until convergence of the price-driven decom-
position coordination algorithm. Convergence of the
algorithm is achieved when ||ΔR[κ]|| ≤ ε, where ε is a
tolerance error.

(5) Implementation of control action: Once the
decomposition-coordination algorithm converges, the
control actions calculated for the first sampling in-
terval are implemented in each subsystem and the
optimization problem (steps (1)-(4)) is initiated again
for the next receding horizon.

3. SIMULATION EXAMPLE

In this section, a case study is performed to illustrate the
effectiveness of the proposed algorithm. We consider a fluid
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catalytic cracking (FCC) process given in Grosdidier et al.
(1993). A diagram of the FCC system is shown in Fig. 2.

Fig. 2. FCC process (Grosdidier et al. (1993))

In the FCC unit, gas oil is converted into hydrocarbons of
shorter chains. A description of the FCC process, together
with the limit values for the controlled and manipulated
variables are given in Grosdidier et al. (1993). The model
of the FCC process, as well as, the models of the regulatory
controllers are shown in tables 1 and 2, respectively. The
continuous-time transfer function models were obtained
through identification analysis of step-test data and in-
clude seven outputs and six inputs. The transfer function
matrix for the overall process, including the models for
the regulatory controllers, can be obtained by multiplying
each transfer function model in table 1 by the correspond-
ing input model in table 2, except for transfer functions
between y5 − u5 and y6 − u5, which do not require that
multiplication (Grosdidier et al. (1993)). To implement the
CDMPC controllers, step-response models were obtained
based on the process dynamics given in tables 1 and 2.
The sampling interval used for simulations was 1 [min].

3.1 Simulation Results

We begin by decomposing the centralized problem into
two subsystems. The first subsystem includes outputs y1
to y3 and inputs u1 to u3, while the second subsystem
includes outputs y4 to y7 and inputs u4 to u6. The
following parameters were used in the simulation study:
weighting matrices Q(l+1) = diag{5; 10; 0.001; 5; 5; 5; 0.001},
R(n) = diag{100; 100; 100; 100; 100; 100}, for l = 0, ..., Hp − 1
and n = 0, ..., Hu − 1. The weighting matrices Q(.) and
R(.) are decomposed as Q11(.) = diag{5; 10; 0.001} and
R11(.) = diag{100; 100; 100} for the first subsystem, and
Q22(.) = diag{5; 5; 5; 0.001} and R22(.) = diag{100; 100; 100}
for the second subsystem. The prediction horizon Hp and
the control horizon Hu considered for the simulation are
50 and 5, respectively.

A set-point change of 0.5 was performed in output y1 at
initial time, while the targets for the remaining outputs
were kept at the origin. The results of the simulation are
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Fig. 3. a) Output variables for subsystem 1: set-point for
y1 (dashed line), y1 (solid line), y2 (dotted line), y3
(dash-dot line); b) Output variables for subsystem 2:
y4(dash-dot line), y5 (dashed line), y6 (solid line), y7
(dotted line); c) Input variables for subsystem 1:u1
(dashed line), u2 (dashed-dot line), u3 (solid line); d)
Input variables for subsystem 2: u4 (dashed-dot line),
u5 (solid line), u6 (dashed line)
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Fig. 4. a) Error in predicted change in input variables
ΔÛ(k); b) Error in predicted output variables Ŷ (k+1)

presented in Fig. (3)-(4). The closed-loop performance of
the CDMPC controllers for subsystems 1 and 2 is shown
in Fig. 3, where the trajectories are plotted in deviation
variables. It can be seen in Fig. (3a)-(3d) that the CDMPC
controllers provide a good performance since output y1
achieves the new set-point and outputs y2 to y7 are stabi-
lized at their new steady-state optimal values. Fig. (4a)-
(4b) show the normalized errors of the predicted inputs
(||ΔÛCDMPC − ΔÛcen||/||ΔÛcen||) and predicted outputs
(||ΔŶCDMPC−ΔŶcen||/||ΔŶcen||) for the optimization per-
formed at the first sampling time. These prediction errors
are calculated as the difference between the CDMPC op-
timal solutions and the optimal solutions calculated with
a centralized MPC controller. It can be observed in Fig.
(4a)-(4b) that the solutions achieved with the CDMPC
controllers converge to the centralized performance within
2 iterations. The fast convergence observed in this simu-
lation study confirms the results reported in Cheng et al.
(2007) when using Newton’s method as price-adjustment
algorithm for the MPC steady-state target calculation. In
the numerical simulations performed for the FCC unit, the
same fast solution convergence (2 iterations) was observed
within each control execution.
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Table 1. FCC process models

u1 u2 u3 u4 u5 u6

y1
0.097(1.7s+1)e−2s

19s2+6.5s+1
−0.87e−2s

13s2+4.9s+1

−0.092(0.25s+1)e−3s

3.7s2+4.7s+1
0.026e−7s

12s+1
−0.074(4.8s+1)

9.3s2+3.4s+1

−(0.48s)e−12s

(6s+1)(8s+1)

y2 0 0.55e−4s

27s2+8.7s+1
0.55e−4s

10s2+4.9s+1
0

0.74(1.7s+1)e−2s

11s2+7.3s+1
0.36e−11s

33s2+6.5s+1

y3 0 0.14e−11s

46s2+8.5s+1
0.14e−6s

46s2+8.5s+1
0

0.27(16s+1)

53s2+23s+1

0.015(12s+1)e−9s

66s2+27s+1

y4 0 0.25e−11s

17s2+7s+1
0.25e−7s

3s+1
0 0.70

3s+1
0.079(6.3s+1)e−10s

24s2+12s+1

y5 0 0.66e−s

2.5s+1
0.66e−s

2.5s+1
−0.9e−10s

6s+1
1

2s+1
−0.54e−11s

9s+1

y6 0 −0.84e−s

6.1s+1
−0.90
1.5s+1

0.35e−10s

5s+1
−(0.64s+1)

13s2+7s+1

0.23(0.5s+1)e−14s

3.6s2+11s+1

y7 0 0.81
6s+1

0.90
s+1

−0.35e−10s

5s+1
0.80 −0.26e−18s

7.1s+1

Table 2. Models between regulatory controller set-points usi and process inputs ui, for i = 1, ..., 6

(us1, u1) (us2, u2) (us3, u3) (us4, u4) (us5, u5) (us6, u6)

1
(0.75s+1)(4.5s+1)

1
(s+1)

1
1.7s2+2.1s+1

(3.3s+1)e−s

40s2+13s+1

(0.64s+1)

13s2+7s+1
1

Remark : For the ease of presentation, we decomposed
the overall FCC process into two subsystems of similar
dimensions. Nevertheless, the CDMPC control scheme can
be applied to N number of subsystems of different dimen-
sions. As future work, we will evaluate the efficiency of the
CDMPC control scheme on process systems that include
more subunits and there is a significant mismatch in the
size of the subunits.

4. CONCLUSION

In this paper, we presented a coordinated-distributed
model predicted control scheme for constrained dynamic
processes. The CDMPC control framework improves the
performance of decentralized controllers by achieving the
overall plant-wide optimal operations.
An important advantage of CDMPC controllers is the sim-
plicity in the control scheme, which does not require a radi-
cal new configuration of the decentralized MPC controllers
operating in the plant. The upgrade from the existing
decentralized MPC controllers to CDMPC controllers only
involves small modifications in the control formulation of
each subsystem and the addition of a coordinator.
The price-driven decomposition-coordination algorithm
was used to efficiently coordinate the dynamic behavior
of the CDMPC controllers. Newton’s method was selected
to update the price vector during the coordination pro-
cess. It was shown with a benchmark process system that
Newton’s method provides a rapid convergence of the unit
operations towards the plant-wide optimal performance.
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Abstract: This paper presents an integrated approach for the control and scheduling of
Distributed Energy Resources (DERs) that are managed by a central supervisor over a
resource-constrained communication network. The objective is to enhance the performance and
disturbance-handling capabilities of the DERs while keeping the communication requirements
with the supervisor to a minimum in order to reduce the susceptibility of the DERs to
communication outages. To this end, the rate of data transfer from the DERs to the supervisor
is initially minimized by embedding in the supervisor a set of models that are used to generate
the necessary control action when measurements are not transmitted over the network, and
then updating the models’ states at discrete time instances. Only a subset of the DERs are
allowed to transmit their data at any given time to provide updates to their target models
according to a certain scheduling strategy. By formulating the networked closed-loop system as
a hybrid system, an explicit characterization of the interdependence between the performance of
the DERs, the communication rate, the transmission schedule and times, and the plant-models’
mismatch is obtained. It is shown that by judicious selection of the transmission schedule and
models, it is possible to optimize the performance of the DERs while simultaneously reducing
network utilization beyond what is possible with concurrent transmission configurations. The
results are demonstrated through an application to a collection of solid oxide fuel cells in a
distributed power network.

Keywords: Networked control, model-based control, scheduling algorithms, distributed energy
resources, solid oxide fuel cells.

1. INTRODUCTION

Distributed Energy Resources (DERs) are a suite of on-
site, grid-connected or stand-alone technology systems
that can be integrated into residential, commercial, or
institutional buildings and/or industrial facilities. These
energy systems include distributed generation, renewable
energy sources, and hybrid generation technologies; en-
ergy storage; thermally activated technologies that use
recoverable heat for cooling, heating, or power. Such dis-
tributed resources offer advantages over conventional grid
electricity by offering end users a diversified fuel supply;
higher power reliability, quality, and efficiency; lower emis-
sions and greater flexibility to respond to changing energy
needs. As the number and diversity of DERs on the grid
increases, dispatching these resources at the right time
and accounting for the flow of energy correctly become
complex problems that require reliable monitoring and
telemetering equipment, as well as reliable communication
and control technologies to enable the integration and
inter-operability functions of a broad range of DERs. Some
estimates (Lovins et al (2002)) place the market potential
for advanced control and communications technologies in

� Financial support, in part by NSF, CBET-0747954, and by the
UC Energy Institute is gratefully acknowledged.

DERs at $3.75-$7.5 billion domestically, and at $15-$30
billion worldwide .

While managing DERs over a communication network
offers an appealing modern solution to the control of
distributed energy generation, it poses a number of chal-
lenges that must be addressed before the full economic and
environmental potential of DERs can be realized. These
challenges stem in part from the inherent limitations on
the information transmission and processing capabilities of
communication networks, such as bandwidth limitations,
network-induced delays, data losses, signal quantization
and real-time scheduling constraints, which can interrupt
the connection between the central control authority (the
supervisor), the generation units and the loads, and conse-
quently degrade the overall control quality if not properly
accounted for in the control system design (see, for exam-
ple, Zhang et al. (2001); Walsh et al. (2002); Hokayem and
Abdallah (2004); Xu and Hespanha (2004); Munoz de la
Pena and Christofides (2008) and the references therein
for discussions and results on control over communication
networks). Despite the availability of fast and reliable
communication networks, the fact that the distributed
power market is primarily driven by the need for super-
reliable, high-quality power implies that the impact of
even a brief communication disruption (e.g., due to local
network congestion or server outage) can be substantial.
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In sites such as hospitals, police stations, data centers and
high-tech plants which cannot afford blackouts, millisec-
ond outages that merely cause lights to flicker will cause
costly computer crashes. Such high-stake risks provide a
strong incentive for the development of robust control and
communication strategies that ensure the desired levels
and quality of power supply from the DERs while minimiz-
ing their reliance on the communication medium, which in
turn minimizes the impact of communication disruptions
on power supply.

Over the past decade, several efforts have been made
towards the development and implementation of control
strategies for DERs (e.g., Wang (2001); Barsali et al.
(2002); Ro and Rahman (2003); Marei et al. (2004); Las-
seter (2007)). While the focus of these studies has been
mainly on demonstrating the feasibility of the developed
control algorithms, the explicit characterization and man-
agement of communication constraints in the formulation
and solution of the DER control problem have not yet
been addressed. An effort to address this problem was ini-
tiated in Sun et al. (2009) where a model-based networked
control approach was developed for a DER that com-
municates with the central controller over a bandwidth-
constrained communication network that is shared by sev-
eral other DERs. The minimum allowable communication
frequency was characterized for the case when all DER
sensor suites communicate their measurements over the
network concurrently and are given simultaneous access
to the network. In addition to controlling the transmission
frequencies of individual DERs in the network, another
important way of reducing network utilization is to select
and dispatch only a subset of the deployed DERs at any
given time to communicate with the supervisor. Under
this restriction, the stability and performance properties
of each DER become dependent not only on the controller
design but also on the selection of the scheduling strategy
that determines the order and times in which the sensor
suites of the DERs transmit their data to the supervisor.

Motivated by these considerations, we focus in this work
on the problem of integrating control and scheduling of
DERs over resource-constrained communication networks.
The objective is to find an optimal strategy for establishing
and terminating communication between the DERs and
the central controller that minimizes the rate at which
each DER must collect and disseminate data to the super-
visor without jeopardizing the stability and performance
properties of the DERs. The rest of the paper is organized
as follows. Following some preliminaries in Section 2, the
problem of DER scheduling over the network is formulated
and an overview of its solution is presented. Section 3
then presents the networked control structure and de-
scribes its implementation under scheduling. The closed-
loop system is then formulated and analyzed in Section
4 where a precise characterization of the interdependence
between the networked closed-loop performance, the com-
munication rate between the DERs and the supervisor,
the scheduling strategy, as well as the accuracy of the
models and the choice of the control laws, is provided.
This characterization is shown to allow a systematic search
for the sensor transmission schedules that enhance the
overall performance while simultaneously reducing the un-
necessary utilization of the communication medium. The

implementation of the networked control and scheduling
strategy are demonstrated in Section 5 through an appli-
cation to a network of solid oxide fuel cell (SOFC) plants
managed by a supervisor over a communication network.

2. PRELIMINARIES

2.1 Structure of distributed generation units
We consider an array of n DERs managed by a higher-level
supervisor over a shared bandwidth-limited communica-
tion network. Each DER is modeled by a continuous–time
system with the following state–space description:

ẋi(t) = Aixi +Bi1wi +Bi2ui

zi(t) = Cixi +Diui, i = 1, · · · , n
(1)

where xi ∈ IRni denotes the vector of state variables
associated with the i–th DER (e.g., exhaust temperatures
and rotation speed in turbines and internal combustion
engines, operating temperature and pressures in fuel cells),
ui ∈ IRmi denotes the vector of manipulated inputs as-
sociated with the i–th DER (e.g., inlet fuel flow rate in
fuel cells, shaft speed in turbines), wi ∈ IRqi denotes the
vector of disturbance inputs, zi ∈ IRpi is the vector of DER
performance output signals of interest (e.g., power, voltage
and frequency), and Ai, Bi1 , Bi2 , Ci, and Di are constant
matrices. Each DER has local (on-board) sensors and actu-
ators with some limited built-in intelligence that gives the
DER the ability to run autonomously for periods of time
when no communication exists with the remote software
controller (the supervisor). The local sensors in each DER
transmit their data over a shared communication network
to the supervisor where the necessary control calculations
are carried out and the control commands are sent back
to each DER over the communication network. Based on
load changes, changes in utility grid power prices and the
state and capacity of each DER, the supervisor regulates
and coordinates local power generation in the DERs.

2.2 Problem formulation and methodological framework
One of the main problems to be addressed when managing
a large number of DERs over a communication network is
the large amount of bandwidth required by the different
subsystems sharing the communication medium. A trade-
off typically exists between the control performance and
the extent of network utilization. On the one hand, optimal
control of each DER to deliver the required power quality
in the presence of process variations and disturbances
is best achieved when information (e.g., measurements,
control commands) are exchanged continuously between
each DER and the supervisor. Minimal network utilization
necessary to save on communication costs, on the other
hand, favors only limited communication. Proper charac-
terization and management of this tradeoff is an essential
first step to the design of resource-aware networked con-
trol systems that ensure the desired performance while
respecting inherent constraints on the resources of the
communication medium. To address this problem, we will
focus in this work on minimizing the sensor-controller
communication costs under the assumption that the actu-
ators and supervisor are collocated (i.e., the network exists
between the sensors and the controller; generalizations to
account for actuator-controller communication constraints
are possible and the subject of other research work). To
this end, we will consider the following approach:
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• Initially design for each DER an appropriate feedback
control law that regulates its output (in the absence of
communication constraints) at the desired set-point
decided by the supervisor.

• Reduce the collection and transfer of information
from each DER to the supervisor as much as possible
to limit the bandwidth required from the network
without sacrificing the desired stability and perfor-
mance properties by using models of the DERs in
the supervisor to calculate the control action when
measurements are not available.

• Limit the number of DERs that, at any time, transmit
their data to update the corresponding target models.

• Find a scheduling strategy for establishing and ter-
minating communications between the DERs and the
supervisor that optimizes a certain performance met-
ric for the closed-loop system while simultaneously
keeping the communication rate to a minimum.

3. NETWORKED CONTROLLER DESIGN AND
SCHEDULING

3.1 Model-based networked control of DERs
In order to reduce network usage, we embed a dynamic
model of each DER in the supervisor to provide it with
an estimate of the evolution of the states of the DER
when measurements are not available. The use of a model
at the controller/actuator side to recreate the dynamics
of each DER allows the on-board sensors to transmit
their data at discrete time instances and not continuously
(since the model can provide an approximation of the
DER dynamics) thus allowing conservation of network
resources. The computational load associated with this
step (e.g., model forecasting and control calculations) is
justified and supported by the increasing capabilities of
modern computing systems used by the central control
authority. Feedback from the DER is then performed by
updating the state of the model state using the actual state
that is provided by its sensors at discrete time instances.
The model-based controller is implemented as follows:

ui(t) = Kix̂i(t), t �= tik
˙̂xi(t) = Âix̂i(t) + B̂i2ui(t), t ∈ [tik, t

i
k+1)

x̂i(tik) = xi(tik), k = 0, 1, 2, · · ·
(2)

where x̂i is an estimate of xi, Âi and B̂i2 are estimates of
Ai and Bi2 , respectively, which do not necessarily match
the actual dynamics of the i–th DER, (i.e., in general
Âi �= Ai, B̂i2 �= Bi2). The notation tik is used to indicate
the k-th transmission time for the sensor suite of the i-
th DER in the collection. The model state is used by the
controller as long as no measurements are transmitted,
but is updated (or re-set) using the true measurement
whenever it becomes available from the network.
3.2 Scheduling DER transmissions over the network
A key parameter in the analysis of the control and up-
date laws in Eq.2 is the update period for each DER,
hi := tik+1 − tik, which determines the frequency at which
the sensor suite of the i-th DER collects and sends mea-
surements to the supervisor through the network to update
the corresponding model state. To simplify the analysis,
we consider in what follows the case when the update
period is constant and the same for all DERs, so that
tik+1 − tik := h, i = 1, 2, · · · , n. The update period is also
an important measure of the extent of network utilization,

with a larger h indicating a larger reduction in network
utilization. Because of the bandwidth limitations on the
communication network and in order to further reduce
network utilization, we perform sensor scheduling whereby
only one DER is allowed to transmit its measurements
to the supervisor at any one time, while the other DERs
remain dormant for some time before the next DER is
allowed to transmit its data (the results can also be gen-
eralized to configurations where multiple DERs transmit
at the same time). The transmission schedule is defined
by: (a) the sequence (or order) of transmitting suites of
DERs: {si, i = 1, 2, · · · , n}, si ∈ N := {1, 2, · · · , n},where
si is a discrete variable that denotes the i-th transmitting
entity in the sequence, and (b) the time at which each
DER in the sequence collects and transmits measurements.
To characterize the transmission times, we introduce the
variable: Δti := tsi+1

k − tsi

k , i = 1, 2, · · · , n−1, which is the
time interval between the transmissions of two consecutive
DERs in the sequence.

t0s 1 t0s 2 t0s 3 

Δt1 Δt2

t0s n - 1 t0s n 

Δtn - 1 Δt1 Δt2 Δtn - 1 

h 

h 

t1s 1 t1s 2 t1s 3 t1s n - 1 t1s n t2s 1 

Fig. 1. A schematic of the time-line for the transmissions
of DERs in an h-periodic schedule.

Fig.1 is a schematic representation of how DER scheduling
is performed. Note that the schedule is h-periodic in the
sense that the same sequence of transmitting DERs is
executed repeatedly every h seconds (equivalently, each
DER transmits its data every h seconds). Note also from
the definitions of both h and Δti that the transmission
times always satisfy the constraint

∑n−1
i=1 Δti < h. Since

the update periods for all DERs are the same, the intervals
between the transmission times of two specific DERs
are constant, and within any single execution of the
schedule (which lasts less than h seconds), each DER
can only transmit its measurements through the network
and update its model in the supervisor once. This can
be represented mathematically by the condition: si �= sj
when i �= j. By manipulating the time intervals Δti (i.e.,
the transmission times) and the order in which the DERs
transmit, one can systematically search for the optimal
transmission schedule that leads to the largest update
period (or the smallest communication rate between the
sensor suite of each DER and the supervisor).
4. PERFORMANCE CHARACTERIZATION OF THE

SCHEDULED CLOSED-LOOP SYSTEM
4.1 A hybrid system formulation
Defining the model estimation errors by ei = xi − x̂i,
where ei represents the difference between the state of
the i-th DER and the state of its model embedded in
the supervisor, and introducing the augmented vectors:
e := [eT1 e

T
2 · · · eTn ]T , x := [xT

1 x
T
2 · · · xT

n ]T , it can
be shown that the overall networked closed-loop system
of Eqs.1-2 can be formulated as a combined discrete–
continuous (hybrid) system of the form:

ẋ(t) = Λ11x(t) + Λ12e(t) + B̄Nw(t)
ė(t) = Λ21x(t) + Λ22e(t) + B̄Nw(t), t �= tik
ei(tik) = 0, i = 1, 2, · · · , n, k = 0, 1, 2, · · · ,

(3)

where B̄N = [BT
11
BT

21
· · · , BT

n1
]T , and the DER states

evolve continuously in time while the estimation errors are
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reset to zero at each transmission instance. Note, however,
that unlike the case of simultaneous DER transmissions
(where no scheduling takes place) which was investigated
in Sun et al. (2009), not all models within the supervisor
are updated (and hence not all estimation errors are re-
set to zero) at each transmission time. Instead, only the
model of the transmitting DER is updated using the
measurements provided by its sensor suite.

Referring to Eq.3, Λ11, Λ12, Λ21, and Λ22 are all m ×m
constant, block-diagonal matrices, where m =

∑n
i=1 ni

and ni is the dimension of the i-th state vector. These
matrices are linear combinations of Ai, Bi2 , Âi, B̂i2 , Ki,
which are the matrices used to describe the dynamics,
the models, and the control laws of the different DERs.
The explicit forms of these matrices are given by: Λ11 =
diag{Ai +Bi2Ki}, Λ12 = diag{−Bi2Ki}, Λ21 = diag{Ãi +
B̃i2Ki}, Λ22 = diag{Âi + B̃i2Ki}, where Ãi = Ai − Âi,
and B̃i2 = Bi2 − B̂i2 . Defining the augmented state vector
ξ(t) := [xT (t) eT (t)]T , the dynamics of the overall closed-
loop system can be written as:

ξ̇(t) = Λξ(t) +BNw(t), t �= tik
ei(tik) = 0, i = 1, 2, · · · , n, k = 0, 1, 2, · · ·

z(t) = CNξ(t)

(4)

where Λ =
[

Λ11 Λ12

Λ21 Λ22

]
, BN = [B̄T

N B̄T
N ]T , CN =

[diag{Ci+DiKi} diag{−DiKi}], and z := [zT1 z
T
2 · · · zTn ]T

is the overall performance output of the DER collection.

4.2 Performance characterization using extended H2-norm
Our objective in this section is to assess the performance
of the networked scheduled closed-loop system subject to
disturbances and explicitly characterize its dependence on
the update period and the DER transmission schedule to
determine an optimal schedule and update period that
ensure minimal influence of the disturbances on the per-
formance output of the closed-loop system. As a perfor-
mance metric, we choose the extended H2-norm introduced
originally in Montestruque and Antsaklis (2006). This
performance measure, which is an H2-like norm that is
suitable for analyzing periodic networked control systems,
captures the 2-norm of the performance output response
when the closed-loop system is initialized at the steady-
state and an impulse disturbance is introduced in the input
at t = t0 (see Montestruque and Antsaklis (2006) for other
types of performance measures that can be used). The
following theorem explicitly characterizes the performance
output response in terms of the control, communication
and scheduling design parameters. The proof can be ob-
tained by solving the system of Eq.4 within each sub-
interval of the time-line in Fig.1, and is omitted for brevity.
Theorem 1. Consider the system of Eq.4 with a trans-
mission schedule {s1, s2, · · · , sn} and the initial condition
ξ(ts1

0 ) = [0 eT (ts1
0 )]T = ξ0, with es1(t

s1
0 ) = 0, subject to

an impulse disturbance w = δ(t− ts1
0 ). Then:

(a) For t ∈ [tsi

k , t
si+1
k ), i = 1, 2, · · · , n − 1, k = 0, 1, 2, · · ·,

the performance output response is given by:

z(t) = CNe
Λ(t−t

si
k

)Γi(Δti, Isi
s )MkBN (5)

(b) For t ∈ [tsn

k , t
s1
k+1), k = 0, 1, 2, · · ·, the performance

output response is given by:

z(t) = CNe
Λ(t−tsn

k
)ΓnM

kBN (6)
where

M(h) = Is1
s e

Λ(h−
∑n−1

i=1
Δti)Γn (7)

Γi =

⎧⎪⎨⎪⎩
i−2∏

i−1−μ=0

Isμ+1
s eΛΔtμ , for i ≥ 2

I, for i = 1

⎫⎪⎬⎪⎭ (8)

Isi
s =

⎡⎢⎢⎣
I O · · · O
O H1 · · · O
...

...
...

O O · · · Hn

⎤⎥⎥⎦ , Hi =
{
I, i �= si
O, i = si

(9)

for i = 1, 2, · · · , n, tsi

k+1 − tsi

k = h and Δti = tsi+1
k − tsi

k , for
i = 1, 2, · · · , n− 1.

Remark 1: The expression in Eq.5 captures the response of
the performance output during the time periods between
the transmissions of two consecutive DERs in a given
execution of the schedule, while the expression in Eq.6
provides the response for the time period between the
transmission of the last DER in a given execution and the
transmission of the first DER in the next execution. As
expected the responses are parameterized by the trans-
mission sequence (which determines the structure of the
matrices Isi

s ) as well as the transmission times (which
are determined by Δti). Note from the term Mk (which
captures the growth of the response due to the repeated
execution of the transmission schedule) that a necessary
and sufficient condition for the responses to be stable is to
have all the eigenvalues of the matrixM strictly inside the
unit circle (e.g., see Sun and El-Farra (2008) for further
details on the characterization of closed-loop stability).

Based on the result of Theorem 1, the extended H2-norm
for the scheduled networked closed-loop system, ‖G ‖H2 ,
can be calculated using the following defining relation:

‖G ‖H2 = trace(BT
NXBN )1/2 (10)

where X is the solution to the discrete Lyapunov equation:

MT (h, Isi
s ,Δti)XM(h, Isi

s ,Δti)−X +
n∑

i=1

Wi = 0, (11)

Wi is a matrix computed as:

Wi =

Δti∫
0

ΓT
i e

ΛT tCT
NCNe

ΛtΓidt, i = 1, 2, · · · , n (12)

and Δtn := h−∑n−1
i=1 Δti.

Remark 2: The relations of Eqs.10-12 provide a general-
ization of the extended H2-norm calculation to networked
control systems with scheduled sensor transmissions. In
the limit as Δti → 0, for i = 1, · · · , n − 1, (i.e., simul-
taneous transmissions), these relations reduce to the ones
developed originally in Montestruque and Antsaklis (2006)
for non-scheduled networked control systems.

Remark 3: By examining Eqs.10-12, it can be seen that
‖G ‖H2 depends on the interplay between the plant-model
mismatch for each DER, the controller gains, the update
period, the time intervals between transmissions, as well
as the transmission sequence, which altogether provide
handles that can be tuned to optimize the performance
of the networked closed-loop system subject to distur-
bances. For example, the extended H2-norm can be used to
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compare different schedules (by varying the transmission
sequence and times) to determine which schedules achieve
the best performance with the least communication rate
between the DERs and the supervisor. Alternatively, if the
schedule is fixed by the network access constraints, the per-
formance index can be used to compare the performance
levels achieved by using different models and different
controllers. The performance criterion can therefore be
used to formulate various kinds of optimization problems.

5. SIMULATION STUDY: A NETWORK OF SOLID
OXIDE FUEL CELLS

As an illustrative example, we consider a network of three
solid oxide fuel cell (SOFC) plants that communicate with
the supervisor over a shared communication network . The
plants have different dynamic characteristics due to the
differences in sizes and capacities of the individual fuel cell
stacks. The supervisor is responsible for maintaining the
power output of each SOFC plant at a desired set-point
by manipulating the inlet fuel flow rate in the presence of
disturbances in the inlet air flow rate. Measurements from
the sensor suite of each SOFC plant can be received by
the supervisor only through the communication network,
while the actuator suite of each plant is assumed to have
un-interrupted access to the supervisor (ideal actuator-
controller links). Under standard modeling assumptions,
a dynamic model of the following form can be derived
for each SOFC stack from material and energy balances
(Mursheda et al. (2007)):

ṗH2 =
Ts

τ∗H2
T ∗KH2

(qinH2
−KH2pH2 − 2KrI)

ṗO2 =
Ts

τ∗O2
T ∗KO2

(qinO2
−KO2pO2 −KrI)

ṗH2O =
Ts

τ∗H2OT
∗KH2O

(qinH2O −KH2OpH2O + 2KrI)

Ṫs =
1

msCps

∑
qini

Tin∫
Tref

Cp,i(T )dT

−
∑
qout
i

Tin∫
Tref

Cp,i(T )dT − ṅr
H2
� Ĥo

r − VsI

(13)

where, pi is the partial pressure of component i (i:
H2, O2, H2O), Ts is the stack temperature, qini is the
inlet molar flow rate of component i, ms and Cps are
the mass and average specific heat of fuel cell materials
excluding gases, Cp,i is the specific heat of gas component
i,�Ĥo

r is the specific heat of reaction, I is the load current,
τ∗i := V/KiRT

∗ is a time constant for i-th component,
Ki is the valve molar constant for component i, and
Kr = N0/4F , N0 is the number of cells in the stack, F
is Faraday’s constant, Vs is the overall stack voltage:

Vs = N0

[
�E0 +

RTs

2F
ln

pH2p
(0.5)
O2

pH2O

]
− r0 exp

[
α

(
1

Ts
− 1

T0

)]
I (14)

where r0 is the internal resistance at T0, α is the resistance
slope (only ohmic losses are included, while activation and
concentration losses are neglected), and �E0 is the stan-
dard cell potential. Linearizing the SOFC plants around
the desired set-points yields a system of the form of Eq.1
with n = 3, where xi, ui, wi and zi are the dimensionless
state, manipulated input (inlet fuel flow rate), disturbance

(inlet air flow rate) and power output for the i-th plant,
respectively. To regulate the power output of each fuel cell,
a feedback controller of the form ui = Kixi, is designed
and implemented. The explicit forms of the plants and
controller matrices are omitted due to space limitations.
5.1 Performance under scheduled sensor transmissions
In this section, we investigate the impact of varying the
DER transmission schedule, the intervals between trans-
missions, and the plant-model mismatch on the total
power output of the SOFC network which is chosen as the
performance output. As mentioned in Section 3, we focus
on scheduling configurations where at each transmission
time, only the sensor suite of one SOFC plant is allowed
to transmit its measurement updates to the supervisor.
To quantify the mismatch between each plant and its
model that is embedded in the supervisor, we consider
as an example parametric uncertainty in CpH2 and define
δ1 = (CpmH2

−CpH2)/CpH2 , where CpmH2
is a nominal value

used in the model, as a measure of model accuracy (any
other set of uncertain parameters can also be considered
and analyzed in a similar fashion). We initialize the closed-
loop SOFC plants at the desired set-points and introduce
a unit impulse disturbance in the inlet flow rate of air to
each plant. The power outputs of the individual fuel cells
are chosen as the performance outputs. Fig.2(a) shows the

Table 1. SOFC plant transmission schedules
Schedule s1, s2, s3, s1, s2, s3, · · ·

1 1, 2, 3, 1, 2, 3, · · ·
2 1, 3, 2, 1, 3, 2, · · ·
3 2, 1, 3, 2, 1, 3, · · ·
4 2, 3, 1, 2, 3, 1, · · ·
5 3, 1, 2, 3, 1, 2, · · ·
6 3, 2, 1, 3, 2, 1, · · ·

dependence of the extended H2-norm of the entire SOFC
network on the update period, h, under the six possible
sensor transmission schedules listed in Table 1 when im-
perfect models are embedded in the supervisor (each model
with parametric uncertainty δ1 = 5) and the transmission
times are fixed such that Δt1 = Δt2 = h −Δt1 −Δt2. It
can be seen that among all possible schedules, schedule 4
provides the best performance since for any update period
it yields the smallest ‖G ‖H2 . Note also that this schedule
yields an improved performance over the non-scheduled
(i.e., concurrent) transmission configuration shown by the
solid profile. Not only is the minimum extended H2-norm
smaller for the scheduled configuration, but the optimal
update period is also larger, which implies that the rate at
which each plant needs to collect and transmit measure-
ments to the supervisor under the scheduled configuration
is smaller, thus leading to bigger savings in the overall
utilization of the communication network resources. The
reason for the performance improvement can be under-
stood in light of the fact that forcing the different SOFC
plants to transmit their data and update their target
models in the supervisor at different times (rather than
simultaneously) creates opportunities for providing a more
targeted correction to the estimation errors of the different
models, where the models with the largest plant-model
mismatch can receive more timely updates than would be
feasible under simultaneous transmissions. This in turn
helps reduce the rate at which each SOFC plant in the
communication network must collect and transmit data.
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Fig. 2. Dependence of the norm of the power output vector for
the SOFC network on the update period for different sensor
transmission sequences under (a) a model-based scheme, and
(b) a zero-order hold scheme.

Fig.2(b) shows how the extended H2-norm of the overall
SOFC network under each schedule varies as h is varied
when a zero-order hold scheme is used. In this case, the
supervisor holds the last measurement received from the
individual SOFC plant until the next time a measurement
is transmitted and received from the network (this corre-
sponds to using models with Âi = O and B̂i2 = O). It can
be seen that the optimal update period obtained under
scheduling is also larger in this case than the one obtained
under simultaneous transmissions.

5.2 Dependence of overall performance on model quality
In this part, we investigate the effect of model uncertainty
on the overall SOFC network performance. Fig.3 depicts
the dependence of ‖G ‖H2 of the entire SOFC network
on both δ1 and the update period when the sensors’
transmission follows schedule 4. As expected, for a given
overall performance level, the range of feasible update
period shrinks as the plant-model mismatch increases. The
predictions of Fig.3(a) are further confirmed by the closed–
loop power output profile in Fig.3(b) which shows that
under the same update period of h = 9 s and sensor
transmission sequence 4, the networked closed-loop system
performs better with a relatively accurate model (δ1 = −2)
than the one with an inaccurate model (δ1 = −10).
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Fig. 3. (a): Dependence of ‖G ‖H2 on plant-model mismatch for

various h. (b): First SOFC plant power output profile under
the networked control system with different models.

5.3 Performance dependence on the transmission times
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Fig. 4. Dependence of ‖G ‖H2 on Δt1 and Δt2 under schedule 4.

Fig.4 is a contour plot showing the dependence of ‖G ‖H2

on Δt1 and Δt2 for a fixed update period (h = 15 s)
when the SOFC plants transmit according to schedule 4
and a zero-order hold model is considered. In comparison
with the performance achieved in the case when Δt1 =
Δt2 = h−Δt1−Δt2 (‖G ‖H2 = 1.854×105; see Fig.2(b)),
it can be seen that an improved performance is attained
(‖G ‖H2 = 1.853× 105) by varying the transmission times
such that Δt1 = 5.5 s and Δt2 = 3.5 s.
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Abstract: In this work, we address distributed model predictive control of nonlinear process
systems subject to asynchronous measurements. Assuming that there exists an upper bound on
the interval between two successive measurements of the process state, two separate Lyapunov-
based model predictive controllers that coordinate their actions and take asynchronous mea-
surements explicitly into account are designed. The proposed distributed control design only
requires one directional communication between the two distributed controllers and provides
the potential of maintaining stability and performance in the face of new or failing actuators.
The results are illustrated through a chemical process example.
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1. INTRODUCTION

We are currently witnessing an augmentation of the ex-
isting, dedicated local control networks, with additional
networked (wired and/or wireless) actuator/sensor devices
which have become cheap and easy-to-install the last few
years. Such an augmentation in sensor information and
networked-based availability of data has the potential (Yd-
stie (2002); Neumann (2007); Christofides et al. (2007)) to
be transformative in the sense of dramatically improving
the ability of the control systems to optimize process
performance and prevent or deal with abnormal situations
more quickly and effectively. However, augmenting dedi-
cated, local control systems (LCS) with control systems
that may utilize real-time sensor and actuator networks
gives rise to the need to design/redesign and coordinate
separate control systems that operate on a process. Model
predictive control (MPC) is a natural control framework
to deal with the design of coordinated, distributed control
systems because of its ability to handle input and state
constraints, and also because it can account for the actions
of other actuators in computing the control action of a
given set of control actuators in real-time. Motivated by
the lack of available methods for the design of networked
control systems (NCS) for chemical processes, in a pre-
vious work (Liu et al. (2008)), we introduced a decen-
tralized control architecture for systems with continuous
and asynchronous measurements. In this architecture, the
local, pre-existing control system uses continuous sens-

1 Corresponding author: Panagiotis D. Christofides. Tel.:+1 310 825
2046; fax: +1 310 206 4107; e-mail: pdc@seas.ucla.edu.

ing and actuation and an explicit control law. On the
other hand, the NCS uses networked (wired or wireless)
sensors and actuators and has access to heterogeneous,
asynchronous measurements that are not available to the
LCS. The NCS is designed via Lyapunov-based model
predictive control (LMPC). Following up on this work, in
another recent work (Liu et al. (in press)), we proposed a
distributed model predictive control method for the design
of networked control systems where both the pre-existing
local control system and the networked control system are
designed via Lyapunov-based model predictive control.

With respect to available results on distributed MPC
design, several distributed MPC methods have been pro-
posed in the literature that deal with the coordination of
separate MPC controllers that communicate in order to
obtain optimal input trajectories in a distributed manner
(Rawlings and Stewart (2007); Dunbar (2007); Richards
and How (2007); Keviczky et al. (2006); Magni and Scat-
tolini (2006); Raimondo et al. (2007)). All of the above re-
sults on distributed MPC design are based on the assump-
tion of continuous sampling and perfect communication
between the sensor and the controller. However, one may
encounter asynchronous measurement samplings because
of measurement difficulties in process control applications.

In this work, we address distributed model predictive con-
trol of nonlinear process systems subject to asynchronous
measurements. Assuming that there exists an upper bound
on the interval between two successive measurements of
the process state, two separate Lyapunov-based model
predictive controllers that coordinate their actions and
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take asynchronous measurements explicitly into account
are designed. Sufficient conditions are derived for the pro-
posed distributed control design to guarantee that the
state of the closed-loop system is ultimately bounded in a
region that contains the origin. In addition, the proposed
distributed control design only requires one directional
communication between the two distributed controllers
and provides the potential of maintaining stability and
performance in the face of new or failing actuators. The
results are illustrated through a chemical process example.

2. PRELIMINARIES

2.1 Control problem formulation

We consider nonlinear process systems described by the
following state-space model

ẋ(t) = f(x(t), u1(t), u2(t), w(t)) (1)
where x(t) ∈ Rnx denotes the vector of process state
variables, u1(t) ∈ Rnu1 and u2(t) ∈ Rnu2 are two separate
sets of manipulated inputs and w(t) ∈ Rnw denotes
the vector of disturbance variables. The two manipulated
inputs are restricted to be in two nonempty convex sets
U1 ⊆ Rnu1 and U2 ⊆ Rnu2 and the disturbance vector is
bounded, i.e., w(t) ∈W where

W := {w ∈ Rnw s.t. |w| ≤ θ, θ > 0} 2 .

We assume that f is a locally Lipschitz vector function
and f(0, 0, 0, 0) = 0. This means that the origin is an
equilibrium point for the nominal system (system (1) with
w(t) = 0 for all t) with u1 = 0 and u2 = 0. System (1)
is controlled with the two sets of manipulated inputs u1
and u2, which could be multiple inputs of a system or
a single input divided artificially into two terms (e.g.,
ẋ(t) = f̂(x(t), u(t), w(t)) with u(t) = u1(t) + u2(t)).

2.2 Lyapunov-based controller

We assume that there exists a Lyapunov-based controller
u1(t) = h(x(t)) which satisfies the input constraint on u1
for all x inside a given stability region and renders the
origin of the nominal closed-loop system asymptotically
stable with u2(t) = 0. Using converse Lyapunov theorems
(Massera (1956); Lin et al. (1996)), this assumption im-
plies that there exist functions αi(·), i = 1, 2, 3, 4 of class
K 3 and a continuously differentiable Lyapunov function
V for the nominal closed-loop system that satisfy the
following inequalities

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)
∂x

f(x, h(x), 0, 0) ≤ −α3(|x|)

|∂V (x)
∂x

| ≤ α4(|x|)
h(x) ∈ U1

(2)

for all x ∈ D ⊆ Rnx where D is an open neighborhood
of the origin. We denote the region Ωρ

4 ⊆ D as the
stability region of the closed-loop system under the control
u1 = h(x) and u2 = 0.
2 | · | denotes Euclidean norm of a vector.
3 A continuous function α : [0, a) → [0,∞) is said to belong to class
K if it is strictly increasing and α(0) = 0.
4 We use Ωr to denote the set Ωr := {x ∈ Rnx |V (x) ≤ r}.

By continuity and the local Lipschitz property assumed
for the vector field f(x, u1, u2, w) and the fact that the
manipulated inputs u1 and u2 are bounded in convex sets,
there exists a positive constant M such that

|f(x, u1, u2, w)| ≤M (3)
for all x ∈ Ωρ, u1 ∈ U1, u2 ∈ U2 and w ∈ W . In addition,
by the continuous differentiable property of the Lyapunov
function V and the Lipschitz property assumed for the
vector field f(x, u1, u2, w), there exist positive constants
Lx, Rx, Rw such that

|∂V
∂x
f(x, u1, u2, 0)− ∂V

∂x
f(x′, u1, u2, 0)| ≤ Lx|x− x′| (4)

and
|f(x, u1, u2, w)−f(x′, u1, u2, 0)| ≤ Rx|x−x′|+Rw|w| (5)

for all x, x′ ∈ Ωρ, u1 ∈ U1, u2 ∈ U2 and w ∈W .

These constants will be used in section 4 in the proof of
the main results of the present work.

2.3 Modeling of asynchronous measurements

Most control systems assume that measurements from sen-
sors are obtained in a continuous periodic pattern. How-
ever, in many chemical processes, this assumption does not
hold due to a host of measurement difficulties. In this case,
the system is subject to asynchronous measurements. In
the present work, we assume the state of system (1), x(t),
is sampled and available asynchronously at time instants
tk where {tk≥0} is a random increasing sequence of times.
The distribution of {tk≥0} characterizes the time needed
to obtain a new measurement in the case of asynchronous
measurements. In general, there exists the possibility of
arbitrarily large (but finite) periods of time in which a
new measurement is not available. In such a case, it is
not possible to provide guaranteed stability properties,
because there exists a non-zero probability that the system
operates in open loop for a period of time large enough for
the state to leave the stability region. In order to study the
stability properties in a deterministic framework, in the
present work, we assume that there exists an upper bound
Tm on the interval between two successive measurements,
i.e., max

k
{tk+1 − tk} ≤ Tm. This assumption is reasonable

from a process control perspective.

3. DISTRIBUTED LMPC

3.1 Distributed LMPC formulations

In our previous work (Liu et al. (in press)), we in-
troduced a distributed model predictive control method
where both the pre-existing LCS and the NCS are designed
via Lyapunov-based model predictive control as shown in
Fig. 1. The LMPCs computing the input trajectories of
the LCS (i.e., u1) and the NCS (i.e., u2) are referred to as
LMPC 1 and LMPC 2, respectively. Under the assumption
of continuous and flawless measurements, in Liu et al. (in
press), it was proved that this control scheme guarantees
practical stability of the closed-loop system and has the
potential to maintain the closed-loop stability and perfor-
mance in the face of new or failing actuators (for exam-
ple, the failure of the actuator of the NCS (zero input)
does not affect the closed-loop stability) and to reduce
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Fig. 1. Distributed LMPC design for networked control
systems with continuous measurements (i.e., x(t) is
available to the controllers at tk = tk−1 + Δ where Δ
is a fixed sampling time for all k).
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Fig. 2. Distributed LMPC design for networked control
systems subject to asynchronous measurements.

computational burden in the evaluation of the optimal
manipulated inputs compared with a centralized LMPC.
However, when asynchronous measurements are present as
shown in Fig. 2, these results do not hold. In this work, the
distributed model predictive control method is extended to
take into account asynchronous measurements explicitly,
both in the constraints imposed on the LMPCs and in the
implementation strategy.

In the presence of asynchronous measurements, the con-
trollers need to operate in open-loop between successive
new state measurements. We propose to take advantage of
the model predictive control scheme to update the input
based on a prediction obtained using the model. This is
achieved by having the control actuators to store and
implement the last computed optimal input trajectory.
The proposed implementation strategy in the presence of
asynchronous measurements is as follows:

(1) When a measurement x(tk) is available at tk, LMPC 2
computes the optimal input trajectory of u2;

(2) LMPC 2 sends the entire optimal input trajectory to
its actuators and also sends the entire optimal input
trajectory to LMPC 1.

(3) Once LMPC 1 receives the entire optimal input tra-
jectory for u2, it evaluates the future input trajectory
of u1;

(4) LMPC 1 sends the entire optimal input trajectory to
its actuators.

(5) When a new measurement is received (k = k+ 1), go
to step 1.

Note that in the proposed distributed scheme, only
LMPC 2 is required to send its optimal input trajectory to
LMPC 1 each time when a new measurement is available.
This minimizes the communications required between the
two controllers. Note also that the communication between
LMPC 1 and LMPC 2 is in general done using a reliable
link, and hence, it is not subject to data losses or delays.

We first design the optimization problem that charcterizes
LMPC 2. This optimization problem depends on the latest
state measurement x(tk), however, LMPC 2 does not have

any information about the value that u1 will take. In order
to take a decision, LMPC 2 must assume a trajectory for u1
along the prediction horizon. To this end, the Lyapunov-
based controller u1 = h(x) is used. LMPC 2 is based on
the following optimization problem:

min
ud2∈S(Δ)

∫ NΔ

0

L(x̃(τ), ud1(τ), ud2(τ))dτ (6a)

˙̃x(τ) = f(x̃(τ), h(x̃(jΔ)), ud2(τ), 0), (6b)
∀τ ∈ [jΔ, (j + 1)Δ)

˙̂x(τ) = f(x̂(τ), h(x̂(jΔ)), 0, 0),∀ τ ∈ [jΔ, (j + 1)Δ) (6c)
ud2(τ) ∈ U2,∀τ ∈ [0, NΔ) (6d)
x̃(0) = x̂(0) = x(tk) (6e)
V (x̃(τ)) ≤ V (x̂(τ)),∀τ ∈ [0, NRΔ) (6f)

where S(Δ) is the family of piece-wise constant functions
with sampling time Δ, N is the prediction horizon,

L(x, u1, u2) = xTQcx+ uT
1 Rc1u1 + uT

2 Rc2u2

is the performance index, Qc, Rc1 and Rc2 are positive
definite weight matrices that define the cost, x̃ is the
predicted trajectory of the nominal system with u2 being
the input trajectory computed by the LMPC of Eq. 6 (i.e.,
LMPC 2) and u1 being the Lyapunov-based controller h
applied in a sample-and-hold fashion with j = 0, ..., N −
1, x̂ is the predicted trajectory of the nominal system
with u1 being h applied in a sample-and-hold fashion and
u2 = 0, x(tk) is the state measurement obtained at tk
and NR is the smallest integer that satisfies the inequality
Tm ≤ NRΔ. To take full advantage of the nominal model
in the computation of the control action, we take N ≥ NR.

The optimal solution to this optimization problem is
denoted by u∗d2(τ |tk). Once this optimal input trajectory
of u2 is available, it is sent to LMPC 1 as well as the control
actuators controlled by LMPC 1.

In order to inherit the stability properties of the Lyapunov
based controller, u2 must satisfy the constraint (6f) which
guarantees that the predicted decrease of the Lyapunov
function from tk to tk + NRΔ, if u1 = h(x) and u2 =
u∗d2 are applied, is at least equal to the one obtained if
the Lyapunov-based controller h is applied in a sample-
and-hold fashion. Note that we have considered input
constraints, see Eq. 6d.

The optimization problem of LMPC 1 depends on the
latest state measurement x(tk) and the decision taken by
LMPC 2 (i.e., u∗d2). This allows LMPC 1 to compute an
input u1 such that the closed-loop performance is opti-
mized, while guaranteeing that the stability properties of
the Lyapunov-based controller are preserved. Specifically,
LMPC 1 is based on the following optimization problem:

min
ud1∈S(Δ)

∫ NΔ

0

L(x̌(τ), ud1(τ), ud2(τ))dτ (7a)

˙̌x(τ) = f(x̌(τ), ud1(τ), ud2(τ), 0),∀τ ∈ [0, NΔ) (7b)
˙̃x(τ) = f(x̃(τ), h(x̃(jΔ)), ud2(τ), 0), (7c)
∀τ ∈ [jΔ, (j + 1)Δ)

ud2(τ) = u∗d2(τ |tk),∀τ ∈ [0, NΔ) (7d)
ud1(τ) ∈ U1,∀τ ∈ [0, NΔ) (7e)
x̌(0) = x̃(0) = x(tk) (7f)
V (x̌(τ)) ≤ V (x̃(τ)), ∀τ ∈ [0, NRΔ) (7g)
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where x̌ is the predicted trajectory of the nominal system if
u2 = u∗d2 and u1 = ud1 are applied, and x̃ is the predicted
trajectory of the nominal system if u2 = u∗d2 and the
Lyapunov-based controller h are applied in a sample-and-
hold fashion.

The optimal solution to this optimization problem is
denoted by u∗d1(τ |tk). The contractive constraint (7g)
guarantees that the predicted decrease of the Lyapunov
function from tk to tk + NRΔ, if u1 = u∗d1 and u2 = u∗d2
are applied, is at least equal to the one obtained when
u1 = h(x) and u2 = u∗d2 are applied.

Note that the trajectory x̃(τ) predicted by constraint (7c)
is the same optimal trajectory predicted by LMPC 2.
This trajectory and the two contractive constraints (6f)
and (7g) allow proving the closed-loop stability properties
of the proposed controller.

The manipulated inputs of the proposed control scheme
are defined as follows:

u1(t) = u∗d1(t− tk|tk), ∀t ∈ [tk, tk+1)
u2(t) = u∗d2(t− tk|tk), ∀t ∈ [tk, tk+1).

(8)

Note that, as explained before, the controllers apply the
last evaluated optimal input trajectory between two suc-
cessive state measurements.

4. STABILITY PROPERTIES

In this section, we present the stability properties of the
proposed distributed control scheme. We prove that the
contractive constraints (6f) and (7g) guarantee that the
proposed distributed control scheme inherits the stability
properties of the Lyapunov-based controller (implemented
in sample and hold and using the model to estimate
the state of the system when a new measurement is not
available). This property is presented in Theorem 1 below.
To state this theorem, we need the following propositions.
Proposition 1. (c.f. Muñoz de la Peña and Christofides
(2008)). Consider the nominal sampled trajectory x̂ of sys-
tem (1) in closed-loop with the Lyapunov-based controller
h applied in a sample-and-hold fashion and u2(t) = 0. Let
Δ, εs > 0 and ρ > ρs > 0 satisfy

−α3(α−1
2 (ρs)) + α4(α−1

1 (ρ))LxMΔ ≤ −εs/Δ. (9)
Then, if ρmin < ρ where

ρmin = max{V (x̂(t+ Δ)) : V (x̂(t)) ≤ ρs} (10)
and x̂(0) ∈ Ωρ, the following inequality holds

V (x̂(kΔ)) ≤ max{V (x̂(0))− kεs, ρmin}. (11)

Proposition 1 ensures that if system (1) with w(t) = 0
for all t under the control law u1 = h(x) implemented
in a sample-and-hold fashion and u2 = 0 starts in Ωρ,
then it is ultimately bounded in Ωρmin . The following
proposition provides an upper bound on the deviation of
the state trajectory obtained using the nominal model,
from the real-state trajectory when the same control input
trajectories are applied.
Proposition 2. (c.f. Liu et al. (2008)). Consider the follow-
ing state trajectories

ẋa(t) = f(xa(t), u1(t), u2(t), w(t))
ẋb(t) = f(xb(t), u1(t), u2(t), 0) (12)

with initial states xa(t0) = xb(t0) ∈ Ωρ. There exists a
class K function fW (·) such that

|xa(t)− xb(t)| ≤ fW (t− t0), (13)
for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈W with

fW (τ) =
Rwθ

Rx
(eRxτ − 1).

The following proposition bounds the difference between
the magnitudes of the Lyapunov function of two different
states in Ωρ.
Proposition 3. (c.f. Liu et al. (2008)). Consider the Lya-
punov function V (·) of system (1). There exists a quadratic
function fV (·) such that

V (x) ≤ V (x̂) + fV (|x− x̂|) (14)
for all x, x̂ ∈ Ωρ with

fV (s) = α4(α−1
1 (ρ))s+Ms2.

In Theorem 1 below, we provide sufficient conditions
under which the proposed distributed LMPC design (8)
guarantees the closed-loop stability of system (1) in the
presence of asynchronous measurements.
Theorem 1. Consider system (1) in closed-loop with the
distributed LMPC design (8) based on a controller h(x)
that satisfies (2). Let Δ, εs > 0, ρ > ρmin > 0, ρ > ρs > 0
and N ≥ NR ≥ 1 satisfy (9),(10) and the following
inequality

−NRεs + fV (fW (NRΔ)) < 0. (15)
If x(t0) ∈ Ωρ, then x(t) is ultimately bounded in Ωρc

⊆ Ωρ

where
ρc = ρmin + fV (fW (NRΔ)).

Proof: In order to prove that the closed-loop system is
ultimately bounded in a region that contains the origin,
we will prove that V (x(tk)) is a decreasing sequence of
values with a lower bound.

The proof consists of two parts. In the first part, we will
prove that the stability results stated in Theorem 1 hold
for the case where tk+1−tk = Tm for all k and Tm = NRΔ.
The proof of the stability results for the general case, that
is tk+1 − tk ≤ Tm for all k and Tm ≤ NRΔ, will be shown
in the second part.

Part 1: In this part, we prove that the stability results
stated in Theorem 1 hold in the case that tk+1 − tk = Tm

for all k and Tm = NRΔ. This case corresponds to the
worst possible situation in the sense that LMPC 1 and
LMPC 2 need to operate in open-loop for the maximum
possible amount of time.

In order to simplify the notation, we will denote x̃(t) the
nominal closed-loop trajectory of system (1) with u1 = h
implemented in a sample-and-hold fashion and u2 = u∗d2
from x(tk), x̂(t) the nominal closed-loop trajectory of
system (1) under the Lyapunov-based controller u1 =
h implemented in a sample-and-hold fashion and u2 =
0 from x(tk), and denote x̌(t) the nominal closed-loop
trajectory of system (1) with u1 = u∗1d and u2 = u∗2d from
x(tk).

By Proposition 1 and the fact that tk+1 = tk +NRΔ, the
following inequality can be obtained:

V (x̂(tk+1)) ≤ max{V (x̂(tk))−NRεs, ρmin}. (16)
From the contractive constraints (6f) and (7g) in LMPC 2
and LMPC 1, the following inequality can be written:
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V (x̌(t)) ≤ V (x̃(t)) ≤ V (x̂(t)),∀t ∈ [tk, tk +NRΔ). (17)
From inequalities (16) (17) and taking into account that
x̂(tk) = x̃(tk) = x̌(tk) = x(tk), the following inequality is
obtained:

V (x̌(tk+1)) ≤ max{V (x(tk))−NRεs, ρmin}. (18)
When x(t) ∈ Ωρ for all times (this point will be proved
below), we can apply Proposition 3 to obtain the following
inequalities:

V (x(tk+1)) ≤ V (x̌(tk+1))
+fV (|x̌(tk+1)− x(tk+1)|). (19)

Applying Proposition 2 we obtain the following upper
bound on the deviation of x̌(t) from x(t):

|x(tk+1)− x̌(tk+1)| ≤ fW (NRΔ) (20)
From inequalities (19) and (20), the following upper bound
on V (x(tk+1)) can be written:

V (x(tk+1)) ≤ V (x̌(tk+1)) + fV (fW (NRΔ)). (21)
Using inequality (18), we can re-write inequality (21) as
follows:

V (x(tk+1)) ≤ max{V (x(tk))−NRεs, ρmin}
+fV (fW (NRΔ)). (22)

If condition (15) is satisfied, from inequality (22), we know
there exists εw > 0 such that the following inequality
holds:

V (x(tk+1)) ≤ max{V (x(tk))− εw, ρc} (23)
which implies that if x(tk) ∈ Ωρ/Ωρc

, then V (x(tk+1)) <
V (x(tk)), and if x(tk) ∈ Ωρc

, then V (x(tk+1)) < ρc. Using
inequality (23) recursively, it is proved that if x(t0) ∈
Ωρ, the closed-loop trajectories of system (1) under the
proposed distributed LMPC design (8) satisfy

lim sup
t→∞

V (x(t)) ≤ ρc.
This proves that the closed-loop system is ultimately
bounded in Ωρc

for the case where tk+1 − tk = Tm for
all k and Tm = NRΔ.

Part 2: In this part, we extend the results proved in Part 1
to the general case, that is, tk+1 − tk ≤ Tm for all k
and Tm ≤ NRΔ which implies that tk+1 − tk ≤ NRΔ.
The proof is divided into two cases. The first case is that
tk+1 − tk ≤ Δ. In this case, the stability results hold as
shown in Liu et al. (in press). The second case is that
Δ < tk+1 − tk ≤ NRΔ. Because fV and fW are convex
and strictly increasing functions of their arguments (see
Propositions 2 and 3 for the expressions of fV and fW )
and following similar steps in Part 1, we can show that
inequality (22) still holds. This proves that the stability
results stated in Theorem 1 hold.

5. APPLICATION TO A CHEMICAL PROCESS

The process considered in this example is a three vessel,
reactor-separator process consisting of two continuously
stirred tank reactors (CSTRs) and a flash tank separator.A
feed stream to the first CSTR F10 contains the reactant
A which is converted into the desired product B. The
desired product B can then further react into an undesired
side-product C. The effluent of the first CSTR along with
additional fresh feed F20 makes up the inlet to the second
CSTR. The reactions A→ B and B → C (referred to as 1
and 2, respectively) take place in the two CSTRs in series

before the effluent from CSTR 2 is fed to a flash tank.
The overhead vapor from the flash tank is condensed and
recycled to the first CSTR and the bottom product stream
is removed. A small portion of the overhead is purged
before being recycled to the first CSTR. All the three
vessels are assumed to have static holdup. The dynamic
equations describing the behavior of the system, obtained
through material and energy balances under standard
modeling assumptions, can be found in Liu et al. (in press).

Each of the tanks has an external heat input. The manip-
ulated inputs to the system are the heat inputs, Q1, Q2

and Q3, and the feed stream flow rate to vessel 2, F20.

The process was numerically simulated using a standard
Euler integration method. Process noise was added to sim-
ulate disturbances/model uncertainty and it was generated
as autocorrelated noise of the form wk = φwk−1+ξk where
k = 0, 1, . . . is the discrete time step of 0.001 hr, ξk is
generated by a normally distributed random variable with
standard deviation σp, and φ is the autocorrelation factor
and wk is bounded by θp, that is |wk| ≤ θp.
We assume that the measurements of the temperatures T1,
T2, T3 and the measurements of mass fractions xA1, xB1,
xA2, xB2, xA3, xB3 are available asynchronously at time
instants {tk≥0} with an upper bound Tm = 3Δ on the
maximum interval between two successive measurements,
where Δ is the controller sampling time and chosen to be
Δ = 0.02 hr = 1.2 min.

For each set of steady-state inputs Q1s, Q2s, Q3s and
F20s corresponding to a different operating condition, the
process has one steady-state xs. The control objective is
to steer the process to the steady state
xT

s = [0.61, 0.39, 425.9, 0.61, 0.39, 422.6, 0.35, 0.63, 427.3].

The process belongs to the following class of nonlinear
systems
ẋ(t) = f(x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t) + w(t)

where xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9] = [xA1 −
xA1s xB1 − xB1s T1 − T1s xA2 − xA2s xB2 − xB2s T2 −
T2s xA3 − xA3s xB3 − xB3s T3 − T3s] is the state, uT

1 =
[u11 u12 u13] = [Q1 − Q1s Q2 − Q2s Q3 − Q3s] and
u2 = F20 − F20s are the manipulated inputs which are
subject to the constraints |u1i| ≤ 106 KJ/hr (i = 1, 2, 3)
and |u2| ≤ 3 m3/hr, and w = wk is a time varying noise.

To illustrate the theoretical results, we first design the
Lyapunov-based controller u1 = h(x) which can stabilize
the closed-loop system and the explicit expression of the
controller can be found in Liu et al. (in press). We consider
a Lyapunov function V (x) = xTPx with P being the
following weight matrix
P = diag 5 (5.2× 1012

[
4 4 10−4 4 4 10−4 4 4 10−4

]
).

The values of the weights in P have been chosen in a way
such that the Lyapunov-based controller h(x) satisfies the
input constraints, stabilizes the closed-loop system and
provides good closed-loop performance.

Based on the Lyapunov-based controller h(x), we design
LMPC 1 and LMPC 2. The prediction horizons of both
LMPC 1 and LMPC 2 are chosen to be N = 6 and NR is
5 diag(v) denotes a matrix with its diagonal elements being the
elements of vector v and all the other elements being zeros.
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Fig. 3. State trajectories of the process under the proposed
distributed LMPC design (8) (solid lines) and the
original distributed LMPC design in Liu et al. (in
press) (dashed lines) under continuous measurements.
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Fig. 4. State trajectories of the process under the proposed
distributed LMPC design (8) (solid lines) and the
original distributed LMPC design in Liu et al. (in
press) (dashed lines) in the presence of asynchronous
measurements.

chosen to be 4 so that NRΔ ≥ Tm. The weight matrices
for the LMPC designs are chosen as: Qc = diag(103Qv)
with Qv = [2 2 0.0025 2 2 0.0025 2 2 0.0025], Rc1 =
diag(

[
5 · 10−12 5 · 10−12 5 · 10−12

]
) and Rc2 = 100.

We first carried out simulations to compare the proposed
distributed LMPC design (8) with the original distributed
LMPC design in Liu et al. (in press) in the case where
no asynchronous measurements are present (i.e., state
measurements x(tk) are available continuously with the
interval between two successive measurements being Δ).
The state trajectories under the two control designs are
shown in Fig. 3. From Fig. 3, we can see that both
the proposed and the original distributed LMPC designs
stabilize the closed-loop system at the desired steady state.

We also carried out another set of simulations to compare
both control laws in the presence of asynchronous mea-
surements. To model the time sequence {tk≥0}, we use
an upper bounded random Poisson process. The Poisson

process is defined by the number of events per unit time
W . The interval between two successive concentration
sampling times (events of the Poisson process) is given by
Δa = min{−lnχ/W, Tm}, where χ is a random variable
with uniform probability distribution between 0 and 1.
This generation ensures that max

k
{tk+1 − tk} ≤ Tm. In

this example, W is chosen to be W = 20. The state
trajectories of the system in closed-loop with both con-
trollers are shown in Fig. 4. From Fig. 4, we can see
that the proposed distributed LMPC design, which takes
into account asynchronous measurements explicitly, can
stabilize the closed-loop state at the desired steady state;
however, the original distributed LMPC design failed to
drive the closed-loop state to the desired steady state.
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Abstract: In many process control problems measurement and control instances might not be
available in a periodically-equally-distributed way. Moreover, due to the sensor processing time,
actuators/sensors calibration, or computation, inevitable delays can often arise. Also information
losses caused, for example, by temporary components failure, or the presence of unreliable
communication media, might represent a non-trivial problem. This leads to asynchronous
availability of measurement and control inputs, i.e. the controller, sensor, and actuator work in
an event-driven, rather than a continuous way. In order to avoid instability and performance
loss all these issues must be considered during the control design. In this paper, it is shown that
predictive control methods based on continuous time models can be used to stabilize event-based
nonlinear systems under variable delays, and limited information losses. It is demonstrated that
by using the suggested approach asymptotic convergence is ensured.

Keywords: nonlinear model predictive control, continuous time systems, event-based control,
delays, information losses, process control

1. INTRODUCTION
In many cases, continuous time systems are controlled by
means of periodically-equally-distributed sampling times,
commonly assumed to be known a priori. However, prac-
tical control problems are often intrisictly asynchronous,
i.e. the dynamics of the system depends on some –maybe
exogenous– event. Examples are multi fold: sensors such as
chromatographers or laboratory measurements of compo-
sitions could need long time due to calibration or limited
processing capabilities. The energy of an actuator might
be limited, e.g. it must first be “charged” before applying
the input. Measurements/actuation might demand human
interaction, often unpredictable or inefficient. Moreover,
it happens frequently that systems are subject to in-
put/output delays caused, for example, by computational
time, communication, and/or sensor/actuator slow dy-
namics. It might also occur that part of the exchanged
information is lost, e.g. due to components failure, or the
use of unreliable communication media. If these issues are
not taken into account, performance loss or instability of
the closed loop can arise. Event-based and asynchronous
control is a very active field, Brockett and Liberzon (1998);
Heemels et al. (2008). However, most of the work focuses
only on linear unconstrained systems, without considering
explicitly either time delays or information losses.

In this paper, a solution for the formerly introduced prob-
lems, especially suitable to process control applications,
is presented. In particular, the suggested solution relies
on Predictive Control (PC), which fits well the nature
of event-based/asynchronous systems, since the sampling
times do not have to neither be equally distant nor to
be known a priori (see Fontes (2001); Findeisen (2006)).

The compensation capabilities of PC with respect to mea-
surement and computational delays have already been
assessed in inter alia Chen et al. (2000); Findeisen and
Allgöwer (2004)), where asymptotic stability with respect
to such delays has been established. In this work, we focus
on the complete asynchronous case, including delays and
losses on the actuation and measurement side, which is
significantly more challenging. By using smart-sensors and
smart-actuators, i.e. components capable of full-duplex
communication with the controller, it is possible to achieve
closed loop asymptotic convergence.

In the next section PC and the problem under considera-
tion are formally presented. In Section 3, an asynchronous
PC solution to compensate delays and information losses
is introduced. Results on asymptotic convergence are pro-
vided. Simulation results on a Continuous Stirred Tank
Reactor (CSTR) are reported in Section 4.

2. PROBLEM STATEMENT
We consider the problem of controlling the nonlinear time-
continuous process of the form

ẋ = f(x, u), x(0) = x0, x ∈ Rn, u ∈ Rm. (1)
It is assumed that the whole state x is available only at
discrete instants ti. The objective is to stabilize the system
around the origin, i.e. ‖x‖ → 0 for t→∞, under the state
and input constraints x ∈ X ⊂ Rn, u ∈ U ⊂ Rm. The
state constraints X , e.g. max temperature, and the input
constraints U , e.g. max valve opening, are assumed to be
closed sets. It is also assumed that f(0, 0) = 0, and f is
sufficiently differentiable. The controller should provide for
every state measurement x(ti) a piece of input trajectory
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u(t) = u(t;x(ti)), for t ∈ (ti, ti+1], (2)
i.e. the calculated input trajectory is applied open loop
in between consecutive recalculation times. This kind
of control is commonly called sampled-data open loop
feedback. Note that the recalculation times ti do not need
to be known a priori, e.g. in the event-based case when
a measurement is triggered once some conditions, such as
deviation from the product specifications, are met. This
fits well such an asynchronous frame, and it can be used
to provide better performance, thanks to the possibility of
adjusting on-the-fly the recalculation frequency.

2.1 Predictive Control
In this section, we summarize the basic idea of PC (for
more details see Mayne et al. (2000); Findeisen (2006)).
The idea is to use a model of the process to be controlled,
in order to repeatedly solve an optimization problem,
based on the state prediction provided by the model itself.
Then, only the first piece of trajectory is implemented and
the problem is re-solved with the new measurement. The
following definition will be useful for the remainder of the
paper.
Definition 1. (Partition). Every series π = (ti), i ∈ N,
ti ∈ R+, such that t0 = 0, ti < ti+1 and ti → ∞ is called
partition.

For every ti ∈ π, x(ti) is measured, and

min
ū(·)

∫ ti+Tp

ti

F (x̄(τ), ū(τ))dτ +E(x̄(ti + Tp)), (3a)

s.t. ˙̄x(t) = f(x̄(t), ū(t)), x̄(ti) = x(ti), (3b)
ū(t) ∈ U , t ∈ (ti, ti+1], (3c)
x̄(t) ∈ X , (3d)
x̄(ti + Tp) ∈ E , (3e)

is solved, where ·̄ denotes the controller internal variables.
The solution is an optimal control signal u∗(t;x(ti)), for
t ∈ [ti, ti + Tp], where Tp represents the finite prediction
horizon. For sake of simplicity, prediction and control
horizon are supposed to be equal, i.e. Tc = Tp. The control
input is then implemented for the time-span (ti, ti +δ], i.e.

u(t) = u∗(t;x(ti)), for t ∈ (ti, ti + δ], (4)
where δ represents the interval between two consecutive
recalculation times, i.e. δ = (ti+1 − ti),∀ti, ti+1 ∈ π. Sta-
bility can then be achieved by properly choosing the cost
functional F (x, u), the terminal cost E(x), the terminal
region E ⊂ X , and the prediction horizon Tp, see Mayne
et al. (2000); Fontes (2001); Findeisen (2006). As formerly
mentioned, it is commonly assumed that the recalculation
intervals δ = (ti+1 − ti) are constant and known a priori.
Here, however, these assumptions are relaxed, allowing for
the recalculation instants to be time-varying and unknown
a priori. The only requirement on δ is given by Assumption
2.
Assumption 2. Given the prediction horizon Tp, β ∈ R+,

β < δ = (ti+1 − ti) < Tp,∀ti, ti+1 ∈ π. (5)

In the remainder of the paper, δ will be used to refer
to the maximum recalculation interval δ = (ti+1 − ti).
Additionally, the following theorem will be useful for the
final results.
Theorem 3. (Asynchronous Predictive Control).
Consider the closed-loop system given by (1), (3)-(4). If

i) Assumption 2 is satisfied.
ii) ∀x0 ∈ E ⊆ X ,∃ū(τ) ∈ U , τ ∈ [0, Tp] where

x(τ) ∈ E , (6a)
for ẋ(τ) = f(x(τ), ū(τ)), x(0) = x0, (6b)

and
∂E

∂x
f(x(τ), ū(τ)) + F (x(τ), ū(τ)) ≤ 0. (6c)

iii) The optimal control problem is solvable for a time t0.

Then, lim
t→∞‖x(t)‖ = 0.

Proof. The proof comes directly from Findeisen (2006)
and the results about PC stability, see inter alia Fontes
(2001); Mayne et al. (2000). It must be ensured that δ is
smaller than Tp.
Remark 4. The solution of the optimal control problem,
as well as the closed loop stability, are based only on the
discrete time measurements x(ti) at ti ∈ π, where π does
not have to be known a priori. This makes PC a very
appealing solution for event-based problems.
Remark 5. Note that Theorem 3 states only asymptotic
converge, and not asymptotic stability in the Lyapunov
sense. The former is a weaker property, meaning that even
withouth disturbances, the system can temporary drift
away from the equilibrium point before converging to the
equilibrium. Proving asymptotic stability would in the first
step require to rigorously define stability for discrete event
systems, since the partition π is not known a priori. This
is way beyond the focus of this paper.

2.2 Delays and Information Losses
In a closed loop controlled system, it is quite common
to face delays and/or information losses, e.g. due to
components failures. Essentially, there can be three delay
sources (see Figure 1):

i) Measurement delays, which can be due to measure-
ment elaboration, observer reconstruction, slow sen-
sor dynamics, but also the time required for a signal
to reach the controller.

ii) Computational delays, which represent the time re-
quired by the controller to calculate the control input.

iii) Actuation delays, which can be due to slow actuator
dynamics, but also signal transportation.

The following assumption on the delays is made:
Assumption 6. τs(t), τc(t), τa(t) are nondeterministic with
arbitrary probability distribution, but ultimately limited,
i.e.

τs(t) ∈ [0, τs], τc ∈ [0, τc], τa(t) ∈ [0, τa]. (7)

Fig. 1. Sketch of an event-based system subject to delays
and information losses.
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Both the sensor-to-controller and controller-to-actuator
channel can suffer from information losses, which, for
example, can be modeled as Bernoullian variables Ai ∼
B(1− pa), and Si ∼ B(1− ps), such that

Ai =
{

1, if a control input is received
0, otherwise ,

Si =
{

1, if a measurement is received
0, otherwise .

pa, and ps represent the loss probabilities for the actuation
and the measurement link respectively. Sensor, controller,
and actuator are event-driven, such that measurement and
control information are dispatched only when necessary. It
is also assumed that the following statements are fulfilled.
Assumption 7. Either a common global time, or a set
of synchronized clocks is available, such that a common
unique time t is established among the components.
Assumption 8. All exchanged information is time-stamped.

3. ASYNCHRONOUS PC
Model-based approaches, such as PC, represent an in-
tuitive and natural way to handle input/output delayed
systems. In this section, we show how PC can be used in an
event-based way to control asynchronous systems by pre-
serving stability, in the sense of asymptotic convergence,
and simultaneausly reducing both exchanged information
and computational requirements. Note that delays are very
common on a daily basis, therefore the presented approach
represents a good solution for a wide class of problems, e.g
control under actuator/sensor slow dynamics, heavy com-
putation, control over networks, and/or limited resources.

3.1 Compensating Delays
Measurement Delays Assume for the moment that no
information is lost. When a measurement [x(ti)|ti] is
dispatched at a time ti ∈ π, where x(ti) ∈ X is the state
value, while ti is its time-stamp, if there is a measurement
delay τs(t), then the information will be available to the
controller only at (ti + τs(ti)), i.e. the controller has to
use some piece of information which is outdated and does
not correspond to the actual state of the system under
control. Therefore, it is necessary to compensate this delay
in order to solve the correct control problem. Since a model
of the system is available at the controller side, and no
mismatch is present, under Assumptions 7-8, it is possible
to determine the delay simply by comparing the time-
stamp with the global time t, i.e. τs(ti) = (t−ti). By means
of forward prediction through the local model, possible
since it is known what input is applied to the plant (no
actuation delay), one can obtain the state prediction

x(ti + τs(ti)) = x(ti + τs(ti)). (8)
Theorem 9. (Measurement Delay Compensation).
Given the closed loop system (1),(3)-(4), if

i) Theorem 3 is satisfied in the nominal case, i.e. without
measurement delays.

ii) Tp > τs + δ.

Then, lim
t→∞‖x(t)‖ = 0.

Proof. The proof follows from Theorem 3, when the state
prediction (8) is used to compensate the delay τs(ti). More
details can be found in Findeisen (2006).

Compensation of Actuation Delays Less trivial is the
compensation of computational and actuation delays. In
this case, in fact, if the delays are nondeterministic, the
actual applied input is not known for sure to the controller.
Thus, it is not possible to obtain (8) correctly since u∗(·)
is not uniquely determined. As formerly stated, this kind
of delays are common in real application, e.g. due to slow
actuator dynamics or reduced computational capabilities,
and if not explicitly considered can worsen considerably
the closed loop performance, or bring to instability. To
solve this problem, in some way the applied input must
be made deterministic. This can be achieved by using
future input trajectories and buffer them in the actuator
till the moment they can be used, see Alldredge and
M. S. Branicky (2008); Findeisen and Varutti (2009);
Varutti and Findeisen (2008). In fact, since Assumption
6 must hold, one can consider the worst case for τa(t) and
τc(t), namely τa and τc, in which the state prediction

x(ti + τs(ti) + τa + τc) = x(ti) +
∫ ti+τs(ti)+τa+τc

ti

f(x(τ), u(τ))dτ (9)

is obtained by using the measurement x(ti). (9) is then
used to solve the optimal control problem and the cor-
responding solution is despatched to the actuator with a
new time-stamp, buffered and used once its time-stamp
matches with the global time t, i.e.

u∗(τ ;x(ti + τs(ti) + τa + τc)), (10)
for τ ∈ (ti + τs(ti) + τa + τc), ti+1 + τs(ti+1) + τa + τc)] is
sent as [u∗(·)|(ti + τs(ti) + τa + τc)]. The overall algorithm
is reported in Algorithm 1, Appendix A. It can be proved
that under Assumption 7, and

Tp > δ + τs + τa + τc, (11)
Algorithm 1 stabilizes the delayed system.
Theorem 10. (Worst Case Compensation).
Given the nonlinear continuous time system (1) and the
the predictive controller obtained from (3)-(4), and (9), by
applying Algorithm 1, under (11) the closed loop system is
stable, in sense of asymptotic convergence, if the nominal
controller, i.e. the controller subject to no delays obtained
from Theorem 3, stabilizes the system.
Proof. The proof follows directly from Theorem 3, and
9, first, by proving recursive feasibility, and then conver-
gence –see Findeisen (2006); Findeisen and Varutti (2009);
Varutti and Findeisen (2008) for more details–.
Remark 11. Assumption 7 is required to have a common
time-frame among the components. This can represent a
problem for fast dynamical systems, since the state-of-
the-art synchronization algorithms cannot guarantee high
precision.

3.2 Information Loss Compensation

It has been assumed till now that the communication is
not affected by any information loss. In reality, however,
information losses might occur due, for example, to unre-
liable communication media, or some temporary compo-
nents failure. As in the delay case, the major problem is
represented by losses/failures in the actuation channel. In
fact, if an information loss Si = 0 occurs for ti ∈ π, the
controller can still use the last available state

x(tk), for tk ∈ π, s.t. Sk = 1, (12)

158



and the nominal model for (1) to calculate the prediction

x(tk +
i∑

j=k

τs(tj) + τa + τc), for tj ∈ π, s.t. Sj = 0, (13)

by using the compensation approach presented in Section
3.1, if the applied input is uniquely determined.

Remark 12. Notice that tk +
∑i

j=k τs(tj) can be substi-
tuted by the global time t, moment in which the controller
receives a new measurement.

On the contrary, if a dropout Ai = 0 occurs, then the con-
trol input is not uniquely known at the controller side, and
thus (13) cannot be accurately calculated. In Varutti and
Findeisen (2008); Findeisen and Varutti (2009) a solution
for the problem was found by using prediction consistent
feedbacks, i.e. feedbacks that under information losses are
able to keep the difference between state prediction and
actual state negligible and hence guarantee convergence
under a limited amount of dropouts.

In this paper, a different approach is considered. In par-
ticular, the following assumptions are made:
Assumption 13. An acknowledge mechanism is available
on the actuator side.
Assumption 14. The acknowledgments have high priority,
and they cannot be dropped.
Assumption 15. The acknowledgments are delivered in-
stantaneously.

This is equal to saying that for every input received by the
actuator an acknowledgment with the time-stamp of the
latest successfully delivered information is sent back to the
controller.

We show later how Assumption 15 can be relaxed. On the
contrary, Assumption 14 is a fundamental condition since
it is well known from theoretical results that no hand-
shake protocol can solve a coordination problem under
acknowledgment losses –see ”The two Generals Paradox”,
Tanenbaum (2008)–. In the case of chemical processes,
however, timely submission of acknowledgments is often
not a problem, since there are frequently slow measure-
ment and actuation devices. The used communication
networks are often sufficiently fast and provide the possi-
bility of having high priority acknowledgments. Although
restrictive, these conditions are necessary to allow the con-
troller to correctly reconstruct the applied input sequence.
Algorithm 2 in Appendix A illustrates the procedure to
compensate simultaneously delays and information losses.
Differently from Algorithm 1, the entire control input
trajectory u∗(τ ;x(ti)), for τ ∈ (t + τa + τc, ti + Tp] is
sent to the actuator with time-stamp (t + τa + τc). In
this way, when some information is dropped either in the
down- or in the up-link, the actuator can still utilize the
old input trajectory to control the system. Note that in
an event-based setup measurement losses are transparent
to the controller. This means that no new control input
is generated and dispatched to the actuator. However,
since the whole control trajectory is sent, if the number of
consecutive losses Si is less than Tp, the actuator can still
apply the latest received input. On the other hand, the
controller can establish immediately that some informa-
tion has gone lost thanks to the timer that is implicitly set

by time-stamping the control inputs. In fact, if the current
time exceeds the former time-stamp, from Assumption 15,
it is known for sure that no new control input has arrived.
An alternative would be to index the control trajectories
and use an error mechanism instead, i.e. an error is sent
every time some control information is lost. However, in
the asynchronous case utilizing acknowledgments is more
efficient, since the actuator does not have to wait till the
next successfully received trajectory to realize that some
information went lost. Finally, note that a non-resend
policy has been chosen, i.e. if a control trajectory is lost,
the controller does not transmit it again but it simply
records the event in order to update its local copy of the
currently applied control input. This seems to be a more
logical choice since the sequence would probably arrive
when its applicability time is already expired.
Theorem 16. (Convergence Under Information Losses).
Given the closed loop system (1), (3)-(4), (13) if

i) Assumptions 13-15 are satisfied.
ii) Algorithm 2 is used.
iii) The prediction horizon Tp is such that

Tp > δ + n · τs + τc +m · τa, (14)

where n,m ∈ N/{0} represent, respectively, the num-
ber of consecutive losses in the measurement and in
the actuation.

Then, lim
t→∞‖x(t)‖ = 0.

Proof. The proof follows from Theorem 3 and 9. The use
of acknowledgments allows the controller to reconstruct
in real time the correct applied control sequence. Thus,
feasibility and convergence can be proved.

As formerly stated, Assumption 15 can be relaxed by
allowing the acknowledgments to be subject to nondeter-
ministic delays τack(t). In this case, however, the following
assumption is required.
Assumption 17. τack(t) is nondeterministic with arbitrary
probability distribution, but limited, i.e τack(t) ∈ [0, τack].

By using a worst case compensation approach similar to
Algorithm 1, and 2, one can ensure asymptotic conver-
gence of the closed loop system by considering, instead,
the state prediction

x(tk +
i∑

j=k

τs(tj) + τa + τc + τack), (15)

for tj ∈ π, such that Sj = 0.
Corollary 18. (Convergence Under Information Losses).
The closed loop system (1), (3)-(4), is stable, in the sense
of asymptotic convergence, if

i) The conditions for Theorem 3, 9, 10, and Assumption
17 are satisfied.

ii) A modified variant of Algorithm 2, such that the
prediction (15) is used and [u∗(τ ;x(ti))|ts], for ts =
t+τack +τs+τc+τa, τ ∈ [t+τack +τs+τc+τa, ti+Tp]
is utilized.

iii) Tp > n · τs + τc +m · τa + τack, where n,m ∈ N/{0}
represent the number of consecutive losses in the
measurement/actuation.
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4. SIMULATION RESULTS FOR A CSTR
The formerly presented method has been applied to a
CSTR, where an irreversible exothermic reaction, A→ B,
takes place in a constant volume, cooled by a single coolant
stream at temperature Tc –see Figure 2–. The overall

Fig. 2. Scheme of CSTR under study.

system is modeled as:

ĊA(t) =
F

V
(CAf − CA(t))− k0CA(t)e−

E
RTr(t) ,

Ṫr(t) =
F

V
(Trf − Tr(t))−

k0ΔH
ρcp

CA(t)e−
E

RTr(t)

+
UA

ρcpV
(Tc(t)− Tr(t)).

The meaning and the values of all the parameters are
explained in Henson and Seborg (1997). Under the nominal
condition Tnom

c = 103.4 K, the system has the three
equilibrium points depicted in Figure 3. The objective
is to stabilize the unstable saddle point (0.52, 398.97) by
manipulating the control input u(t) = Tc(t) under the
input constraints Tc(t) ∈ [275, 370] K. If we represent

Fig. 3. Phase plot of the system for the nominal case
Tc,nom = 302 K.

the state as the vector x(t) = [CA(t) Tr(t)]T , the cost
functional to be minimized is given by

J(u, x) =
∫ ti+Tp

ti

(xTQx+ uTQu)dτ,

where Q = I, R = 1, and Tp = 1.5 min. For sake of
simplicity, the control trajectory is held constant between
consecutive recalculation times. Terminal penalty and ter-
minal region constraints have been chosen such that closed
loop stability in the nominal case is achieved.

In Figure 4, the results for the asynchronous nominal case
(no delays and no failures) are presented. Compared to
a classical sampling approach with constant recalculation

interval δ = 0.15 min, the asynchronous controller pre-
sented in Theorem 3 obtains extremely similar results by
saving up to 30% of computational effort and exchanged
information. The partition π is implicitly determined by
the absolute error on the product concentration, i.e. the
sensor regularly checks the concentration CA(t), but it
sends a measurement to the controller only when

‖CA(t)− 0.52‖ > ε, with ε = 2 · 10−3,

for longer than 0.15 minutes. In a second simulation

Fig. 4. Event-based controller under nominal conditions.

both measurement and actuation delays are considered.
It is assumed that τs lies between 0 and 15 seconds,
while τa between 0 and 5 seconds. Both are modeled as
uniform variables. For sake of simplicity, no computational
delay is considered. However, notice that this delay could
be implicitly considered as part of the input delay τa.
Furthermore, it is assumed that the probability loss at the
actuator side pa is equal to 5%, while no information from
the sensor is lost. It is also supposed that Assumption
15 is verified. The results for the compensated and the
uncompensated case are presented in Figure 5. As one can
see, the proposed method is able to stabilize effectively
the unstable saddle point with performance comparable
to the nominal case, reported in Figure 4. Note that the
controllers presented in Findeisen and Allgöwer (2004);
Chen et al. (2000) are not able to handle delays on the
actuation side at all.

5. CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, it was shown how PC can be used to con-
trol event-based/asynchronous systems, such as chemical
processes, in which the recalculation times do not need to
be known a priori. Moreover, it was depicted how delays
and information losses/failures on the actuators/sensors,
common in control systems, need to be taken into account
to avoid instability. Whereas delays can be compensated
easily with forward prediction, one can exploit bidirec-
tional communication with the actuators in order to es-
tablish an acknowledgment mechanism to counteract infor-
mation losses/failures. Two algorithms able to guarantee
asymptotic convergence for nonlinear continuous time sys-
tems were presented. Through the simulation of a CSTR,
it was shown firstly that asynchronous PC can actually
reduce both computational requirements and exchanged
information, but also compensate effectively delays and
information losses while keeping closed loop stability and
good performance. Future work should concentrate on
how to include directly in the optimization problem the
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Fig. 5. Results for the closed loop system subject to delays and information losses with and without compensation.

exchanged information. Moreover, the method should be
extended to include also robustness.
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Appendix A
Algorithm 1 (Worst Case Compensation)

∀ti ∈ π; t = current time;

Sensor:

(1) Measure x(ti).

(2) Send [x(ti)|ts], with ts = ti, to the controller.

(3) Go to 1.

Controller:

buffer = [x(ti)|ts]old;

control input = {[u∗(·)|ts0]};
(1) If [x(ti)|ts]new arrives

a) If tsnew ≤ tsold, then discard.

b) Else buffer = [x(ti)|ts]new.

(2) τs = (t − ti) for ti = ts.

(3) Calculate (9), from u∗(·; x(ti)) ∈ control input.

(4) Solve the o.c.p. for (9) −→
u∗(τ ; x(ti)), for τ ∈ (ti +τs(ti)+τa +τc, ti+1 +τs(ti+1)+τa +τc].

(5) Send [u∗(τ ; x(ti))|ts], with ts = (t + τa + τc).

(6) Insert [u∗(τ ; x(ti))|ts] in control input.

(7) Go to 1.

Actuator:

buffer = {[u∗(·)|ts0], . . . , [u∗(·)|tsn]}, for ts0 < t < ts1 . . . < tsn;

applied input = [u∗(·)|ts0];

(1) If [u∗(·)|ts]new arrives

a) Insert [u∗(·)|ts]new in buffer.

b) Sort buffer by increasing ts.

(2) temp = first element of buffer.

(3) If tstemp = t

a) applied input = temp.

b) Remove first element from buffer.

(4) Go to 1.

Algorithm 2 (Information Loss Compensation)

∀ti ∈ π; t = current time;

Sensor:

(1) Measure x(ti).

(2) Send [x(ti)|ts], with ts = ti.

(3) Go to 1.

Controller:

buffer = [x(ti)|ts]old;

control input = {[u∗(·)|ts0]};
delivered = true;

(1) If [·|ts] arrives:

(2) Case([x(ti)|ts]):
If tsnew ≤ tsold, then discard.

Else buffer = [x(ti)|ts]new.

τs = (t − ti) for ti = ts.

Calculate (13), from u∗(·; x(ti)) ∈ control input.

Solve the o.c.p. for (13) −→
u∗(τ ; x(ti)), for τ ∈ (t + τa + τc, ti + Tp].

delivered = false.

Send [u∗(τ ; x(ti))|ts], with ts = (t + τa + τc).

Wait until delivered=true OR t ≥ ts.

If delivered = true, then insert [u∗(τ ; x(ti))|ts] in control input.

Else if t ≥ ts, then delivered = false, use old input in

control input.

Go to 1.

(3) Case([ack|ts]):
Set delivered = true.

Go to 1.

Actuator:

buffer = {[u∗(·)|ts0], . . . , [u∗(·)|tsn]},
for ts0 < t < ts1 . . . < tsn;

applied input = [u∗(·)|ts0];

(1) If [u∗(·)|ts]new arrives

a) Send [ack|ts] to the controller.

b) Insert [u∗(·)|ts]new in buffer.

c) Sort buffer by increasing ts.

(2) temp = first element of buffer.

(3) If tstemp = t

a) applied input = temp.

b) Remove first element from buffer.

(4) Go to 1.
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Abstract: For a successful application of any industrial Z. mobilis facility, it is necessary to have an 
efficient and simple control strategy. This paper analyzes the control and optimization problem of a
continuous ZM bioreactor modeled by Jöbses et al. (1986). This system has steady state multiplicity in 
part of the operating range. The idea is to maintain the process close to the manifold border where is 
achievable the highest ethanol production. Based on a systematically analysis of the operational 
controllability using the nonlinear RPN indices it is identified that the process can be controlled using a 
linear controller.  Finally the paper proposes a variable transformation that makes easy to maintain the 
bioreactor close to the optimum. 

Keywords: nonlinear degree measurement, RPN methodology, bifurcation, bioreactor control, process optimization

1 INTRODUCTION

Zymomonas mobilis has attracted considerable interest over 
the past decades as a result of its unique metabolism and 
ability to rapidly and efficiently produce ethanol from simple 
sugars. However, despite its apparent advantages of higher 
yields and faster specific rates when compared to yeasts, no 
commercial scale fermentations currently exist which use Z. 
mobilis for the manufacture of fuel ethanol. In addition to 
ethanol depending on the substrate other fermentation 
products can occur, such as lactic acid, acetic acid, formic 
acid, acetone, and sorbitol. See (Rogers et al., 2007), for a 
detailed review.

In the literature, Zymomonas mobilis has been proposed as a 
more promising microorganism than conventional yeast 
Saccharomyces cerevisiae for industrial production of 
ethanol (Rogers et al., 2007). A major drawback of this 
microorganism is that it exhibits sustained oscillations (i.e., 
Hopf bifurcation) for low dilution rates (i.e., 
when grown in continuous mode. This leads to decreased 
ethanol productivity and less efficient use of available 
substrate (Zhang and Henson, 2001). Various models have 
been proposed to describe the oscillatory dynamics of 
continuous Zymomonas mobilis cultures. Two of them are the
Daugulis et al. (1997) and Jöbses et al. (1986) models. Even 
though the model predictions can be considered similar at 
low dilution rates, where the models have been fitted to the 
experimental data, they are quite different for higher dilution 
rates (Trierweiler and Diehl, 2009).

The Jöbses’s model was fitted to experimental data with low 
dilution rate (i.e., and middle inlet substrate 
concentration (i.e., . Later, it was 
extrapolated outside of this operating region by Elnashaie et 
al. (2006), who have found a much more profitable operating 
region at higher dilution rates ( and inlet 
concentrations ( . Notwithstanding the 
Jöbses’s model has not been validated at this region, our
contribution will assume that this extrapolation is acceptable 
and we will propose a control strategy to maintain the system 
working at this more profitable operating region. 

This paper is structured as follows: In section 2 the Jöbses’s 
models is presented, section 3 it is analyzed the operational 
controllability which is used as basis for the proposed control 
strategy developed in section 4 and later validated by 
simulation. Final conclusions and remarks are then 
summarized in section 5. 

2 MODEL DESCRIPTION AND 

OPERATING POINT DEFINITIONS

Since the Jöbses’s model can predict a branch with higher 
ethanol production, which has been experimentally 
confirmed (at least for low dilution rates) by Elnashaie et al. 
(2006), we decide to analyze the control problem of a 
continuous bioreactor with the Jöbses et al. (1986) kinetic 
model, which is shortly described in the next subsection. 
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2.1 Model Description
The Jöbses’s model consists of the following 4 differential 
equations:

      

(1)

where is the substrate (glucose) concentration, is the 
biomass (Z. mobilis), is the product (ethanol) 
concentration, and is an auxiliary variable used to lag the 
effect of the ethanol concentration in the kinetic model. The 
insertion of the parcel together with 

makes possible the model to depict the oscillatory 
behavior of the Hopf bifurcation. In the model, dilution rate 
Df is the inversion of the residence time and is defined as the 
relation between the inlet flow rate and the bioreactor 
volume. The model parameters are summarized in Table 1.

Table 1: Model parameters

Parameters Values Parameters Values
0.00383 2.160

59.2085 1.100

70.5565 (0.02445,
0.05263)

0.500 1.0

Fig. 1 shows the steady-state solutions for ethanol 
concentration in function of dilution rate and inlet 
substrate concentration .

Fig. 1: Steady-state ethanol concentration as a function 
of Dilution rate and inlet substrate concentration .

2.2 Operating points
The optimal condition for the bioreactor is achieved with a 
high ethanol production. For the Jöbses’s model, it can be 
shown that the main decision operating criterion for the best 
operating point is the ethanol production ( , which is 

given by the multiplication of the dilution rate ( and the 
ethanol concentration ( , i.e., 

. (2)

Fig. 2 is produced for the iso-inlet substrate concentrations
of 180, 200, and 220 kg/m³ that were already shown in 

Fig. 1. Note that the dashed and dashdot lines are the same 
for all three operating conditions, therefore only one line for 
each branch is shown in Fig. 2.

Fig. 2: Steady-state ethanol concentration for three inlet 
substrate concentrations .

Considering the curves generated for in 
Fig. 2, we can see that in the range of the 
system has three possible steady-state solutions. Two of them 
are stables (solid and dashdot lines) and one unstable (i.e., the 
middle branch illustrated by dashed line). The best operating 
point is located in the above curve close to the saddle point 
formatted by the intersection of the stable and unstable 
branches. The star in the above branch depicts a typical 
optimal operating point. From a control point of view the 
main difficult is to maintain the system working in this point 
avoiding a migration to the bellow operating point – the dash-
dot line in Fig. 2.  This migration can occur if the dilution 
rate is above the corresponding to the bifurcation saddle point 
or by a reduction to the inlet substrate concentration. Fig. 3
shows the case where the dilution rate is increased from 2 h-1

to 2.5 h-1 and then at 10 h again reduced to 2 h-1. To bring the 
system to the more profitable operating point it is necessary 
to apply a pulse in the inlet ethanol concentration ( as 
shown at 15 h.

Fig. 3: Dynamic simulation to show how it is easy to move 
the operating point from the high to the low 
production branch. 
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2.3 Operating regions 
The manifold that separate the region where occurs 
multiplicity in the ethanol concentration is defined by the 
saddle bifurcation points and is shown in Fig. 4.  This 
manifold limits the operating region with possible high 
ethanol concentration (region A) from the region where only 
a low ethanol concentration is achievable (region B), where 
the operating conditions goes outside de operating region A, 
the ethanol concentration will fall down as it was depicted in 
Fig. 3.  

Fig. 4: Manifold of saddle points defining the operating 
region A (where exists multiplicity) and operating 
region B (where exits one solution only).  

To characterize the differences between the high and low 
ethanol concentration branches, the system was linearized in 
five different operating points defined in Table 2 and placed 
in Fig. 4, where Pn is considered as the nominal/optimal 
operating point. The other four can occurs during a normal 
operation in the region A. Of course, P4 has higher EP than 
Pn, but since the Jöbses model cannot describe higher CS0
correctly, we will just assume that Pn is the best operating 
point, but the same analysis could be performed considering 
P4 as nominal model.  

Table 2: Definition of Op ating Regioner

�������	 
������� OP1- high 
��
�� 
����* OP2 - low 
��
�� 
����*
Pn 2.0 200 (92.57, 1.23) (41.29, 111.34) 
P1 2.25 200 (91.83, 2.75) (39.94,114,22) 
P2 1.3 200 (93.07, 0.40) (45.56, 102.29) 
P3 0.5 180 (84.24, 0.31) (52.09,68.90) 
P4 4.0 220 (101.38, 2.04) (32.02, 151.16) 
*�
�� 
���� means steady-state values for ethanol and 
substrate concentration for a given �� and 
��.
Figures 5 and 6 respectively show the step response of the 
dynamic linearized models for high and low ethanol 
concentration branches. Essentially the high ethanol branch 

has an over-damped behavior, whereas for the low branch the 
system is under-damped. 

From: Df
0

-2

Time [h] 
Fig. 5: Step response of the linearized models at the 

operating points defined in Table 2 corresponding to 
the high ethanol concentration branch for 
� and 
�
outputs.  

Time [h] 
Fig. 6: Step response of the linearized models at the 

operating points defined in Table 2 corresponding to 
the low ethanol concentration branch for 
� and 
�
outputs.  
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3 OPERATIONAL CONTROLLABILITY ANALYSIS 

3.1 Manipulated and controlled variables 
Ethanol and substrate concentrations are two natural 
controlled variables of the system and can be in principle 
measured on-line using 2D-fluorescence spectroscopy 
(Hantelmann et al., 2006). As candidates for manipulated 
variables, we have the dilution rate ����, inlet substrate 
concentration �
���, and inlet ethanol concentration (
���. In 
principle, 
�� should be used only in critical situations, just 
to bring the system back to the higher production branch (as 
shown in Fig. 3). Therefore we will not consider it in our 
operational controllability analyses, where only the input-
output pairs ���� 
��� � �
�� 
�� is further considered. 

3.2 Nominal Operational Control ility lab
The determinant and the elements ��� and ��� of the RGA – 
relative gain array (Skogestad and Postlethwaite, 2005) – are 
calculated using the steady state gain matrix for each one of 
the linearized models defined in Table 2. These results are 
summarized in Table 3, where we can see that the 
determinant (Det) does not change its sign when the system 
goes from the operating region 1 (OR1) with high ethanol 
concentration to OR2 with low ethanol concentration. 
Nevertheless the recommended pairing using steady state 
RGA changes from OR1 to OR2. Usually, when the pairing 
recommendation is changed it is normally associated with a 
change in the determinant sign, what it does not happens for 
this system. When the determinant changes its sign it is 
equivalent to the change in the multivariable gain, what is 
quite critical for the success of any control strategy. The 
reason for this unusual behavior is related to the gain sign 
change of channel 
�� � 
������ �� � ���� as it can been seem 
by the gain matrix for the nominal operating point PN for the 
high and low et nol con  br es, which are given 
by: 

ha centration anch

 !"#�"  (3) �� $ %&'�() )�**+�** &)�',-�
�� !./0 $ %&*�** )�)))1''�,+ )�222 - (4) 

Similar behavior occurs for all other OPs.  

Table 3: Determinant and Steady State RGA

Det
OR1 

Det
OR2 

RGA – OR1 ����� ����* RGA – OR2 ����� ����*
Pn -1.16 -5.55 (-0.20, 1.20) (0.99, 0.01) 
P1 -10.58 -5.25 (-1.89, 2.89) (0.99, 0.01) 
P2 -0.26 -6.78 (-0.05, 1.05) (0.99, 0.01) 
P3 -0.48 -10.26 (-0.11, 1.11) (0.99, 0.01) 
P4 -1.6 0.001) 6 -3.98 (-0.38, 1.38) (0.999, ����� ����* it was calculated considering the pairing �� � 
��

and 
�� � 
�.
3.3 RPN and rRPN Analysis 
The Robust Performance Number (RPN) was introduced in 
(Trierweiler, 1997) and (Trierweiler and Engell, 1997) as a 
measure to characterize the operational controllability of a 

system. The RPN indicates how potentially difficult it is for a 
given system to achieve the desired performance robustly. 
The RPN is influenced by three terms: the desired closed 
loop performance, nonminimum phase behavior (i.e., RHP 
pole, zero, and pure time delays), and its degree of 
directionality.  

The RPN is a measure of how potentially difficult it is for a 
given system to achieve the desired performance robustly. 
The easiest way to design a controller is to use the inverse of 
the process model. An inverse-based controller will have 
potentially good performance robustness only when the RPN 
is small. As inverse-based controllers are simple and 
effective, it can be concluded that a good control structure 
selection is one with a small (< 5) RPN (Trierweiler and 
Engell, 1997).  

Table 4: RPN Analysis for the high
nol con e anchetha

$ '
c ntration br

$ )34 �) � 34 �*)�� 34 $ )�+* �567 8567 567 8567 567 8567
Pn 1.66 0.088 1.61 0.085 1.58 0.086 
P1 2.27 0.152 1.90 0.1201 1.78 0.097 
P2 1.52 0.069 1.53 0.074 1.51 0.0790 
P3 1.50 0.068 1.53 0.0725 1.52 0.0781 
P4 1.91 0.124 1.80 0.110 1.69 0.101 

Table 4 shows the 567 calculated by three different desired 
performance specified by the rise times 34 $ '� )�*�9:;�)�+*�� and 10% overshoot for both outputs, what makes 
the system 2, 4, and 8 times faster than open loop response 
for the high ethanol concentration branch and all operating 
points. The results shown in Table 4 allow us to conclude that 
considering each operating point independently they will be 
easily controllable. It is important to mention that the 567
does not give a clear idea of the control difficulties for that it 
is necessary to analyze the relative RPN (8567), which has 
been introduced by Trierweiler (2002) (see also (Trierweiler 
and F  2002) for an additional discussion).  arina,

The 8567 is the relative distance between the RPN curve 
and the minimum RPN curve and it is quantified by the areas 
under the curves. Values less than 1 and close to zero means 
that the desired performance is easily achievable. Again, 
since we are considering only the two stable branches, no 
nonminimum phase component occurs in the analyzed 
operating points. In this case, typically faster performance 
will usually reduce the 8567. Table 4 depicts that it is 
possible to design a controller that achieves the desired 
performance for each one of the analyzed operating points. 
Similar analyses (not shown here) performed for the low 
ethanol concentration branch produce similar conclusions 
with a 567� and 8567 in the order of 1.5 and 0.004, respect.  

The local operational controllability analyses clearly 
conclude that for each one of the considered models it is 
possible and easy to design a controller with the desired 
performance. Although each point is easily controllable, 
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nothing can be said about all operating points together. Is 
there possible to design a controller that will produce a good 
performance for all operating points? Moreover, if a 
controller designed for OR1 will work in OR2? Based on the 
steps responses of the linearized models shown in Figures 5 
and 6, it seems the responses are quite different, especially if 
we compare the under-damped behavior shown by OR2 and 
the over-damped of the OR1. In the next subsection, we 
answer these questions through the nonlinear RPN analysis. 

3.4 Nonlinear degree – nRPN Analysis 
In (Farenzena and Trierweiler, 2004) three novel indices were 
introduced to measure system's nonlinearity. These nonlinear 
measurements are derived from the Robust Performance 
Number (RPN) concept. The total system's nonlinearity can 
be measured by the nonlinear RPN (<567), while the purely 
static nonlinearity is captured by nonlinear static RPN
(<567�=>=) and the dynamic component by the nonlinear 
dynamic RPN (<567?@ ). These indices do not require a 
nonlinear model, being enough a set of linear models. 
Therefore, they can easily be applied to quantify the 
nonlinearities of industrial plants and used to answer several 
practical important questions such as: how nonlinear is the 
system? Is it necessary to apply a nonlinear controller? What 
kind of nonlinear controller is required? 

In the definition of the nonlinear RPN indices was introduced 
the logarithm function to make easier their interpretation. 
Values smaller than 1 indicate that the performance 
difference between nonlinear and linear controllers is not 
significant, so that a linear controller is recommended. 
Indices greater than 2 clearly indicate that a nonlinear 
controller is necessary. Between 1 and 2 is a transition zone, 
where in many times a robust controller can stabilize all 
possible plants, but the performance loss can be significant if 
the values are close to 2. This analysis is made for all three 
indices. For instance, if <567 and <567�=>= are high and <567?@  is small, it indicates that the nonlinearity is 
essentially static and can be compensated by gain scheduling 
controller. If the all values are big (greater or close to 2), then 
a nonlinear m controller is recommended.  odel predictive 

Table 5 < 67�=>=, and <567 ses: 567, <5
34 $ '�)��

?@ . Analy

34 $ )�*) �<567 STAT. DYN. <567 STAT. DYN. 
H 0.86 0.58 -0.052 0.79 0.58 -0.21 
L 0.31 -0.28 0.455 0.27 -0.28 0.40 
T 1.68 0.88 0.74 1.50 0.88 0.51 34 $ )�+*�� 34 $ )�') �<567 STAT. DYN. <567 STAT. DYN. 
H 0.74 0.58 -0.35 0.69 0.58 -0.54 
L 0.27 -0.28 0.39 0.29 -0.28 0.42 
T 1.32 0.88 0.24 1 2 .1 0.88 -0.12 
�  Stat. and Dyn. mean nRPNSTAT and nRPNDYN, respect. 

H: polytope model for the high 
� branch, L: polytope 
model for the low 
� branch, and A $ B C D.

To quantify the nonlinearity using the nonlinear RPN it is 
necessary to construct a set of linearized models, called as 
polytope model. The operating points defined in Table 2 have 
been used to define the polytopes. Three polytope sets have 
being formed: H formed with the 5 linearized models at the 
high ethanol concentration branch; L formed from the 
linearized models corresponding to the low 
� branch; and T
formed by the union of all 10 models. 

Table 5 summarizes the results of the <567 analysis, which 
indicates that in general the polytope H is more nonlinear 
than the polytope L and the nonlinearity found in H is 
essentially static, whereas for L the nonlinearity is of the 
dynamic type.  Of course, the combination of both polytopes 
(T) exhibits the highest nonlinearity, which has similar 
dynamic and static components for low performance, but for 
the highest desired performance (E� F� � 34 $ )�')��it becomes 
essentially static. Moreover, for this performance it is 
expected that a linear controller will be able to control the 
system in both operating regions. To verify this prediction, 

v design a multivariable PI controller, given by:  we ha e 6G�H� $�
I&)�'J' K �' L ������MN� '�J2,' K �' L �����OPN�'+�+,Q K �' L ���O�MMN� J�1+)1 K �' L ���PO�ON�R (5) 

This quite simple controller can control all 10 linearized 
models with a good performance as it is shown in Fig. 7, 
where it has been simulated a setpoint change in 
� of one 
unit at 1 h and a simultaneous load disturbance of S�� $)�+���� and S
�� $ '�TUVWP at 6 h. 

Cs

Fig. 7: Closed loop simulation with a multivariable PI
controller for all 10 linearized models  

4 CONTROL STRATEGY 

Note that the predictions made by nonlinear RPN indices 
were confirmed by the closed loop simulation using the 
linearized models. Similar results are obtained using the fully 
nonlinear model (Trierweiler and Diehl, 2009). In this 
section, it is shown the basic ideas of the recommended 
control strategy.  
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The RPN analysis is reliable – the RPN analysis, especially 
using the nonlinear RPN indices made possible very easily to 
check and quantify the nonlinearity degree and based on 
these analyses prescribe the appropriated controller. It was 
shown that if a fast controller is designed a simple linear 
controller can be used. To confirm this prediction a simple 
multivariable PI controller has been tuned and simulated. 

4.1 General control strategy 
It is recommended to use an Extended Kalman Filter (EKF) 
technique to filter the measurements from the 2D-
fluorescence spectroscopy. The EKF is important also to 
estimate the biomass concentration and to take the input and 
model uncertainties into account. A multivariable controller 
should be used with the pairing ���� 
��� � �
�� 
�� and the 
inlet ethanol concentration (
��� should be only used in 
exceptional cases to bring the system back to the high ethanol 
concentration branch as shown in Fig. 3.  

Procedure for analysis a bioprocess optimization and 

control problem – finally the paper illustrate the typical 
steps necessary to develop a control and optimization strategy 
for a bioprocess system. Before designing a controller, it is 
necessary to systematically analyze the system as have been 
done in the paper. 

4.2 Solving the constraint problem 
A single linear controller can be used to control the 
bioreactor in all operating conditions. The only special 
problem is to constraint the range of the manipulated 
variables, which should be limited by the saddle point 
manifold. This can be easily guaranteed by a single variable 
transformation as shown in Fig. 8. Instead to use directly the 
physical variables �S
��� S��� the controller calculate the 
control actions for �SX� SY� using the simple restriction SX Z ). The conversion to �S
��� S��� is performed by the 
multiplication with the rotation matrix

Jöbses’s Model – we have assumed that the model could 
predict the system behavior at high dilution rate and inlet 
substrate concentration. Of course, this extrapolation is 
totally questionable considering a real application.  
Acknowledgements: The authors are very grateful for the grants from 
CAPES / BRAZIL.  The first author also thanks Prof. Dr. W. Marquardt for 
receiving him for his sabbatical at RWTH Aachen, where this work has been 
written.5, given by:  

5 $ [\]�^�� _ ]E: �^�]E:��^� [\] �^� �
where ^ is the rotation 
angle.  

Fig. 8: Simple variable 
transformation for 
guarantee the feasible 
region A
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Abstract: Overflow metabolism characterizes cells strains that are likely to produce inhibiting metabo-
lites resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical
substrate level separating the two different metabolic pathways is generally not well defined. This paper
proposes two non-model based extremum-seeking strategies preventing a too important accumulation
of inhibiting metabolites in fed-batch cultures, by estimating the critical substrate level on the basis
of 3 simple measurements related to the feeding, oxygen and carbon dioxide. A simple substrate
controller based on Lyapunov stability arguments is then designed and tested in combination with the
two extremum-seeking schemes.

Keywords: Extremum seeking, nonlinear adaptive control, fermentation process, biotechnology.

1. INTRODUCTION

Industrial vaccine production is usually achieved using fed-
batch cultures of genetically modified yeast or bacteria strains,
which can express different kinds of recombinant proteins.
From an operational point of view, it is necessary to determine
an optimal feeding strategy (i.e. the time evolution of the input
flow rate to the fed-batch culture) in order to maximize produc-
tivity.
The main encountered problem comes from the metabolic
changes of such strains in presence of feeding overflow. This
”overflow metabolism”, also called ”short-term Crabtree ef-
fect”, is a metabolic phenomenon that is induced when the rate
of glycolysis exceeds a critical value, leading to a generally
inhibiting by-product formation from pyruvate (for not well
understood reasons). It occurs for instance in S. cerevisiae cul-
tures with aerobic ethanol formation, in P. pastoris with aerobic
methanol formation, in E. coli cultures with aerobic acetate
formation or in mammalian cell cultures with the aerobic lac-
tate formation. To avoid this undesirable effect, a closed-loop
optimizing strategy is required, which could take various forms
(Pomerleau (1990), Chen et al. (1995), Akesson (1999), Renard
(2006), Dewasme et al. (2007)).
In this study, a non-model based extremum-seeking strategy is
chosen. Two original techniques are proposed and compared.
The first one is related to the work of Blackman in the 60’s,
revisited and improved in Ariyur and Krstic (2003) while the
second one is based on a simple recursive least squares tech-
nique (RLS). Non-model based extremum-seeking has already
been applied succesfully to dynamic optimization of continuous
cultures in Wang et al. (1999).
Alternatively, model-based extremum-seeking strategy as pre-
sented in the works of Guay et al. (2004), Titica et al. (2003a)
and Titica et al. (2003b) could also be considered for the on-line
determination of the critical glucose concentration. However,

the convergence of this adaptation scheme is slow and lacks
robustness (Dewasme and Vande Wouwer (2008)).

2. MODEL AND CONTROL OBJECTIVES

2.1 Modeling cultures of micro-organisms exhibiting overflow
metabolism

In this study, we consider a generic model that would, in princi-
ple, allow the representation of the culture of different strains
presenting an overflow metabolism (yeasts, bacteria, animal
cells, etc). This model describes therefore the cell catabolism
through the following three main reactions:

Substrate oxidation : S+ k5 O r1X→ k1 X+ k8 C (1a)
Overflow reaction (typically fermentation) :

S+ k6 O r2X→ k2 X+ k4 P+ k9 C (1b)

Metabolite product oxidation : P + k7 O r3X→ k3 X+ k10 C (1c)
where X, S, P, O and C are, respectively, the concentration in

the culture medium of biomass, substrate (typically glucose or
glycerol), product (i.e. ethanol or methanol in yeast cultures,
acetate in bacteria cultures or lactate in animal cells cultures),
dissolved oxygen and carbon dioxide. ki are the yield coeffi-
cients and r1, r2 and r3 are the nonlinear specific growth rates
given by:

r1 = min(rS,rScrit ) (2)
r2 = max(0,rS− rScrit) (3)

r3 = max
(

0,min
(

rP,
k5(rScrit − rS)

k7

))
(4)

where the kinetic terms associated with the substrate consump-
tion rS, the critical substrate consumption rScrit (generally de-
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Fig. 1. Illustration of Sonnleitner’s bottleneck assumption for
cells limited respiratory capacity.

pendant on the cells oxidative or respiratory capacity rO) and
the product oxidative rate rP are given by:

rS = μS
S

S+ KS
(5a)

rScrit =
rO
k5

=
μO
k5

O
O+ KO

KiP
KiP + P

(5b)

rP = μP
P

P+ KP
(5c)

These expressions take the classical form of Monod laws where
μS, μO and μP are the maximal values of specific growth rates,
KS, KO and KP are the saturation constants of the corresponding
element, and KiP is the inhibition constant.
This kinetic model is based on Sonnleitner’s bottleneck as-
sumption (Sonnleitner and Käppeli (1986)) which was applied
to a yeast strain Saccharomyces cerevisiae (Figure 1). During a
culture, the cells are likely to change their metabolism because
of their limited respiratory capacity. When the substrate is in
excess (concentration S > Scrit ), the cells produce a metabo-
lite product P through fermentation, and the culture is said in
respiro-fermentative (RF) regime. On the other hand, when the
substrate becomes limiting (concentration S < Scrit ), the avail-
able substrate (typically glucose), and possibly the metabolite P
(as a substitute carbon source), if present in the culture medium,
are oxidized. The culture is then said in respirative (R) regime.
Component-wise mass balances give the following differential
equations :

dX
dt

= (k1r1 + k2r2 + k3r3)X −DX (6a)

dS
dt

=−(r1 + r2)X + DSin−DS (6b)

dP
dt

= (k4r2− r3)X −DP (6c)

dO
dt

=−(k5r1 + k6r2 + k7r3)X −DO+ OTR (6d)

dC
dt

= (k8r1 + k9r2 + k10r3)X −DC− CT R (6e)

dV
dt

= Fin (6f)

where Sin is the substrate concentration in the feed, Fin is the
inlet feed rate, V is the culture medium volume and D is the
dilution rate (D = Fin/V ). OTR and CT R represent respectively
the oxygen transfer rate from the gas phase to the liquid phase
and the carbon transfer rate from the liquid phase to the gas
phase. Classical models of OTR and CT R are given by:

0 1 2 3 4 5 6 7 8

x 10−5

0

0.005

0.01

0.015

0.02

0.025

ro [g/g/s]

S
cr

it [g
/l]

Scrit = f(ro)

(ro
max

,Scrit
max

)

Fig. 2. Scrit as a function of ro.

OTR = kLa(Osat −O) (7a)
CT R = kLa(P−Psat) (7b)

where kLa is the volumetric transfer coefficient and, Osat and
Psat are respectively the dissolved oxygen and carbon dioxide
concentrations at saturation.

2.2 Control objectives

First, we show that the respiratory capacity has an influence
on the critical substrate concentration level. In the optimal op-
erating conditions (S = Scrit ), the fermentation and metabolite
product oxidation rates are equal to zero and the substrate con-
sumption rate rS is equal to rScrit or rO

k5
. Consequently, after a

trivial mathematical manipulation of (5a), a relation between
the critical substrate concentration level and the cell respiratory
capacity is obtained as:

Scrit =
KSrO

k5μS− rO
(8)

Figure 2 shows a plot of this relation where the point [0,0]
corresponds to a totally inhibited respiratory capacity, prevent-
ing any growth, and the point [romax ,Scritmax ] corresponds to
maximum productivity (i.e. absence of metabolite product in
the culture medium and a sufficient level of oxygenation). Ob-
viously, the presence of the product in the culture medium can
decrease the respiratory capacity and in turn the value of the
critical substrate concentration S = Scrit . In order to maintain
the system at the edge between the respirative and respiro-
fermentative regimes, it would be necessary to determine on-
line the critical substrate concentration (Scrit ) and to control
the substrate concentration in the culture medium around this
value (Dewasme and Vande Wouwer (2008)). Unfortunately,
the substrate concentration measurement is a difficult task as
typical concentration levels are below the resolution of cur-
rently available probes (or sensors).
An alternative solution is to reformulate the problem not as a
maximazition of the respiratory capacity but as the maximiza-
tion of the substrate consumption rate coupled to the minimiza-
tion of the fermentation rate.
This can finally be formulated as follows:

maxScritY = maxScrit ϕ1−ϕ2 (9)
where:

• Y is the assumed measurable cost function;
• ϕ1 and ϕ2 correspond to the reaction rates r1X and r2X ,

respectively.
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Fig. 3. Reaction rates and optimization criteria as a function of
S.

In order to estimate the cost function Y online, we use a pseudo-
steady state assumption. Indeed, assuming that the variations of
substrate, oxygen and carbon dioxyde concentrations are equal
to zero, we obtain from (6b), (6d) and (6e):

D(Sin−S) = (r1 + r2)X (10a)
−DO+ OTR = (k5r1 + k6r2 + k7r3)X (10b)

DC +CTR = (k8r1 + k9r2 + k10r3)X (10c)
Dilution terms can be considered as negligible in comparison

with OT R, CT R and DSin. Replacing the reaction rates riX by
ϕi (i = 1,2,3), (10) can be written:

DSin = ϕ1 + ϕ2 (11a)
OTR = k5ϕ1 + k6ϕ2 + k7ϕ3 (11b)
CT R = k8ϕ1 + k9ϕ2 + k10ϕ3 (11c)

From this on, after some basic mathematical manipulations,
it is possible to express a relation evolving proportionaly to
ϕ1−ϕ2, as a function of the yield coefficients, OTR, CT R and
DSin. We decide to call DSin the ”substrate intake rate” (SIR)
and we finally obtain:

Y = ϕ1−ϕ2 ∝ y
y = 2 k10 OT R−2 k7 CT R +(k7k9− k5k10 + k8k7− k6k10)SIR

(12)
This optimization criteria can thus be evaluated on the basis of
3 measurements (OTR, CT R and SIR) coupled to a sufficiently
good identification of several yield coefficients. Figure 3 shows
the evolution of the reaction rates and the criteria (scaled 20
times higher) as a function of the substrate concentration for
a model of S. cerevisiae where the respiratory capacity is as-
sumed to be constant (no oxygen limitation and no inhibition).

3. ADAPTIVE MODEL-FREE EXTREMUM-SEEKING
STRATEGIES

Two adaptive extremum-seeking techniques are proposed in the
following.

3.1 Extremum-seeking through a bank of filters

The objective of the extremum-seeking strategy is to deter-
mine on-line the parameter θ̂ (which in this case represents
the critical glucose concentration). To this end, the system is
excited by injection of a relatively slow sinusoidal dither signal
d = Asin(ωt), as shown in Figure 4.

Fig. 4. Extremum-seeking scheme with a bank of filters.

The following equations describe the extremum-seeking method:
The corresponding equations to Figure 4 are:

y = f (θ̂+ Asin(ωt)) (13a)
θ̂ = kξ (13b)
ξ̇ =−ωlξ+ ωl(y−η)Asin(ωt) (13c)
η̇ =−ωhη+ ωhy (13d)

where:

• y = f (θ̂ + Asin(ωt)) is the measurable cost function;
• θ̂ is the estimation of the unknown parameter;
• k is the gain of the integrator;
• ξ can be seen as the gradient estimation (≈ dθ̂

dt );
• ωl is the cut-off frequency of the low-pass filter;
• ωh is the cut-off frequency of the high-pass filter;
• η is an intermediate variable explaining the absence of the

low frequencies rejected from y in y−η by the high-pass
filter;

A first high-pass filter is used in order to reject the continuous
component of y. The output is then multiplied by the dither
signal in order to be ”demodulated”. As the dither signal and the
output of the high-pass filter can only be in phase (θ̂< θ∗) or out
of phase (θ̂ > θ∗), there exists another continuous component
inside the result of this demodulation. The second low-pass fil-
ter is used in order to isolate this new component containing the
information of interest and sometimes residual mid-frequencies
signals. This signal ξ is then filtered one last time by an integra-
tor in order to attenuate the last ”parasite” components and to
recover the estimation of the unknown parameter from the in-
tegration of the continuous component. Following the theorem
demonstrated in Krstic and Wang (1997), by choosing adequate
values for all the parameters of the optimizing loop, the system
should exponentially converge to an O(ω+A)-neighborhood of
the optimum.

3.2 Extremum-seeking through a RLS scheme

This second technique presents a scheme somewhat equivalent
to the previous one where the bank of filters is actually replaced
by a continuous recursive least squares (RLS) (Sastry and Bod-
son (1989)) scheme (see Figure 5) that computes the gradient ξ
using a linear relationship, which is inspired from the shape of
r1− r2 as a function of the substrate concentration:
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Fig. 5. Extremum-seeking scheme with RLS.

y = ξ̂Φ (14)
where:

• y = ϕ1−ϕ2
• ξ̂ = [ξ̂1 ξ̂2]
• Φ = [1 Scrit ]

In comparison with the previous extremum-seeking technique,
(14) can be seen as the new relation replacing (12). The vector
parameter ξ̂ is then identified through the continuous RLS
scheme that follows:

e = y− ξ̂Φ (15a)
˙̂ξ = KR−1ΦT e (15b)
Ṙ = K(ΦT Φ−λR) (15c)

where:

• K is the strictly positive and constant adaptation gain;
• R is the inversed covariance matrix acting as a directional

adaptation gain;
• λ is a forgetting factor used in order to avoid a ”covariance

wind-up problem” due to the absence of bounds in R
growth (if λ = 0, Ṙ ≥ 0 (Sastry and Bodson (1989))).

ξ̂2 can be considered as the gradient estimation. This one is
pushed to zero in average using an integral control of the form:

˙̂Scrit = kiξ̂2 (16)
The conclusions about the convergence error are identical to the
previous extremum-seeking technique.

3.3 Controller design

We derive adaptation and control laws from the consideration
of a candidate Lyapunov function ensuring system stability.
First, equation (6b) can be rewritten as follows:

dS
dt

=−νX −D(S−Sin) (17)

where ν = r1 + r2 is considered as an unknown kinetic parame-
ter. Defining:

Zs = Scrit + d−S (18)
the control error variable, where d = Asin(ωt), is the periodical
”dither signal”.

ν̃ = ν− ν̂ (19)

the estimation error on ν, we consider the following Lyapunov
candidate function:

V =
1
2

Z2
s +

1
2γ

ν̃2 (20)

where γ is a strictly positive tuning parameter.
A stabilizing controller is obtained if one can prove the strict
negativity of the Lyapunov function derivative. Differentiating
V and considering Scrit constant in order to decouple the control
law from the extremum-seeking scheme (this can be done
assuming that the controller converges significatively faster
than the extremum-seeking scheme), we obtain:

V̇ = Zs
[
νX + D(S−Sin)+ ḋ

]
+ ν̃(−

˙̂ν
γ
) (21)

Replacing (18) and (19) in (21) and forcing V̇ to be negative as
in:

V̇ =−kpZ2
s (22)

where kp is a strictly positive tuning parameter, we obtain:

−kpZs = ν̂X + D(S−Sin)+ ḋ (23)
provided that:

˙̂ν =−γZsX (24)
Finally, the control law is given by:

D =

[
kpZs + ḋ + ν̂X

]
Sin−S

(25)

This last expression explains the presence of the derivative ḋ in
the controller (Figure 4 and 5).

4. SIMULATION RESULTS

Coupling the controller designed in the subsection 3.3 with the
extremum-seeking schemes, we apply the complete loop to a
small-scale simulated yeasts culture (typically 20 l bioreactor).
The initial and operating conditions are: X0 = 0.4g/l, S0 =
0.5g/l, E0 = 1g/l, O0 = Osat = 0.035g/l,C0 =Csat = 1.286g/l,
V0 = 5l, Sin = 350g/l where E0 is the initial concentration of
ethanol. For the kinetic and yield parameter values, the reader
is referred to Sonnleitner and Käppeli (1986).

4.1 Application of the bank filters technique

The parameters for this extremum-seeking scheme are A =
0.007, ω = 2π

0.2 h−1, ωh = 0.1ω h−1, ωl = 1.5ω h−1, k = 100
and kp = 100. The culture time is fixed to 24 h. Figures 6 and 7
show the results when no inhibition from ethanol accumulation
is considered. This seems to be realistic as the ethanol concen-
tration is below 4 g/l.
However, inhibition is an important phenomena that has to be
taken into account. When included in our bioprocess model,
the extremum-seeking results are as shown in Figure 8 and 9.
It is apparent that the biomass level that can be achieved is
significantly affected by the presence of ethanol, despite the set-
point adaptation. Note that these results are very satisfactory in
view of the situation where a constant substrate concentration
is regulated. Indeed, a small error on Scrit would lead to a dra-
matical accumulation or reconsumption of ethanol and biomass
growth would probably be affected beyond model prediction.
As it is explained in Ariyur and Krstic (2003), the output error
of the extremum-seeking algorithm achieves a local exponential
convergence to an O(A2)-neighborhood of the origin if it is
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Fig. 7. Convergence of the optimization criteria r1 − r2 to
the optimum when no respiratory capacity inhibition is
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Fig. 8. Biomass (X), substrate (S in blue and Ŝcrit in red), and
ethanol (E) concentrations evolutions when inhibition is
considered.

assumed that we are operating around a point of zero slope
as it is typically the case for a convex function. As it can be
observed in Figure 3, the criteria does not present a point of
zero slope as the function has a discontinuous derivative at
the optimum. Despite this difficulty, we see that the algorithm
converges well and more particularly, the error is around an
O(A)-neighborhood of the origin (Krstic and Wang (1997)).
This last remark, which won’t be elaborated in this paper, is
clearly a source of bias in the set-point when the ethanol in-
hibition is considered (cfr Figure 9). As A needs to be chosen
sufficiently large to create a significant variation on the system
dynamics, a small error cannot be avoided and the ethanol is
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Fig. 9. Convergence of the optimization criteria r1 − r2 to the
optimum when inhibition is considered.
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Fig. 10. Extremum-seeking with RLS: Biomass (X), substrate
(S in blue and Ŝcrit in red), and ethanol (E) concentrations
evolutions when no respiratory capacity inhibition is con-
sidered.

accumulated while the algorithm goes on converging. As the
ethanol concentration grows, the respiratory capacity slightly
decreases and, following (8), Scrit does so.

4.2 Application of the RLS technique

The tuning parameters are defined as: A = 0.001, K = 100,
λ = 0.1, ω = 2π

0.2 , ki = 0.01 and kp = 100. The culture time
is still fixed to 24 h. Figures 10 and 11 show the new results
when no inhibition from ethanol accumulation is considered,
and Figures 12 and 13 when the inhibition term is taken into
account. The main observations are: (i) convergence is clearly
faster. (ii) convergence is achieved around Scrit so that the
ethanol concentration slowly decreases in the last hours.
When no inhibition is considered as in Figure 10, this set-point
bias has no consequence on the extremum while, in Figure 12,
when inhibition is taken into account, the set-point error is, by
chance, playing a positive role so that ethanol is consumed.
In this application, the RLS algorithm is less computationally
demanding, and easier to tune than the bank of filters strategy.

5. CONCLUSION

The high productivity of fed-batch cultures using genetically
modified strains exhibiting overflow metabolism relies on a
double condition: an optimal feeding strategy and the implied
limitation of the inhibiting by-product formation. To this end,
an adaptive controller using two different non-model based
extremum-seeking strategies is designed for a general case of
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Fig. 11. Extremum-seeking with RLS: convergence of the opti-
mization criteria r1− r2 to the optimum when no respira-
tory capacity inhibition is considered.
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Fig. 12. Extremum-seeking with RLS: Biomass (X), substrate
(S in blue and Ŝcrit in red), and ethanol (E) concentrations
evolutions when inhibition is considered.
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Fig. 13. Extremum-seeking with RLS: convergence of the opti-
mization criteria r1− r2 to the optimum when inhibition is
considered.

overflow metabolized strain and is applied to the particular
case of S. cerevisiae. The tracking of the critical substrate
level (or, at least, its kinetic image), representing the optimum,
is correctly performed by both extremum-seeking techniques,
limiting the ethanol accumulation despite the considerations
of an ethanol-inhibited respiratory capacity and discontinuous
derivatives around the optimum.
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Abstract: The study of protein folding and its ramifications in biological contexts is at the heart of 
computational biology.  In this paper, we discuss a number of tools in systems engineering that would 
provide an analysis framework to help explain the observed dynamic behavior of the protein, ultimately 
making the connection between protein structure and functionality.  A case study of villin headpiece 
folding using principal components analysis as well as clustering demonstrates the potential of these tools 
in responding to this challenge. 
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1. INTRODUCTION 

The study of proteins is easily justified by the fact that they 
constitute an essential element of all living beings.  
Specifically, proteins are responsible for controlling gene 
expression, allow transmission of signals between cells and 
organs, transport and store other species and defend the body 
against microbes, among many other functions.  Thus, due to 
their universal significance, understanding the relationships 
between their sequence, configurations and the vital functions 
they play in the body, can help development of new therapies 
and novel biomaterials.  As such, uncovering the mysteries of 
proteins requires an interdisciplinary approach, enlisting not 
only biologists and medical professionals but also engineers, 
mathematicians and computer scientists. Recent studies 
include bioinformatics approaches that explore data mining 
(Brito, Dubitzky et al. 2004) and evolutionary algorithms 
(Pal, Bandyopadhyay et al. 2006), in addition to structure 
prediction problems (Krogh, Larsson et al. 2001; Floudas 
2007) and computational techniques focusing on optimization 
(Krogh, Larsson et al. 2001; Greenberg, Hart et al. 2004).   

All protein molecules are chains of amino acids and referred 
to as linear heteropolymers due to the unbranched nature of 
their monomeric units (amino acids) (Creighton 1993).  The 
amino acid building blocks consist of a central 3-carbon (C3)
atom surrounded by four groups: an amino group (-NH2), a 
carboxyl group (-COOH), a hydrogen atom and a fourth 
group (-R) that can be one of twenty specific molecules, and 
is referred to as the side group.  The specific side group gives 
the amino acid its unique characteristic.  The sequence of 
amino acids (also called residues) as read from the amino (N-
terminus) to the carboxyl (C-terminus) is referred to as the 

primary structure.  Helices, 4-strands, loops, etc. are the 
secondary structures. Organization of the secondary 
structures in space to form a stable 3-D structure leads to the 
tertiary structure. The lowest free energy tertiary structure is 
the unique native conformation with which the protein 
performs its function. 

The type of a protein and its folding characteristics are 
determined by its primary structure, i.e., the sequence of 
amino acids (Dill, Bromberg et al. 1995). It is also noted that 
the folding process is often aided by molecular chaperons that 
help the protein fold correctly as it exits the ribosome by 
minimizing the influence of other nearby proteins as well as 
by binding to the protein to prevent misfolding (Shinde and 
Inouye 2000).  This is especially important as incorrectly 
folded proteins resulting from errors during folding are 
responsible for illnesses such as Creutzfeldt-Jakob disease, 
Bovine spongiform encephalopathy, Parkinson’s and 
Alzheimer’s diseases. Due its implications in understanding 
such diseases, the dynamics of folding has received 
substantial attention in recent years (Karplus and Kuriyan 
2005; Colombo and Micheletti 2006). 

The dynamics of protein folding have been studied 
extensively in vitro, where the protein is denatured to assume 
an arbitrary initial configuration and then as the natural 
conditions are restored, folds into its native configuration.  
This refolding process has been explored both by molecular 
dynamics (MD) simulations (Duan and Kollman 1998; Pan 
and Daggett 2001; Mori, Colombo et al. 2005) and using 
mostly stop-flow experiments and NMR spectroscopy 
(Eaton, Thompson et al. 1996; Plaxco and Dobson 1996) and 
the results provided unique insight towards the folding 
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dynamics. During the refolding process, the simulations 
explore the conformational energy landscape accessible to the 
protein molecule and all-atom MD simulations with explicit 
solvent can only feasibly achieve time scales shorter than 
about 15s for relatively small proteins which leaves out a 
number of phenomena inaccessible and poorly understood.   

In this paper, we show how systems engineering tools can be 
used to probe the dynamics of protein folding to provide a 
better understanding of the key mechanisms.  The next 
section discusses protein folding simulations and the type of 
information gathered as a result.  Dynamic folding 
trajectories that result from such simulations can be 
interrogated by a number of analysis tools, and we focus on 
the use of Karhunen-Loeve and clustering to extract spatial 
and temporal features to help explain the folding dynamics.     

2. SIMULATIONS OF PROTEIN FOLDING  

Folding of a protein takes place in the form of a competition 
between the loss of configurational entropy and the decrease 
of energy due to the formation of inter-residue contacts. 
Consequently, a free energy barrier separates the unfolded 
and folded states. The energy surface, as a function of the 
variables active in folding, such as the 3N coordinates of an N
atom protein and a multitude of additional dimensions 
describing the surrounding water molecules, is called the 
‘energy landscape’. The competition of entropy and energy 
results in a rugged landscape, and leads to transient trapping 
of structures that are either partially folded or misfolded. A 
comprehensive account of protein folding simulations can be 
found in a recent article (Scheraga, Khalili et al. 2007). 

The protein can be modeled at different levels of complexity
ranging from all-atom to coarse-grained representations. The 
all-atom visualization coupled with MD simulations gives the 
most detailed picture of folding but the computational time is 
a serious bottleneck. The only full-trajectory molecular 
dynamics simulation in the presence of explicit water up to 
this date is that of a 35-residue protein (Duan and Kollman 
1998). In typical coarse-grained approximation approaches 
(Haliloglu and Bahar 1998; Doruker, Jernigan et al. 2002), 
the protein consists of N  beads that represent the amino acids 
joined into a linear chain by virtual bonds analogous to the 
chemical bond. A virtual bond joins two consecutive alpha 
carbons, C3, along the chain. The length of a virtual bond is 
fixed, a condition referred to as the ‘fixed bond length 
condition’. Each bead has a finite volume. No bead shares its 
own volume with any other bead. This is called the ‘excluded 
volume condition’. Folding of the protein progresses from a 
random initial state at 0
t  to the final state at ftt 
 ,
subject to the fixed bond length and excluded volume 
conditions at all stages of folding. Folding to the native 
configuration requires the specification of interactions 
between pairs of amino acids. This information is based on 
empirical energy functions, chosen such that the unique 
native state corresponds to the minimum of total energy 
(Erman and Dill 2000).  

The protein folding problem in its simplest form may be 
viewed as a constrained optimization problem: We are given 

an initial configuration of N beads connected in the form of a 
linear chain. The beads want to move towards their specified 
final destinations by spending minimal energy subject to the 
(i) connectivity between beads, (ii) fixed bond length and (iii) 
excluded volume constraints. Each bead obeys Newton’s 
second law of motion throughout the folding trajectory.  The 
forces acting on each bead are received either from the other 
beads or they are external interaction forces with the 
environment. Under these conditions, one needs to determine 
the optimal forces acting on the beads and the resulting 
optimal trajectory of the beads from their initial configuration 
to their final native states. 

Here, we analyze the optimal pathways followed by the 
protein during folding. These pathways were generated using 
the optimal control framework proposed in our earlier work 
(Guner, Arkun et al. 2006). A coarse grained dynamic model 
based on Newton’s equation of motion is used to make the 
dynamic optimization manageable. 

3. INTERROGATION OF SIMULATION DATA 

While simulations provide a wealth of data on the nature of 
protein motion, extraction of useful information that would 
shed light on the dominant folding/unfolding mechanisms, 
evolution of interactions among key residues such as those 
that determine the hydrophobic core, as well as understanding 
of the structural conformations and their relationship with 
biological function is non-trivial.  The computational burden 
and complexity are significant barriers; thus, methods that 
help reduce dimensionality and provide analytical capabilities 
in a low-dimensional subspace are largely used.  Here, we 
discuss two techniques.  Karhunen-Loeve expansion (KLE) 
or Principal Components Analysis (PCA) can extract key 
coordinates (modes) that govern the global motion of the 
protein.  Clustering helps classify large-scale correlated 
motions that can explain the presence of meta-stable states in 
which certain protein configurations exist and evolve.   

3.1 Principal Components Analysis 

The application of PCA to the study of macromolecular 
motion dates back many years where MD simulations were 
studied to identify fluctuation modes (Garcia 1992) and to 
extend simulation time scales (Amadei, Linssen et al. 1993).  
In the latter work, the conformational space is subdivided 
into an ‘essential’ subspace (Van Aalten, De Groot et al. 
1997) which contains only a few degrees of freedom, 
exhibiting unharmonic motion and a ‘residual’ subspace 
where the fluctuations are Gaussian. Recent studies explore 
the energy landscape and the conformational states (Alakent, 
Doruker et al. 2005; Mu, Nguyen et al. 2005), identify modes 
contributing to protein fluctuations in MD simulation of apo-
adenylate kinase (Lou and Cukier 2006), and extract key 
mechanistic features from simulations of chemotrypsin 
inhibitor 2 (Palazoglu, Gursoy et al. 2004).  One can also 
refer to a comprehensive review article for further details 
(Stein, Loccisano et al. 2006).  

The data matrix can be constructed in various forms 
depending on the information desired.  For example, we can 
construct a matrix of spatial positions as they evolve in time. 
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The simulations yield the position vectors  of N residues for 
M time intervals and, after subtracting the temporal mean, 
this results in a KM �  array, where NK 3
 . One can also 
use the fluctuation matrix which captures the jump dynamics 
governing protein folding.  The fluctuation matrix becomes 

KM �  with NK 
  and has been previously studied 
(Palazoglu, Gursoy et al. 2004).  Another possibility is to 
form a matrix in which temporal evolution of the magnitude 
of the distance between the contact pairs is captured.  This 
matrix would have M time intervals and K would correspond 
to the total number of short- and long-range contact pairs. 

The expansion has K modes (eigenvector directions) and each 
eigenvalue measures the mean energy of its corresponding 
mode. Among the class of all linear expansions, KLE is 
optimal in the sense that, on a subspace of lower dimension 

KL 6 , it retains the most energy possible. One can retain 
only the first few L  modes that extract the important trends 
and filter the details deemed insignificant by the user.  

3.2 Clustering 

Cluster analysis (Everitt, Landau et al. 2001) is a class of 
statistical methods that seeks to partition a set of N
observations (objects) into distinct groups.  Each observation 
corresponds to a particular sampling interval (distinct period 
in time) for which corresponding measurements are available 
on the same set of parameters.  One of the early applications 
of clustering to MD simulation data is by Karpen et al. 
(Karpen, Tobias et al. 1993) where feature vectors (dihedral 
angle time series) are clustered for a 2.2 ns trajectory of the 
small peptide YPGDV to identify conformational states 
during unfolding.  When applied to protein models, clustering 
can classify ensembles of structural models based on their 
backbone structure, using C3 distances as the dissimilarity 
measure (Domingues, Rahnenfuhrer et al. 2004).  The 
molecular motion of proteins can also be classified using 
clustering to identify functionally relevant structures (Pan, 
Dickson et al. 2005) and to gain insight towards the shape of 
the energy landscape (Plaku, Stamati et al. 2007). 

Agglomerative hierarchical clustering is used to identify 
sampling intervals exhibiting similar ‘behavior’ based on a 
chosen metric.  It accepts as input a symmetric matrix D
whose elements Dij indicate the relative dissimilarity between 
sampling intervals i and j.  Matrix D can derive from various 
parameters in a given simulation, such as the dihedral angles, 
internal coordinates and potential energies, and must be 
properly defined for the cluster solution to be physically 
meaningful.  The hierarchical clustering starts with all objects 
residing in their own cluster, and by using various linkage 
rules, proceeds by merging the closest objects, and 
subsequently, the closest clusters, finally terminating when 
all objects are collected under a single cluster.  The output of 
the hierarchical clustering algorithm is graphical in nature (a 
dendrogram), and facilitates the visualization of recurring 
phenomena manifested in the data.  Another popular method, 
k-means clustering (Everitt, Landau et al. 2001), creates 
clusters based on the maximization of between-cluster 
variance and minimization of the within-cluster variance, and 
often gets trapped in local extrema, requiring multiple 

initializations.  The number of clusters needs to be specified a 
priori for the k-means algorithm and it starts by randomly 
populating these clusters and proceeding by the optimization 
step to reform the clusters.  These shortcomings were 
overcome in a recently proposed aggregated k-means 
clustering strategy (Beaver and Palazoglu 2006) where an 
ensemble of cluster solutions, generated by performing many 
randomly initialized runs of the algorithm, can be aggregated 
to form a single, hierarchical solution. A recent study 
discusses the performance of different clustering algorithms 
applied to MD trajectories (Shao, Tanner et al. 2007). 

Helix 1Helix 2

Helix 3

Loop
Turn

Helix 1Helix 2

Helix 3

Loop
Turn

Fig. 1. The structure of villin headpiece.  

4. CASE STUDY OF CHICKEN VILLIN HEADPIECE 

We consider a 36-residue protein, (PDB code 1Vii.pdb), 
chicken villin headpiece that is the smallest protein that can 
fold autonomously. It has been shown through a landmark 
all-atom explicit water simulation of villin headpiece (Duan 
and Kollman 1998) that there is a sudden initial hydrophobic 
collapse followed by longer structural adjustment phase. 
Other simulation studies also agree with the folding events 
revealed by Duan and Kollman, e.g., the implicit-water 
simulation by Shen and Freed (Shen and Freed 2002) and 
MD scheme integrated with Monte Carlo search by Mori et 
al. (Mori, Colombo et al. 2005).   

Chicken villin headpiece (Figure 1) has 3 short helices, Helix 
1, 2 and 3 which contain the residues 4-8, 15-18, and 23-32, 
respectively. They are held together by a loop between 
residues 9-14, and a turn between residues 19-22.  

Fig. 2. Snapshots from the folding process starting from an 
arbitrary initial configuration, 0
t , followed by 30
t ,

60
t , and 90
t , and 150
t .

4.1 Folding Trajectories 

The optimal folding trajectories were calculated starting from 
several random initial configurations (Guner, Arkun et al. 
2006).  Each simulation is performed for 301 time steps. 
Results include the optimal values for both the position of 
each bead and the force applied to each bead as a function of 
time.  Figure 2 shows a representative result where the initial 
denatured configuration is significantly stretched out and the 
protein starts to establish the helices first. Once the helices 
form, the loop and the turn secondary structures begin to get 
established.  Finally, the native 3-D structure is reached after 
refinement of the overall configuration.  
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The root-mean-square-distance (RMSD) is the distance 
between the native structure � �NsssS 112111 ...
 , and a 
folding structure � �NsssS 222212 ...
 , where ijs  is the 
position of the jth bead in structure i:

� ���
�

���
�
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Figure 3 shows the RMSD variation between the native 
structure and simulated structures with respect to time for the 
whole chain. On the average, initial configurations fold 
around time step 100, with an average final RMSD of 3Å.  

Fig. 3. The evolution of RMSD over all simulations. 

4.2 KL Analysis 

The long-range contact pairs are defined as those residues 
that are 5 and more residues apart.  For chicken villin, there 
are a total of 89 native contact pairs and 8 are considered as 
long-range contacts: 2-34, 7-14, 7-34, 10-33, 10-34, 11-33, 
11-34, 19-26. Here, we consider the temporal evolution of the 
magnitude of the contact pairs, ijr ’s.  The matrix is 89301�
with 301 rows for the time steps and 89 columns for each pair 
of native contacts.  For this analysis, we focused on 14 
simulations.  We found that, in general, 2 modes capture 99% 
of the variance in the simulation data. Figure 4 shows the first 
and second spatial eigenvectors indicating which native 
contact pairs contribute to these directions the most.  The 
major contributions to the first come from the long-range 
contacts, as indicated by the vertical lines.  The other contact 
pairs have generally minor contributions to this direction, 
perhaps with the exception of the pair 2-7 (position 4 on the 
plot).  It is reported (Frank, Vardar et al. 2002) that three 
phenylalanine residues F47, F51, and F58 (residues 7, 11 and 
18) make up the bulk of the hydrophobic core along with the 
hydrophobic residues L42, V50, and L69 (residues 2, 10 and 
29).  Thus, it is noteworthy that the first mode is significantly 
influenced by the interaction between residues 2 and 7 as the 
hydrophobic collapse occurs.  Another observation is that all 
pairs load positively in this direction, indicating that all move 
in the same direction, effectively in the direction of reducing 
the distances among contact pairs. In fact this coordinated 
collapse is observed in Fig. 1.  Another important observation 
is that this loading behavior is independent of the initial 
configuration, underscoring the fundamental nature of the 

collapse.  In the second mode, the influence of the long-range 
contacts is attenuated (especially for 10-33, 10-34, 11-33 and 
11-34) and short-range contacts become more important, 
almost across the board for all such contacts.  The native 
contact pair 2-7 still retains its influence.   The contact pairs 
load in both positive and negative directions, a key difference 
from the first mode, indicating a more complex motion. It is 
also important to note that this loading depends on the initial 
configuration, implying that the formation of secondary 
structures can follow different paths in time.

(a)             (b) 
Fig. 4. First (a) and second (b) spatial eigenvectors, vertical 
lines indicate the position of long-range native contact pairs, 
and vertical line at position 4 points to the native contact pair 
2-7.  

As shown in Fig. 5, the temporal coefficient of the first 
spatial eigenvector decays exponentially, indicating that the 
manner with which energy is minimized is common for all 
simulations regardless of the initial configuration.  This also 
supports the all-positive loading directions of the contact 
pairs as shown in Figure 4a.  On the other hand, the temporal 
coefficient of the second spatial eigenvector shows second-
order behavior and is attenuated significantly, underscoring 
the lesser influence of the second mode. This mode explains 
the fast dynamics associated with the short-range contacts as 
secondary structures (helices in this case) are made quickly 
and then readjusted to conform to the overall formation of the 
protein structure.  Folding dynamics exhibit two time-scales, 
which is consistent with the two-step folding mechanism of 
the hydrophobic collapse model (Baldwin 2002).  

(a)   (b) 
Fig. 5. First (a) and second (b) temporal coefficients, bold red 
line indicates the averages. 

4.3 Cluster Analysis 

To demonstrate the potential of clustering, we focus on native 
contact distances analyzed before.  For a given simulation, 
the expectation is to see if the dynamic signature of contact 
distances can be used to label each contact pair as belonging 
to a class, distinguished by its characteristic temporal 
evolution or contact distance.  Thus, the feature vector is the 

0 50 100 150 200 250 300
0

5

10

15

20

25

time

rm
sd

10 20 30 40 50 60 70 80
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Native Contact Pairs

Sp
at

ia
l E

ig
en

ve
ct

or
 #

1

10 20 30 40 50 60 70 80
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Native Contact Pairs

Sp
at

ia
l E

ig
en

ve
ct

or
 #

2

10 20 30 40 50 60 70 80
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Native Contact Pairs

Sp
at

ia
l E

ig
en

ve
ct

or
 #

1

10 20 30 40 50 60 70 80
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Native Contact Pairs

Sp
at

ia
l E

ig
en

ve
ct

or
 #

2

50 100 150 200 250 300
-10

-5

0

5

10

15

20

25

30

Time

Te
m

po
ra

l C
oe

ffi
ci

en
t f

or
 M

od
e 

#1

50 100 150 200 250 300
-10

-5

0

5

10

15

20

25

30

Time

Te
m

po
ra

l C
oe

ffi
ci

en
t f

or
 M

od
e 

#2

50 100 150 200 250 300
-10

-5

0

5

10

15

20

25

30

Time

Te
m

po
ra

l C
oe

ffi
ci

en
t f

or
 M

od
e 

#1

50 100 150 200 250 300
-10

-5

0

5

10

15

20

25

30

Time

Te
m

po
ra

l C
oe

ffi
ci

en
t f

or
 M

od
e 

#2

178



     

time series of contact distance magnitudes, ijr ’s. The 
simulation data from the 14 runs were stacked into a matrix 
of dimension 894214�  and the data were normalized to [0, 
1].  The data matrix is then transposed for clustering the 89 
contact pairs.  Thus, the scaling is in reality performed on the 
rows of the clustered data matrix, as opposed to for the 
columns as is more typical.  A different scaling is used in this 
analysis because the variables have different mean levels 
although they are measured in the same units.  

Using aggregated k-means clustering with average linkage, 
the dendrogram in Figure 6 is obtained.  It shows two coarse 
and six relatively distinct fine clusters with a cophenetic 
coefficient (Beaver and Palazoglu 2006) of 0.96, which 
indicates that the dendrogram is a good representation of the 
relationships among the objects.  The aggregated distances 
show that the cluster members have short merging distances 
while the main clusters merge at relatively large distances.  
This shows that the within-cluster variance is low while the 
between-cluster variance is high. 

Fig. 6. The dendrogram for clustering the distances of all 
native contact pairs for 14 simulations.  Contacts labelled as 
green are the long-range native contacts whereas the contacts 
labelled as red are the ones involving residues in the 
hydrophobic core. 

In Figure 6, it is noted that a large number of the residues that 
form the long-range native contacts and the hydrophobic core 
fall in the same cluster.  Indeed, first cluster (labeled as red) 
contains six of the eight long-range contact pairs along with 
two short-range contact pairs that contain hydrophobic core 
residues.  This cluster captures the concerted motions of the 
loop and the tail, as well as the loop and helix-1 contacts.  
The second cluster (dark blue) is largely residues involved in 
forming the helix-1.  It is noted that the long-range native 
contact pair 7-14 (PHE7-THR14) appears in a rather isolated 
third cluster (green) and its motion shows greatest similarity 
to contact pairs 9-12 and 18-21.  The long-range interaction, 
i.e., 7-14, is the only long-range interaction close to the N-
terminal, thus having dynamic characteristics different than 
the other long-range contacts is expected. The small fourth 
cluster (magenta) contains residues towards the end of the 
protein chain and also notably differs from the first three 
clusters. The fifth cluster (light blue) contains all the 

remaining short-range contacts associated with helix 2 and 
helix 3, including the long-range contact 19-26. This long-
range contact pair shares characteristics common with the 
other helix 3 contact pairs, thus dynamically acts in concert 
with a large number of short-range contact pairs specific to 
the secondary structure with which it is associated.  The final 
cluster (yellow) brings together short-range contacts 
primarily involving turn and tail secondary structures.   

We must re-iterate that a coarse clustering decision indicates 
two main clusters, containing the subclusters (1, 2, 3) and (4, 
5, 6), respectively.  Such a grouping would suggest two 
classes of residues where the first mainly contains the long-
range-contacts and the second, the short-range contacts.  Yet, 
the fact that specific residues (such as long-range contacts) do 
not appear all in a single cluster and usually appear together 
with other residues is supported by (Larson, Ruczinski et al. 
2002) who claim that both poorly and highly conserved 
residues are equally likely to participate in the protein folding 
nucleus.  They also note, however, that there is an observable 
bias in the mean sequence conservation of the residues in the 
folding nuclei.  This is especially consistent with the 
membership of the large cluster on the left. 
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1. INTRODUCTION 

Biotechnology-based products have become increasingly 
important in recent years in treating chronic diseases such as 
cancer and arthritis. Although biopharmaceutical drugs 
constitute a small portion of (about 8% in 2004) of the 
pharmaceutical market, approximately 27% of new medicines 
in active development are now biotech products (Business 
Insights, 2005). Process development and commercial 
manufacturing of these products, such as therapeutic proteins; 
require a good understanding of chemistry, manufacturing 
and controls.  Advanced process analytical technologies can 
be incorporated in process development as well as into 
commercial-scale manufacturing for advanced monitoring, 
control, continual process improvement, cost reduction and 
risk management. 

Biopharmaceutical processes are typically comprised of a 
series of unit procedures operated in batch mode to produce 
therapeutic proteins, and have complex biological 
mechanisms that result in non-linear and time-variant process 
dynamics. This makes their modeling, monitoring and control 
challenging. In a typical commercial-scale biopharmaceutical 
manufacturing process there are multiple batch processing 
unit operations where off-line samples are taken to ensure in-
process control and quality objectives are met and real-time 
measurements are made for open and closed-loop control and 
monitoring. A number of measurements are also made for 

raw material release testing towards use in manufacturing. 
When this is looked at from a holistic perspective; there are 
many batches, variables and operational characteristics to 
analyze in a meaningful and proactive manner. While this 
goal can be achieved via post-mortem analysis, it is more 
desirable to monitor and control these multivariable multi-
stage biopharmaceutical processes in real-time. Advanced 
process analytics in the form of real-time multivariate process 
monitoring and control provides an efficient means of 
identifying/reducing variation, managing process risks, 
relating process information to critical quality attributes 
(CQAs) and determining process improvement opportunities 
such as increasing yields and decreasing impurities. Due to 
long lead times and inflexibility in the regulatory approval 
process, applying process changes for improvement has not 
been very straightforward in the conventional regulatory 
paradigm. The United States Food and Drug Administration 
has published a series of new guidelines to address this issue 
and provide more flexibility for innovation while 
appropriately managing the risk around proposed process 
changes for continual improvement via process analytics and 
quality-by-design (QbD) principles (US FDA, 2002, 2004, 
2006, Chirino and Mire-Slius, 2004). Process Analytical 
Technology (PAT) is defined as a system for designing, 
analyzing, and controlling manufacturing through real-time 
measurements of critical quality and performance attributes 
of the process as well as raw materials and other process 
inputs. QbD promotes improved process understanding 
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during process and product development and building quality 
in the design instead of testing for quality. This can be 
achieved via correlative, causal, or mechanistic knowledge 
and at the highest level via first principle models (Cinar, et 
al., 2003, Rathore and Winkle, 2009). 

Process analytical approaches including deploying 
multivariate techniques along with on-line/at-line/in-line 
sensors and analyzers and the use of chemometrics in 
biotechnology have received significant attention in recent 
years (Junker and Wang, 2006). Applications included 
monitoring and control of microbial fermentations (Albert 
and Kinley, 2001, Lopes, et al., 2004, Undey et al., 2004, 
Gnoth, et al., 2007), cell culture (Arnold, et al., 2003, Undey, 
et al, 2006) and purification processes (Larson, et al., 2003, 
Lee et al., 2006, Rathore, et al., 2008). Development of new 
measurement technologies for real-time bioprocess 
monitoring and control is also crucial (Becker, et al., 2007). 

In this paper, a generic approach for developing further 
process understanding, modelling, monitoring and control is 
summarized. Specific applications and case studies are 
provided from commercial manufacturing experience in the 
use of process analytics. The potential of soft-sensors and 
first principles modeling in biopharmaceutical manufacturing 
is discussed with industrial examples. Use of process 
analytics and real-time multivariate monitoring technology in 
operational success is also demonstrated. Challenges and 
prospects of adaptive process control are discussed. 

2. PROCESS UNDERSTANDING VIA MODELING AND 
ADVANCED MONITORING 

Aforementioned QbD approach demands a high-level of 
process understanding for ensuring control of CQAs. Levels 
of process understanding and knowledge can be categorized 
in increasing order (lowest to highest) as descriptive, 
correlative, causal, mechanistic and first principles-based. 
While mechanistic and first principles models provide the 
highest level of understanding and predictability, their 
development and adaptation may not be very straightforward 
in biopharmaceutical process development and 
manufacturing that use design of experiments (DOE)-based 
approaches along with other heuristic knowledge about the 
process and product. During commercialization of a product 
an essential level of process understanding is demonstrated to 
ensure process consistency, product safety, efficacy and 
purity. However, in order to expedite time-to-market (while 
the drug is meeting the efficacy, purity and safety 
requirements) and make the product available to the patients, 
its manufacturing process may not be sufficiently optimized 
early in the product lifecycle. Additionally, there may be 
scale-up effects, raw material lot-to-lot variability (i.e., as an 
unmeasured load disturbance to the process) and other 
operational aspects such as maintenance schedules and 
human factors collectively driving the overall process 
variability. Real-time multivariate statistical process 
monitoring (RT-MSPM) provides a means to proactively 
monitor this overall process variability and build the 
necessary foundation towards predictive monitoring and 
multivariable control. In the generic methodology proposed 

in this paper, a multivariate model for each unit operation is 
developed for advanced monitoring and prediction purposes 
where applicable. Based on the frequency of data availability, 
models are used in real-time and/or via post-mortem batch 
analytical purposes. Making the data available and 
establishing required databases, connections to source 
systems, data pre-treatment and reconciliation are practical 
considerations that need to be addressed in industrial setting 
prior to enabling RT-MSPM (Undey, 2008). 

 

Fig.  1. Simplified process flow of a biologics manufacturing 
process (inoculation, scale-up bioreactors, clarification and 
purification train). 

As shown in Fig.  1 typical biopharmaceutical manufacturing 
processes involve multiple unit operations including 
bioreactors for scale-up, cell growth/protein production, 
clarification ultrafiltration and chromatography columns and 
skids. There may be more steps based on each product’s 
requirement and several parallel trains for plant throughput 
maximization.  

3. MULTIVARIATE BATCH MODELING AND 
MONITORING 

Multivariate (MV) modeling techniques such as Principal 
Components Analysis (PCA) and Partial Least Squares (PLS) 
are used to handle batch process data issues such as large 
number of variables, colinearity and missing data while 
summarizing the overall variability in the principal 
component and latent variable space. Historical in-control 
batches are used for MV model development. Control limits 
for MV statistics are calculated and MSPM charts are used 
for efficient monitoring (Nomikos and MacGregor, 1995).  

In this study batch process data are analyzed and monitored 
in two hierarchical levels. The first level is called the 
observation level and used to monitor the batch evolution 
with respect to a maturity variable in real-time. The second 
level is the batch level which is used for monitoring the batch 
fingerprint and can be used in predicting a final performance 
variable (Wold et al., 1998). Since early in the progress of a 
batch the confidence in the prediction is typically low, care 
needs to be taken when to start using batch level MV charts 
for real-time monitoring after a certain amount of data is 
available. All the real-time batch level cases presented in this 
paper starts computing the batch level MV statistics when 
50% of the batch is completed and it has provided a good 
predictive performance. 

Umetrics’ Simca-P+ and SBOL (Simca-Batch On-Line) 
modules are used for the MSPM cases presented in this 
paper. Simca-P+ is the tool used for offline MV model 
development. SBOL is the tool used for real-time MSPM and 
uses the MV models developed by Simca-P+.  
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4. DESIGN SPACE MONITORING AND POSTMORTEM 
ANALYSES OF BATCH PERFORMANCE 

During initial bioprocess design and characterization the full 
variability due to raw material lots, scale-up parameterization 
and large-scale operations cannot be estimated and therefore 
the process is monitored to ensure consistency. Process 
design space is constructed to understand the ranges on key 
and critical operating variables (process inputs) and their 
impact on the key/critical performance variables (process 
outputs) at bench and pilot-scale manufacturing and later 
scaled-up to commercial operation. Multivariate models can 
be helpful in also comparing the bench and/or pilot-scale 
experience against large-scale manufacturing to study 
similarities and identify any differences in performance. It 
can also be used to improve bench/pilot-scale model 
representation against large-scale so that process 
development can improve on the scale up parameterization. 
Representative scaled-down process models (i.e., actual 
scaled-down equipment) are crucial for troubleshooting and 
process improvement experimentation. In the following 
example (Fig.  2), PCA-based multivariate models were 
applied to process performance variables from batches 
performed at both bench and large-scale manufacturing.  

 

Fig.  2. Multivariate comparison and monitoring of different 
manufacturing scales against design space 

With this approach, variability in process data from more 
than twenty performance variables is summarized with only 
three principal components. Ellipsoids represent 95% 
confidence volume. In this case, large-scale batches seem to 
be more tightly controlled compared with bench-scale 
batches (partly due to a wider range of input space explored 
in bench-scale and scale-up differences). Multivariate 
monitoring of both scales provide a means of comparison as 
well as identifying improvement areas where changes can be 
made to move the two spaces closer to each other in terms of 
expected correlations, variability and means. 

As a postmortem case study, multivariate modeling is 
performed retrospectively on commercial manufacturing 
batches to support technical investigations, identify process 
and/or operational improvement opportunities, the sources of 
process variation to increase process understanding. Data 

from historical batches is used to develop PLS-based models 
for key process performance variables. Information from 
process characterization studies can also be leveraged to 
further refine the PLS models. As an example, a low product 
titer trend was observed in manufacturing of a commercial 
biologic. A PLS-model was developed for product titer using 
multiple process inputs from 36 historical batches. Based on 
a review of exceptional batches in the MV charts (fingerprint 
in Fig.  3 and variable contribution chart in Fig.  4), it was 
determined that the cell specific productivity was 
significantly lower in the decreased product titer batches. 
This information guided process analysts to focus on 
operational parameters likely to adversely impact cell specific 
productivity. This analysis revealed that a shift in induction 
timing potentially contributed to the low product titer trend. 
After the induction timing was adjusted back to target, higher 
product titers were obtained. 

 

 

 

 

 

 

 

Fig.  3. A score scatter plot showing new manufacturing 
batches relative to historical ones. 

 

Fig.  4. Variable contribution plot to Hotelling’s T2 showing 
low cell specific productivity as a significant contributor to 
low titer (horizontal band indicates +/- 2 standard deviation 
about the mean batch). 

With introduction of new on-line technologies such as cell 
density probes, pCO2 probes and Glucose/Lactate sensors 
comes the possibility of applying multivariate process 
modeling to predict and control biologic manufacturing 
processes towards achieving target productivity and quality 
end points. Several opportunities exist to improve the process 
models using new and available characterization data and 
increase model sensitivity and predictability. While it is very 
informative to use MSPM for postmortem exploratory 
analysis of process upsets, it is more desirable to monitor the 
process in real-time to detect and diagnose those upsets and 
take preventive actions where possible. In addition to 
monitoring, prediction of key end points while the process is 
in progress is also possible (a.k.a. soft-sensors) and provides 

Large-scale 

Bench-scale 

High titer 

region 
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various opportunities towards more efficient process 
operations and advanced process control and optimization. 

5. REAL-TIME MULTIVARIATE BIOPROCESS 
MONITORING CASE STUDIES 

5.1. CASE STUDY-1: REAL-TIME LARGE-SCALE 
BIOREACTOR CELL CULTURE MONITORING  

The first example is from a bioreactor monitoring and shows 
how real-time monitoring technology is used towards 
operational excellence, hence identifying equipment and 
mechanical related issues as well. A transient decline (73%) 
is observed in Final Viabilities (measured offline) in a 
Perfusion Bioreactor across batches. Deviations in real-time 
MV charts are detected for those low viability batches 
(Hotelling’s T2 chart for one of the low viability batches is 
shown in upper Fig.  5). Variable contribution plots identified 
that the low Final Viability batches that are run on particular 
bioreactor and its skid had higher Perfusion Feed and 
Retentate Temperature compared to the historical batches. 
Further investigation revealed that the wrong size gaskets 
were installed in the pump seal flush line for these batches. 
This made the control of temperature and pressure on the seal 
flush line very difficult. The correct size gaskets were 
replaced prior to the next batch and the temperature profile 
and final viability were within their normal ranges. 
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Fig.  5. Hotelling's T2 chart (top) for one of the low final 
viability batches and contributions to the deviation (bottom) 

5.2. CASE STUDY-2: REAL-TIME MONITORING OF 
LARGE-SCALE CHROMATOGRAPHY PROCESS 

PCA models were developed for each phase of the Protein A 
affinity chromatography unit operation (e.g., pre-
equilibration, elution) from historical process data. In 
general, only two or three principal components were needed 
for a given phase to summarize the batch process. Future 
batches could then be projected onto the model to allow rapid 
detection of deviations from the normal operating space and 
corrective actions would be taken where possible. Model has 
detected failure of a pre-column pH probe during purification 

of a batch through Protein A chromatography. The online pH 
probes are commonly used to verify proper equilibration of a 
column or end-point of a titration for a viral inactivation step 
prior to taking a confirmatory offline sample. In this example, 
the Hotelling’s T2 plot identifies the out of trend batch (on the 
left at Fig.  6) in real-time and the variable contribution plot 
(on the right hand side) identifies the pH probe having a 
significant effect. This information was used to replace the 
probe prior to further processing and avoided compromising 
any offline verification samples. 
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Fig.  6. Hotelling’s T2 chart (on the left) indicating an out-of-
control batch and the contribution plot diagnosing the faulty 
pH probe (on the right) 

6. REAL-TIME SOFT (VIRTUAL)-SENSOR 
APPLICATIONS IN BIOPHARMACEUTICAL 
MANUFACTURING 

There are many on-line/at-line/in-line probes and analyzers 
available for measuring bioprocess variables and 
quality/performance indicators. In a typical setting, for 
instance a bioreactor has temperature, level, pH, pressure, 
agitator speed, aeration rate, and dissolved oxygen 
measurement systems and data acquisition. Additional 
measurement systems such as cell density, dissolved carbon 
dioxide, mass spectroscopy in the off-gas, on-line HPLC, and 
fluorometric sensors are among the available and desirable 
technology. Research has shown that there are mathematical 
means via empirical and first principles modeling to generate 
predictions on the performance end-points in real-time 
(Cheruy, 1997, Undey, et al., 2006). A generic framework is 
depicted in Fig.  7, where more frequently measured and 
readily available process variables are used for developing a 
soft-sensor to generate an on-line quality estimate. Industrial 
examples are given for a cell culture production bioreactor 
case where product final titer is predicted in real-time and a 
first-principles model for monitoring a chromatography 
column performance in real-time. 

 

Fig.  7. Soft (virtual)-sensors for bioprocesses. 
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6.1. CASE STUDY-3: REAL-TIME SOFT-SENSOR FOR 
BIOREACTOR FINAL TITER PREDICTION 

The production bioreactor is a critical step for 
biopharmaceutical processes since the target protein is 
expressed during this step. It is very important to closely 
monitor this unit operation in real-time. Any deviations from 
the normal operation during this step may lead to low 
productivity and out-of-spec product.   

Actual Final Titer

Predicted final titer

50% of the batch 
is completed

Actual Final Titer

Predicted final titer

Actual Final TiterActual Final Titer

Predicted final titer

50% of the batch 
is completed

 

Fig.  8. Real-time Final Titer prediction starts when 50% of 
the batch is completed. 

Final Titer is used as the performance parameter that is 
predicted in the batch level while monitoring the process in 
real-time. Accurately predicting Final Titer several days in 
advance of harvesting provides many PAT opportunities such 
as offline assay elimination (titer is typically determined via 
an HPLC method offline), titer optimization, schedule 
optimization and real-time control. Fig.  8 illustrates real-time 
final titer prediction for a batch by only using the 
continuously measured inputs and outputs such as pH, O2 
flow and bioreactor volume as predictors.  Final titer is 
predicted within 0.5 % of the actual offline testing result. 
 
6.2. CASE STUDY-4: REAL-TIME SOFT-SENSORS FOR 
CHROMATOGRAPHY OPERATION 

In this case study for biologics purification has been real-time 
determination of unit operation step yields. These are 
typically calculated by measuring offline samples of the load 
and product pools, and results are often not available until 
well after batch completion. UV detection unit is typically 
available by the production unit, Beer’s Law (A=�BC, i.e., 
absorbance is proportional to concentration of a solution, 
where � is molar absorptivity, B, path length of the sample 
and C, concentration of the solution) can be used as a basis to 
correlate the absorbance to Protein Concentration UV in real 
time (Fig.  9). Estimated concentration can then be used to 
determine unit operation step yield.  

 

 

 

 
 
Fig.  9. Correlation of chromatography peak area (shown as 
inset) to protein concentration. 

For process chromatography operating in bind and elute 
mode, the eluate peak can be integrated numerically. The 
same can be done for phases of the chromatography 
operation, such as regeneration, to complete the mass 
balance. Incorporating these mass balance terms into the PLS 
model significantly improves the predictive power. 

Another area of exploration for advanced monitoring has 
been the use of first principles models to predict 
chromatography resin binding capacity. The resin capacity is 
typically determined during characterization studies by 
measuring the percentage breakthrough of protein during the 
loading phase. Due to the large volume requirements, this is 
typically not measured routinely once the process is 
implemented at manufacturing scale. This capacity 
measurement is useful to understand the changes in resin 
characteristics during the operational lifetime of the column 
and make decisions about when to change out the resin to 
ensure high performance. 

 

Fig.  10. Capacity changes of resin used in 90 batches of 
biopharmaceutical purification process. 

Using the analytical solution to the differential mass-balance 
equation developed by Ghose et al. (2004), actual resin 
capacity at different points in the column lifetime was 
modeled. The model inputs were determined from literature 
and via process knowledge. This capacity information can 
then be compared against the expected column loading for a 
given batch to determine if any losses would be expected 
(Fig.  10). It can also be incorporated as an input variable to 
the soft-sensor (multivariate model in this case) to provide a 
more accurate prediction of step yield. 

7. CONCLUSIONS 

Process analytical technology (PAT) within the Quality-by-
design framework provided by regulatory agencies define 
guidelines towards demonstrating good process 
understanding in product development and therefore requires 
improved monitoring and control for pharmaceutical 
manufacturing processes. Real-time multivariable monitoring 
framework for bioprocesses as shown in the examples not 
only provides proactive process supervision but also serves as 
an operational success management tool, hence, it has the 
potential to reduce production costs since it is also used to 
monitor and detect the equipment-related issues. 

Soft (virtual)-sensors were also studied in this paper and 
promising examples were provided from cell culture and 
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purification areas to show how existing process and its data 
can be utilized for prediction of key performance end points. 
While advanced monitoring capabilities are demonstrated, it 
is important to understand how process control (e.g., 
feedback and/or feed forward) can be achieved to ensure 
consistent process outputs based on biological performance 
end points. This paper summarized the necessary preliminary 
steps of process understanding and advanced monitoring 
applied in biopharmaceutical manufacturing environment. 
New measurement technologies will be necessary to enable 
closed-loop control of key performance variables and CQAs 
to meet biopharmaceutical manufacturing needs. It is 
necessary that these on-line quality measurement systems that 
are available or being developed to have faster turn around 
times than the process time (i.e., the on-line test results can 
be available before the relevant biological phase is 
completed) so that a control action can be taken in a timely 
manner. Advanced multivariable monitoring with robust, 
accurate and improved on-line/at-line/in-line probes and 
analyzers with fully-automated data management and 
multivariable control capabilities hold great possibilities for 
21st century PAT-enabled biopharmaceutical manufacturing. 
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Abstract: This work aims a stochastic approach for the calculation of robust anti-solvent addition policies for controlling the 
mean crystal size (MCS) in fed-batch crystallization operations. The proposed strategy is based-on a non-structured population 
balance where uncertainties associated with the start-up condition and random fluctuations along the fed-batch operation can 
be taken into account in a very natural fashion. We include and quantify the effect of the uncertainties by embedding a 
deterministic crystal growth model into a Fokker-Planck equation (FPE) resulting in a stochastic model for the MCS dynamics. 
This approach uses the Generalized Logistic equation (GLE) that has an adequate mathematical structure that suits the dynamic 
characteristic of the crystal growth. Thus, the numerical solution of the FPE provides the most likely MCS evolution for a 
given anti-solvent flow-rate. The effect of the anti-solvent is incorporated into the parameters of the FPE. The parameters of 
the FPE are computed as linear piece-wise interpolating functions of the anti-solvent flow-rate. The strategy uses a PID-like 
regulator in closed-loop fashion with the FPE to compute the anti-solvent addition flow-rates for different set-point targets in 
the MCS. In order to validate the stochastic model and assess the merits of the proposed strategy, the crystallization of sodium 
chloride in water using ethanol as anti-solvent is performed in a bench-scale fed-batch crystallizer. The implementation of the 
calculated anti-solvent policies resulted in a good control of the MCS despite modelling mismatch and uncertainties present 
during the crystallization operation.  
 

Keywords:  Anti-Solvent; Crystallization; Fokker-Planck Equation; Mean Crystal Size; Stochastic. 

 

1. INTRODUCTION 

The design of chemical plants endeavors to build equipment 
that preferably content hazards and make possible the 
transformation and separation of materials. It also attempts to 
harness the impact of apparently disordered and erratic 
phenomena (e.g. turbulent flow, pressure and temperature 
fluctuations, measurement noise, etc.). Fluctuations are a very 
common element in a large number of chemical, biological 
and physical phenomena. Practically, all systems are 
subjected to complicated external or internal influences that 
are not fully known and that are often termed noise or 
fluctuations. However, if a sufficiently long record of noisy 
measurement is analyzed, it may admit a statistical 
description. This means that it is possible to estimate the 
probability or likelihood that the process variable will attain 
in some specified range of values (Feigenbaum, 1980; 
Risken, 1984). 

The study of stochastic system as the Brownian motion 
resulted in the Fokker-Planck equation (FPE). The FPE is just 
an equation of motion for the distribution function of 
fluctuating macroscopic variables. The FPE deals with those 
fluctuations of systems which stem from many tiny 
disturbances, each of which changes the variables of the 
system in an unpredictable but small way. The FPE provides 
a powerful tool with which the effects of fluctuations close to 
transition points can be adequately treated and that the 
approaches based on FPE are superior to other approaches 

based on Langevin equations (LE). The FPE plays an 
important role in chemical and biological processes that 
involve noise. 

For many practical applications it is required to have 
simplified models that group the complexity behind a natural 
phenomenon and its interactions with its surroundings. For a 
dynamic system, it means of a set of deterministic differential 
equations with semi-empirical parameters. When studying 
chemical processes, these models are the core element for the 
design of all model-based control and optimization strategies. 
However, extra care is needed to take into account the no 
modeled dynamics and unknown exogenous disturbances 
acting on the process. The FPE is an interesting approach to 
introduce the robustness feature to the design of prediction, 
control and optimization tools. 

This work describes a novel stochastic approach for the 
robust prediction of the mean crystal size (MCS) in a bench-
scale fed-batch crystallization unit where anti-solvent is 
added to speed-up the crystal formation process. The crystal 
growth is modeled by a classic logistic equation of common 
use in theoretical ecology (May and McLean, 2007; Grosso et 
al., 2007). In a different fashion, the use of FPE for a 
monomer particle growth can be found in the literature 
(Matsoukas and Yulan, 2006). Unknown dynamics, internal 
and external fluctuations and sensitivity to initial conditions 
can be taken into account by embedding the logistic equation 
in the FPE. 
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2. Mean Crystal Size Estimation for an Anti-Solvent 
Aided Crystallization Process 

Crystallization is a physical process for solid-liquid 
separation where the solid (solute) is dissolved in the solvent 
(liquid). The driving force in crystal formation is the super-
saturation. The super-saturation condition establishes the 
thermodynamic equilibrium for the solid-liquid separation 
and it can be affected by cooling and evaporation. The super-
saturation can be also induced by addition of precipitant or 
anti-solvent to the solution. The anti-solvent reduces the 
solubility of the solute in the original solvent resulting in 
super-saturation. The anti-solvent aided crystallization is an 
advantageous technique of separation where the solute is 
highly soluble or heat sensitive. 

2.1 Mathematical Model 

The development of rigorous mathematical models 
describing the dynamic of crystal growth in crystallization 
processes are based-on population balances. The idea of 
population balances has been widely used in theoretical 
ecology and extended to the modeling of particulate systems 
in chemical engineering. The population balances can be 
either structured or unstructured models.  
At the core of the structured population dynamics, the 
number of crystals in a fed-batch crystallizer is increased by 
nucleation and decreased by dissolution or breakage. 
Structured population balances models provide detailed 
information regarding the crystal size distribution in the 
crystallization unit. However, they demand a great deal of 
knowledge on the complex thermodynamic associated with 
the solute and solvent properties to be adequately 
incorporated in the population balances. Some important 
contributions in this subject have been reported in the 
literature (Worlitschek and Mazzotti, 2004; Nagy et al. 2007; 
Nowee et al., 2007). 

Here, we introduce a simple unstructured population model, 
where the crystals are classified by their size, L. The growth 
of each individual crystal is supposed to be independent by 
the other crystals and is governed by the same deterministic 
model. In order to take into account the growth fluctuations 
and the unknown dynamics not captured by the deterministic 
term, a random component can be introduced (Gelb, 1988). 
The stochastic model can thus be written as a Langevin 
equation of the following type: 

)t();L(fL ηϑ +=�     (1) 

In Equation 1, );L(f ϑ  is the expected rate of growth of L  

(the deterministic model introduced below), L  is the size of 
the single crystal, t  is the time, ϑ     is the vector parameter 
defined in the model, and )t(η is a random term assumed as 

Gaussian additive white noise: 

)(D2])t()t([E

0)]t([E

τδτηη

η

=+

=
   (2) 

Where D  is the additive noise intensity. Equation 1 implies 
that the crystal size L  behaves as a random variable, 
characterized by a certain probability density function (PDF) 

)t,L(w  depending on the state variables of the system, i.e. 

the size L  and time t . Incidentally, it should be noted that 
one can regard the probability density )t,L(w as the relative 

ratio of crystals having a given dimension L , in the limit of 
infinite observations. Thus, from a practical point of view, it 
coincides with the Particle Size Distribution experimentally 
observed. 

The new random variable thus can be described in terms of 
its probability density distribution, )t,L(w , at any instant of 

time t  and should follow the linear Fokker-Planck Equation, 
FPE: 

w)u(D]w))u(;L(f[w LLLt ∂=∂+∂ ϑ  

 (3) 

along with the boundary conditions: 

0)t,0(w)u(D)t,0(w)0(f L =∂−   (4a) 

0)t,(wL =∞∂   (4b) 

The reflecting boundary condition in Equation 4a ensures that 
the elements of the population will never assume negative 
values, whereas Equation 4b ensures the decay condition on 

)t,L(w as L goes to infinity, for any time. 

The diffusion coefficient D determines the random motion of 
the variable L that takes into account the fluctuation in the 
particle growth process (Randolph and Larson, 1988; Olesen 
et al, 2005). 

Regarding the deterministic part of the model, our purpose is 
to choose a model as simple as possible, with a parsimonious 
number of adjustable parameters. To this end, the 
Generalized Logistic equation (Tsoularis and Wallace, 2002), 
is possibly the best-known simple sigmoidal asymptotic 
function used to describe the time dependence of growth 
processes in an unstructured fashion: 
 

γβαϑ ])KL(1[Lr);L(f −=   (5) 

In Equation 4, L is the size of the single crystal, the crystal 
growth rate r  and the equilibrium mean crystal size K  are 
considered constant for each experimental condition and they 
are supposed to be only dependent on the anti-solvent flow 
rate. Moreover, α , β   and γ  are positive real numbers that 

regulate the shape of the growing curve. Hereafter we will 
consider the simple case with 1=== γβα . With these 

assumptions, the present growth model can be regarded as the 
simplest model taking into account mild nonlinearities. In 
spite of this simplicity, this model provides the main 
qualitative features of a typical growth process: the growth 
follows a linear law at low crystal size values and saturates at 
a higher equilibrium value. 

Finally the evolution in time of the probability density is 
described in terms of a linear, partial differential equation 
depending on the parameters r  (linear Malthusian growth 
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rate), K (crystal size asymptotic value) and D  (diffusivity), 
that are assumed to depend on the feeding conditions. This 
functionality is achieved by linear interpolation of the 
parameters as a function of the different anti-solvent flow 
rates. This parameterization with the anti-solvent flow rate 
allows the merger of multiple models for different operating 
regimes to a single model in the all operating envelop. 

It is worth to stress out that the synergy between unstructured 
population balances and the Fokker-Planck equation results 
in structured-like population balances. 

3. Experimental Validation 

 
For parameter estimation and model validation purposes, 
three different anti-solvent flow-rates were implemented. All 
experiments were carried in a bench scale crystallizer which 
was kept at a fix temperature. Only purified water, regent 
grade sodium chloride (99.5%) and absolute ethanol (99.9%) 
were used. The experimental set-up and procedure are 
described as follows. 
 
3.1 Experimental Set-up 
 
The experimental rig is made up of one litre glass, cylindrical 
crystallizer submerged in a temperature controlled bath. The 
temperature in the bath is measured using an RTD probe 
which is wired up to a slave temperature control system 
capable of heating and cooling. In similar fashion, the anti-
solvent addition is carried out by a slave peristaltic pump. 
The master control is performed by a Distributed Control 
System (Honeywell® DCS) which is wired up to the slave 
temperature and flow-rate controllers respectively. The 
desired set-points are calculated at the master controller. All 
relevant process variables are archived in the DCS system.  In 
addition there is a particle size analyzer (Mastersizer® 2000) 
for the determination of the mean and crystal size distribution 
along the experiment. The mean crystal sizes and their 
distribution are also verified by visual inspection using a 
digital camera mounted in a microscope. The captured 
images are then processed by means of sizing computer 
software (Amscope®). 
 
3.2 Experimental Procedure 
 
At the start-up condition, the crystallizer is loaded with an 
aqueous solution of NaCl  made up of g34 of NaCl in g100  

of water. The temperature is kept at C25� . Then ethanol was 
added to the aqueous NaCl solution using a calibrated 
peristaltic pump. Along the operation, mL5 samples were 

taken in an infrequent fashion. The samples are then 
measured off-line using the particle size analyzer. Also, part 
of the sample was filtered over filter paper and then dried in 
an oven at C50�  for farther visual inspection.  

 

 

3.3 Parameter Estimation 

The three parameters for the Fokker-Planck equation were 
estimated based-on experimental data obtained by monitoring 
the mean size distribution for different flow rates of anti-
solvent. For every operating condition, that is, anti-solvent 
flow rate, a set of parameters }D,K,r{=ϑ is estimated using a 

nonlinear least-square algorithm. The values for the estimated 
parameters are given in the Table 1. 

 

u  (mL/min) r (1/h) K  (μm) D (μm2 /h) 
0.82 1.83 131.51 568.12 
1.64 1.15 132.03 287.48 
3.23 62.58 105.45 291.27 

 
Table 1: Estimated parameters for the different operating 
conditions for the constant values 1=α , 1=β and 1=γ . 

 
3.4 Model Validation 
 
In order to assess the prediction capabilities of the 
mathematical model based on the Fokker-Planck equation, 
the model predictions are compared with the reported 
experimental data within a valid range for the different 
operating conditions. It implies that the parameterization of 
the crystal growth rate, the free crystal size and the diffusivity 
coefficient with the anti-solvent are only reliable within the 
experimental range. The numerical solution of the 
mathematical model based on the Fokker-Planck equation 
requires an initial condition for the crystal size distribution. 
However, the initial condition requires information on crystal 
sizing. Observing the experimental data (Figure 1), the first 
available data value is at h1.0t0 =  (new origin), where the 

mean crystal size is around m92L0 μ= for anti-solvent flow 

rate. In order to take into account the uncertainty associated 
with this condition, a standard deviation m300 μσ =  typical 

for this measurement is then assumed. Once the initial and 
boundary conditions are posed, the partial differential 
equation is then solved using a collocation method. The 
number of collocation knots 300n = and they are chosen as 
the roots of the Chebyshev polynomial of degree “ n ” where 
the solution domain is ],0[L �∈ with m210 μ=� a sufficient 

high value. Note that a different set of data values were used 
for parameter estimation. Thus, the numerical solution of the 
Fokker-Planck equation (2-3) by the collocation methods 
provides the predictions for the mean crystal size by 
computing the first moment of the distribution (see Figure 1). 
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Figure 1: Model validation of the mean crystal size for 
different anti-solvent flow rates. Experimental results at low 
(*), medium (+) and high (�) anti-solvent flow rates. The 
three-parameter model based-on the Fokker-Planck equation 
predicts the dynamic behaviour of the mean crystal size 
growth for all anti-solvent flow rates (solid lines). 

4. Calculation of the Robust Anti-Solvent Flow Rate 
Profile 

4.1 Problem Formulation 

Let us consider without loss of generality that the mean 
crystal size growth dynamics in an anti-solvent aided process 
is given by the following forced deterministic equation: 

)u,(F LL μμ =�     (6) 

Where the forcing input (anti-solvent flow rate) is 
constrained, that is, ]u,u[u +−∈ . We say that the solutions 

of (6) in the time interval ]t,0[t 0∈  for any input u and any 

given uncertain initial condition 0)0( ≠Lμ  generates 

trajectories which at 00 >t  lie around a nominal value 0L , 

that is, 

0t,L)t( 0000L >∀±= Δμ   (7) 

 It means that regardless what the input is, the effect of the 
uncertainty in the initial condition is propagated to another 
point )t( 0Lμ in the trajectory (7), where a nominal mean 

crystal size 
0L  is associated with an uncertainty 0Δ . It is 

advantageous since it is then possible to choose a new initial 

time origin at the point 0t , which coincides with 

experimental data value that helps to quantify the values for 

0L and
0Δ . Thus, the new initial condition at 0t is still 

uncertain but it can be characterized and incorporated to our 
mathematical description of the problem. 

The robust anti-solvent flow rate profile for the mean crystal 
size distribution is calculated using a hybrid strategy that 

requires engineering insight and process knowledge.  The 
strategy involves a piece-wise function (8), a regulator-like 
(PI) algorithm (9), and a saturation function (10). 
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From the actual starting-up condition at 0=t to a chosen 
origin 00 >t , the anti-solvent flow rate is maintained constant 

at its maximum value +u . It has been experimentally 

observed that the anti-solvent addition at the initial stage of 
the crystallization process promotes nucleation and speeds up 
the mean crystal size growth rate. Then, from time 

0tt > onwards the anti-solvent addition must be controlled in 

order to reach a desirable mean crystal size rL . It is achieved 

by using a dynamic velocity-like regulator algorithm which is 

tuned selecting arbitrary values for the constants 1κ  and 2κ . 

Since the anti-solvent flow rate is constrained, it is necessary 
to include a saturation function to limit the control action 
within its physical range. It is important to highlight that 
velocity-like regulator with initial condition 

+= u)t( 0υ introduces a bump-less transition from the 

saturation state. Also, the volume of spent anti-solvent at any 
time can be calculated using (11). The constant value “60” is 
the conversion factor for the anti-solvent flow rate from 
mL/min to mL/h. 

])([60
00 ξξ dutuV t

t�+= +   (11) 

It is important to remark that the strategy can be used either 
as a size-regulator, if the mean crystal size Lμ is a real-time 

available measurement or as tool to calculate an off-line 
robust trajectory for the anti-solvent addition. Due to its 
simplicity, this strategy can be easily implemented. 

4.2 Simulation and Experimental Validation of Anti-Solvent 
Addition Policy 

We next use numerical simulations and experimental 
validation to assess the closed loop performance of the anti-
solvent addition strategy proposed for this specific 
crystallization process. The simulation parameters are given 
in Table 2. Since the experimental data is constrained to a 
certain operating window, the calculated profile is also 
limited to this operating range. The anti-solvent addition 
strategy was tested within the validity range of the 
experimental data and targeting a medium mean crystal size. 
The initial condition is then represented as a Gaussian –like 
distribution with mean value m92L0 μ= and standard 

deviation m300 μσ =  based-on the experimental information. 
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Parameter Value 
−u (mL/min) 0.82 

+u  (mL/min) 3.23 

1κ  (mL/h ·μm) 0.0052 

2κ  (mL/h2· μm) -0.0015 

0L (μm) 92.0 

0σ (μm) 30.0 

�  (μm) 210.0 

0t (h) 0.1 

tΔ (h) 0.1 

 
Table 2: Simulation parameters for the assessment of the 
anti-solvent addition strategy. 
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Figure 2: Propagation of the probability density. 

Figure 2 depicts the time evolution of the time evolution of 
the probability density function as function of time 
for m125Lr μ= . For sake of brevity only one value is 

reported here. For a set point of m125Lr μ=  (medium size), 

the crystal growth rate is alike the previous case, however the 
anti-solvent flow rate is cut down to an even lower flow rate. 
It makes clear that the transition between high and low 
concentration of anti-solvent in the solution promotes the 
crystal growth instead of the new crystal formation. 
Therefore, it results in larger crystal size. The volume of anti-
solvent added to the crystallizer for a desired mean crystal 
sizes are calculated using (11) and it is 669.48 mL for 
medium crystal size. The calculation is based on 5.0 hours of 
operation. Note that the upper and lower prediction bounds 
for the mean size distribution (Figure 3) are wider at the start-
up condition and its narrows when reaching the desired set-
point value. The steady-state crystal size distribution suggests 
that at controlled conditions it is possible to have a very 
narrow mean size distribution for a given anti-solvent 
addition policy (Figure 4). 
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Figure 3: Predicted mean crystal size and its lower and upper 
bound. 

The distribution indicates how disperse the experimental data 
is.  The observed dispersion is incorporated in the diffusivity 
coefficient of the Fokker-Planck equation. It is envisaged that 
depending on the amount and quality of the experimental 
data, the diffusivity coefficient can be clearly related with the 
crystal size distribution and predicted by this modeling 
approach.  Figure 5 shows the time evolution of the mean 
crystal size when the anti-solvent addition policy is 
implemented experimentally for a desired value of time 
evolution of the m125Lr μ= .  The quantitative growth of 

crystal size can be seen in the Figures 6a to 6c. Note the size 
scale at the corner of every picture. 
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Figure 4: Anti-solvent addition policy for a desired mean 
crystal size of m125Lr μ= . 
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Figure 5: Mean crystal size evolution when the anti-solvent 
addition policy is implemented. 
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5. CONCLUSIONS 

The hybrid strategy of using the Fokker-Planck Equation 
(FPE) and the PI-like regulator for the calculation of the anti-
solvent addition policy has proved to be simple and still a 
powerful way to control the mean crystal size in a 
crystallization operation. It is envisaged that the FPE is a 
rather useful fashion to study systems with uncertain initial 
condition in dynamic systems. The initial uncertainty can be 
quantified and naturally included in the structure of the 
solution. Future work will be devoted to exploit the FPE 
approach for the determination of the mean crystal size and 
its distribution in cooling and anti-solvent aided 
crystallization. 

 

 
 
Figure 6.a  NaCl  crystals at h16.0t =  

 

 
 
Figure 6.b NaCl  crystals at h1t =  

 

 
 
Figure 6.c NaCl  crystals at h2t =  
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 Model Based Robust Batch-to-Batch Control of Particle Size and Shape  

in Pharmaceutical Crystallisation 
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Abstract: The paper presents a novel batch-to-batch control approach for crystallization processes, which 
can be used for designing the shape of the crystal size distribution (CSD) and the habit of the crystals, to 
robustly achieve desired product properties. The method is implemented in a hierarchical structure. On the 
lower level a supersaturation control approach is used that drives the system in the phase diagram 
according to a concentration versus temperature trajectory, providing the within batch control. On the 
higher level a robust model-based optimization algorithm adapts the setpoint of the supersaturation 
controller, after each batch, using the adapted model parameters by applying a batch-to-batch moving 
horizon estimation (MHE) approach, to counteract the effects of changing operating conditions, and 
parameter uncertainties. The process is modelled using the two dimensional population balance equation 
(PBE), which is solved using the method of characteristics (MOC). The control approach is corroborated 
through simulations studies. The results illustrate the benefits of the robust iterative learning approach 
which is able to control both the entire CSD and the habit of the product crystals, reducing significantly the 
variability in the product properties after only four batches. 

�

1. INTRODUCTION 

Crystallization is one of the key unit operations in the 
pharmaceutical, food and fine chemicals industries. Despite 
the long history and widespread application of batch 
crystallization, there remains a disproportionate number of 
problems associated with its control (Braatz, 2002), mainly 
related the complex nonlinear dynamics with nonideal 
mixing, and various disturbances characteristic to these 
systems. The operating conditions of the crystallization 
process determine the physical properties of the products 
which are directly related to the crystal size distribution 
(CSD), shape or polymorphic form. These properties 
determine the efficiency of downstream operations, such as 
filtration, drying, and tablet formation, and the product 
effectiveness, such as bioavailability and shelf-life. With the 
recent change of industrial procedures from Quality-by-
Testing (QbT) to Quality-by-Design (QbD) and the advent of 
process analytical technology (PAT) initiative, especially in 
the pharmaceutical industries, approaches which can be used 
to design desired product properties are of great interest 
(Fujiwara et al., 2005). The classical control objectives 
expressed in characteristics of the size distribution (e.g. 
maximize average size, minimize coefficient of variation) can 
lead to conservative and economically inefficient designs of 
the crystallization systems, and they most often neglect the 
shape of the crystals. The paper presents a batch-to-batch 
iterative control (ILC) approach which can be used to directly 
design the shape of the crystal size distribution and the 
crystal habit at the same time, to robustly achieve desired 

product properties. The method is able for example to 
minimize filtration time without generating unnecessarily 
large crystals, or minimize breakage by controlling the aspect 
ratio. Since dissolution rate depends on the shape of the CSD, 
when the resulting crystals represent the final product (e.g. 
drugs for inhalers) controlling the shape of the CSD can 
provide novel applications in the area of drug delivery, or 
environmentally friendly dosage of pesticides, where 
particular multimodal distributions can be designed to 
achieve desired concentration level of the active ingredient. 
The crystallization system in this study is modelled via a two-
dimensional population balance equation (2D-PBE) which is 
directly used in the optimization procedure where the 
objective function is expressed in terms of the shape of the 
entire CSD, and the aspect ratio is added as constraints. The 
control of crystal size and shape has been considered 
previously by Lee at al. (2002), however in their approach 
the authors used a computationally more demanding high 
resolution finite volume method to solve the 2D population 
balance equation, and parameter uncertainties were not 
considered directly in the control problem formulation. In this 
paper the population balance equation (PBE) is solved using 
a generic 2D-method of characteristics (LeVeque, 1992). 
Crystallization models are generally subject to significant 
uncertainties. A robust model based optimization approach 
(Nagy and Braatz, 2003) is evaluated and it is shown that 
taking parametric uncertainties into account in the problem 
formulation can lead to significant improvement in the 
robustness of the product quality after a few batches only. 
The control approach is implemented in a hierarchical 
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structure where on the lower level a model-free 
crystallization control methodology, the supersaturation 
controller, drives the system in the phase diagram, rather then 
in the time domain, providing the within batch control 
methodology, whereas on the higher level a robust batch-to-
batch model based optimization algorithm, the adapts the 
setpoint of the supersaturation controller after each batch to 
counteract the effects of changing operating conditions and 
parameter uncertainties. The method adapts the uncertain 
kinetic parameters using the information available over the 
past batches, applying a moving horizon estimation (MHE) 
scheme (Rawlings et al., 1993), which also provides the 
uncertainty description used in the robust optimal control 
problem. The optimization problem is solved using an 
efficient multistage approach implemented in the 
optimization package OptCon (Nagy et al., 2004). The 
proposed approach is corroborated in the case of a simulated 
crystallization system.  

2. 2D POPULATION BALANCE MODELLING OF 
BATCH CRYSTALLIZATION PROCESSES 

Considering a single growth direction with two characteristic 
lengths 1L  and 2L , and a well-mixed crystallizer with growth 
and nucleation as the only dominating phenomena the crystal 
size distribution (CSD) expressed in the number density 
function 1 2( , , )nf L L t , is given by the population balance 
equation (PBE) with the form 
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with initial condition given by the size distribution of seed, 
1 2 1,0 2,0( , , 0) ( , )seedf L L f L L� , t  is time, 1 1 1( , ; )gG S L �  and 

2 2 2( , ; )gG S L �  are the generic size dependent growth rates of 
crystal in the two characteristic directions. ( ; )bB S �  is the 
nucleation rate, (, )� � �  is the two dimensional Dirac delta 
function, 01r  and 02r  are the characteristic sizes of the 
nucleai, satS C C� �  is the supersaturation, C  is the solute 
concentration, ( )satC T  is the saturation concentration at the 
temperature T , and 1g� , 2g�  and b�  are vectors of growth 
and nucleation kinetic parameters, respectively.  The partial 
differential equation can be reduced to a system of ODEs by 
applying the method of characteristics (MOC). The aim of 
the MOC is to solve the PBE by finding characteristic planes 
in the 1 2L L t� �  space that reduce the PBE to a system of 
ODEs.  The 1 2L L t� �  space is expressed in a parametric 
form by 1 1( )L L� � , 2 2( )L L� � and ( )t t� � , where the 
parameter �  gives the measure of the distance along the 
characteristic curve. Hence, applying the chain rule with 

1 2 1 2( , , ) ( ( ), ( ), ( ))n nf L L t f L L t� � � �  gives, 
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Comparing (2) with (1) we find t��  and the characteristic 
equations can be derived. Solving these together with the 
system of equations which results by applying the method of 
moments (MOM), we can calculate the dynamic evolution of 

1 2( , , )nf L L t  by the following  ODEs, 
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where the system was solved for zeroth moment 0,0� , first 
order moments 1,0�  and 0,1� , second order moments 1,1� , 

2,0�  and 0,2� , and third order moments 2,1� , 1,2� , 3,0� , 0,3� , 
defined by  

� �, 1 2 1 2 1 2

0 0

, ,i j
i j nL L f L L t dL dL�

	 	

� 
 
 ,  (4) 

with initial conditions given by the following vector 
0 0,0 03 1,0 2,0 1,0 2,0[ (0), , (0), , , ( , )]seedx L L f L L� �� � . The solute 

concentration is given by 

� � � � � � � �� �21 210 0cC t C t� � �� � � , (5) 
 
where c�  is the density of crystals. In (5) it is considered that 
the shape of the crystal is rectangular with 1L  and 2L  being 
width (and depth) and length, respectively. The nucleation 
kinetics is given by  

b
bB k S� ,   (6) 

with nucleation parameters ,[ , ]b bk b� � . In the case when the 
growth rates are independent of size and are expressed by  

1
1 1

g
gG k S� ,  2

2 2
g

gG k S� ,  (7) 

with growth parameters 1 1,[ 1]g gk g� �  and  2 2,[ 2]g gk g� � . 
In the case of size independent growth 1 1/ 0dG dL �  and 

2 2/ 0dG dL �  and the system of ODEs (3) can be solved 
analytically (Rusli et al., 2006) and the CSD can be 
constructed in any time step using different initial conditions 
obtained by varying 1,0L  and 2,0L , the shape of the 
distribution can be obtained with desired resolution. 
Additionally the analytical solution can be simplified by the 
assumption of growth dominated process, and constant 
supersaturation, which can be considered valid for 
supersaturation controlled processes. The dissolution process 
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was modelled similarly, with expressions similar to (7), but 
different constants, which apply when 0S � . 
 
Several approaches have been proposed for designing the 
operating curves for crystallization systems. Generally 
speaking, two main categories can be distinguished, (i) the 
model-based approach (Rawlings et al., 1993) and (ii) the 
direct design (Fujiwara et al., 2005). In the model-based 
design approach the detailed model (4) is used together with 
optimization techniques to determine temperature versus time 
trajectories, which optimize desired product properties, 
usually expressed as functions of the moments of the CSD. 
The direct design approach is based on the understanding of 
the basic concept of crystallization, to operate the system 
within the metastable zone bounded by the nucleation and 
solubility curves. In this technique a supersaturation setpoint 
profile is chosen experimentally and it is followed in the 
phase diagram using a supersaturation controller based on 
concentration measurement. The approach proposed in the 
paper combines the two methods in a hierarchical control 
algorithm, in which a model-based robust optimization 
determines the operating profile in the phase diagram, which 
is used then as the setpoint for the supersaturation controller.  
 

  3. DISTRIBUTIONAL BATCH-TO-BATCH NMPC 

The main feature of the batch-to-batch control is that 
variations on two time-scales must be considered. As shown 
on Figure 1, within and between batches variations can be 
considered leading to an optimization problem on two time-
scales. In batch process operation often within batch 
measurements are not available or adjustment to the 
operating conditions cannot be made. In these cases batch-to-
batch improvement is practically easier to implement, by 
learning from the information obtained usually from after-
batch laboratory analyses. In this framework the within batch 
measurements (if available) can be used for model based 
parameter and state estimation/adaptation, and the updated 
model then can be used in an iterative learning control 
framework for the improvement of the future operating recipe 
(Figure 2). 
 

 
 

Fig. 1. Schematic representation of the dynamic two-time 
scale variations in batch control.   

 
 

Fig. 2. Structure of the iterative learning control framework. 
 
 
The optimal control problem for the iterative learning scheme 
can be formulated as the alternative application of a moving 
horizon estimation (MHE) and a robust optimal control 
problem. The MHE problem solved after each batch k  is, 
 

0,

model meas. 2
0,ˆ ,

1

ˆmin ( ( ; ) )
b
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k N
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i k
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�

�
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� �

��   (8) 

subject to: 
 

( , ; );i i i kx f x u ���   0, 0, ;i kx x� ix  �   (9) 
( , ; );i i i ky g x u �� 1, , bi k k N� � ��   (10) 

 
where bN  is the number of past batches used in the 
estimation and iW  is a weighting matrix with exponential 
forgetting factor over the past batches. The model output 
used in the parameter estimation in the case of crystallization 
processes can be the entire CSD or properties of the CSD 
(e.g. number or weight average mean size). From the 
parameter estimation problem estimates of the uncertainty 
bounds on the parameters are also calculated, which can then 
be used in the robust optimization problem for control.  The 
model based optimal control problem is expressed as 
 
 

min ( , ; )
k

k k ku
x u �

�
�             (11) 

subject to:                   

( ) ( ( ), ( ); );k k k kx t f x t u t ���    0 0,ˆ( )k kx t x�   (12) 
( ) ( ( ), ( ); )k k k ky t g x t u t ��    (13) 

1k k ku u u�� ��     (14) 

0( ( ), ( ); ) 0, [ , ]k k k Fh x t u t t t t� �    (15) 
 
where � is the performance objective, t is the time, tF is the 
final time at the end of prediction (end of batch), 
( ) xnx t  � is the vector of states, ( ) unu t  � �� is the set of 

input vectors, ( ) yny t  � is the ny vector of measured 
variables used to compute the estimated states (̂ )kx t , 
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n��  � � �  is the n� vector of uncertain parameters, where 
the set 8 can be either defined by hard bounds or 
probabilistic, characterized by a multivariate probability 
density function. The function : x xn nf � �� �� ��  is the 
twice continuously differentiable vector function of the 
dynamic equations of the system, : yx nng � �� �� �� is 
the measurement equations function, and 

: xn ch � �� �� ��  is the vector of functions that 
describe all linear and nonlinear, time-varying or end-time 
algebraic constraints for the system, where c denotes the 
number of these constraints. The repeated optimization 
problem is solved by dividing the batch time [0, ]Ft t  into 
N equally spaced time intervals �t (stages), with discrete time 
steps tk = k�t, and k = 0, 1, …, N (Biegler and Rawlings, 
1991). The model based control approach is implemented in 
the Matlab toolbox, OptCon (Nagy et al., 2007), which is 
based on a state-of-the-art large-scale nonlinear optimization 
solver (HQP) (Franke et al.), which uses a multiple shooting 
algorithm (Diehl et al., 2002). 
  

Consider the case of parameter uncertainty, with 
n���  � defined as the perturbation about the nominal 

parameter vector �̂ . The real uncertain parameter vector is 
then given by ˆ� � ��� � . Assuming zero mean, normal 
measurement errors, and known covariance matrix, the set of 
possible parameter values is given by the hyperellipsoidal 
confidence region, defined as 

 

 1 2ˆ ˆ( ) { : ( ) ( ) ( )}T
n��� � � � � � � �

� �� � � � �V ,        (16) 

where �  is the confidence level, 2 ( )n�
� �  is a quantile of the 

chi-squared distribution with n�  degrees of freedom, and 
n n� �

�
�V � is the parameter covariance matrix. Uncertainty 

description (16) results most commonly from typical least-
squares identification procedures from experimental data, and 
it is provided by the MHE estimation approach applied in this 
paper. The parameter covariance matrix is updated after each 
batch when a new set of parameters are also computed using 
the MHE algorithms. We denote with ( ( ); )fx t� �  the end-
point property of interest. Considering the mean-variance 
approach the following objective function is used to account 
for parameter uncertainties in the NMPC: 

 

 (1 ) [ ( ( ), )] ( )f fw x t wV t�� �� � �� � ,              (17) 

where � and V�  �  is the expected value and variance, 
respectively, of the  property at the end of the batch, and 

[0,1]w   is a weighting coefficient that quantifies the 
tradeoff between nominal and robust performance. The main 
advantage of this approach compared to the classical minmax 
optimizations is that the tradeoff between nominal and robust 
performance can be controlled by appropriately weighting the 
two objectives. Expected value and variance can be computed 
efficiently using a second order power series expansion, 

 1
2

TL�� �� �� ��� � �M � ,                      (18) 

where 
,̂

( / ) n

u
L d d �

�� ��  � , and 2 2

,̂
( / ) n n

u
d d � �

�� � �� M �  
are the first and second order sensitivities, respectively. 
Assuming zero mean, normally distributed parameters �� , 
deriving the expected value and variance of �� based on (18) 
gives the analytical expressions: 
 

1
[ ] tr( )

2 ��� � MV�    (19) 

 21
[tr( )]

2
TV L L� � �� �V MV   (20) 

where tr( )A  is the trace of matrix A . The feasibility of the 
optimization under parametric uncertainty is achieved by 
reformulating the constraints in a probabilistic sense: 

 

( ( , ; ) 0)i ih x u � �� �� ,   (21) 

where �  is the probability and i�  is the desired confidence 
level for the satisfaction of constraint i . The robust 
formulation of (21) can be written using the t-test in the form: 
 

/ 2,[ ] 0, 1, , .
ii n hh t V i c

��� � � ��  (22) 
 

The expected value ( [ ]ih� ) and covariance (
ih
V ) of the 

constraint ih  can be evaluated using first or second order 
approximations. For first order approximation 

ˆ[ ( , ; )] ( , ; )i ih x u h x u� ���  and 
i i i

T
h h hV L L�� V , whereas for 

second order approximation expressions similar to (19) and 
(20) can be used, with 

,̂
( / )

i

n

uh iL dh d �

���  � , and 
2 2

,̂
( / )

i

n n

uh id dh � �

��
�� M � . In this formulation the 

algorithm shows robust performance in the sense of 
constraint satisfaction and decreased variance of the 
performance index (Nagy and Braatz, 2004). 
 

4. APPLICATION OF THE ROBUST BATCH-TO-BATCH 
NMPC FOR CRYSTALLIZATION PRODUCT DESIGN 

For the case studies the crystallization of a pharmaceutical 
was considered as the model system, for which nucleation 
and growth kinetics were determined experimentally using 
image analysis using the Sympatec Qicpic equipment. It was 
found that a 1D-PBM was not able to describe accurately the 
variation of the CSD, since a time-varying volumetric shape 
factor was found to be necessary to capture the significant 
change in aspect ratio during the batch. Using the 2D-PBE 
the volume of the individual crystals are directly calculated 
hence the volumetric shape factor is not needed. Although, 
the 2D-PBM provides the full 2D CSD, in this paper the 
target distribution was given as a 1D CSD based on the 
equivalent spherical diameter, since this is the most 
commonly used characterisation mode of CSD used in 
practice. Additionally the in situ CSD measurement during 
the experiments was based on focused beam reflectance 
measurement (FBRM), which provides 1D information. The 
equivalent spherical diameter (r ) is calculated by 

2
1 26L L

r
	

� .   (23) 
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The 2D-PBM also allows the incorporation of the shape 
information in the optimization problem. Different product 
design problems were considered, when various objective 
functions expressed as desired shapes of the CSD and limits 
of the crystal aspect ratio ( 1 2/L L� � ) were optimized and 
the required temperature profiles were determined. The novel 
feature of the proposed approach is that the optimization is 
performed in the phase diagram, and a concentration 
trajectory for batch k  is obtained as a function of 
temperature , ( )set kC f T� . This allows the direct application 
of the widely accepted supersaturation control in conjunction 
with the NMPC. The optimization problem can be expressed 
by the generic robust formulation: 

,

2

( )
min {(1 ) ( ( , ; ) ( , ))

[ ( , ; ]}

set k

desired
n i f k n i fC T

i

n f k

w f r t f r t

wV f r t
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�

� �

�

�
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s t T T t T
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C t C

� � �

� �

� �

�

� �

   (25) 

where ( , )desired
n i ff r t  is the desired (setpoint) CSD with a 

given shape at the end of the batch, minT , maxT , minR , maxR  
are the operating constraints determined by the bounds and 
minimum and maximum rate changes of the temperature 
profiles, respectively, C  is the concentration, maxC  is the 
maximum concentration at the end of batch required to 
achieve a desired crystallization yield, and min�  and max�  are 
the minimum and maximum bounds on the aspect ration for 
the desired crystal shape. For most crystallization processes 
there are significant variations in the metastable zone width 
(MSZW), which is incorporated in the optimization by 
considering uncertainties in the nucleation parameters 
( ,[ ]b bk b� � ). The variations in the nucleation kinetics are 
usually significantly larger than the uncertainties in the 
growth hence this will be considered in this study. In the 
MHE scheme a fixed iteration approach was used and the 
convergence of the two nucleation parameters is shown on 
Figure 3. It can be seen that the MHE converges practically 
after 3-4 iterations, after which the robust profile is also 
constant. Figure 4 shows the metastable zone width in the 
phase diagram delimited by the solubility and nucleation 
curves. Because of the uncertainties in the nucleation kinetics 
there is a nucleation region, with a width given by the 99% 
confidence intervals obtained via Monte Carlo simulations. 
The operating profiles resulted by solving (24)-(25) for the 
nominal case ( 0w � ) and one robust case ( 0.3w � ) are 
shown in the phase diagram in Figure 4. The target CSD was 
monomodal with a shape biased toward larger particles to 
improve filtration. The robust operating profile which 
resulted after 4 iterations, corresponds to a trajectory, which 
is further away from the nucleation zone throughout the 

entire batch. The operating profiles are implemented using a 
supersaturation controller. Figure 5 shows the time-domain 
representation of the operating curves corresponding to 
Figure 4. Since the robust profile operates at lower 
superasaturation the cooling is slower than in the nominal 
case resulting in longer batch time for similar yield. The 
robust operating policy also indicates slower cooling and 
even a slight increase in the temperature during the initial 
part of the batch when the nuclei are generated. This is in 
correlation with the often used industrial practice, according 
to which slow cooling and moderate increase in temperature 
after the onset of nucleation can result in improved 
consistency in the final CSD. Monte Carlo simulations were 
performed by randomly sampling (100 samples) the uncertain 
parameter space b�  and applying the nominal and robust 
temperature profiles. Figure 6 demonstrates that the robust 
operating curve leads to significantly reduced variability in 
the product quality compared to the nominal operating policy. 
The incorporation of the constraint with respect to the aspect 
ratio allows controlling the crystal habit (aspect ratio) and 
shape of the CSD at the same time. Figure 7 represents the 
variations during repeated batches in the product quality 
expressed as the aspect ratio and maximum Feret diameter. 
The Monte Carlo simulations show that the robust iterative 
learning control approach with the profile shown in Figures 4 
and 5, provides a significantly lower variability in the crystal 
size and aspect ratio due to parameter uncertainty. 
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Fig. 3. Evolution of the parameters estimated by the MHE 
over the batches. 
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Fig. 4. Phase diagram with nominal ( 0w � ) and robust 
( 0.3w � ) operating curves for monomodal target CSD. 
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Fig. 5. Time-domain representation of the nominal and robust 
operating profiles corresponding to Figure 3. 
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Fig. 6. Monomodal target and product CSDs resulting from 
Monte Carlo simulations with the uncertain nucleation 
parameters using the nominal and robust operating profiles. 
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Fig. 7. Monte Carlo simulations showing the performance of 
the robust iterative learning control after 4 batches. 
 
In the case of the robust ILC most of the batches provide 
product within the feasible region whereas the original 
nominal trajectory leads to a very high proportion of off-spec 
product, which could lead to decreased efficiency of the 
downstream processes or problems in formulation. 
 

6. CONCLUSIONS 
 
The paper presents a novel robust batch-to-batch control 
approach for the design of crystalline products by shaping the 
crystal size distribution and habit. A distributional 
optimization approach is used to design a robust 

concentration versus temperature profile, which is used as a 
setpoint for a lower level supersaturation controller. A two 
dimensional population balance model is solved using the 
method of characteristics, to capture the dynamic evolution of 
the aspect ratio which is incorporated into the robust 
optimization problem to control the shape of the size 
distribution and habit at the same time. Simulation results 
demonstrate the benefits of the proposed approach, which can 
decrease variability in size and shape of the product in a few 
batches. 
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Abstract: A dynamic process model of an industrial crystallizer train for para-xylene pro-
duction, which consists of five scraped surface crystallizers, two hydrocyclone separators, and
two centrifugal separators, is developed for control system design. The model is identified by
using real plant data. Optimal operating policies, which consider feed maximization and load
distribution among the crystallizers, are derived, and multiloop controller is configured to realize
the operating policy.

Keywords: Crystallization, industrial application, plantwide control

1. INTRODUCTION

Crystallization is one of the most popular unit operations
for separation and purification used in the chemical indus-
try. Despite their importance, process and control system
design for separation processes based on crystallization
technology has received much less attention compared with
distillation column processes [Mendez et al. (2005)].

Most of the studies on control system design for crystalliza-
tion processes focus on operations of a single crystallizer
as an isolated unit [Rawlings et al. (1993), Hasebe et al.
(2000)], although crystallizers never exist in isolation and
simultaneous consideration of subprocessing units such
as filtration and drying, etc. should be equally impor-
tant [Chang et al. (1998)]. Some studies handle operations
of multiple crystallizers [Garside (1985), Liu et al. (1991)],
but study on process and control system design for crystal-
lization processes from the plantwide perspective is quite
limited [Wibowo et al. (2001), Ward et al. (2007)].

In this paper, modeling and control system design of an
industrial crystallizer train, which comprises five crystal-
lizers, two centrifugal separators and two cyclone sepa-
rators, are discussed. The process concerns the product
recovery section in a para-xylene production plant. The
process underwent several revamps during the course of
a long history of commercial operation, and the process
became rather complicated, so that quantitative analysis
based on a mathematical model would help provide us with
improved operations.

First, a dynamic process model is developed, which de-
scribes crystallization kinetics, mass balance, and heat
balance for the whole plant. The model is then identified by
using the actual plant data. Based on the developed model,
optimal operating policies are derived through optimiza-
tion calculations. In setting up the optimization problem,

practical considerations such as constraint handling issues
are discussed in detail. Finally, a multi-loop control system
is configured which realizes the optimal operation.

2. PROCESS DESCRIPTION

2.1 Para-xylene production process

Para-xylene is an aromatic hydrocarbon used primarily
to make intermediates for manufacturing polyester. It
is the main feedstock for purified terephthalic acid and
dimethyl terephthalate, which in turn are used to produce
polyethylene terephthalate (PET) for use in fibres for
textiles, bottles for soft drinks and water.

Figure 1 shows a typical commercial production process of
para-xylene, where fresh feed that contains mixed xylene
(mixture of ortho-xylene, meta-xylene, and para-xylene)
and ethylebenzene is sent from the upstream plant and
pure para-xylene (normally > 99.5%) is recovered from the
feedstock by fractionation and crystallization. Crystalliza-
tion is one of the conventional methods for the recovery of
pure para-xylene; currently adsorption may be the most
popular. Filtrate from the para-xylene recovery section
is sent to the reaction section, where ortho-xylene, meta-
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Fig. 1. Typical para-xylene production process
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xylene are converted into para-xylene through isomeriza-
tion reaction.

2.2 Para-Xylene recovery based on crystallization technology

Since many physical properties of the individual xylene
isomers are similiar, high purity separation of each indi-
vidual xylene isomer is difficult. Crystallization is one of
the methods for that purpose, resorting to the differences
in the melting points among the xylene isomers.

Figure 2 shows the crystallizer train under study, which
consists of two separate cyrstallization stages. The first
stage uses several (in this example, three) scraped surface
crystallizers to bring the temperature of the xylene mix-
ture close to the para-xylene/meta-xylene eutectic point.
The first-stage crystallizers are followed by a solid-liquid
separation process using a centrifuge (screen-bowl type
in this example). The cold xylene filtrate from the first
stage cools the feedstream (not shown in the figure) and is
sent to the isomerization section. To achieve the maximum
production rate from a certain feedstock, the first-stage
crystallization temperature should be decreased as low as
possible, down to the eutectic point of para-xylene and
meta-xylene.

The solid cake para-xylene crystals and the adherent
mother liquor from the first stage are melted in the melt
tank, and pumped to the second-stage crystallizers. The
second stage is made up of the main crystallizer, and
the auxiliary crystallizer located on the recycle stream.
The slurry from the main crystallizer is sent to the final
centrifugal separator, and the filter cake is melted to form
the final para-xylene product. A major portion of the
mother liqour from the main crystallizer is returned to
the first-stage after a part of para-xylene in the mother
liquor is recovered by the auxiliary crystallizer.

Due to the presence of the recycle streams at several
locations, which have been added during the course of a
long history of commercial operation, the process becomes
highly interacting, so that careful analysis on the basis
of a mathematical model would be necessary in designing
control system.

3. MODELING

3.1 Crystallizer

The crystallizers are assumed to be mixed-suspension
mixed-product removal (MSMPR) systems. In addition,
the following assumptions are made for model develop-
ment:

• Only growth and nucleation are considered as crys-
tallization kinetics; breakage and agglomeration are
ignored.

• Para-xylene crystal growth is fast enough so that
the liquid phase para-xylene is always saturated (the
assumption of the high growth rate limit). Nucleation
occurs at the crystallizer wall.

These assumptions are adopted from the study by Patience
et al. (2001), who studied experimentally the crystalliza-
tion kinetics of para-xylene in a scraped surface crystal-
lizer.

Denoting the crystal size distribution (CSD) in the crys-
tallizer as f(x, t), its i−th moment μi is defined as

μi =

∞∫
0

f(x, t)xidx.

By using the method of moment, the population balance
equation can be written as:

dμ0

dt
=B + μin

0 − μout
0 ,

dμi

dt
= iGμi−1 + μin

i − μout
i (i ≥ 1),

where B and G are the nucleation rate and growth rate
of para-xylene crystal respectively, μin

i and μout
i are the

moment flows in and out of the crystallizers which can be
calculated from the MSMPR assumption. The empirical
expression is used for the nucleation rate B:

B = kbΔCb,

where ΔC is defined as the supersaturation created by
the temperature difference between the magma and the
crystallizer wall:

ΔC =
C∗(T )− C∗(TJ )
C∗(TJ)

.

Here, T is the temperature of the magma, TJ is the
temperature of the crystallizer wall, which is assumed to
be equal to the jacket temperature, and C∗(T ) is the
temperature dependent solubility of para-xylene.

The mass balance of the liquid phase para-xylene is written
as

dmPX

dt
= F inCin − F outC∗(T )− 3ρkvGμ2,

wheremPX is the liquid hold up of para-xylene in the crys-
tallizer, F in and F out are the inlet and outlet liquid flow
rates respectively, Cin is the para-xylene concentration of
the inlet flow, ρ is the density of para-xylene crystals, kv
is the shape factor. Note that the liquid concentration of
para-xylene in the crystallizer is assumed to be saturated.

The heat balance is written as
dH

dt
= Hin −Hout + 3ρkvGμ2ΔHc − UA(T − TJ),

where H is the overall enthalpy of the crystallizer, Hin

and Hout are the enthalpy in and out of the crystallizer
respectively, ΔHc is the heat of crystallization, and UA is
the overall heat transfer coefficient. Because of the fouling
of the crystallizer wall, the heat transfer coefficient is
treated as slowly time-varying.

The assumption of the high growth rate limit, that is, the
growth rate of para-xylene crystals is so large that the
liquid phase para-xylene concentration is always saturated,
renders the model equations a DAE system; the growth
rate is not explicitly given in the above equations. But the
model equation can be easily converted into the ODE by
the procedure shown by Patience et al. (2001).
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Fig. 2. Process flow of the para-xylene recovery section. The numbers (1 ∼ 9) denote the equipment numbers which are
used as subscript to distiguish the equipments.

3.2 Cyclone separator

The hydrocyclone separates the inlet slurry flow into two
streams: the overflow and underflow streams. With the
help of centrifugal force, the solid particles contained in
the inlet stream are concentrated in the underflow. Ideally
the overflow stream contains no solid particle, but it is
practically assumed that some of the crystals whose size is
smaller than d̄ escape into the overflow stream. An ideal
separation is assumed, where the crystals over the size d̄
will not be included in the overflow. Crystals under the
size d̄ will be included both in the underflow and overflow,
and they are distributed according to the liquid flow rates
of these streams.

To obtain the amount of crystals smaller than d̄, the
crystal size distribution has to be recovered from its
associated moment information. However, it is known that
infinite number of the moments are needed to reconstruct
the CSD [McGraw et al. (1998)].

To avoid this problem, the logarithmic normal distribution
is assumed for the CSD. From the values of the moments
μ′is, the mean crystal size m and variance σ2 can be
recovered from the relation:

log(μn/μ0) =
n2

2
σ2 + nm.

In this study, m and σ are determined through the least
squares fit by using the moments up to the 4-th order.

Then the amount of crystals below the size d̄ can be
calculated as

d̄∫
0

xnf(x)dx = exp(
n2σ2 + 2nm

2
)

·1
2

(
erf(

log d̄−m− nσ2

√
2σ

) + 1
)
,

where the error function is defined as

erf(x) =

x∫
0

2
π

exp(−λ2)dλ.

No holdup is assumed for the cyclone separators. Then, the
balance equations for the hydrocyclone are readily derived.

3.3 Centrifugal separator

At the centrifugal separators, it is assumed that the para-
xylene crystals of the size smaller than d̂ pass through
the screen, accompanying the mother liquor. The amount
of such crystals is calculated in the same way as in the
hydrocyclone separator model.

Constant void fraction is assumed for the filter cake (ε =
0.4), and the average degree of saturation Sav (the per-
centage of the void in the cake filled with mother liquor)
is assumed to be a function of the average crystal size
d23 = μ3/μ2:

Sav = Sav(Ŝ, d23),

where Ŝ is a parameter to define the empirical expression.

When the cake is washed (as in the second stage cen-
trifuge), part of the mother liquor in the cake is replaced
by the wash liquor. The percentage of the mother liquor
replaced by the wash liquid is expressed by the empirical
expression, which is a function of Sav and the ratio of the
amounts of the wash liquid and the mother liqour. The
amount of the remaining mother liquor in the cake largely
accounts for the product purity.

Then, the balance equations for the centrifuge are readily
derived; no holdup is assumed.

The screen-bowl type centrifugal separator at the outlet of
the 1st stage is modeled as a combined system comprising
a cyclone and a centrifuge; the bowl part is modeled as
the cyclone. The parameter α is introduced as the ratio
between the bowl filtrate (overflow stream) and the liquid
inlet, which will be used for model identification in the
next section.

3.4 Overall process model

By combining the models for the crystallizers, the hydro-
cyclone separators, the centrifugal separators and other
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Fig. 3. Hydrocyclone separator modeling

storage tanks, a nonlinear dynamic process model in the
following form is derived:

ẋ = f(x, u, p)
y = h(x, u, p), (1)

where x is the state variable, u is the measured inde-
pendent variables, p is the unknown parameters and un-
measured independent variables, and y is the measured
variables. Here, the variables are defined for the purpose
of model identification.

3.5 Model identification

The unknown parameters are obtained through least
squares fit of the model calculation with the plant data:

min
x,p

(ỹ − y)T (ỹ − y) (2)

subject to

0 = f(x, u, p), (3)

where ỹ is the plant data. Eq. (3) assumes that model
identification is done for steady states.

Several data sets for (ỹ, u), which have been obtained
by heavily filtering 1 hour average data from the real
plant, are used for the least squares fit. The available
measurements ỹ consist of the holdups of the five crys-
tallizers, the holdups of the melt tank and product tank,
the temperatures of the crystallizers, the production rate,
the recycle flow rate to the isomerization reaction, para-
xylene concentrations of the melt tank and product tank.

As a result of the sensitivity analysis of the minimization
problem (2), the identifiable parameter set p ∈ �6 has
been selected as

p =
(
α6 d̄6 d̂6 Ŝ6 Ŝ8 d̄9

)T

,

where the subscript are defined as equipment number
in Fig. 2. The overall heat transfer coefficient UAi of
each crystallizer (i = 1 ∼ 5) is considered as time-
varying and is also used for model identification as the
fitting parameters. It should be noted that the parameters
concerning crystallization kinetics such as b and kb are
not identifiable from the available measurements, so that
their values are adopted from the paper by Patience et al.
(2001).

Figure 4 shows one of the fitting results: the parity plot
of the fitting result for the production rate. The operation
condition used for model identification covers ±20% of the
nominal production rate.
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Fig. 4. Parity plot of production rate measurements

4. CONTROL SYSTEM DESIGN

4.1 Definition of manipulated and controlled variables

By using the identified process model, basic regulatory
control system is designed; the seven inventory control
loops are closed with each effluent flow, and the tempera-
ture control loop of each crystallizer is closed by manipu-
lating its corresponding jacket temperature.

The manipulated variables for further control system de-
sign are defined as uC ∈ �9, and they consist of the
temperature setpoints of the crystallizers, the ratios of the
flow rates of the overflow and the underflow of the cyclones,
the wash liquid flow rate, and the recycle flow rate from
the overflow of the cyclone to the auxiliary crystallizer:

uC = (T1 T2 T3 T4 T5 α7 α9 Fw Frec)
T
,

where the subscripts are defined as the equipment number
in Fig. 2 and αi (i = 7, 9) is the flow rate ratio in the
cyclone separators, and Fw is the wash flow rate, and Frec

is the recycle flow rate.

The controlled variables are defined as yC , for which
constraints may be considered, and the process model for
control system design is described as

ẋ = fC(x, uC)
yC = hC(x, uC). (4)

4.2 Steady state optimal operation policy

In deriving optimal operating policies, the following con-
straints are considered.

• Lower limit for the para-xylene purity xprod This
is a product specification. The purity is determined
by the amount of accompanying mother liquor, which
is affected by the average crystal size (the larger, the
better) and the intensity of the wash at the centrifuge.

• Lower limits for the jacket temperatures at the 1st
stage crystallizers TJ,1 ∼ TJ,3 The yield of the para-
xylene recovery section is determined by how low the
1st stage crystallizer temperature can be reduced.
The refrigerator capacity determines the lower limits
of the jacket temperatures.

• Upper limits for the temperature difference between
the jacket and crystallizer ΔT1 ∼ ΔT5 One of the
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major operational concerns is the fouling of the crys-
tallizer wall, which is caused by the crystal deposition
on the wall surface and exacerbated by too high a
super-saturation at the crystallizer wall. Para-xylene
crystal deposition on the wall results in poor heat
transfer and limits the production rate.

• Upper limits for the slurry concentrations in the sec-
ond stage crystallizers Cs4, Cs5 The slurry con-
centrations in the second stage crystallizers tend to
be high and they are limited by the torque limit of
the agitator. If the slurry concentration is too high,
mixing in the crystallizer would become imperfect.

• Upper and lower flow rate limits for the cyclone
separators Operation of the cyclone in an abnormal
flow rate regime results in inappropriate classification
of crystals.

• Upper limits for the slurry concentrations in the un-
derflow of the cyclone separators Cs7, Cs9 The
slurry concentration in the underflow of the cyclone
separator tends to be large. Too high a slurry concen-
tration results in clogging of the pipe.

• Upper limit for the para-xylene concentration in the
melt tank If this concentration is too high, some of
the solid para-xylene with low purity from the 1st
stage do not dissolve in the melt tank.

The following two modes of operations are considered for
developing optimal operating policies.

Feed maximization Feed maximization is realized by
solving the following optimization problem:

max
uC

Fp (5)

subject to

0 = fC(x, uC)

yLL
C ≤ yC ≤ yUL

C (6)

uLL
C ≤ uC ≤ uUL

C ,

where (·)LL and (·)UL are the lower limits and upper limits
respectively; Fp is the production rate that is defined as
the effluent of the product tank minus the wash liquid.

Prospective active constraints are found to be the lower
limits of the jacket temperatures of the 1st stage crystal-
lizers, the upper limits for the temperature differences and
slurry concentrations of the second stage crystallizers, and
the slurry concentration in the underflow of the cyclone
on the recycle stream. It has been found that around 2%
increase in the production rate could be possible compared
with the conventional operation.

Load distribution Load for the crystallizer is expressed
as the temperature difference (ΔT ) between the crystal-
lizer and the jacket. For a prescribed production rate F̄p,
flexible operation by distributing the loads between the
two crystallizers at the second stage would be advanta-
geous; when fouling of the crystallizer wall of one of the
crystallizers is severe, which situation may be observed
by decrease in the heat transfer coefficient, the load for
that crystallizer is lowered while the load for the other
crystallizer is increased to keep the production rate. For
such cases, the following optimization problem can be
conceived:
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Fig. 5. Optimization landscape described as a contour plot
of production rate

min
uC

wΔT4 + (1− w)ΔT5 (7)

subject to

0 = fC(x, uC)

Fp = F̄p (8)

yLL
C ≤ yC ≤ yUL

C

uLL
C ≤ uC ≤ uUL

C ,

where w (0 ≤ w ≤ 1) is the weight used for distributing
the load.

Figure 5 shows the optimization landscape obtained by
solving the minimization problem (7) for various values of
production rate F̄p and weight w, in which the load distri-
bution for a fixed production rate is described as a contour
plot in the ΔT4 −ΔT5 plane. The maximum throughput
is realized when the upper limit constraints for both of
the temperature differences become active, whereas the
throughput is decreased for a moderate load where there
is room for the temperature difference. The lower limits
for the jacket temperatures of the 1st stage crystallizers
and the upper limits for the slurry concentrations in the
2nd stage crystallizers and the underflow of the cyclone
are always active.

4.3 Optimizing control

To realize the optimal operating policies derived in the pre-
vious subsection, a 6× 6 multi-loop control is configured.
As the manipulated and controlled variables, the following
variables are selected:

Manipulated: T4, T5, α7, α9, Fw, Frec

Controlled: Cs4, ΔT4, Cs5, ΔT5, Cs9, xprod,

where Cs4, Cs5 and Cs9 are the slurry concentrations of
the 2nd stage crystallizers and the underflow of the cyclone
separator on the recycle stream, xprod is the para-xylene
concentration in the product stream.

Constant setpoints are given to Cs4, Cs5, Cs9, and xprod,
because constraints for these variables are known to be
always active with the optimal operations, while the set-
points to ΔT4 and ΔT5 are varied according to the load
distribution policy. Care should be taken in giving set-
points to ΔT4 and ΔT5, because other constraints for
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Table 1. RGA analysis for the multi-loop con-
troller design

T4 T5 α7 α9 Fw Frec

Cs4 0.0093 0.33 0.81 -0.19 0.041 0
ΔT4 0.85 -0.33 0.18 -0.093 0.39 0
Cs5 -0.057 0.055 0 0.0028 0 1.0
ΔT5 -0.30 0.73 -0.0024 0.57 0.0074 -0.0027
Cs9 -0.0034 0.33 0.0031 0.67 0.0022 0.0019

xprod 0.5 -0.12 0.01 0.038 0.56 0.0

such variables as the cyclone inlet flow rate and melt tank
concentration may become active.

A pairing of these variables in the multi-loop control sys-
tem is determined through the relative gain array (RGA)
analysis [Bristol (1966)] shown in Table 1.

5. SIMULATION STUDY

Figure 6 shows a simulation result of the designed control
system when the setpoints of the temperature differences
ΔT4 and ΔT5 are changed (all the numerical values are
eliminated from the plot to keep any proprietary informa-
tion confidential). For the first half of the simulation, the
temperature difference ΔT5 is changed stepwise, while the
temperature difference of the other crystallizer ΔT4 is held
constant. This operation increases the production rate. For
the second half, ΔT4 is decreased stepwise while ΔT5 is
held constant. As a result, the load of the crystallizer 4
is reduced while the load of the crystallizer 5 is increased,
compared with the initial state of the simulation.

Toward the end of the simulation when the load on the
crystallizer 4 is reduced, the cyclone inlet flow almost hits
the upper limit, which is anticipated from the analysis
shown in Fig. 5.

6. CONCLUSION

A process model of an industrial crystallizer train for
para-xylene recovery has been developed and a multi-loop
control system has been configured.

Since the process is highly interactive due to the existence
of the recycle streams, and the active constraints are
subject to change depending upon operating conditions
as shown in Fig. 5, application of multivariable model
predictive control with constraint handling capability may
be justified, if override control logic is regarded tedious.

One of the major concerns in the crystallizer operations is
fouling of the crystallizer wall due to large supersaturation,
which leads to decreased heat transfer and production
rate. A monitoring and control system which is capable
of identifying the deteriorating heat transfer coefficient to
automatically adjust ΔT would be helpful.
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Abstract: The use of predictive solubility models can be of great use for crystallization modeling, and can 
decrease the amount of experimental data needed to create a robust crystallization model. In this paper, 
predictive solubility models such as MOSCED, UNIFAC, NRTL-SAC, and the Jouyban-Acree model are 
compared against an empirical model for predicted solubility accuracy. The best models are subsequently 
compared against the empirical model for the antisolvent crystallization of acetaminophen in acetone 
using water. Two different optimization objective functions are executed for each solubility model to 
generate corresponding optimal profiles. The effect of these optimal profiles on the predicted crystal 
properties is evaluated.  
Keywords: Optimization, Solubility Model, Crystallization, Antisolvent, NRTL-SAC, Jouyban-Acree, 
Population Balance 

�
1. INTRODUCTION 

 
Crystallization is an important unit operation for the 
production of pharmaceuticals, fertilizers, and fine chemicals. 
Optimal crystallization operation often requires a 
crystallization model. This crystallization model, typically 
based on population balances (Hulburt and Katz, 1964; 
Ramkrishna, 1985; Randolph and Larson, 1988), requires a 
companion solubility model. Empirical solubility models 
have been extensively used in crystallization modelling 
(Zhou et al., 2006; Nowee et al., 2008; Lindenberg et al., 
2009). It is of interest to understand how other predictive 
solubility models such as the MOSCED, NRTL-SAC, 
UNIFAC, and Jouyban-Acree models can be incorporated 
into crystallization models and how their accuracy of 
predicting the solubility profiles influences both the 
crystallization model prediction and optimal profile 
calculation. The outcome of combining predictive solubility 
modelling with the crystallization model is expected to 
reduce the need for solubility experimental data and 
consequently streamline the optimization of the 
crystallization process.  
 
The solubility prediction is an important aspect of any 
crystallization model because its prediction is the basis for 
any crystallization phenomena. Crystallization is caused by 
supersaturation which is defined as the difference between 
the solution concentration and the equilibrium concentration 
(absolute supersaturation), or the ratio of the solution and 
equilibrium concentrations (relative supersaturation).  
 
This paper investigates the effect of different solubility 
models on the optimization of antisolvent crystallization. 
Both the effect of the model on the predicted optimal profile 
and on the result of these models’ optimal profiles 

implemented into a validated crystallization model will be 
evaluated. Specifically, we examine the effect on the 
supersaturation, mean size, and volume percent crystal size 
distribution (CSD) profiles. Although there has been 
extensive work done in the area of crystallization control and 
optimization (Braatz, 2002; Zhou et al., 2006; Nowee et al., 
2008; Sheikhzadeh et al., 2008), as far as we are aware there 
is no study that has investigated the use of predictive 
solubility models in developing optimal antisolvent feed 
profiles. 
 

2. SOLUBILITY MODELS 
 
2.1 MOSCED & UNIFAC Models 
 
The MOSCED model (Lazzaroni et al., 2005), generates 
infinite dilution activity coefficients. In order to obtain a non-
infinite dilution activity coefficient, another activity 
coefficient model is required. The Van Laar, Wilson, and 
NRTL models were each combined with the MOSCED 
model to evaluate which would give the best prediction to 
known experimental data. The next solubility model 
considered is the UNIFAC model (Anderson and Prausnitz, 
1978). The UNIFAC model predicts activity coefficients 
based on group contributions. The MOSCED and UNIFAC 
models predicted equilibrium profiles for acetaminophen in 
acetone and water are shown in Figure 1. 
 
The MOSCED models all give very poor solubility 
predictions. They all greatly underestimate the solubility. The 
NRTL and Wilson models give better estimates to the shape 
of the solubility curve than the Van Laar model does. The 
UNIFAC model is the worst of the models both greatly 
overestimating the solubility and weakly representing the 
shape of the curve. 
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2.2 NRTL-SAC, Jouyban-Acree, and Empirical Models 
 
The next solubility model considered is the NRTL-SAC 
model (Chen et al., 2004, 2006). The NRTL-SAC model is a 
NRTL activity coefficient model that has been modified 
using segment theory (Chen et al., 2004, 2006). The last 
predictive solubility model considered is the Jouyban-Acree 
model (Jouyban et al., 2006). 
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Figure 1: MOSCED & UNIFAC Solubility Predictions. 
 
The Jouyban-Acree model is a semi-empirical model 
developed to predict the solubility of pharmaceuticals in 
organic solutions. This model requires the solubilities of both 
pure components in a binary solute-solvent system, and 
predicts the solubility of a solute in a solvent mixture. The 
last solubility model considered is an empirical model 
generated from data from Granberg and Rasmuson (2000) by 
Zhou et al. (2006).  
 

 
 

 
 

 

(1) 

 
Where C* is the equilibrium concentration (kg 
acetaminophen/kg solvents), and w is the solute free mass 
percent of water. The NRTL-SAC, Jouyban-Acree, and 
empirical model predicted solubilities are plotted in Figure 2. 
The NRTL-SAC and Jouyban-Acree solubility models both 
predict the equilibrium solubility much better than the 
MOSCED or UNIFAC models did. The empirical model fits 
the data very well and will be considered as the standard 
solubility model for benchmarking. Since the UNIFAC and 
MOSCED models gave such poor solubility predictions, only 
the NRTL-SAC and Jouyban-Acree models will be compared 
against the empirical model in the optimization sensitivity 
study in the subsequent sections. 
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Figure 2: NRTL-SAC and Jouyban-Acree Solubility 
Predictions. 
 

3. CRYSTALLIZATION MODEL 
 

In order to evaluate the effect of the solubility model on the 
predicted optimal trajectories, a crystallization model is 
required.  
 
3.1 Population Balance 
 
The population balance for a crystallization system having 
size-independent crystal growth and without attrition or 
agglomeration is defined in (2). 
 

 
 

 
(2) 

 
Where n(L,t) is the crystal density (# of particles/m3), V is the 
volume (m3), G is the growth rate (m/s), and B is the 
nucleation rate (# of particles/ s m3). The population balance 
was solved by discretization using backward finite 
differences. The discretization consisted of 250 geometrically 
spaced intervals from 0.5-1000 microns. 
 
3.2 Crystallization Kinetics 
 
The antisolvent crystallization kinetics for acetaminophen in 
acetone with water as the antisolvent were taken from Zhou 
et al (2006). The authors developed their own kinetic rates  
(3-6), from previous crystallization data performed by 
Granberg et al. (1999, 2001). 
 

 

 

 

 
 
(3) 

 
 

(4) 

 
 

 

 

(5) 

+ 1.77428 
 

(6) 
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Where N is the nucleation rate (no. of particles/m3), ρc is the 
crystal density of acetaminophen (kg/m3), C* is the 
equilibrium concentration defined previously, C is the 
solution concentration (kg acetaminophen/kg solvents), ρs is 
the density of the solution (kg/m3), G is the crystal growth 
rate (m/s), and w is the solute free mass percent of antisolvent 
(water) in the solution. Also, the growth kinetics is only valid 
for solute free water mass percents greater than 30%. 
 

4. OPTIMIZATION 
 

The first optimization objective (O-1) was to create a final 
volume mean crystal size (D43) of 200 microns, and jointly 
minimize the total amount of nucleation by minimizing the 
zeroth moment. The optimization constraints were to end 
with a solute free antisolvent mass percent of water of 88%, 
and the mass flow rate of water could range between 0 and 
400 g/min. The duration of the experiment was fixed at 4200 
s. The control interval was discretized into 10 fixed 360 s 
intervals where the antisolvent flow rate could be adjusted in 
a piecewise constant manner. The final 600 s had a fixed 
antisolvent flow rate of zero. This was done to ensure that all 
remaining supersaturation is consumed at the end of the run. 
The optimizations were implemented using the gPROMS 
package (Process System Enterprise, UK) using the gOPT 
entity. The objective function used is defined in (7) subject to 
initial conditions in (8). 
 
 

 

 

 
 
(7) 

     
 

(8) 
 
This optimization was carried out using the crystallization 
model in Section 3 separately with each of the empirical, 
Jouyban-Acree, and NRTL-SAC solubility models. The 
MOSCED and UNIFAC models were not considered because 
when those models where incorporated into the 
crystallization model they did not predict any crystallization 
phenomena. 
 
4.1 Optimal Antisolvent Feed Profiles for O-1. 
 
Each solubility model resulted in an optimal profile (Figure 
3).. The empirical and Jouyban-Acree models generated 
similar optimal profiles (denoted Profile A.1 and Profile B.1 
respectively) with a small initial flow rate at the beginning of 
the experiment, moderate flow rate in the middle, and higher 
flow rate at the end. In contrast, the NRTL-SAC model 
calculates an optimal profile (denoted Profile C.1) that has a 
moderate initial flow rate followed by a high flow rate in the 
middle, and no flow at the end. 
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Figure 3: Optimal antisolvent feed profiles for O-1. 
 
The second optimization objective (O-2) was to create a 
larger final volume mean size (D43) of 400 microns while 
again minimizing the total amount of nucleation by 
minimizing the zeroth moment. The objective function 
formulation for O-2 was the same as for O-1 with the 
exception that D43 now cannot be greater than 400 microns. 
 
4.2 Optimal Antisolvent Feed Profiles for O-2. 
 
Each solubility model resulted in a new optimal profile for O-
2 (Figure 4). The empirical and Jouyban-Acree models again 
generated similar optimal profiles (denoted Profile A.2 and 
Profile B.2 respectively) with a small initial flow rate at the 
beginning of the experiment, a high flow rate in the middle 
for A.2, and a high flow rate at the end for B.2. In contrast, 
the NRTL-SAC model calculates an optimal profile (denoted 
Profile C.2) that has a moderate initial flow rate followed by 
a low flow rate in the middle, and a moderate flow rate at the 
end. 
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Figure 4: Optimal antisolvent feed profiles for O-2. 
 

5. OPTIMIZATION SENSITIVITY ANALYSIS 
 

The crystallization model was executed for each generated 
optimal feed profile (A.1-C.2) using the empirical solubility 
model. The empirical model is used as the benchmark since it 
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showed very close agreement to experimental solubility data. 
This should predict what these optimal profiles would 
actually produce in a real crystallizer. Results are shown in 
the next sections.  
 
5.2 Optimal Profiles for O-1 Evaluation 
 
When the optimal profiles are implemented into the empirical 
solubility model there are several observed differences in the 
simulated supersaturation profiles (Figure 5) under Profiles 
A.1, B.1, and C.1. The NRTL-SAC optimal profile (C.1) 
causes the supersaturation to peak earlier than the other two 
models, while the supersaturation caused by the Jouyban-
Acree profile (B.1) is shown to be similar in shape to the 
empirical profile (A.1) but with a delay. Next, the effect on 
the volume mean size growth is shown in Figure 6. 
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 Figure 5: Relative supersaturation profiles for each optimal 
antisolvent feed profile for O-1. 
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Figure 6: Volume mean size for each optimal antisolvent feed 
profile for O-1. 
 
Each volume mean size profile can be explained by its 
corresponding supersaturation curve. Whenever the 
supersaturation increases there is a corresponding increase in 
the volume mean size. The NRTL-SAC optimal profile’s 
(C.1) supersaturation profile only has one large early 
supersaturation peak which causes the first primary increase 
in crystal size, and a second peak which causes a small 
increase in crystal size. The empirical optimal profile’s (A.1) 

generated supersaturation profile has four peaks which cause 
four increases in crystal size. Likewise the Jouyban-Acree 
optimal profile (B.1) causes the supersaturation profile to 
have four increases in D43. Using the empirical solubility 
model, the empirical optimal profile (A.1) satisfies its 
objective of 200 microns, the Jouyban-Acree optimal profile 
(B.1) is higher at 242 microns, and the NRTL-SAC optimal 
profile (C.1) is lower at 169 microns. Both predictive models 
optimal profiles did not meet the optimization objective but 
are within 20% of the desired value. 
 
Figure 7 shows the volume percent CSD for each optimal 
profile. All three optimal profiles give similar distributions 
with the NRTL-SAC optimal profile (C.1) distribution having 
a lower mean size than the others, and the Jouyban-Acree 
optimal profile (B.1) distribution having a larger mean size. 
All three optimal profiles generated distributions with similar 
width.  
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Figure 7: Volume percent CSD for each optimal antisolvent 
feed profile for O-1. 
 
For this objective function (O-1) only the empirical model’s 
optimal profile (A.1) was able to satisfy the objective to 
create a volume mean size of 200 microns, but the predictive 
models’ profiles (B.1 & C.1) were able to be within 20% of 
the desired value. Also, all three profiles were successfully 
able to suppress nucleation to produce unimodal profiles. 
 
5.3 Optimal Profiles for O-2 Evaluation 
 
The next objective function considered is the 400 volume 
mean size objective function (O-2). As seen in Figure 8 the 
generated supersaturation profiles follow the same trend as 
for the first objective function (O-1). The NRTL-SAC 
optimal profile (C.2) generates a supersaturation profile that 
is nearly identical to the supersaturation profile that C.1 
generated for O-1. The empirical optimal profile (A.2) 
generates a supersaturation amount that is above 1.02 from 
500 to 2500 s. The Jouyban-Acree optimal profile (B.2) 
generates a supersaturation peak that is similar to (A.2) but 
not as high of a supersaturation amount. 

215



 
 

     

 

Time (s)
0 1000 2000 3000 4000

Re
la

tiv
e S

up
er

sa
tu

ra
tio

n

0.98

1.00

1.02

1.04

1.06

1.08

1.10
Profile A.2
Profile B.2
Profile C.2

 
Figure 8: Relative supersaturation profiles for each optimal 
antisolvent feed profile for O-2. 
 
The Jouyban-Acree (B.2) and NRTL-SAC (C.2) optimal 
profiles both generated a much smaller mean size because 
they did not generate the required supersaturation. The 
Jouyban-Acree optimal profile (B.2) generated a volume 
mean size of 271 microns and the NRTL-SAC optimal 
profile (C.2) generated a volume mean size of 162 microns. 
Both predictive solubility models’ optimal profiles do not 
satisfy O-2 as well as they satisfied O-1. 

Time (s)
0 1000 2000 3000 4000

D
43

 (m
ic

ro
ns

)

0

100

200

300

400 Profile A.2
Profile B.2
Profile C.2

 
Figure 9: Volume mean size for each optimal antisolvent feed 
profile for O-2. 
 
Figure 10 shows the volume percent CSD for each optimal 
profile for O-2. For this case there is a larger difference 
between the three profiles. Clearly, the Jouyban-Acree (B.2) 
and NRTL-SAC (C.2) optimal profiles did not satisfy the 
optimization objective. Also, the distribution width had more 
variation between the three profiles. The empirical profile 
(A.2) had the lowest distribution width, followed by the 
Jouyban-Acree (B.2) and the NRTL-SAC (C.2) model had 
the largest distribution width.  
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Figure 10: Volume percent CSD for each optimal antisolvent 
feed profile for O-2. 
 
Just as for the first case (O-1) only the empirical model’s 
optimal profile (A.2) was able to satisfy the objective (O-2) 
to create a volume mean size of 400 microns. Both predictive 
model profiles (B.2 & C.2) produced a much smaller mean 
size. The Jouyban-Acree profile (B.2) produced particles 
32% smaller, and the NRTL-SAC profile (C.2) produced 
particles 60% smaller. Even though they did not produce the 
proper volume mean size, all three profiles were successfully 
able to suppress nucleation to produce unimodal profiles. 
 
5.5 Optimization Evaluation 
 
The reason why the optimal flow rates are similar for both the 
empirical and Jouyban-Acree model is that the slopes of both 
solubility curves are very similar. Since the slope of the 
solubility curve is what dictates the supersaturation profile, it 
would be expected to give similar supersaturation profiles. 
The NRTL-SAC model has a different slope in its solubility 
profile which causes the larger deviation in these reported 
results. In order for a predictive solubility model to produce 
predictive optimal profiles it must be accurate both 
quantitatively and qualitatively. 
 

Table 1: Final volume mean crystal size derived from each 
optimal profile. 

Final Volume Mean Size & Percent Error 
Optimal 
Feed 
Profile 

O-1 
(200) 

Prediction 
Percent 
Error 

O-2 
(400) 

Prediction 
Percent 
Error 

Empirical 200 0 400 0 
Jouyban-
Acree 242 21% 271 

 
-32% 

NRTL-
SAC 169 -16% 162 

 
-60% 

 
Only the optimal profiles (A.1, A.2) generated from the 
empirical solubility model were able to satisfy both 
optimization objectives. When other optimal profiles were 
used the final volume mean size was as much as 60% under 
predicted and 21% over predicted when implemented into the 
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empirical solubility model. The deviation from the objective 
criteria increased as the volume mean size increased. 

 
6. CONCLUSION 

 
The effect of several solubility models were evaluated on the 
predicted optimal antisolvent feed profiles. The solubility 
model did have an effect on the optimal profile, and 
generated a unique optimal antisolvent feed profile. The use 
of the predictive solubility models’ optimal profiles in the 
empirical solubility model did not satisfy the original 
objective function. The use of an incorrect solubility model 
will create a sub-optimal antisolvent feed profile that will not 
satisfy its intended crystallization optimization objective in a 
real system. This underpins the significance of the solubility 
profile in crystallisation optimizations work. 

REFERENCES 

Anderson T.F., Prautsnitz J.M. (1978), Application of the 
 UNIQUAC Equation to Calculation of 
 Multicomponent Phase Equilibria 2: Liquid-Liquid 
 Equlibria, Industrial & Engineering Chemistry 
 Process Design and Development, 17-4, 561-567 

Braatz R.D. (2002), Advanced Control of Crystallization 
 Processes, Annual Reviews in Control, 26, 87-99. 

Chen C.C., Crafts P.A. (2006), Correlation and Prediction 
 of Drug Molecule Solubility in Mixed Solvent 
 Systems with the Nonrandom Two-Liquid Segment 
 Activity Coefficient (NRTL-SAC) Model, 
 Industrial & Engineering Chemistry Research, 45, 
 4816-4824. 

Chen C.C., Song S. (2004), Solubility Modelling with a 
 Nonrandom Two-Liquid Segment Activity 
 Coefficient Model, Industrial & Engineering 
 Chemistry Research, 43, 8354-8362. 

Granberg R. A., Bloch D. G., Rasmuson A. C. (1999), 
 Crystallization of Paracetamol in Acetone-Water 
 Mixtures, Journal of Crystal Growth, 198/199, 
 1287-1293. 

Granberg R. A., Ducreux C., Gracin S., Rasmuson A. C. 
 (2001), Primary Nucleation of Paracetamol in 
 Acetone-Water Mixtures, Chemical  Engineering  
 Science, 56, 2305-2313. 

Granberg R.A., Rasmuson A.C. (2000), Solubility of 
 Paracetamol in Binary and Ternary Mixtures of 
 Water, Journal of Chemical & Engineering Data, 
 45, 478-483. 

Hulbert H.M., Katz S. (1964), Some Problems in Particle               
 Technology, Chemical Engineering Science, 19,      
 555. 

Jouyban A., Chan H.K., Chew N.Y.K., Khoubnasabjafari 
 M., Acree, Jr. W.E. (2006), Solubility Prediction of 
 Paracetamol in Binary and Ternary Solvent 
 Mixtures Using Jouyban-Acree Model, Chemical 
 and Pharmaceutical Bulletin, 54-4, 428-431. 

Lazzaroni M., Bush D., Eckert C. (2005), Revision of 
 MOSCED Parameters and Extension to Solid 
 Solubility Calculations, Industrial & Engineering 
 Chemistry Research, 44, 4075-4083. 

Lindenberg C., Krattli M., Cornel J., Mazzotti M., Brozio J.  
(2009), Design and Optimization of a Combined 
Cooling/Antisolvent Process, Crystal Growth & 
Design, 9:2, 1124-1136. 

Nowee S.M., Abbas A., Romagnoli J.A. (2008), Model- 
Based Optimal Strategies for Controlling Particle 
Size in Antisolvent Crystallization Operations, 
Crystal Growth & Design, 8:8, 2698-2706. 

Ramkrishna D. (1985), The Status of Population Balances, 
 Reviews in Chemical Engineering, 3:1, 49-95. 

Randolph A.D., Larson M.A. (1988), Theory of Particulate   
 Processes (2nd ed.), Academic Press, San Diego,   
 CA.  

Sheikhzadeh M., Trivkovic M., Rohani S. (2008), Real-time  
 optimal control of an anti-solvent isothermal semi- 
 batch crystallization process, Chemical Engineering  
 Science, 63, 829-839. 
 
Zhou G.X., Fujiwara M., Woo X.Y., Rusli E., Tung H.H., 
 Starbuck C., Davidson O., Ge Z., Braatz R.D. 
 (2006), Direct Design of Pharmaceutical 
 Antisolvent Crystallization through Concentration 
 Control, Crystal Growth and Design, 6-4, 892-898. 

 

  

 

217



     

Numerical Studies of Wavelet-based Method as an Alternative Solution for 
Population Balance Problems in a Batch Crystalliser 

 
Johan Utomo, Tonghua Zhang, Nicoleta Balliu and Moses O. Tadé* 

    

Department of Chemical Engineering, Curtin University of Technology, 
GPO Box U 1987, Perth, WA 6845, Australia                                                                                   

*corresponding author:(Tel:61-8-9266 4998; e-mail: m.o.tade@curtin.edu.au). 
 

Abstract: This paper deals with the numerical simulation studies of the nucleation and crystal growth 
process in a batch crystalliser. The population density functions may extend over orders of several 
magnitudes and the size distribution can be very sharp, thus accurate numerical solution of the population 
density functions can be challenging. The main interest for finding a more representative population 
balance solutions has motivated many researchers to develop many methods for the last four decades. In 
this paper, four methods have been implemented including wavelet-based method. The results obtained in 
three case studies, have demonstrated the wavelet scheme to be an alternative in providing accurate, fast 
and robust solutions.  

Keywords: Crystallisation, Numerical scheme, Population Balance, Wavelet method 

 

1. INTRODUCTION 

Hulburt and Katz (1964) introduced a statistical mechanical 
formulation, known as population balance, for modelling the 
crystallisation process. The population balance equation 
(PBE) can be defined as a mathematical description 
characterising particles undergoing the mechanisms of birth, 
growth, death and leaving a certain particle phase space. In 
crystallisation, those mechanisms can be categorized as 
nucleation, growth, agglomeration and breakage. The 
population density functions may extend over orders of 
several magnitudes and the size distribution can be very 
sharp, thus the accurate numerical simulation of the 
population density functions can be challenging and has 
motivated several researchers in this area for decades to 
develop specialised algorithms for solving PBE, for example 
Ramkrishna (1981), Hounslow et al.(1988), Litster et al. 
(1995),  Kumar and Ramkrishna (1996), Nicmanis and 
Hounslow (1996), and Mahoney and Ramkrishna (2002). All 
of these methods can be classified into four categories, such 
as method of weight residuals/orthogonal collocation, finite 
elements methods, finite difference schemes/discrete 
population balances methods, and other methods. There are 
major drawbacks from those methods such as 
computationally expensive, lack of stability and accuracy of 
the solution and in applicability of the solved models to be 
implemented in control based models. Extensive comparative 
discussion of those methods can be found in the literature 
(Kostoglou et al. 1994; Ramkrishna 2000; Vanni 2000). 
Therefore, the need for accurate, fast, robust and low order 
solution is essential for design, control and optimisation 
purposes. 
 
This paper reports the application of wavelet based methods 
as an alternative, for solving population balance problems in 
a batch crystalliser condition. Previous study (Utomo et al. 

2006) has been extended by comparing with finite difference 
based methods, such as upwind finite difference (U-FD), 
biased upwind finite difference (BU-FD), and method of 
weighted residuals, such as, orthogonal collocation with finite 
element method (OCFE). Different types of population 
balance are illustrated in the three cases discussed in this 
paper. They are having a high non-linearity, a steep-front 
profile, and stiff characteristic. The solutions are 
benchmarked with respects to their size (spatial grid points 
used), accuracy (mean and average error) and the 
computation time (t-CPU).  
 

2. NUMERICAL SCHEMES 

2.1 Previous Methods 

Finite difference (FD) methods have been commonly used for 
the solution of all types of partial differential equations 
(ODEs) systems. FD method approximates the continuous 
function,�����, with Taylor expansion series (Hangos and 
Cameron, 2001). They can be a first order or second order 
approximations. In our case, FD method was used to 
approximate the first partial derivative of population density 
over its size and converts the PDE into a set of ODEs.  
 
In this paper, the upwind finite difference and biased upwind 
finite difference schemes were applied to effectively handle 
the instability and to avoid the spurious oscillation as 
generated by a centred FD scheme. The five-point (fourth-
order accuracy) upwind and biased upwind on uniform grids 
were implemented as described in (Wouwer et al. 2005). 
Orthogonal collocation technique was developed and applied 
in various cases of boundary value problems. The trial 
functions are chosen as sets of orthogonal polynomials and 
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the collocation points are the roots of these polynomials. The solution can be calculated from the collocation points. The 
use of orthogonal polynomials is to reduce the error as the 
polynomial order increases (Gupta 1995; Hangos et al. 2001). 
OCFE is the combination method of dividing the regions into 
a number of elements and by applying orthogonal collocation 
techniques for each element can improve the solution where 
the profile is very steep. In the region, where there is a sharp 
transition, numbers of small elements can be applied while 
the remainder utilizes larger size elements. Selection of the 
elements size is therefore essential. 
 
2.2 Wavelet-based methods 
 
In 1992, Daubechies in her famous text-book, “Ten lectures 
on wavelets” (Daubechies 1992), predicted that a wavelet 
based software package to solve partial differential equations 
will be available in the market. The prediction has not been 
met as today there is no software available except for the 
Wavelet Toolbox in MATLAB®, which cannot be used for 
solving any partial differential equation (PDE).  
 
The earliest wavelet application in chemical engineering was 
Wavelet Galerkin (WG). It was due to the work of Chen et al. 
(1996). Wavelet method with Galerkin scheme was utilised to 
solve the breakage population balance in a batch crystalliser. 
One of the challenges of WG is the expansion coefficients in 
WG was not specified in the physical space, while most of 
the PDEs can be directly solved in the physical space rather 
than converting and transforming its solution back to physical 
space. The second method was Wavelet Optimised Finite 
Difference (WOFD), developed by Jameson (1998). To date, 
this method has not been employed in the chemical 
engineering field. The third method was Wavelet Orthogonal 
Collocation (WOC). Its first application in chemical 
engineering was due to Liu and Cameron (2001). This 
method was successfully applied to solve the population 
balance and steep front concentration profiles in adsorption. 
However, WOC has not been applied for solving the complex 
cases which may involve the non-linearity and full 
dimensional variables. To sum up, the comparison of the 
three methods discussed are given below, which may initiate 
further development of a new wavelet-based numerical 
scheme for solving PDEs. 

Table 1. Comparative components of three wavelet-based 
methods, WG: Wavelet Galerkin, WOFD: Wavelet 
Optimised Finite Difference and WOC: Wavelet Orthogonal 
Collocation 

Comparative components WG WOFD WOC 
Basis calculation Wavelet Physical Physical 
BC treatment Difficult Easy Moderate 
Non-linearity handling Difficult Moderate Moderate 
Adaptive scheme No Yes Yes 
Computation capacity Fixed Fixed Reduced 
 
2.3 Daubechies orthonormal wavelets 
 
Wavelet can be used as a basis function to represent a certain 
function. In the wavelet function, two-basis functions can be 
found, the scaling function and the wavelet function. The 
scaling function coefficient illustrates a local average of the 

function (coarse illustration) and the wavelet function 
coefficient describes detailed information of the function 
(refinements) that cannot be found from the average 
coefficient. Compared to Fourier expansion, wavelet 
approximation gives smaller error and is highly localized at 
discontinuity regions (Nielsen 1998). Compared to the 
traditional trigonometric basis functions which have infinite 
support, wavelets have compact support, therefore wavelets 
are able to approximate a function by the placement of the 
right wavelets at appropriate locations. From Daubechies’s 
work (1988), scaling function (φ ) and wavelet function (ψ ) 

can be described by a set of L (an even integer) coefficients 
(pk : k = 0,1,…, L-1) through the two-scale relationship: 

( ) ( )�
−

=

−=
1

0

2
L

k
k kxpx φφ                      (1) 

and the wavelet function 
 

( ) ( ) ( )�
−=

− −−=
1

2
1 21

Lk
k

k kxpx φψ                            (2)  

The support for the scaling function is in the interval 0 to (L-
1), whilst for the wavelet function is in the interval (1-L/2) to 
(L/2). The coefficients pk are called the wavelet filter 
coefficients.   
 
Denote L2(R) as the space of square integrable functions on 
the real line. Let Vj be the subspace as the L2-closure of the 
linear combination of: 
 

( ) ( )kxx jj
jk −= 22 2φφ                                (3) 

 
for k { }...1,0,1...,−=∈ Z . A function ( )xf jV∈ can be 

represented by the wavelet series: 
 

( ) ( )�
∈

=
Zk

jkjk xfxf φ                       (4) 

 
The multi-resolution properties of wavelets give another 
advantage to represent functions in differential equations 
which can be solved numerically (Motard et al. 1994). 
Detailed information about Daubechies orthonormal wavelets 
can be found in Daubechies  (1988). 
 
2.4 Wavelet Orthogonal Collocation(WOC) 
 
This method was introduced by Betoluzza and Naldi (1996) 
for solving partial differential equations. In 2001, it was 
developed and applied for solving population balance 
problems by Liu and Cameron (2001). The interpolation 
functions are generated by autocorrelation of the compactly 
supported Daubechies scaling functions )(xφ . Then the 

function θ  called autocorrelation function verifies the 
interpolation property due to the orthonormality. 
 

( ) ( ) ( ) 10 == � dxxx φφθ                                    (5) 
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and 

( )� ≠=−= 0,0)()( ndxnxxn φφθ                                      (6) 

The approximate solution of our problem will be a function uj 
in the term of its dyadic points to obtain the wavelet 
expression: 
 

( ) ( ) ( )� −= − nxnuxu jj
jj 22 θ                      (7) 

Detailed information can be found in Liu and Cameron 
(2001) and Bertoluza and Naldi (1996). 
 
 

3. CASE STUDIES 
 
Three case studies of population balances, which have sharp 
transition phenomena in their particle size distribution in the 
batch crystallizer, were tested in this paper. Even though the 
case studies considered here are simple, the analytical 
solutions are available for comparison purposes.  
 
3.1 Case I: Population balance  with nucleation and size-
independent growth 
 
The population balance for nucleation mechanism and size 
independent growth is described by the partial differential 
equation: 

  
 
 
 
 

  (8) 

where ��is the number of particle (population density), � is 
the particle size, � is the growth rate, and 	
 is the nucleation 
rate.  
 
With initial and boundary conditions such as: 

( ) ( ) 0,0;00, == xntn  (9) 
 
The analytical solution for this case is: 
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(10) 

The dimensionless particle size � is defined as follow: 
 
 
Where:  

 

 
3.2 Case II: Population balance with size-independent 
growth only and initially seeded  
 
One dimensional population balance for size dependent 
growth mechanism is described by the partial differential 
equation below: 
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With initial and boundary conditions such as: 

( ) ( ) )6.61)1(100exp(,0;00, 2 ×−−== xxntn  (12) 

 
The analytical solution for the second case is : 

)6.61)1.(100exp(),( 2 ×−−−= tGxxtn  (13) 
 
The dimensionless particle size � is defined as follow: 

 
 
Where:  

 

 
3.3 Case III: Seeded batch crystalliser with nucleation and 
growth 

  
 
 
 
 
 

 
(14a) 

 
 

(14b) 
(14c) 

 
where � is the growth rate, and 	 is the nucleation rate, � 
and �� are the growth and nucleation constant, �� is the 
suspension density, �� is the supersaturation, and superscript 
� and b are the exponential constants for growth and 
nucleation rate respectively. 
 
 
With initial and boundary conditions such as: 

( ) ( )00,0 LLnLn −= δ  
( ) GBtn /0, =  

   
(15) 

 
The supersaturation balance can be written as 

 
 
 

(16) 

 
where ��
 is the mass of seed crystals, ��
is average size of 
seed crystals, �� is the average size of growing crystals, � is 
the amount of solvent used, � is the crystal density, �� is the 
volume shape factor, �� is the total surface area of crystals, 
and �� is the area shape factor. 
 
The particle size � is defined as follow: 

  
 
 

4. RESULTS AND DISCUSSION 
 
All the simulation results presented have been executed on an 
Intel(R) Core(TM) 2 CPU, with 2.00 GHz and 2.00 
Gigabytes of RAM. A MATLAB® version 7.4.0.287 
(R2007a) was used as the computation software to simulate 
the models. The built-in integrator of “ode15s” was utilised 
for integrating set of ordinary differential equations. The 
relative and absolute error of the integrator was specified at 
value of 10-3. 
 
4.1 Case I 
 
The first case describes a simple population balance system 
which presents sharp front size distribution profiles. The PBE 
has a nucleation as function of size and a constant growth rate 
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and the analytical solution was available from (Chang et al. 
1984). Four numerical schemes were applied in this case, 
their performance were tested in order to see the suitability, 
accuracy and stability of tested methods in handling the non-
linearity and the sharp profile characteristic. The orthogonal 
collocation with finite elements (OCFE) scheme with 2 
elements, which comprise of 31 grid points was applied. The 
other two methods were based on finite difference scheme. 
The upwind finite difference (U-FD) of 2 points and the 
biased upwind finite difference (BU-FD) of 5 points were 
employed. Both of them were discretised in space to generate 
129 grid points. Lastly, wavelet orthogonal collocation 
(WOC) was used, and their performance were benchmarked 
with the analytical solution. 
 
The average error (AE) was defined as the square root of sum 
of square error divided by the number of grid points. As it 
was calculated on an individual time basis, AE does not 
depend on the number of equations (grid points). The value 
of AE can illustrate the total absolute error of the grids for a 
certain time. A small value of AE may also illustrate a stable 
solution. While AE is the global error figure, the maximum 
error (ME) could show a local error or an overshoot from the 
reference value. ME was defined as the maximum value of 
the square root of sum of square error at a certain time. 
 

 

Fig. 1. Particle size distribution, case I at 0.6 seconds, 
simulated by four methods and compared with analytical 

solution. 

Figure 1 shows a comparative particle size distribution (PSD) 
at 0.6 s. The particle distribution was initially zero and the 
nucleation start to generate nuclei and at the same, the born 
nuclei grow at a constant rate of 1.0.  OCFE 31 profile 
produced a slightly overestimated particle density than the 
analytical solution. While, all the other numerical schemes, 
including WOC, with the same resolution gave comparable 
results. The simplest two points upwind scheme gave an 
under predicted population at the peak point, while the 
simulation results from biased upwind and wavelet are 
equivalent in term of minimising the error at the peak point. 
From the AE point of view, U-FD was the least while BU-FD 
was the first accurate then followed by WOC. When the 
wavelet level (J) was increased from 7 to 9, the ME values 
were about the same but an increased accuracy was achieved 
by 62%, consequently at the same time the computation time 
(t-CPU) was 440% higher.  
 

 

Fig. 2. Particle size distribution of WOC (J=8) at 0.2, 0.4 and 
0.6 second, the black line: WOC solution and grey line: 

analytical solution. 

In this simulation, all the computation time was short (less 
than 5 seconds) because all the methods have the same 
structure of a matrix form. Matrix to matrix calculation was 
superior than loop calculation (using for loop) for its 
computation time and its adaptability to a more complex 
case. Figure 2 shows the solutions produced by WOC (J=8) 
at various time from t = 0.2, 0.4 and 0.6 seconds. At this 
point, it can be concluded that OCFE methods can be with 
reasonable accuracy level and WOC method can be 
employed as an equivalent alternative solution for handling 
the case of sharp fronts profile caused by non-linear 
nucleation function. A question that arose is whether these 
methods are able to track a very sharp profile as shown in the 
next case. 
 

Table 2. Numerical performance results for case I, N: grid 
points, AE: average error, ME: maximum error, t-CPU: 

computation time 

Case I @ 0.6 s N AE ME t-CPU 

OCFE (2) 31 0.4383 0.7861 < 1s 
U-FD (2) 129 0.0082 0.0391 < 1s 

BU-FD (5) 129 0.0031 0.0120 < 1s 
WOC (J=7) 129 0.0064 0.0243 < 1s 
WOC (J=8) 257 0.0033 0.0242 1.4 s 
WOC (J=9) 513 0.0024 0.0239 4.4 s 

 
 
4.2  Case II 
 
In a seeded batch crystalliser, where the nucleation can be 
minimised, particle size distribution will be controlled only 
by the initial condition of seeding and a crystal growth. In 
this case, the crystal growth was assumed again constant, and 
the seed condition was artificially made to present a very 
sharp front of particle size distribution. The previous study 
done by Utomo, et al. (2006) reported that OCFE method 
cannot be applied as the unstable solutions were obtained. 
Moreover, the upwind finite difference scheme gave delayed 
solutions. Therefore, only WOC method as an equivalent 
method was tested in this case. The effect of wavelet 
resolution (J) and vanishing moments (M) were observed to 
closely study its performance. 
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Fig. 3. Particle size distribution of WOC at t = 1s, using 

various J =5,6,7. 

 
Figure 3 shows the WOC solutions with various wavelet 
resolution (J=5, 6, and 7) as compared to the exact analytical 
solution. It is clear that except for J=5, WOC presented a 
good validation result with high accuracy. WOC for J=5, 
however, not only gave a high ME but also oscillation and a 
negative value problem. The final solution of J=5 was stable, 
but early oscillation recorded the highest average error in the 
solution. The same problem was mentioned by (Muhr et al. 
1996), can be easily rectified by decreasing the spacing or 
utilising adaptive gridding. 
 

 
Fig. 4. The error analysis at t = 1s for various J, where AE: 

average error and ME: maximum error. 

 
The convergence issue is important for numerical simulation. 
The WOC method for the tested resolution could easily give 
good convergence at a resolution as low as 6. Both AE and 
ME could be used for error analysis to show the convergence 
at a certain time. As shown in Figure 4, the convergence was 
actually reached as the J was increased from 6 to 7 and 
further increased in resolution would not give any 
improvement in the accuracy. The effect of vanishing 
moments (M) could only be observed, when the lowest 
resolution was applied. M = 0 and 1 were the most optimal 
values in giving the lowest level of error. At this stage, it can 
be summarised that WOC could have been also employed as 
an alternative for a very sharp front’s profile. The selection of 
resolution is more sensitive to the computational performance 
rather than the sequential choice of vanishing moments. 
Selection of M becomes sensitive only when the symptom of 
instability was observed. To demonstrate WOC capabilities 

as an alternative method, the more complex population 
balance in a batch crystalliser case study was performed in 
the next section. 

 

Table 3. Numerical performance results for case II; M: 
vanishing moments, N: grid points, AE: average error, ME: 

maximum error, t-CPU: computation time 

Case II @ 
1.0 s 

M N AE ME t-CPU 

WOC (J=5) 

0 

33 

0.0369 0.0933 

< 1.0 s 
1 0.0368 0.0933 
2 0.0406 0.0931 
3 0.0414 0.1058 

WOC (J=6) 0-3 65 0.0038 0.0155 < 1.0 s 
WOC (J=7) 0-3 129 0.0028 0.0125 < 1.0 s 
WOC (J=8) 0-3 257 0.0027 0.0124 1.3 s 

 
4.3 Case III 
 
The last case presents a seeded batch crystalliser with 
capacity of 25.5 kg solvent, running in an isothermal 
condition for batch time of 6000 seconds. The nucleation and 
growth kinetics are described in (14b) and (14c). The initial 
condition was the seed condition at the average size of 500 
�m and the boundary condition is outlined in (15). To solve 
the system, a population balance equation (14a) coupled with 
the mass (supersaturation) balance for the solute and solid 
phase as in (16), thus the dynamic of crystal size distribution 
(CSD) can be computed. All the parameters used in this case 
were adopted from (Tavare et al. 1986).  
 
For illustrative purposes, Figure 5, shows the profile of 
supersaturation and crystal growth rate during 6000 seconds 
batch operation. The initial condition of 0.015 kg/kg solvent 
would give a corresponding crystal growth of 1.68 � 10-10 
m/s. The WOC method with J = 7 and M = 1 was employed 
and a reasonable result was obtained in Figure 6 as the 
experimental results was not available. 
 
 

 
Fig. 5. Supersaturation (left) and crystal growth rate (right) 

profiles for case III up to 6000 seconds. 
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Fig. 6. Dynamic crystal size distribution for case III, for 400-

1000 �m in size and 0-6000 seconds. 

 

5. CONCLUSIONS 

In this paper, three case studies which present a very sharp 
size distribution profile have demonstrated the potential of 
wavelet-based numerical scheme as an alternative in 
providing accurate, fast and robust solutions. Further research 
on a new wavelet numerical scheme and wavelet application 
in chemical engineering field is essentially required and 
promising. From the computational efficiency result shown, 
with the WOC algorithm, the model is suitable to be 
employed in online control system, however, from control 
engineers’ perspective, low-order models are needed. 
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Abstract: This paper investigates the formulation of nonlinear model-predictive control
problems with economic objectives on an infinite horizon.
The proposed formulation guarantees nominal stability for closed-loop operation. Furthermore,
a novel solution method of the infinite horizon method through a transformation of the
independent time variable is employed. The closed-loop optimization with infinite horizon
is compared to a finite-horizon formulation. A small case study is presented for illustration
purposes.
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1. INTRODUCTION

The interest in economic Dynamic Real-Time Opti-
mization (DRTO) or Nonlinear-Model Predictive Control
(NMPC) with economic objectives has increased (Backx
et al. (2000), Helbig et al. (2000), Engell (2007), Rawlings
and Amrit (2008), Zavala (2008)), as the development
of efficient methods for solving these types of optimiza-
tion problems has significantly progressed in recent years.
Compared to the traditional formulation of NMPC prob-
lems with quadratic cost criteria minimizing the deviation
from a fixed steady-state set-point, the economic dynamic
optimization problem exploits all the dynamic degrees of
freedom available to maximize the profit of the plant on a
given time horizon. Furthermore, the profit is maximized
at a sampling rate of high frequency, whereas the tradi-
tional steady-state optimization is performed at a slow
rate and only when the process is in a steady-state. Thus,
disturbances with a favorable impact on the profit can also
be exploited efficiently instead of compensating them by
minimizing a steady-state offset.
However, theoretical studies of DRTO and NMPC prob-
lems with economic objectives are still lacking. Huesman
et al. (2008) have pointed out that certain formulations
with linear economic objective functions lead to multiple
solutions. They concluded that some degrees of freedom
are left for optimization. These degrees of freedom can be
exploited by introducing a second optimization problem to
improve the operability.
Rawlings and Amrit (2008) have shown that in order
to optimize process economics it is sometimes advanta-

geous not to reach the steady-state quickly. Secondly,
they pointed out that the formulation with an economic
objective results in characteristic trajectories behaving like
a turnpike. The trajectory is attracted to a constant path
and finally moves away from the constant path at the end
of the horizon. The turnpike is a characteristic property
of the economic optimization problem with finite-horizon,
which has been introduced and studied in the economics
literature before (Carlson et al., 1991).
In the economics literature an infinite horizon formula-
tion is often employed. Infinite horizons have also been
considered in the MPC literature as stabilizing although
impractical for online application. A review of methods
providing stability but circumventing infinite horizons by
adding a terminal constraint, a terminal cost function,
or by employing a terminal constraint set with a local
stabilizing controller have been reviewed by Mayne et al.
(2000).

An infinite-horizon formulation for (nonlinear) economic
dynamic optimization on a receding horizon is explored
in this paper. There are several advantages related to an
infinite horizon formulation:

(1) The somewhat arbitrary choice of the final time of
the optimization horizon is avoided. A natural for-
mulation of the optimization problem is achieved for
continuous processes if the final time is not specified.

(2) The infinite-time horizon formulation leads to closed-
loop operation with guaranteed stability. This prop-
erty was also exploited in the literature of linear
MPC, where the infinite-horizon formulation can
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be transformed into a finite horizon formulation by
adding a terminal term to the cost functional (Muske
and Rawlings, 1993).

In the following, the formulation of the economic opti-
mization problem will be investigated and a comparison
between finite and infinite horizon problems will be carried
out. A new approach is presented for solving the infinite-
horizon problem numerically. We use a transformation of
the infinite-time onto a finite-time horizon and combine
this transformation with an adaptive discretization. As
already noted in the literature investigating stability in
MPC, very long horizons provide stable control but lead
to high computational costs. Many solution methods em-
ployed in MPC use a discretization of the control variables
with a uniform spacing of grid points. An alternative adap-
tive discretization (Schlegel et al., 2005) introduces grid
points mainly within the transient parts of the profile and
reduces the computational load. Note that this method
can also be applied to solve the infinite-horizon problem
in the MPC regulator case to track a given set-point.

2. ECONOMIC DRTO PROBLEM

2.1 Finite-Horizon Formulation

The moving horizon formulation of the DRTO problem
is similar to the formulation used in nonlinear model-
predictive control, although an economic objective is cho-
sen to provide an economically optimal operation at all
times (Helbig et al., 2000). The moving horizon problem
is defined as follows:

min
uj(t)

Φ(x,u, t0, tf ) (1)

s.t. ẋ(t) = f(x(t),uj(t)) , (2)
y(t) = g(x(t),uj(t)) , (3)
x(tj) = x̂j , (4)
0 ≥ h(x(t),y(t),uj(t)) , (5)

0 ≥ e(x(tjf )) , (6)

t ∈ [tj , tjf ] , (7)

tj := tj−1 + Δt , (8)
j = 0, 1, ...J . (9)

x(t) ∈ Rnx are state variables with initial conditions x̂j ;
y(t) ∈ Rny are algebraic output variables. The dynamic
process model (2) is given by f(·). The time-dependent
control variables u(t) ∈ Rnu are degrees of freedom for
the optimization problem. The optimization problem is
solved on the time horizon [tj , tjf ] at each sampling instant
tj ; the control is implemented on the current sampling
interval (assuming negligible computational time), and
the optimization horizon is then shifted by the sampling
interval Δt. Equations (5) and (6) describe the path
constraints h(·) on the input and state variables and the
endpoint constraints e(·) on the state variables. Process
operation is determined by economic decision criteria,
which enter into the definition of the objective function
Φ(·). Exemplarily the profit function can be defined as

0 200 400 600 800 1000
4

5

6

7

8

9

10

Time (s)

In
le

t F
lo

w
ra

te
 o

f B
 (m

3  s
−1

)

(a) Final time of 1000s

0 2000 4000 6000 8000 10000
4

5

6

7

8

9

10

Time(s)

In
le

t f
lo

w
ra

te
 f 

B
 (m

3  s
−1

)

(b) Final time of 10000s

Fig. 1. Finite horizon

Φ = −
∫ T

0

(cprodṅprod − creacṅreac − q̇)dt, (10)

where cprod and creac are the costs of the products and
reactants, and ṅprod and ṅreac are the flowrates of the
products and reactants. The term q̇ includes utility costs,
depreciation, and other expenses.

If we choose a finite horizon in a dynamic optimization
problem with economic objective, we often observe a so-
called turnpike effect when looking at the solution profile
(Rawlings and Amrit (2008), Carlson et al. (1991)). The
turnpike effect means that the trajectory spends most time
at a balanced equilibrium path, which is independent of
the initial condition and the final time. Under certain
conditions, this turnpike reduces to a singleton. In that
case, the characteristic behavior is that the trajectory is
attracted by a stationary path, at a certain time tm and
stays on this constant path, until it reaches a point tn close
to the end of the horizon and moves away from the path
at the end of the horizon. This gives rise to trajectories
as shown in Figure 1. The trajectories represent the inlet
flowrate of the reactant of the CSTR presented in Section
5; they were computed for different final times. In these
figures the solution path strongly depends on the choice of
the final time. In the first figure, the final time is not long
enough to let the process reach the turnpike. However, if a
long horizon is chosen, the process gets on a constant path
k̄ (Carlson et al., 1991). The optimal steady-state path
represents an attractor for the finite horizon path.

In practice, often a long horizon length is chosen to
achieve closed-loop stability (Mayne et al., 2000). For
stable plants, the final time T is often chosen to be large
compared to the settling time of the plant. The somewhat
arbitrary choice of the final time suggests that more
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research is required to reconsider the current formulations
and to look for adequate formulations of economic dynamic
optimization problems providing stability in closed loop.

2.2 Infinite Horizon Formulation

For a given optimal trajectory, according to Bellmann’s
optimality principle, the trajectory starting from any point
on the optimal trajectory is optimal for the corresponding
problem initiated at that point on the trajectory. This
implies that the formulation of the optimization problem
on an infinite horizon is providing stability in closed loop.

If the profit function is optimized on a long or an infinite
horizon, the time value of money should be accounted for.
This is accomplished through the parameter ρ discounting
the future profit to the present value. If we deal with
discrete payment periods, discounting the future amounts
to today’s value can be included in the calculation of the
net present value. The objective function maximizing the
net present value of cash flows Ck in N discrete time
periods and with discounting rate ρ is formulated as

Φ =
N∑

k=0

Ck

1 + ρk
, (11)

where k is the index of the time period. In this work we
investigate an objective function with continuous discount-
ing on an infinite horizon:

Φ = −
∫ ∞

0

e−ρt(cprodṅprod − creacṅreac − q̇)dt. (12)

The exponential formulation is usually employed for opti-
mal control problems in continuous time and is equivalent
to the discrete-time formulation in equation (11). Both
formulations use, however, the same discount factor ρ,
which can be chosen as the annual market interest rate.

Note that researchers in macroeconomics have included
infinite horizons in their problem formulations very early
to model e.g. economic growth (Barro and Sala-i-Martin,
1995). This is due to the fact that there is no natural finite
time in these types of problems and the consequences of
investment are very long-lived. Since this theory is not
well-known in the systems and control community, an
example of an economic growth model by Cass (1966) is
shown here for illustration of the economic growth problem
formulation:

y(t) = f(k(t)) (13)
c(t) = y(t)− z(t) (14)

k̇(t) = z(t)− μk(t) (15)
k(0) = k0 (16)

k(t) is the stock of capital accumulated at time t. The
production function f(·) associates an output y with the
capital stock k. The output y(t) can be either consumed
at a rate c(t) or invested at a rate z(t). The capital stock
depreciates at a constant rate μ. Cass (1966) considered
the welfare functional

W =
∫ T

0

e−ρtU(c(t))dt, (17)

where U(c) is the concave utility function depending on
the level of consumption c(t). The maximization of W is
the standard optimal control problem and the final time T

is often assumed to be infinite in economic growth theory.
If the discount factor ρ is strictly positive, the objective
function on an infinite horizon is bounded. However, if the
discount factor is zero, the objective function becomes un-
bounded. Methods for reducing the unbounded objective
on an infinite horizon to finite rewards have been presented
by Carlson et al. (1991). We consider in this paper the case
where the discount factor is positive, as it seems to be a
reasonable assumption to include the time value of money
on a long or infinite-time horizon. The discount factor is
chosen in the range of the interest rate of the market.
Very few numerical solution methods exist in the liter-
ature of mathematical economics to solve the infinite-
time horizon problem. Often, the indirect methods of op-
timal control are used to derive the First-Order Necessary
Conditions of Optimality and a two-point boundary-value
problem has to be solved. In the following, we will apply a
numerical solution method with adaptive grid refinement
to solve nonlinear infinite-horizon problems.

3. INFINITE HORIZON SOLUTION APPROACH

Solving the infinite-horizon problem is not straightforward
and several attempts approximating the infinite horizon
with finite horizons or reformulating the infinite-time
problem exist in the literature.

3.1 Time Transformation

A common approach replaces the infinite-time horizon by a
finite-time horizon, thereby introducing a truncation error.
A second possibility is to use a variable transformation to
transform the infinite-horizon into a finite-horizon prob-
lem. We choose the second approach in this work, since it
does not introduce truncation errors and allows to obtain
a solution of higher accuracy of the optimization solution
on the infinite horizon.
The infinite horizon with t ∈ [0,∞) can be transformed
into a finite horizon with τ ∈ [0, 1] using the variable
transformation

τ = t/(1 + t) (18)
of the independent variable t. A similar variable trans-
formation was presented by Kunkel and Hagen (2000)
to obtain solutions of the infinite-horizon optimal control
problem. The variable transformation of eq. (2) yields the
transformed system:

dx

dτ
=

f(x(τ),u(τ))
(1− τ)2 . (19)

We can see that a singularity is introduced at τ = 1, which
corresponds to t = ∞.
In order to study the singularity at τ = 1, we will restrict
the analysis to the scalar system

dx

dτ
=
f(x(τ))
(1− τ)2 . (20)

The eigenvalue problem corresponding to eq. (19) is
dx

dτ
=

λx

(1− τ)2 . (21)

The general solution of this differential equation is

x(τ) = ce
λ

1−τ . (22)
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If we assume that the system is within the region of
attraction of a stable steady-state, we obtain the limit

lim
τ→1
ce

λ
1−τ = 0, (23)

if λ < 0 and the system will reach steady-state as τ → 1.

However, if λ > 0, the system is unstable, and

lim
τ→1
ce

λ
1−τ = ∞. (24)

In that case we have to handle the singularity at τ = 1
by imposing a boundary condition at final time. The
steady-state solution can be imposed as terminal boundary
condition. If we are dealing with an unstable system,
a numerical solution approach different from the single-
shooting method presented in the following section must
be employed. The boundary value problem problem could
be solved using multiple-shooting or orthogonal colloca-
tion methods. In order to generalize the analysis of the
singularity above, an extension to the multivariable case
should be performed including an analysis of the stable
and unstable modes of the system.

3.2 Adaptive Discretization

The continuous control variables in optimization problem
(1) are discretized after the time transformation with eq.
(18) using piecewise-constant or piece-wise linear approx-
imations. The discretization and the formulation of the
NLP for the piecewise constant approximation reads as

ui(τk) = cui,k
, k = 1, ..., N, i = 1, ..., nu, (25)

where N is the number of discretization intervals and nu

the number of control variables. Choosing the discretized
controls zi := [cui,k

], as the nz optimization variables, the
dynamic optimization problem can be transcribed into the
NLP

min
z
f(z) := Φ(z) (26)

s.t. g(z) ≥ 0. (27)
The nonlinear program can be solved by employing a
standard SQP algorithm. Since the optimization algorithm
requires repetitive function evaluations and gradients, the
objective function Φ, constraints g(·) and their gradients
are evaluated by a simultaneous integration of the process
model and the sensitivity equation system.
The optimization problem is solved using the dynamic op-
timization software DyOS (2002), which adopts an adap-
tive control vector parameterization (Schlegel et al., 2005).
The adaptation is done using a refinement method based
on a wavelet analysis of the control profile. If the hori-
zon of the optimization problem is infinite or has a long
finite time, an adaptive discretization is essential to deal
with the computational load associated with these long
or infinite horizons. The adaptive discretization allows to
introduce the grid points selectively in transient regions
of the control profile, and therefore avoids overloading the
optimization problem with many optimization parameters.
Furthermore, a highly accurate solution profile can be
obtained.

3.3 Closed-loop Implementation

The solution approach outlined in the previous section
is implemented in an algorithm for closed-loop dynamic

optimization. The optimization is performed on the trans-
formed timehorizon [0, 1], and the results are converted
back to the original timehorizon.

for j = 1, N (number of sample intervals) do

(1) Solve the optimization problem (26), where the con-
trol variables uj(τ) have been discretized on [0, 1], to
obtain the solution zj .

(2) Transform the control variables uj(τ), τ ∈ [0, 1]
back to the original representation uj(t), t ∈ [0,∞).

(3) Implement the control variables uj(t) for one sam-
pling interval [tj , tj+1]. Get measurements and com-
pute state estimates.

(4) Horizon shift: Reduce the time horizon by one
sampling interval and use the shifted solution as
initial guess for the next optimization problem.

(5) Transform the shifted variables uj(t) to the finite
horizon representation uj(τ), τ ∈ [0, 1] using eq. (18).

end for

4. INFINITE-HORIZON NMPC

Apart from the economic dynamic optimization problem,
the presented solution method for infinite-horizon formu-
lations can also be used for the NMPC regulator problem,
if we deal with a pure tracking problem. In that case the
economic objective function is replaced by the quadratic
objective function

Φ =
∫ ∞

0

(ΔuT QΔu + (yset − y)T W (yset − y))dt, (28)

minimizing the deviation from fixed set-points yset and
the control moves Δu. As a finite horizon is traditionally
used in NMPC, some methods guarantee closed-loop sta-
bility by introducing e.g. a terminal constraint. However,
introducing a terminal constraint can lead to feasibil-
ity problems. By employing the infinite-horizon solution
method, the disadvantages of the finite-horizon methods
to guarantee closed-loop stability can be avoided.

5. CASE STUDY

The approach is applied to the benchmark case of the
Williams-Otto continuous stirred tank reactor, as intro-
duced by Forbes (1994). The reactions taking place in the
reactor are

A+B k1−→ C, C +B k2−→ P + E, P + C
k3−→ G.

Reactant A is already present in the reactor, whereas
reactant B is fed continuously to the reactor. During the
exothermic reactions the desired products P and E as well
as the side-product G are formed. At the end of the batch,
the conversion to the main products P and E should be
maximized. During the batch, constraints on the inlet flow
rate of reactant B (FBin

) and the reactor temperature
(Tr) must be fulfilled. The manipulated control variables
of this process are FBin

and Tr. The CSTR is assumed
to be well-mixed and the dynamics of the cooling system
are neglected. The reactor system is open-loop stable and
therefore the singularity issues at τ = 1 do not arise in
this case study.
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Fig. 2. Infinite horizon results

5.1 Economic DRTO Problem

The economic objective is to maximize the profit, which
consists of the revenue obtained from the products minus
the costs of the reactants over the infinite time horizon.
Furthermore, an annual discount rate of 5% is chosen to
account for the time value of money. The optimization
problem is formulated as follows:

max
FBin

(t),Tr(t)
Φ =

∫ ∞

0

e−ρt(cpṅp + ceṅe − caṅa − cbṅb)dt

(29)
s.t. process model, and

0
kg
sec

≤ FBin
(t) ≤ 5.784

kg
sec
, (30)

0 ℃ ≤ Tr(t) ≤ 150 ℃. (31)

5.2 Closed-Loop Results

The economic performance of the operation of the CSTR is
optimized for both infinite and finite horizon formulations
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Fig. 3. Finite horizon results

on a receding horizon. The results for the infinite-horizon
case are shown in Figure 2. The open-loop optimization
problem is solved using the time transformation for τ
∈ [0, 1] and the results are simulated on a long horizon
in the original time variable. The closed-loop results are
obtained using the algorithm with adaptive grid refine-
ment as sketched in Section 3.3. Figure 2 shows that
the nominal trajectories in open-loop and closed-loop are
almost identical except minor deviations due to the online
adaptation scheme. This result confirms that the solution
of the optimal problem on an infinite horizon in closed-loop
is providing a nominally stable control with an economic
objective. Furthermore, the computational effort has been
low as only few degrees of freedom are required in the
adaptive grid refinement approach. It is interesting to
observe that the control variables reach their steady-state
values very fast, but the state variables require more time
to reach the steady-state values.
The results for the finite-horizon formulation with a final
time of 4000 s are shown in Figure 3. In this case, the
open-loop trajectory shows the turnpike behavior. Since
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only the first control interval is implemented in closed-
loop, the end of the trajectory in open-loop is actually
never implemented. This leads to a discrepancy between
the open-loop and the closed-loop behavior, as Bellmann’s
optimality principle is not fulfilled. Nevertheless, the fig-
ures show that the system reaches the steady-state quite
fast.
Comparing the closed-loop results obtained with the
infinite- and the finite-time horizon formulation, the fig-
ures show that the transient part of the trajectories at the
beginning is quite different, but that the steady-states ob-
tained after a certain time are identical. The temperature
profile is different in the infinite-horizon (Figure 2.b) and
the finite-horizon cases (3.b), as the temperature increases
from 65 ◦C to 90 ◦C in (2.b) and the temperature decreases
from 102 ◦C to 91 ◦C in (3.b). It was observed that this
difference only occurs for relatively short horizons. If the
final time chosen for the finite-horizon case increases,
the trajectory of the finite-horizon case approximates the
infinite-horizon case more closely. As expected, the longer
the horizon becomes, the closer the solution of the finite-
horizon problem will be to the infinite-time solution. This
is due to the fact that the transient parts of the trajectories
have less impact on the profit function for increasing length
of the time horizon. As the same steady-state is reached
by both finite- and infinite-time horizon formulations, the
same profit is also obtained at steady-state.
These results show that also the finite-horizon formulation
with economic objective can provide closed-loop stability,
as the system gets on the turnpike (which corresponds to
a stationary path in this case) and stays there for most
of the time. Hence, by choosing a long time horizon it is
possible to achieve closed-loop nominal stability, because
the trajectory is attracted to the stationary path. However,
as shown in Figure (1.a), if the finite time horizon is not
long enough the resulting trajectories will not reach the
optimal stationary path.

6. CONCLUDING REMARKS

The closed-loop solution of nonlinear DRTO or NMPC
problems was studied. Nominal stability in closed-loop
economic optimization is achieved via an infinite-horizon
formulation. The comparison of the infinite- to the finite-
horizon formulation shows that the formulation of DRTO
problems on finite horizons can also provide closed-loop
stability, if the optimization time horizon is chosen long
enough such that the trajectory is attracted to a constant
path.
Secondly, a new numerical approach was introduced for
solving infinite-horizon problems addressed in NMPC and
DRTO. The method achieves high computational accu-
racy because the infinite horizon is transformed into a
finite horizon through a simple variable transformation.
The advantage is that the truncation error occurring by
choosing an arbitrary final time is avoided. Furthermore,
the computational load is still low because of adaptive grid
refinement resulting in low number of degrees of freedom
for optimization.
In the future, it is of interest to further investigate
the properties of the finite-horizon economic optimization
problem required to achieve closed-loop stability. On the
other hand, the infinite-horizon formulation with adap-
tive grid refinement is a promising approach to guarantee

closed-loop stability. The solution method for infinite-
horizon problems will be further developed and extended
to open-loop unstable systems.
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Abstract: In this paper we develop a robust constrained predictive controller for linear systems.
The controller is equipped with soft output constraints that are used in a novel way to have
robustness against model plant mismatch. By simulation we compare the performance of the
new robust constrained predictive controller to a nominal predictive controller. In the nominal
case, the performance of the robust predictive controller is comparable to the performance of
the nominal predictive controller. In the case of plant model mismatch, the robust predictive
controller performs significantly better than the nominal predictive controller.

Keywords: Linear Model Predictive Control, Robust Predictive Control, Soft Constraints

1. INTRODUCTION

Model predictive control has become a standard technol-
ogy in high level control of chemical processes. However,
little advice is available regarding tuning methodologies
of such controllers in the face of the inevitable plant
model mismatch. The closed-loop performance of nominal
linear model predictive control can be quite poor when
the models are uncertain. Consequently, some years after
commissioning, many high-level control systems are turned
off due to bad closed-loop performance. This is often due
to changes in the plant dynamics caused by wear and tear
combined with lack of the necessary human resources at
the plant to re-tune and maintain the MPC. Model pre-
dictive controllers with robust performance against model-
plant mismatch is therefore crucial in long-term main-
tenance and success of MPC system. Using soft output
constraints in a novel way, we demonstrate by simulation
that the poor performance of predictive control in the case
of plant model mismatch can be improved significantly.
Therefore, we suggest use of the soft constraints to tune
and improve the performance of linear model predictive
control.

Specifically, we investigate the effect of uncertain models
on the performance of a regularized l2 model predictive
controller with input constraints, input-rate constraints
and soft output constraints (Maciejowski, 2002; Goodwin
et al., 2005; Qin and Badgwell, 2003). Previously, the
soft output constraints have been used to replace hard
output constraint and guarantee feasibility (Scokaert and
Rawlings, 1999). We use the soft output constraints to
create a dead zone around the set point and demonstrate
by simulation that the performance of such an MPC
does not degrade much in the nominal case but improves
1 Corresponding author.

significantly in the case of plant model mismatch. This
technique is similar but not identical to the funnels used
by Honeywell in RMPC (Qin and Badgwell, 2003; Havlena
and Lu, 2005; Havlena and Findejs, 2005). Compared to
classical process control, our use of the soft constraints
has some similarities to PID control with dead zones
(Shinskey, 1988).

We use a finite impulse response (FIR) model for pre-
diction of the process outputs. In contrast to state space
parameterizations, the FIR model is in a form that can
easily be applied in robust predictive control, i.e. predictive
control based on robust linear programming or second-
order cone programming (Hansson, 2000; Vandenberghe
et al., 2002; Boyd and Vandenberghe, 2004). To facilitate
comparative performance studies of l2 and robust MPC,
a FIR based l2-MPC benchmark has been established
(Prasath and Jørgensen, 2008). The soft output constraint
included in the MPC acts as a dead zone to the controller
to reduce its sensitivity to noise and uncertainty when
the process output is close to its target. This use of soft
constraints for robustness is new, simple, and gives good
performance. Bemporad and Morari (1999) provide an ex-
cellent survey of methodologies for robust model predictive
control.

This paper is organized as follows. We derive the predictive
controller consisting of a regulator and an estimator with
soft output constraints in Section 2. Section 3 illustrates by
simulation the performance of MPC with and without soft
constraints for both deterministic and stochastic processes.
Conclusions are given in Section 4.

2. FIR MODEL BASED MPC

Model predictive control systems consist of an estimator
and a regulator as illustrated in Figure 1. The inputs to
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the MPC are the target values, r, for the process outputs,
z, and the measured process outputs, y. The output from
the MPC is the manipulated variables, u.

2.1 Plant and Sensors

The plant is assumed to be a linear state space system
xk+1 = Axk +Buk +Bddk +Gwk (1a)

zk = Cxk (1b)
with x being the states, u being the manipulated variables
(MVs), d being unmeasured disturbances, and w being
stochastic process noise. z denotes the controlled variables
(CVs). The measured outputs, y, are the controlled out-
puts, z, corrupted by measurement noise, v. Consequently

yk = zk + vk (1c)
The initial state, the process noise, and the measurement
noise are assumed to be normally distributed stochastic
vectors

x0 ∼ N(x̄0, P0) (2a)
wk ∼ Niid(0, Q) (2b)
vk ∼ Niid(0, R) (2c)

The measured output, y, is the signal available for feedback
and used by the estimator. u is the signal generated by the
control system and implemented on the plant.

2.2 Regulator

Stable processes can be represented by the finite impulse
response (FIR) model

zk = bk +
n∑

i=1

Hiuk−i (3)

in which {Hi}n
i=1 are the impulse response coefficients

(Markov parameters). bk is a bias term generated by
the estimator. bk accounts for discrepancies between the
predicted output and the actual output. In this paper, the
output predictions used by the regulator are based on the
FIR model (3). Consequently, using the FIR model (3),
the regularized l2 output tracking problem with input and
soft output constraints may be formulated as

min
{z,u,η}

φ =
1
2

N−1∑
k=0

‖zk+1 − rk+1‖2
Qz

+ ‖Δuk‖2Su

+
N∑

k=1

1
2
‖ηk‖2

Sη
+ s′ηk

ηk (4a)

MPC

z

y

ur

b̂

Regulator

Estimator

Plant

Sensors,
Lab analysis

Fig. 1. Generic model predictive control system.

subject to the constraints

zk = bk +
n∑

i=1

Hiuk−i k = 1, . . . , N (4b)

umin ≤ uk ≤ umax k = 0, . . . , N − 1 (4c)
Δumin ≤ Δuk ≤ Δumax k = 0, . . . , N − 1 (4d)
zk ≤ zmax,k + ηk k = 1, . . . , N (4e)
zk ≥ zmin,k − ηk k = 1, . . . , N (4f)
ηk ≥ 0 k = 1, . . . , N (4g)

in which Δuk = uk − uk−1. In this formulation, the
control and the prediction horizon are identical. If desired,
a prediction horizon longer than the control horizon could
be included in the formulation. However, we prefer instead
to select the control horizon sufficiently long such that any
boundary effects at the end of the horizon has no influence
on the solution in the beginning of the horizon. (4) can
be converted to a constrained linear-quadratic optimal
control problem. Efficient algorithms exists for the solution
of such problems with long prediction horizons, N . In this
paper we adopt another approach and formulate a dense
quadratic program in standard form that is equivalent with
(4).

Define the vectors Z, R, U and η as

Z =

⎡⎢⎢⎣
z1
z2
...
zN

⎤⎥⎥⎦ R =

⎡⎢⎢⎣
r1
r2
...
rN

⎤⎥⎥⎦ U =

⎡⎢⎢⎣
u0
u1
...

uN−1

⎤⎥⎥⎦ η =

⎡⎢⎢⎣
η1
η2
...
ηN

⎤⎥⎥⎦ (5)

Then the predictions by the impulse response model (4)
may be expressed as

Z = c+ ΓU (6)
For the case N = 6 and n = 3, Γ is assembled as

Γ =

⎡⎢⎢⎢⎢⎢⎣
H1 0 0 0 0 0
H2 H1 0 0 0 0
H3 H2 H1 0 0 0
0 H3 H2 H1 0 0
0 0 H3 H2 H1 0
0 0 0 H3 H2 H1

⎤⎥⎥⎥⎥⎥⎦
and c is

c =

⎡⎢⎢⎢⎢⎢⎣
c1
c2
c3
c4
c5
c6

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
b1 + (H2u−1 +H3u−2)

b2 + (H3u−1)
b3
b4
b5
b6

⎤⎥⎥⎥⎥⎥⎦
Similarly, for the case N = 6, define the matrices Λ and
I0 by

Λ =

⎡⎢⎢⎢⎢⎢⎣
I 0 0 0 0 0
−I I 0 0 0 0
0 −I I 0 0 0
0 0 −I I 0 0
0 0 0 −I I 0
0 0 0 0 −I I

⎤⎥⎥⎥⎥⎥⎦ I0 =

⎡⎢⎢⎢⎢⎢⎣
I
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎦
Define sη =

[
s′η1
s′η2
. . . s′ηN

]′ and

Qz =

⎡⎢⎢⎣
Qz

Qz

. . .
Qz

⎤⎥⎥⎦Si =

⎡⎢⎢⎣
Si

Si

. . .
Si

⎤⎥⎥⎦
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with i = {u, η}. Then the objective function (4) may be
expressed as

φ =
1
2

N−1∑
k=0

‖zk+1 − rk+1‖2
Qz

+ ‖Δuk‖2Su

+
1
2
‖ηk+1‖2

Sη
+ s′ηk+1

ηk+1

=
1
2
‖Z −R‖2Qz

+
1
2
‖ΛU − I0u−1‖2Su

+
1
2
‖η‖2

Sη
+ s′ηη

=
1
2
‖c+ ΓU − R‖2Qz

+
1
2
‖ΛU − I0u−1‖2

Su

+
1
2
‖η‖2

Sη
+ s′ηη

=
1
2
U ′ (Γ′QzΓ + Λ′SuΛ)U

+ (Γ′Qz(c−R)− Λ′SuI0u−1)
′
U

+
(

1
2
‖c−R‖2

Qz
+

1
2
‖I0u−1‖2

Su

)
+

1
2
η′Sηη + s′ηη

=
1
2
U ′HU + g′U + ρ+

1
2
η′Sηη + s′ηη

=
1
2
x′H̄x+ ḡ′x+ ρ

(7)

with
H = Γ′QzΓ + Λ′SuΛ (8a)
g = Γ′Qz(c−R)− Λ′SuI0u−1 (8b)

ρ =
1
2
‖c−R‖2

Qz
+

1
2
‖u−1‖2

Su
(8c)

x =
[
U
η

]
H̄ =

[
H 0
0 Sη

]
ḡ =

[
g
sη

]
(8d)

Consequently, we may solve the FIR based MPC regulator
problem (4) by solution of the following convex quadratic
program

min
x

ψ =
1
2
x′H̄x+ ḡ′x (9a)

s.t. xmin ≤ x ≤ xmax (9b)
bl ≤ Āx ≤ bu (9c)

in which

xmin =
[
Umin

0

]
xmax =

[
Umax

∞
]

(10a)

bl =

[ ΔUmin

−∞
Zmin − c

]
A =

[Λ 0
Γ −I
Γ I

]
bu =

[ ΔUmax

Zmax − c
∞

]
(10b)

In a model predictive controller only the first vector,
u∗0, of U∗ =

[
(u∗0)

′ (u∗1)
′ . . . (u∗N−1)

′]′, is implemented
on the process. At the next sample time the open-loop
optimization is repeated with new information due to a
new measurement.

2.3 Soft Constraint Principle

Figure 2 illustrates the stage cost function for l2 model
predictive control (nominal MPC) and l2 model predictive
control with a dead zone (soft MPC). The stage cost
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Fig. 2. The set point deviation penalty function for nomi-
nal MPC and soft MPC.

function, or penalty function, is plotted as function of
the set-point error, e = z − r. The penalty function of
the nominal MPC is a quadratic function. The penalty
function of the soft MPC is constructed such that it is
zero or almost zero within the dead-zone between the soft
limits and growths quadratically when the set-point error
exceeds the soft limits. The small penalty within the soft
limits ensures that the controller produces a steady state
offset free response. By having the penalty small within
the soft constraints, the controller does not react much
to small errors. In this way we avoid that the controller
introduces significant real disturbances to the process
because it reacts to say measurement noise or plant-model
mismatch. Outside the soft limits, it is assumed that the
deviation from target is due to a real process disturbance,
and the soft MPC may be designed to react in the same
way as the nominal MPC.

2.4 Simple Estimator

To have offset free steady state control when unknown step
responses occur, we must have integrators in the feedback
loop. This may be achieved using a FIR model in difference
variables. Assume that the relation between the inputs and
outputs may be represented as

Δyk = Δzk = ek +
n∑

i=1

HiΔuk−i (11)

in which Δ is the backward difference operator, i.e. Δyk =
yk − yk−1, Δzk = zk − zk−1, and Δuk = uk − uk−1. This
representation is identical with the FIR model (3)

yk = zk = b̂k +
n∑

i=1

Hiuk−i (12)

if b̂k is computed by

ek = Δyk −
n∑

i=1

HiΔuk−i (13a)

b̂k = b̂k−1 + ek (13b)
Note that in the regulator optimization problem b1 = b2 =
. . . = bN = b̂k at each time instant. This is based on
the assumption that the disturbances enter the process
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as constant output disturbances. Of course this may not
be how the disturbances enter the process in practice,
and significant performance deterioration may result as
a consequence of this representation.

3. SIMULATIONS

In this Section we consider plants of the form
Z(s) = G(s)U(s) +Gd(s) (D(s) + W (s)) (14a)
y(tk) = z(tk) + v(tk) (14b)

with the transfer functions

G(s) =
K(βs+ 1)

(τ1s+ 1)(τ2s+ 1)
e−τs (15a)

Gd(s) =
Kd(βds+ 1)

(τd1s+ 1)(τd2s+ 1)
e−τds (15b)

The disturbance model, Gd(s), is kept fixed at its nominal
value, while the transfer function, G(s), from U(s) varies
around its nominal value, G0(s). This is used to illustrate
the consequence of model uncertainty on the MPC closed-
loop performance. The nominal system is K = Kd = 1,
τ1 = τ2 = τd1 = τd2 = 5, β = βd = 2, and τ = τd = 5. The
system is converted to a discrete time state space model
(1) using a sample time of Ts = 1 and a zero-order-hold
assumption on the inputs.

The predictive controller is based on the impulse response
coefficients of the following system

Z(s) = Ĝ(s)U(s) (16)

in which Ĝ(s) is identical to the nominal plant G0(s).

The simple estimator described in Section 2.4 is used for
bias estimation. The input limits are umin = −1, umax = 1,
Δumin = −0.2, and Δumax = 0.2. The horizon of the
impulse response model is n = 40 and the control horizon
is N = 120. The MPC is tuned with Qz = 1 and S = 10−3.

The unknown deterministic process disturbance,D(s), the
stochastic process disturbances, W (s) or wk, and the
measurement noise, v(tk) = vk, used in the simulations are
illustrated in Figure 3. The stochastic process disturbances
is wk ∼ N(0, 0.01), and the stochastic measurement noise
is vk ∼ N(0, 0.01).

3.1 Nominal Stochastic System

We consider the case when the model used by the con-
troller is identical to the deterministic part of the plant
model. However, the plant has in addition to the determin-
istic part stochastic process disturbances and stochastic
measurement noise as illustrated in Figure 3.

Consider the case with no determistic disturbance, i.e.
D(s) = 0. The performances of the nominal MPC and the
soft MPC applied to this system are compared in Figure 4.
The output variances produced by the two controllers are
almost identical, while the input variance of the soft MPC
is much smaller than the input variance of the nominal
MPC. Due to the low penalties within the soft limits, the
soft MPC does not react to measurement noise and do not
need to compensate such previous erroneous measurement
noise induced input moves.

Figure 5 illustrates the performance of the nominal MPC
and the soft MPC when the model is identical to the
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Fig. 3. External signals used in the closed loop simulations.
D(s) or dk is the unknown deterministic disturbance,
vk is the stochastic measurement noise, and wk is the
stochastic process noise,
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Fig. 4. Comparison of normal and soft MPC with nominal
models applied to a stochastic system with no de-
terministic disturbance (Nominal MPC = blue, Soft
MPC = red).

plant model and the external signals illustrated in Figure
3 are applied to the model (14). Also in this case, the
controlled variable, Y (or Z), of the two controllers are
similar while the manipulated variable, U , of the soft
MPC has significantly less variance than the manipulated
variable, U , of the nominal MPC.

3.2 Uncertain Determistic System

We consider a deterministic system without stochastic
process noise nor stochastic measurement noise. However,
the model used by the controllers is different from the
plant model. The process is perturbed by an unknown
deterministic disturbance, D(s), as illustrated in figure 3.

We compare the performance of the nominal MPC and the
soft MPC for model-plant mismatches defined by the time
delay, τ , the gain K, the time constant τ1, and the zero β.
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Fig. 5. Comparison of normal and soft MPC with nom-
inal models applied to a stochastic system with an
unknown deterministic disturbance (Nominal MPC
= blue, Soft MPC = red). The external signals are
shown in Figure 3.

0 50 100 150 200 250 300
−0.4

−0.2

0

0.2

0.4

Y

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

U

time

Fig. 6. Closed-loop MPC performance with time delay
uncertainty. The plant delay is τ = 3 and the model
delay is τ̂ = 5 (Nominal MPC = blue, Soft MPC =
red).

Figure 6 and Figure 7 illustrate closed-loop performances
achieved by the nominal and soft MPC when there is time
delay plant-model mismatch. The soft MPC has smaller
input variation than the nominal MPC, and the soft MPC
provies better control than the nominal MPC in terms of
set point deviations.

Figures 8-10 illustrate the performances of the nominal
MPC and the soft MPC in the case of model-plant mis-
match in the gain, the time constant, and the zero, re-
spectively. In all cases, the soft MPC has significantly less
input variation than the nominal MPC. Furthermore, the
outputs are significantly better controlled by the soft MPC
than by the nominal MPC.
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Fig. 7. Closed-loop MPC performance with time delay
uncertainty. The plant delay is τ = 7 and the model
delay is τ̂ = 5 (Nominal MPC = blue, Soft MPC =
red).
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Fig. 8. Closed-loop MPC performance with gain uncer-
tainty. The plant gain is K = 2 and the model gain is
K̂ = 1 (Nominal MPC = blue, Soft MPC = red).

3.3 Uncertain Stochastic System

Figure 11 illustrates the closed loop performance of a
nominal MPC and a soft MPC applied to the system
(14) with the external signals in Figure 3 and a plant-
model mismatch in the gain. The plant gain is K = 2
and the model gain is K̂ = 1. By inspection, it is obvious
that the performance of the soft MPC is significantly
better than the performance of the nominal MPC. The
superior performance is achieved by having a small set
point deviation penalty within the soft constraints such
that the controller does not react aggressively when close
to the set point. In this way it avoids perturbing the
system due to stochastic measurement noise and plant-
model mismatch.
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Fig. 9. Closed-loop MPC performance with time constant
uncertainty. The plant time constant is τ1 = 2 and
the model time constant is τ̂1 = 5 (Nominal MPC =
blue, Soft MPC = red).
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Fig. 10. Closed-loop MPC performance with zero uncer-
tainty. The plant zero is β = 4.5 and the model zero
is β̂ = 2 (Nominal MPC = blue, Soft MPC = red).

4. CONCLUSION

We have developed a l2 regularized predictive controller
with soft constraints and demonstrated efficient applica-
tion of this controller to uncertain stochastic systems. We
call this controller soft MPC. It is illustrated and verified
by simulations that this soft MPC provides significantly
better closed loop performance than nominal MPC. The
soft MPC also provides much better performance degra-
dation in the face of plant-model mismatch than nominal
MPC. These features are expected to contribute to better
closed loop performance, easier maintenance, easier tun-
ing, and longer lifetime of model predictive controllers for
chemical processes.
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Abstract: This paper introduces a dynamic operability-based approach for the determination of feasible 
output constraints during transient operation. This approach is based on previously published steady-state 
operability developments and the concept of output funnels. In this study, high-dimensional non-square 
systems with more outputs than inputs are of particular interest. Such systems are challenging because it 
is impossible to control all the outputs at specific set-points when there are fewer degrees of freedom 
available than the controlled variables. Thus, interval, instead of set-point, control is needed for at least 
some of the output variables. In order to motivate the new concepts, two non-square case studies are 
addressed, one illustrative and one industrial - obtained from the control system of a Steam Methane 
Reformer process. The calculated constraints are validated by running DMCplusTM (AspenTech) closed-
loop simulations for the extreme values of the disturbances. These constraints are intended for use online 
in model-based controllers (e.g., Model Predictive Controllers) to ensure that each of the outputs will 
remain inside a feasibility envelope during transient operation. 

Keywords: Output Variables, Constraints, Model-based Control, Operability, Dynamic Systems. 

�

1. INTRODUCTION 

Model Predictive Control (MPC) is a long standing 
multivariable constrained control methodology that utilizes 
an explicit process model to predict the future behavior of a 
chemical plant. At each control interval, the MPC algorithm 
attempts to optimize the future plant behavior by computing a 
sequence of future manipulated variable adjustments. The 
first of the optimal sequence of calculated input moves is 
implemented into the plant and the entire calculation is 
repeated at subsequent control intervals using updated 
process measurements. MPC has been extensively studied in 
academia and widely accepted in the chemical industry for its 
ability to handle complex multivariable and highly interactive 
process control problems (Qin and Badgwell, 2003). MPC-
type controllers in industrial practice aim to control non-
square systems in which there are more controlled outputs 
than manipulated inputs. In such systems it is impossible to 
control all the outputs at specific set-points because there are 
fewer degrees of freedom available than the controlled 
variables.  

Based on the input constraints, generally specified a priori 
due to the physical limitations of the process, an important 
design task is to determine the output ranges within which 
one wants to control the process. The improper selection of 
these constraints can make the controller infeasible when a 
disturbance moves the process far away from its usual 
operating region. Past practice requires that output constraints 
are enforced whenever feasible and softened whenever they 
become infeasible (Rawlings, 2000). The steady-state 
operability methodology originally introduced for square 

systems (Vinson and Georgakis, 2000) and extended for non-
square systems (Lima and Georgakis, 2006; Lima and 
Georgakis, 2008a) provides a method for selecting such 
output constraints systematically, so that they are as tight as 
possible but also do not render the controller infeasible. 
Specifically for non-square systems, the interval operability 
framework was introduced (Lima and Georgakis, 2006) to 
assess the input-output open-loop operability of multivariable 
non-square systems at the steady-state, a necessary condition 
for the overall process operability. The application of this 
framework to high-dimensional square and non-square 
systems is discussed in another set of publications (Lima and 
Georgakis, 2008b; Lima, Georgakis, Smith and Schnelle, 
2008), where a Linear Programming (LP) based approach is 
introduced to calculate the tightest feasible set of steady-state 
output constraints when interval operability is necessary. 

This paper extends this interval operability framework to 
enable the determination of feasible output constraints during 
transient for high-dimensional non-square systems. Although 
the previously developed steady-state operability approaches 
are necessary to quantify the overall operability of a process 
and to determine the steady-state output constraints for MPC, 
the development of a dynamic operability methodology for 
non-square systems will have great impact on MPC controller 
design. Specifically, dynamic operability analysis can be used 
to systematically calculate the amount of constraint relaxation 
necessary in order to prevent the occurrence of transient 
infeasibilities, when disturbances affect the process (see 
Dimitriadis and Pistikopoulos (1995) for dynamic flexibility 
analysis). This extension is accomplished here by designing a 
funnel for each of the output variables, which provides output 
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constraints that guarantee feasible process operation in 
closed-loop. Previously, output funnels have been used to 
define MPC controllers’ output trajectories in commercial 
packages (Qin and Badgwell, 2003). Specifically, 
Honeywell’s RMPCT (Robust Multivariable Predictive 
Control Technology) controller defines a funnel for the 
outputs or Controlled Variables (CV) constraints. When a 
predicted CV trajectory leaves its funnel, the controller 
algorithm penalizes this trajectory to bring the CV back 
within its range (Qin and Badgwell, 2003; Maciejowski, 
2002). Here such funnels are used to design output 
constraints during transient operation. This design is 
especially important for underdamped systems in general, 
where overshoots may occur during process operation, and 
overdamped or critically damped systems when disturbance 
dynamics are faster than input dynamics. For the opposite 
case when input dynamics are faster than disturbance ones, 
the output constraints calculated using one of the steady-state 
operability methodologies are also applicable during 
transient.  

2. PROCESS OPERABILITY 

Before introducing the dynamic operability approach, it is 
necessary to briefly define the sets of variables used for 
steady-state interval operability calculations (Lima and 
Georgakis, 2008a). The Available Input Set (AIS) is the set 
of values that the process input, or manipulated, variables (u) 
can take, based on the constraints of the process. For an n x m 
x q (n outputs, m inputs and q disturbances) linear system: 

: ;min max| ; 1i i iu u u i m
 � � � �uAIS  (1) 

The Desired Output Set (DOS) is given by the ranges of the 
outputs (y) that are desired to be achieved and is represented 
by:                                          

: ;min max| ; 1i i iy y y i n
 � � � �yDOS  (2) 

The Expected Disturbance Set (EDS) represents the expected 
steady-state values of the disturbances (d):  

: ;min max| ; 1i i id d d i q
 � � � �dEDS  (3) 

Based on the steady-state linear model of the process, 
expressed by the process gain matrix (G) and the disturbance 
gain matrix (Gd), the Achievable Output Set for a specific 
disturbance vector, AOS(d), is defined by the ranges of the 
outputs that can be achieved using the inputs inside the AIS: 

: ;( ) | ; ,   is fixedd
 
 � .d y y Gu G d u dAOS AIS  (4) 

The Achievable Output Interval Set (AOIS) is defined as the 
tightest feasible set of output constraints that can be achieved, 
with the available range of the manipulated variables and 
when the disturbances remain within their expected values 
(see references (Lima and Georgakis, 2008a; Lima and 
Georgakis, 2008b; Lima, Georgakis, Smith and Schnelle, 
2008) for the algorithms developed for the calculation of this 
important set). Using these defined sets and some of the 
previously published interval operability concepts and 
calculations, a dynamic operability approach, based on the 
design of output funnels, for the determination of output 

constraints during transients is introduced next through a 2-D 
illustrative example. This is followed by the analysis of the 
Steam Methane Reformer (SMR) process example, which is 
9-D and underdamped.  

3. ILLUSTRATIVE EXAMPLE 

In order to introduce the dynamic operability approach, 
consider a 2-D example from Lima and Georgakis (2006) 
with 2 outputs, 1 input and 1 disturbance (2 x 1 x 1). This 
example has the following steady-state gain model and 
constraining sets (see information on process dynamics 
below): 

: ;
: ;
: ;
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 (5) 

Two funnels, one for each output, with specific amplitudes 
and decay characteristics will be designed for the two output 
variables of this system. Each of these funnels is designed 
from the moment that a disturbance is inserted into the 
system and provides an envelope where the control problem 
is always feasible if the output constraints remain inside of 
this envelope. This envelope starts at the funnel amplitude 
value (defined below), decays at a specific rate and ends at a 
designed steady-state constraint calculated using one of the 
interval operability approaches cited above. Cases where the 
disturbance variable takes its extreme values are of particular 
interest because they represent the worst cases, which if 
satisfied, ensure feasible operation for all the other cases.  

For the system above, the dynamics of each of the input-
output and disturbance-output pairs are plotted in Figs. 1, 2, 
3, and 4 for pairs (y1, u1), (y1, d1), (y2, d1), and (y2, u1), 
respectively. In these figures, these dynamics are represented 
by step response coefficients, which would be obtained in 
practice by plant testing.  

The funnel amplitude associated with output i (ai) is defined 
as follows: 

, �
i d j i ja k s  (6) 

where kd,j-i corresponds to the value of the steady-state 
disturbance gain associated with the disturbance-output pair 
j-i and sj is the step disturbance value. For this example, sj 
will be assumed at the extreme values of the disturbance 
within the EDS, i.e. d1 is moved from 0 to ± 1. If d1 = 1, then 
a1 = -0.6 and a2 = 0.4. When d1 = -1, a1 = 0.6 and a2 = -0.4. It 
is assumed that using steady-state disturbance gains to 
calculate the starting point of the funnel decay, as opposed to 
the maximum absolute value of the dynamic gains, will be 
enough to provide an envelope that contains the entire closed-
loop response. This is based on the assumption that the inputs 
are able to compensate for the presence of overshoots, caused 
by these dynamic gains, in most practical cases during 
closed-loop operation, especially if a model-based controller, 
such as MPC, is implemented. The decay for each output 
funnel (�i) is determined by the slowest dynamics among all 
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the input-output and disturbance-output pairs for the 
corresponding output. Each output is analyzed separately 
because the disturbance dynamics might be slower for one of 
the outputs, while the input dynamics may be slower for the 
other. These dynamics are estimated from the step response 
curves using two approaches, depending on the 
characteristics of the analyzed curve: 

1) Exponential fit (typically for oscillatory responses): an 
exponential is fitted to two selected points of the step 
response curve. These points are selected such that most of 
the curve is below (or above, depending on the sign of the 
dynamic gains) the fitted exponential. The dynamics of the 
analyzed pair are estimated by the following exponential 
decay: 

� �exp exp expexpy a t y<
 �> �  (7) 

where y� corresponds to the steady-state gain of the analyzed 
step response curve. Using the two selected points and eq. 
(7), a system of 2 equations and 2 unknowns can be solved 
for the two parameters of the exponential, aexp and �exp. For 
the example above, this approach is used for pairs (y1, u1), 
(y1, d1), and (y2, d1), whose exponential fits are shown in Figs. 
1, 2, and 3, respectively, along with the fitted points selected 
for each case. For such pairs, the following exponential fits 
are obtained: 

� � � �
� � � �
� � � �

2 2
1 1 exp

2 2
1 1 exp

2 2
2 1 exp

,  0.47 exp 1.89 10 1.41 1.89 10

,  1.70 exp 2.12 10 0.60 2.12 10

,  0.18exp 4.22 10 0.40 4.22 10

� �

� �

� �


 � � � ? > 
 �


 � � � � ? > 
 �


 � � � ? > 
 �

y u t

y d t

y d t

 (8) 

2) First-order models estimated using ARX (Auto-Regressive 
model with eXogenous inputs, subroutine ARX in Matlab) 
(Ljung, 1999): the following first-order ARX model with a 
zero-order holder in the z domain is fitted to the step response 
coefficients of a specific pair: 

� �
1

arx1( ) ( ) with ln
1 z

bzy z u z p
az

�

�
 > 
 �
�

 (9) 

where �arx represents the model dynamics and is calculated by 
taking the negative natural log of the transfer function pole in 
the z domain, pz = -a. This approach is used whenever a pair 
dynamics can be well approximated by a first-order model. 
This approach is applied here to pair (y2, u1), which is shown 
in Fig. 4, and the following model and �arx are obtained: 

� � 2
2 1 arx

0.0283( ) ( ) ln 0.9601 4.07 10
0.9601

y z u z
z

�
 ? > 
 � 
 �
�

 (10) 

After calculating all �s for all possible pairs (4 in this case), 
using the two approaches above, their values are compared 
and the one with smallest absolute value for each output 
(representing the slowest dynamics) is retained and used in 
the funnel design for the corresponding output. For example, 
for output 1, �1 = 1.89 x 10-2 is chosen, which is the smallest 
between 1.89 x 10-2 and 2.12 x 10-2. Therefore, for this 
example, the following values of �i are selected: 

2 2
1 21.89 10 ,  4.07 10� �> 
 � > 
 �  (11) 

 

Fig. 1. Step Response Coefficients, Exponential Fit and Fitted 
Points for (y1, u1) pair. 

 

Fig. 2. Step Response Coefficients, Exponential Fit and Fitted 
Points for (y1, d1) pair. 

 

Fig. 3. Step Response Coefficients, Exponential Fit and Fitted 
Points for (y2, d1) pair. 

Using the calculated amplitudes and decays, the following 
equation represents the funnel for each of the output 
variables:  

� � � � ,1 exp 1i f i f i ss if a t y, )
 � 3 � �4 > �+ (  (12) 

where yss,i is one of the steady-state output constraints (upper 
or lower limit) for output i, which is calculated using the 
previously published interval operability approaches (Lima 
and Georgakis, 2008a; Lima and Georgakis, 2008b). Also, �f 
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and �f are adjustable tuning parameters, associated with 
amplitude and decay, respectively, and are independent of the 
output selected. As explained above for ai, depending on the 
magnitude of the disturbance inserted, which in this case 
takes either its maximum or minimum value, yss,i will have 
different values. For the case study here, if d1 = 1, then yss,1 = 
-0.464 and yss,2 = 0.464. When d1 = -1, yss,1 = 0.464 and yss,2 = 
-0.464. These values were extracted from the steady-state 
operability results presented in the ADCHEM 2006 paper by 
Lima and Georgakis (see case 2, section 3). Thus, each output 
envelope actually has upper and lower limits that start at 
different points and end at the upper and lower calculated 
steady-state constraints, respectively. The same decay holds 
for both cases. Therefore, for the 2-D case study above, 
selecting �f = 0 and �f = -0.74, the following funnels are 
obtained for each output for the two extreme values of the 
disturbance: 

� �
1 ,1 ,2

2
1

For 1:  0.464,  0.464

0.6exp 1 0.74 1.89 10 0.464

ss ssd y y

f t�


 
 � 


, )
 � � � � �+ (
 (13) 

� � 2
2 0.4exp 1 0.74 4.07 10 0.464f t�, )
 � � � �+ (  (14) 

� �
1 ,1 ,2

2
1

For 1:  0.464,  0.464

0.6exp 1 0.74 1.89 10 0.464

ss ssd y y

f t�


 � 
 
 �

, )
 � � � �+ (
 (15) 

� � 2
2 0.4exp 1 0.74 4.07 10 0.464f t�, )
 � � � � �+ (  (16) 

The funnels for outputs 1 (eqs. 13 and 15) and 2 (eqs. 14 and 
16) are plotted in Figs. 5 and 6, respectively, along with the 
DMCplusTM (Dynamic Matrix Control - AspenTech, a 
multivariable constrained controller) trend obtained for each 
case. For all cases, the controller is operating in closed-loop 
mode and the disturbance was inserted at time = 0. 

4. HIGH -DIMENSIONAL INDUSTRIAL SYSTEM 

The design of output constraints during transient for the 
Steam Methane Reformer (SMR; Vinson, 2000) process 
example will now be performed using the output funnels 
defined above. This process has 9 outputs, 4 inputs and 1 
disturbance variable and it is defined by the following set of 
steady-state equations and constraining sets (see information 
on process dynamics below): 
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Fig. 4. Step Response Coefficients, Exponential Fit and First-
order ARX Model for (y2, u1) pair. 

 

Fig. 5. Funnel Design and DMCplus trend for output y1 with 
(�f, �f) = (0, -0.74). 

where �y, �u and �d1 are deviation variables from the steady-
state values for the outputs (yss), the inputs (uss), and the 
disturbance (d1,ss), respectively. These steady-state values are 
given by: 

� �
� � 1,

44.35,  94.10,  1.50,  21.5,  1.80,  431.45, 510.75, 5.35, 37.1

29.00,  100.00,  1.10, -1.55 ;  0

T
ss

T
ss ssd





 


y

u

(19) 

Also, the original output constraints (DOS), lower and upper 
limits, are given in Table 1. The SMR process has 
underdamped dynamics for several input-output/disturbance-
output pairs, which are represented by the step response 
coefficients obtained by plant testing that are shown in Fig. 7. 
For this case, the disturbance gains, given in eq. (17), and the 
designed output constraints at the steady-state in Table 1 
(from Lima, Georgakis, Smith, Vinson and Schnelle, 2009) 
will be used here to define each output funnel. 

Following the same procedure as in the illustrative example 
above, exponential and ARX fits were obtained and �s 
calculated for all the input-output and disturbance-output 
pairs. The calculated �s for all these pairs are presented in 
Table 2, where the smallest absolute values of � for each 
output, which will be used in the funnel design, are 
highlighted. Thus, using eq. (12), the funnel equations (20) 
and (21) are calculated  for all outputs when d1 moves from 0 
to ± 4 (extreme cases) and (�f, �f) = (1.00, 0.36).  
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Fig. 6. Funnel Design and DMCplus trend for output y2 with 
(�f, �f) = (0, -0.74). 

 

Fig. 7. Step Response Model for the SMR Problem. 
Responses for outputs y1- y9 to a step in inputs u1 - u4 and 
disturbance d1. Empty boxes represent that there is no 
interaction between the input-output or disturbance-output 
pair. 

Table 1. SMR Example: original and designed set of 

output constraints at the steady-state (Lima, Georgakis, 

Smith, Vinson and Schnelle, 2009). 

Process 

Outputs 

Original

Lower 

Bound

Original 

Upper 

Bound 

Designed 

Lower 

Bound 

Designed

Upper 

Bound 

y1 43.00 45.70 43.98 44.72 
y2 26.90 161.30 84.89 103.31 
y3 0.80 2.20 1.02 1.98 
y4 0 43.00 20.91 22.09 
y5 1.70 1.90 1.73 1.87 
y6 424.70 438.20 426.82 436.08 
y7 430.10 591.40 455.48 566.02 
y8 3.20 7.50 3.87 6.83 
y9 21.50 52.70 26.41 47.79 

 

� � � �
� � � �
� � � �

1

2
1

2
2

2
3

4

For 4 :

1 1 1.60exp 1 0.36 1.51 10 44.72

1 1 6.60exp 1 0.36 2.86 10 103.31

1 1 (-0.60)exp 1 0.36 1.40 10 1.02

22.09                                                           

d

f t

f t

f t

f
f

�

�

�




, )
 � � � � �+ (
, )
 � � � � �+ (
, )
 � � � � �+ (




� � � �
� � � �
� � � �
� �

5

2
6

2
7

2
8

9

1.87                                                        

1 1 14.68exp 1 0.36 1.95 10 436.08

1 1 17.76exp 1 0.36 2.21 10 566.02

1 1 (-1.24)exp 1 0.36 2.48 10 3.87

1 1 0.44ex

f t

f t

f t

f

�

�

�




, )
 � � � � �+ (
, )
 � � � � �+ (
, )
 � � � � �+ (


 � � � 2p 1 0.36 1.10 10 47.79t�, )� � � �+ (

 (20) 

� � � �
� � � �
� � � �

� �

1

2
1

2
2

2
3

4

5

6

For 4 :

1 1 (-1.60)exp 1 0.36 1.51 10 43.98

1 1 (-6.60)exp 1 0.36 2.86 10 84.89

1 1 0.60exp 1 0.36 1.40 10 1.98

20.91              
1.73               

1 1 (-14.68)exp 1 0

d

f t

f t

f t

f
f

f

�

�

�


 �

, )
 � � � � �+ (
, )
 � � � � �+ (
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 � � � � �+ (






 � � �� �
� � � �
� � � �
� � � �

2

2
7

2
8

2
9

.36 1.95 10 426.82

1 1 (-17.76)exp 1 0.36 2.21 10 455.48

1 1 1.24exp 1 0.36 2.48 10 6.83

1 1 (-0.44)exp 1 0.36 1.10 10 26.41

t

f t

f t

f t

�

�

�

�

, )� �+ (
, )
 � � � � �+ (

, )
 � � � � �+ (
, )
 � � � � �+ (

 (21) 

Note that, for outputs y4 and y5, the steady-state disturbance 
gains are 0, and thus, their funnel’s upper and lower bounds 
are constants at their upper and lower designed steady-state 
limits, respectively. Figs. 8, 9, and 10 show the DMCplus 
trends for y1, y2, and y3, respectively, as well as the funnels 
for each case, where the controller is operating in closed-loop 
mode and the disturbance was inserted at time = 0. The 
funnels for the other outputs are not shown here due to space 
limitations of the manuscript. 

Table 2. Calculated �s for each input-output and 

disturbance-output pairs for the SMR Example (smallest 

� for each of the outputs in bold;  dash (-) for pairs with 

no model)  

y/ 

u, d 

u1 u2 u3 u4 d1

y1 0.0189 0.0323 0.0212 0.0151 0.0212 
y2 0.0335 0.0699 0.0288 0.0286 0.0288 
y3 0.0794 - 0.0140 0.0847 0.0140 

y4 0.0537 - 0.0939 0.0364 - 
y5 1.4437 0.5177 - - - 
y6 0.0407 0.0453 0.0422 0.0195 0.0422 
y7 0.0530 0.0391 0.0681 0.0221 0.0681 
y8 0.0248 0.0280 0.0316 0.0706 0.0316 
y9 0.0243 0.0290 0.0110 0.1213 0.0110 
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Figure 8: SMR Example: funnel design and DMCplus trend 
for output y1 with (�f, �f) = (1.00, 0.36). 

 

Figure 9: SMR Example: funnel design and DMCplus trend 
for output y2 with (�f, �f) = (1.00, 0.36). 

 

Figure 10: SMR Example: funnel design and DMCplus trend 
for output y3 with (�f, �f) = (1.00, 0.36). 

6. CONCLUSIONS 

In this paper we have presented an extension of the 
previously developed steady-state interval operability 
approach to dynamical systems. Through the detailed 
examination of an illustrative case study we have motivated 
the calculation of output funnels for the design of output 
constraints during transient operation. The developed 
methodology was then applied to determine feasible output 

constraints for the Steam Methane Reformer industrial 
process. The analysis presented here provides a starting point 
for the verification of the achievability of control objectives 
in the entire control horizon. As potential future directions, an 
extension of this framework to address systems with multiple 
disturbances is necessary. Moreover, a moving horizon 
operability approach could be developed, where operability 
calculations would be performed online at each time instant, 
as the control horizon advances.  
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Abstract: We present a method for computing the solution to the infinite horizon continuous-time
constrained linear quadratic regulator (CLQR). The method relies on two main features: a multi-grid
method for placing a finite number of time intervals, and a piece-wise linear parameterization of the input
within the intervals. The input values at the grid points and slopes within the time intervals are computed
via quadratic programs (QPs). The grids are gradually refined to efficiently improve the accuracy of the
solution, and the required matrices and vectors for all QPs are computed offline and stored to improve
the online efficiency. We present two examples, a single-input single-output unstable system and a three-
input three-output stable system, to show the main characteristics of the proposed computation method.

Keywords: Constrained Linear Quadratic Regulation, Continuous Time Systems, Model Predictive
Control, Optimal Control

1. MOTIVATIONS FOR CONTINUOUS TIME MODEL
PREDICTIVE CONTROL

The scope of applications of model predictive control (MPC)
has expanded well beyond its original starting point in the
process industries. With this increased scope has come the need
to evaluate in real time the solution to the MPC optimal control
problem for systems with fast open-loop dynamics. It is rea-
sonable to anticipate that this trend to faster applications may
culminate with a return to the continuous time description of the
system model. The previous widespread adoption of discrete
time models to represent the system dynamics made perfect
sense. The typical sample time in earlier applications was small
compared to the closed-loop dynamic response of the system
(seconds compared to minutes) so there was essentially no loss
in model accuracy. Moreover, the earlier analysis of the closed-
loop properties and computational strategies to approximate
infinite horizon control laws was simplified using discrete time
models (Mayne et al., 2000).

In today’s application environment, it is no longer safe to as-
sume that some fixed sample rate can be chosen very small
compared to the closed-loop system dynamics. Next, given the
rapid development of MPC theory for discrete time models
over the last 15 years, there is no real difficulty in establishing
properties of interest in a continuous time setting. Finally, the
actuator hardware has become “smarter” and it is now becom-
ing appropriate to assume that any reasonable time function
may be sent to the actuator, and it is actuator hardware’s job to

� This research was supported by National Science Foundation (Grant CTS-
0456694).

accurately track this signal. If the application has fast dynamics,
obviously a requirement of the process design is the selection
of sensors and actuators that are fast enough to keep up.

In this paper we would like to remove all issues of sampling
and address directly the MPC problem for the continuous-time
model (Yuz et al., 2005). The job of the MPC controller in this
context is to send its solution as a time signal to the actuators
until a measurement becomes available and a new state initial
condition is available to the controller. This context has become
popular in the nonlinear MPC area, where nonlinear models
from physical principles are almost always continuous time
nonlinear differential equations [see (Diehl et al., 2008) and
references therein]. In this paper we would like to explore what
efficiencies can be gained when we restrict attention to linear
continuous time models.

2. PROBLEM DEFINITION

We consider linear time-invariant continuous-time systems
ẋ = Ax+Bu , (1)

in which x ∈ Rn is the state and u ∈ Rm is the input. We define
the following cost function for a given initial state x0 ∈ Rn and
infinite-time input u:

V (x0,u) =
1
2

∫ ∞

0

(x′Qx+ u′Ru) dt,

s.t. (1) and x(0) = x0 . (2)
in which we use the following notation. Given a function u :
R → Rm, we define u = {u(t)|t ≥ 0}. The aim of this work is
to compute, given the current initial state x0, the solution of the
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following infinite horizon optimal constrained linear quadratic
regulation (CLQR) problem

u∗(x0) = argmin
u

V (x0,u), s.t. Du(t) ≤ d , (3)

in which D =
[
D′

1 D
′
2

]′
and d =

[
d′1 d

′
2

]′
with d1 > 0

and d2 = 0 (in element-wise sense). Notice that we allow the
possibility of either (D1, d1) or (D2, d2) being empty.

We make the following assumptions.
Assumption 1. Given a matrix T ∈ Rm×r with rank r such
that D2T = 0, the pair (A,BT ) is stabilizable, R is positive
definite, Q is positive semi-definite and (A,Q) is detectable.

It is important to point out that the constraint D2u ≤ 0 is
active at the equilibrium point (u = 0). Assumption 1 states
that the system must be stabilizable under the restricted con-
trol D2u = 0. We can write the restricted optimal control
as u = K̄x = −(T ′RT )−1(BT )P̄ x, with P̄ solution of
the continuous-time Riccati equation for the system matrices
(A,BT ) with penalties (Q,T ′RT ) [see (Rao and Rawlings,
1999; Pannocchia et al., 2003) for further details]. Such con-
trol is feasible for all x in the positively invariant set X =
{x|D1K̄e

(A+BK̄)tx ≤ d1 for all t}.

Compared to the discrete-time counterpart, the continuous-time
CLQR problem has received much less attention, although sev-
eral results are available. Cannon and Kouvaritakis (2000) pro-
posed a method for single-input single-output systems, using
basis functions, in which input constraint satisfaction is ensured
by a backoff strategy. Kojima and Morari (2004) propose a de-
sign method that is based on the singular value decomposition
(SVD) of the finite horizon linear system and that guarantees
in the limit constraint satisfaction and convergence to the op-
timal solution. For low dimensional linear systems, Sakizlis
et al. (2005) present an approach for computing the explicit
solution to the finite horizon continuous-time CLQR problem,
by merging variational analysis with parametric optimization
tools. Goebel and Subbotin (2007) present an approach based
on the solution of the backward Hamiltonian system; optimal
trajectories are stored for subsequent on-line suboptimal evalu-
ation.

In this work, we propose a novel approach based on the di-
rect evaluation of a suboptimal solution to the infinite horizon
CLQR problem that requires, like the discrete-time case, the
solution of only quadratic programs (QPs). Thus, we compute
the control input in a number of grid points that can be effi-
ciently adapted on-line to improve the accuracy of the solu-
tion. Two appropriate continuous-time input parameterizations
(holds) are proposed, which show markedly improved conver-
gence towards the optimal continuous-time solution compared
to the usual piece-wise constant parameterization, and still
guarantees satisfaction of the input constraints. Other related
details, including proofs of the results, can be found in (Pan-
nocchia et al., 2009).

3. INPUT PARAMETERIZATION, EXACT COST
EVALUATION AND CONVERGENCE ANALYSIS

We consider three different input parameterization methods
(also referred to as holds), and for each hold type a discrete-time
system realization is obtained in a way that the continuous-time
and the discrete-time state and input match at given grid points
(t0, t1, . . .) assumed, in general, not evenly spaced. Moreover,

u0

s0
u1 s1

s2

u2

Δ2Δ1Δ0

t0 t1 t2 t3 tN

K̄x

Fig. 1. Piece-wise linear input parameterization and time gridding scheme.

for each hold type we compute the corresponding discrete-time
LQR cost matrices in a way that the cost in (2) is exactly
evaluated. We recall that the solution to (1) is given by:

x(t) = eAtx0 +
∫ t

0

eA(t−τ)Bu(τ)dτ . (4)

3.1 Three input parameterization methods

First we summarize the properties of the well known zero-order
hold (ZOH), defined as:

u(t) = uk, tk ≤ t < tk+1 , (5)
with tk+1 = tk + Δk. Notice that we do not assume, however,
that Δk is constant. From (4) and (5), we obtain the time-
varying discrete-time system: xk+1 = A0

kxk +B0
kuk, in which

the matrices (A0
k, B

0
k) are defined as: A0

k = eAΔk , B0
k =

I0(Δk)B, with I0(t) =
∫ t

0
eAτdτ .

We consider a second input parameterization referred to as
“piece-wise linear” hold (PWLH), and defined as:

u(t) = uk + sk(t− tk), tk ≤ t < tk+1 , (6)
in which s ∈ Rm defines the “slope” of u between grid points.
In the sake of clarity, we sketch the PWLH input parameteriza-
tion in Figure 1, in which we also emphasize the uneven time
gridding scheme that we consider later in Section 4. From (4)
and (6), the time-varying discrete-time system xk+1 = AI

kxk +
BI

ku
I
k is obtained, in which uI ∈ R2m =

[
u′ s′

]′
is the

augmented input, and the matrices (AI
k, B

I
k) are: AI

k = A0
k =

eAΔk , BI
k = [I0(Δk)B I1(Δk)B], with I0(t) =

∫ t

0
eAτdτ

and I1(t) =
∫ t

0
eA(t−τ)τdτ .

Finally, we consider a third input parameterization, which also
assumes that the input varies linearly between discrete times,
but with a slope equal to forward finite input difference, i.e.

u(t) = uk +
(
uk+1 − uk

Δk

)
(t− tk), tk ≤ t < tk+1 . (7)

In the sequel, this input parameterization is referred to as
“forward first-order” hold (FFOH). From (4) and (7), we obtain
the time-varying discrete-time system: xIIk+1 = AII

k x
II
k +BII

k u
II
k ,

in which the augmented state xII ∈ Rn+m, the shifted input
uII ∈ Rm, and (AII

k , B
II
k ) are:

xIIk =
[
xk

uk

]
, uIIk = uk+1,

AII
k =

⎡⎣A0
k I0(Δk)B − I1(Δk)

Δk
B

0 0

⎤⎦, BII
k =

⎡⎣I1(Δk)
Δk

B

I

⎤⎦ .
We emphasize that ZOH generates a u(t) constant between
discrete times and discontinuous at the discrete times, PWLH
generates a u(t) linear between discrete times and discontinu-
ous at the discrete times, FFOH generates a u(t) continuous at
all times and linear between discrete times.
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3.2 Exact continuous time cost computation

Lemma 2. (Exact cost matrices for ZOH). If the continuous-time
input is given by (5), then∫ tk+1

tk

(x′Qx+ u′Ru)dt = x′kQ
0
kxk + u′kR

0
kuk + 2x′kM

0
kuk ,

with: Q0
k =

∫Δk

0
(eAt)′QeAtdt, R0

k =
∫Δk

0
(R+ (I0B)′QI0B) dt,

M0
k =

∫Δk

0
(eAt)′QI0Bdt.

It is interesting to notice that this quadrature result is known
(Kwakernaak and Sivan, 1972, p.549), (Yuz et al., 2005,
Sec.2.2), but most of the literature on optimal control of
continuous-time systems usually ignores the mixed state-input
cost term and assumes Q0

k = QΔk, R0
k = RΔk, thus introduc-

ing an inherent quadrature error.

From the previous result it immediately follows that, given an
infinite discrete-time input sequence (u0, u1, u2, . . .), assuming
that the continuous-time input u is defined in (5), then

V (x0,u) =
1
2

∞∑
k=0

x′kQ
0
kxk + u′kR

0
kuk + 2x′kM

0
kuk .

Lemma 3. (Exact cost matrices for PWLH). If the continuous-
time input is given by (6), then

∫ tk+1

tk
(x′Qx + u′Ru)dt =

x′kQ
I
kxk + (uIk)′RI

ku
I
k + 2x′kM

I
ku

I
k, with:

QI
k =

∫Δk

0
(eAt)′QeAtdt,

RI
k =

∫Δk

0

[
R+ (I0B)′Q(I0B) (I0B)′Q(I1B) +Rt
(I1B)′Q(I0B) +Rt (I1B)′Q(I1B) +Rt2

]
dt,

M I
k =

∫Δk

0

[
(eAt)′Q(I0B) (eAt)′Q(I1B)

]
dt.

From this results it follows that, given infinite discrete-
time input sequence and slope sequence (u0, u1, u2, . . .),
(s0, s1, s2, . . .), assuming that the continuous-time input u is
defined in (6), then

V (x0,u) =
1
2

∞∑
k=0

x′kQ
I
kxk + (uIk)′RI

ku
I
k + 2x′kM

I
ku

I
k .

Lemma 4. (Exact cost matrices for FFOH). If the continuous-
time input is given by (7), then

∫ tk+1

tk
(x′Qx + u′Ru)dt =

(xIIk )′QII
k x

II
k + (uIIk )′RII

k u
II
k + 2(xIIk )′M II

k u
II
k , with:

QII
k =

∫Δk

0

⎡⎢⎢⎣ (eAt)′QeAt (eAt)′Q(I0 −
I1
Δk

)B

((I0 −
I1
Δk

)B)′QeAt ((I0 −
I1
Δk

)B)′Q(I0 −
I1
Δk

)B +R
(

1− t

Δk

)2

⎤⎥⎥⎦ dt,
RII

k =
∫Δk

0

(
R
(

t
Δk

)2

+
(

I1
Δk
B
)′
Q
(

I1
Δk
B
))
dt ,

M II
k =

∫Δk

0

⎡⎢⎣ (eAt)′Q
I1
Δk
B

((I0 −
I1
Δk

)B)′Q
I1
Δk
B +R

t

Δk

(
1− t

Δk

)
⎤⎥⎦ dt.

Clearly, it follows that given an infinite discrete-time input
sequence (u0, u1, u2, . . .), assuming that the continuous-time
input u is defined in (7), then

V (x0,u) =
1
2

∞∑
k=0

(xIIk )′QII
k x

II
k +(uIIk )′RII

k u
II
k +2(xIIk )′M II

k u
II
k .

3.3 Unconstrained convergence analysis for the three holds

In this section, we evaluate the unconstrained optimal cost that
is achieved by using the three different input parameterizations,
in the case of evenly spaced points, i.e. Δ0 = Δ1 = · · · =
Δ, and we compare the order of convergence to the optimal

continuous-time cost as Δ goes to zero. 1 We first recall the
following well-known results for unconstrained LQR problems.
Lemma 5. The optimal cost-function value for the uncon-
strained continuous-time LQR problem minu V (x0,u) is given
by 1

2x
′
0Px0 in which P is the positive semi-definite solution of

the Riccati equation:
0 = Q+A′P + PA− PBR−1B′P . (8)

Lemma 6. The following discrete-time LQR problem with
mixed state-input terms:

min
(u0,u1,...)

1
2

∞∑
k=0

x′kQ̄xk + u′kR̄uk + 2x′kM̄uk , s.t.

xk+1 = Āxk + B̄uk ,

is equivalent to the following discrete-time LQR problem with-
out mixed state-input terms:

min
(u0,u1,...)

1
2

∞∑
k=0

x′kQ̄xk + u′kR̄uk, s.t.

xk+1 = Āxk + B̄uk , (9)
in which the following change of variables is considered: uk ←
uk − R̄−1M ′xk, Ā← Ā− B̄R̄−1M̄ ′, Q̄← Q̄− M̄R̄−1M̄ ′.
Lemma 7. The optimal cost-function value for the uncon-
strained discrete-time LQR problem (9) is 1

2x
′
0Πx0, in which

Π is the positive semi-definite solution of the Riccati equation:
0 = −Π + Q̄+ Ā′ΠĀ− Ā′ΠB̄(R̄+ B̄′ΠB̄)−1B̄ΠĀ . (10)

If P is the solution of the continuous-time Riccati equation (8)
and Π(Δ) is the solution of the discrete-time Riccati equation
(10) using a given hold and a fixed discrete-time interval Δ, it is
straightforward to show that P � Π(Δ), which is equivalent to
saying Π(Δ)−P is positive semidefinite. Clearly, it is desirable
for an input parameterization to have convergence Π(Δ) → P
as Δ → 0. We define the order of convergence � for a given
hold implementation as the smallest non-negative integer for
which limΔ→0

Π(Δ)−P
Δ� �= 0.

We next establish the following results about the convergence
order the LQR cost using different holds 2 . Notice that each
hold defines a discrete-time optimal control problem, in which
the decision variables are {uk}∞k=0 for ZOH and FFOH, and are
{(uk, sk)}∞k=0 for PWLH.
Theorem 8. (Second order convergence of ZOH). The conver-
gence of Π0(Δ) to P is second order for system matrices
Ā = A0 − B0(R0)−1(M0)′, B̄ = B0 and cost matrices
Q̄ = Q0 −M0(R0)−1(M0)′, R̄ = R0.

It is interesting to notice that if inexact cost matrices are used
in ZOH, the order of convergence is less than 2. For instance,
if one simply chooses Q0 = QΔ, R0 = RΔ, M0 = 0, the
convergence order is 1.
Theorem 9. (Fourth order convergence of PWLH). The conver-
gence of ΠI(Δ) to P is fourth order for system matrices Ā =
AI − BI(RI)−1(M I)′, B̄ = BI and cost matrices Q̄ = QI −
M I(RI)−1(M I)′, R̄ = RI.

Before presenting the convergence result for FFOH, it is
important to recall that, in system (3.1), the state is aug-
1 The proof for ZOH is reported in (Pannocchia et al., 2009), and follows
Taylor expansions of all terms in the discrete algebraic Riccati equation. For
PWLH and FFOH, symbolic manipulation software may be useful.
2 Since the time interval is fixed, all the discrete-time matrices are time-
invariant. Thus, we drop the subscript k in this section.
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mented. Thus, the corresponding solution of (10) is in the form

Π =
[
Πxx Πxu

Π′
xu Πuu

]
, and, hence, the unconstrained cost for any

given initial state x0 is given by 1
2 (x′0Πxxx0 + 2x′0Πxuu0 +

u′0Πuuu0). Since the input u0 is a decision variable, the optimal
unconstrained cost for any given initial state x0 using FFOH is
easily obtained as 1

2x
′
0(Πxx −ΠxuΠ−1

uuΠ′
xu)x0.

Theorem 10. (Fourth order convergence of FFOH). The conver-
gence of ΠII(Δ) = Πxx−ΠxuΠ−1

uuΠ′
xu to P is fourth order for

system matrices Ā = AII − BII(RII)−1(M II)′, B̄ = BII and
cost matrices Q̄ = QII −M II(RII)−1(M II)′, R̄ = RII.

We now show how the optimal discrete-time cost matrices for
different holds are “ordered”.
Theorem 11. (Cost comparison). The following linear matrix
inequalities hold: ΠI(Δ) � Π0(Δ), ΠI(Δ) � ΠII(Δ).

The reader may naturally expect the following ordering also
to hold, ΠII(Δ) � Π0(Δ), but this is not valid for arbitrary
Δ. The discontinuities allowed in ZOH may provide better
performance than the continuous FFOH for large Δ. Of course,
due to the different convergence orders, the ordering does hold
for sufficiently small Δ.

4. ALGORITHM FOR COMPUTATION OF THE
CONTINUOUS-TIME CLQR

4.1 Introduction and main definitions

Motivated by the nice convergence results of the PWLH
and FFOH input parameterizations, we propose computing
a suboptimal solution to problem (3) in terms of an appro-
priate finite number of decision variables, namely the in-
puts (u0, . . . , uN−1), and for the PWLH case also the slopes
(s0, . . . , sN−1). As shown in this section, we can write the
infinite-horizon continuous-time CLQR problem as a finite di-
mensional Quadratic Program, whose complexity is the same
as that of the discrete-time CLQR problem. Furthermore, we
define a procedure for placing the grid points (t0, . . . , tN ) in a
way that the number of decision variables is kept small while
the accuracy of the solution is improved.

Let (t0, . . . , tN ) be a sequence ofN+1 grid points with t0 = 0,
and consider the following suboptimal CLQR problems:

uI = argmin
u

V (x0,u) s.t. Du(t) ≤ d, (6), and

D2u(t) = 0, for t ≥ tN , (11)

uII = argmin
u

V (x0,u) s.t. Du(t) ≤ d, (7), and

D2u(t) = 0, for t ≥ tN , (12)

From what presented so far, we can rewrite the problem (11) as
follows:

min
(uI

0,uI
1,...,uI

N−1)

1
2
x′NP

IxN +
1
2

N−1∑
k=0

x′kQ
I
kxk + (uIk)′RI

ku
I
k

+2x′kM
I
ku

I
k, s.t. (13a)

xk+1 = AI
kxk +BI

ku
I
k, x0 = x(0),

[
D 0
D DΔk

]
uIk ≤

[
d
d

]
,

(13b)

in which P I = P̄ , provided that xN ∈ X .

Similarly, the problem (12) can be rewritten as follows:

min
(xII

0 ,uII
0 ,uII

1 ,...,uII
N−1)

1
2 (xIIN )′P IIxIIN +

1
2

N−1∑
k=0

(xIIk )′QII
k x

II
k +

(uIIk )′RII
k u

II
k + 2(xIIk )′M II

k u
II
k , s.t. (14a)

xIIk+1 = AII
k x

II
k +BII

k u
II
k , IxII0 = x(0),

D[0, I]xII0 ≤ d, DuIIk ≤ d , (14b)

in which P II = I ′P̄I and I = [I, 0], provided that IxIIN ∈ X .

After elimination of the state variables using (13b), prob-
lem (13) can be written as a convex QP in 2mN decision vari-
ables. Similarly, using (14b), the problem (14) can be written
as a convex QP in m(N + 1) decision variables. Notice that
xII0 = [x′0, u

′
0]

′ is a decision variable in (14), but the initial
constraint in (14b) implies that only u0 is a free variable.

Notice that if V I(x0) = V (x0,uI) and V II(x0) = V (x0,uII)
denote the optimal cost-function values for the problems (11)
and (12), respectively, obtained with the same grid points
(t0, . . . , tN ), then it follows that V II(x0) ≥ V I(x0) ≥ V ∗(x0).

4.2 Offline and online computations

The degree of suboptimality of the solution depends on the
number of grid points, where it is clear that a larger number of
intervals would result in a more accurate solution. However, it is
important to observe that, in order to improve the solution, more
grid points need to be placed where input and states are far away
from the origin, whereas when they approach the origin, many
intervals are unnecessary. During this work we tested several
strategies for deciding the number and size of the intervals,
with two desired goals in mind: (i) at each iteration the solution
accuracy is improved, i.e. the computed objective function is
decreased; (ii) the total number of intervals, and hence the
number of QP decision variables, is kept small. We next present
the simplest algorithm that is used offline to generate the QP
associated with (13).
Algorithm 1. Data: maximum time tN , initial number of inter-
vals Θ, number of halving loops Θs.

(1) Compute the Θ intervals (Δ0, . . . ,ΔΘ−1) such that
Δk/Δk+1 = 0.5 and

∑Θ−1
k=0 Δk = tN .

(2) Define the initial sequence of N1 = Θ intervals as P1 =
(Δ1

0, . . . ,Δ
1
N1−1) = (Δ0, . . . ,ΔΘ−1).

(3) Set j ← j + 1 and define the next sequence Pj of
Nj = 2Nj−1 intervals by halving each interval of Pj−1.

(4) If j < Θs + 1 go to 3. Otherwise, for each interval
sequencePj with j = 1, . . . ,Θs+1, compute the matrices
(AI

k, B
I
k, Q

I
k, R

I
K ,M

I
k) in (13), build the associated QP in

the form:
QPj : min

v

1
2v

′Hv + v′Qx0, s.t. Av ≤ b (15)

with v = (uI0, . . . , u
I
Nj−1), storing H, Q, A, b.

For open-loop unstable systems, in order to avoid ill-conditioning
of H, the input variable re-parameterization discussed in (Rossiter
et al., 1998) is recommended.

The next algorithm describes the operations that are performed
online to compute uI(x0).
Algorithm 2. Given x0, the relative cost decrease tolerance μ >
0. Initialize j = 1.
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Fig. 2. System 1: Relative error between P and discrete-time cost Π for ZOH,
FFOH, PWLH vs Δ.

(1) Solve QPj , let V I
j (x0) be the associated optimal cost and

uI
j(x0) the optimal input.

(2) If j = 1, set j ← j + 1 and go to 1. Otherwise,

(3) If the relative cost decrease satisfies
V I

j−1(x0)−V I
j (x0)

V I
j−1(x0)

< μ

or j = Θs + 1, set uI(x0) = uI
j(x0) and stop. Otherwise,

set j ← j + 1 and go to 1.

Notice that if at any iteration j, the solution to QPj is such that
xN /∈ X , then an additional interval of the largest size is added,
i.e. tN ← tN + ΔN−1 and QPj is solved again xN /∈ X . Such
additional intervals are retained also for subsequent iterations.
For efficient online computation it is advised that the matrices
associated with each QPj are built and stored for different
increasing tN , so that the online CPU time is required only for
solving the QPs.

We have the following important result.
Theorem 12. For each iteration j > 1 of Algorithm 2, we have
that:

V I
j (x0) ≤ V I

j−1(x0), for all j > 0 . (16)

It is important to remark that the same cost decrease property
holds true if Algorithm 2 is applied to compute uII(x0).

5. CASE STUDIES

To illustrate the main features of the proposed method, we
present two examples. The first example is a SISO unstable
system, whose transfer function is shown below:

g1(s) = − 6.512s+ 1.628
−2.4390s2 + 3.9756s+ 1

.

The second example is the 3 input, 3 output Shell Control
Problem (Prett and Morari, 1987), for which we use a 10 state
continuous-time model. For both examples we use Q = I ,
R = 0.1I .

In Figure 2 we show, for the first example, the relative error
(evaluated using the 2-norm) between the continuous-time LQR
cost matrix P and the corresponding discrete-time cost matrix
Π obtained with ZOH, FFOH, PWLH as a function of Δ. As
expected from Theorems 8, 9, 10, the orders of convergence for
ZOH is 2, whereas it is 4 for PWLH and FFOH.

Unless otherwise specified, in the subsequent studies we con-
sider input constraints −1 ≤ u ≤ 1, the optimal input uII(x0)
is computed with Algorithm 2 using FFOH input parame-
terization and using a relative tolerance of μ = 10−4. For
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Fig. 3. System 1. Input and output closed-loop response using
CLQR, “saturated” LQR and DLQR.
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Fig. 4. System 2. Closed-loop inputs and outputs using CLQR at decision
times 0, 1, . . ..

System 1 we show in the top plot of Figure 3 the optimal
closed-loop input and output, computed by solving the opti-
mal control problem with the proposed algorithm at decision
times 0, 1, . . . , 7, and implementing the computed infinite hori-
zon input in a receding horizon fashion. For comparison, we
also show the results obtained by: (i) infinite horizon discrete-
time constrained LQR (DLQR), (ii) “saturated” continuous-
time LQR law u = sat (Kx). We observe that DLQR generates
a stable closed-loop response that is fairly different from the
optimal one obtained with CLQR. We also note that Kx0 is
feasible, but nonetheless the saturated LQR makes the closed-
loop system unstable, whereas CLQR and DLQR stabilize the
system in closed-loop (due to the infinite horizon formulation).
Inputs and outputs for System 2 computed with constrained
LQR at the decision times 0, 1, . . . , 200 are shown in Figure 4.

Finally, for System 1, we report in Table 1 the relative cost error,
the number of required intervals, and CPU-time for solving
all the QPs 3 for different values of μ. In computing the rel-
ative cost error, we approximate V ∗(x) with the value obtained
using PWLH-CLQR with μ = 10−8. The data reported in
Table 1 refer to the computation of u(x0) for the same initial
state considered in Figure 3. We report in Table 2 the same
computational study for System 2. We can observe that, when
the number of intervals is the same, PWLH-CLQR achieves
a slightly lower cost than FFOH-CLQR. However, this comes
at the expense of a higher CPU time because PWLH-CLQR

3 Using GNU Octave on an AMD AthlonTM 64 X2 Dual Core Processor
4400+ running Debian Linux.
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Table 1. System 1. Comparison of cost relative error, number of intervals of the final QP and overall CPU-time for solving all
QPs vs. relative tolerance μ for PWLH-CLQR and FFOH-CLQR

PWLH-CLQR Algorithm FFOH-CLQR Algorithm

μ
V I(x0)−V ∗(x0)

V ∗(x0)
N CPU-time (s) V II(x0)−V ∗(x0)

V ∗(x0)
N CPU-time (s)

10−2 1.755 · 10−3 6 0.00012 7.689 · 10−4 12 0.00020
10−3 1.841 · 10−4 24 0.00120 1.883 · 10−4 24 0.00040
10−4 4.495 · 10−8 96 0.0376 4.926 · 10−8 96 0.0075
10−5 4.495 · 10−8 96 0.0376 4.926 · 10−8 96 0.0075
10−6 4.495 · 10−8 96 0.0376 4.926 · 10−8 96 0.0075
10−7 6.408 · 10−9 192 0.360 8.841 · 10−9 192 0.0440
10−8 — 384 3.264 1.468 · 10−9 384 0.444

Table 2. System 2. Comparison of cost relative error, number of intervals of the final QP and overall CPU-time for solving all
QPs vs. relative tolerance μ for PWLH-CLQR and FFOH-CLQR

PWLH-CLQR Algorithm FFOH-CLQR Algorithm

μ
V I(x0)−V ∗(x0)

V ∗(x0)
N CPU-time (s) V II(x0)−V ∗(x0)

V ∗(x0)
N CPU-time (s)

10−2 3.3681 · 10−3 6 0.00040 6.4084 · 10−3 6 0.00027
10−3 5.0657 · 10−5 48 0.334 1.1411 · 10−4 48 0.0267
10−4 8.8931 · 10−7 96 2.40 1.0786 · 10−6 192 2.29
10−5 0 192 15.8 1.0786 · 10−6 192 2.29

optimizes over the input and the slope in each interval, while
FFOH-CLQR optimizes only over the input with the slope fixed
by continuity at the end point of the interval. For instance, for
System 1, with μ = 10−3 PWLH-CLQR optimizes (in the last
QP) over 2mN = 48 decision variables while FFOH-CLQR
overm(N +1) = 25 variables. Also notice that a relative toler-
ance between 10−2 and 10−3 results in small suboptimality. For
these reasons, the most effective algorithm appears to be FFOH-
CLQR, which achieves a solution in 0.40 ms with a relative cost
error of about 1 · 10−4. For System 2, a reasonable value for
μ is also between 10−2 and 10−3. For instance using FFOH-
CLQR with μ = 10−3, we compute a solution in 27 ms with a
relative cost error less than 2 · 10−4. Such a computational time
is clearly negligible compared to the systems dynamics. The
resolution of the actuator in the application also implies a fairly
loose tolerance (∼ 10−3) on the solution should be used. It
obviously makes little sense to compute an optimal input more
accurately than the actuator hardware can resolve.

6. CONCLUSIONS

In this paper we presented a method for solving the infinite
horizon continuous-time constrained linear quadratic regulator,
by solving a finite number of finite dimensional quadratic pro-
grams. A number of unevenly spaced grid points are selected
and adapted on-line to achieve a tolerance specification in the
controller cost. The input parameterization is piecewise linear
on the chosen time intervals; we examined both continuous and
discontinuous parameterizations. The parameterizations guar-
antee exact input constraint satisfaction. Both of these input
parameterizations converge to the optimal solution much more
quickly than piecewise constant inputs, allowing a reduction
in the final number of intervals and, therefore, decision vari-
ables. Furthermore, we derived exact discrete-time matrices
and penalties to avoid quadrature errors, and moved offline all
the computation required for solving ODEs and creating the
Hessian and linear terms in the QPs solved online. Finally,
we presented simulation results for two examples to illustrate
the main ideas. The online complexity of solving the infinite
horizon continuous-time CLQR with the proposed method is no
larger than that required for solving an infinite horizon discrete-
time CLQR problem of the same size.

REFERENCES

Cannon, M. and Kouvaritakis, B. (2000). Infinite horizon
predictive control of constrained linear systems. Automatica,
36, 943–955.

Diehl, M., Ferreau, H.J., and Haverbeke, N. (2008). Efficient
numerical methods for nonlinear MPC and moving horizon
estimation. In Proceedings of the International Workshop on
Assessment and Future Directions of NMPC. Pavia, Italy.

Goebel, R. and Subbotin, M. (2007). Continuous time linear
quadratic regulator with control constraints via convex dual-
ity. IEEE Trans. Auto. Contr., 52(5), 886–892.

Kojima, A. and Morari, M. (2004). LQ control of constrained
continuous-time systems. Automatica, 40, 1143–1155.

Kwakernaak, H. and Sivan, R. (1972). Linear Optimal Control
Systems. John Wiley & Sons.

Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert, P.O.M.
(2000). Constrained model predictive control: Stability and
optimality. Automatica, 36(6), 789–814.

Pannocchia, G., Wright, S.J., and Rawlings, J.B. (2003). Ex-
istence and computation of infinite horizon model predic-
tive control with active steady-state input constraints. IEEE
Trans. Auto. Contr., 48(6), 1002–1006.

Pannocchia, G., Rawlings, J.B., Mayne, D.Q., and Marquardt,
W. (2009). On computing the solutions to the continuous
time constrained linear quadratic regulator. Submitted for
publication in IEEE Trans. Auto. Cont.

Prett, D.M. and Morari, M. (1987). The Shell Process Control
Workshop. Butterworth Publishers.

Rao, C.V. and Rawlings, J.B. (1999). Steady states and con-
straints in model predictive control. AIChE J., 45, 1266–
1278.

Rossiter, J.A., Kouvaritakis, B., and Rice, M.J. (1998). A
numerically robust state-space approach to stable-predictive
control strategies. Automatica, 34, 65–73.

Sakizlis, V., Perkins, J.D., and Pistikopoulos, E.N. (2005).
Explicit solutions to optimal contol problems for contrained
continuous-time linear systems. IEE Proc.-Control Theory
Appl., 152(4), 443–452.

Yuz, J., Goodwin, G., Feuer, A., and De Doná, J. (2005).
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Abstract: Explicit robust multi–parametric feedback control laws are designed for constrained
dynamic systems involving uncertainty in the left-hand side(LHS) of the underlying MPC
optimization model. Our proposed procedure features: (i) a robust reformulation/optimization
step, (ii) a dynamic programming framework for the model predictive control (MPC) problem
formulation, and (iii) a multi-parametric programming solution step.
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1. INTRODUCTION

Robust model predictive control (Robust MPC) is an im-
portant class of constrained, model–based control methods
that can explicitly account for the presence of modeling
uncertainties in the controlled process, which has received
significant attention in control systems research–an indica-
tive list of related publications is given in (Bemporad and
Morari, 1999; Mayne et al., 2000; Sakizlis et al., 2004;
Wang and Rawlings, 2004; Pistikopoulos et al., 2007a) and
references within. On the other hand, explicit MPC, which
has also received equal attention recently (Pistikopoulos
et al., 2002, 2007a), is a control method where the online
MPC optimization problem is solved off–line with multi–
parametric programming methods to obtain the optimal
control actions as a set of functions of the system states.
The MPC controller can then be implemented online as a
set of simple feedback control laws based on function eval-
uations instead of using online optimization with complex
and increased computational demands.

Despite these significant advances, explicit, robust MPC
is still an important area of research. It is evident from
the relevant literature (Bemporad et al., 2003; Wang and
Rawlings, 2004; Pistikopoulos et al., 2007a) that, even
for the case of linear MPC, the underlying optimization
model of the MPC is nonlinear due to the uncertainties
appearing both in the left–hand side and right–hand side of
the optimization constraints (Borrelli, 2003; Pistikopoulos
et al., 2007a). This imposes difficulties for the application
of the existing multi–parametric programming techniques
and special treatment is required to ensure that the
constraints are always satisfied (Bemporad et al., 2003;
Kouramas et al., 2009).

� This work is supported by EPSRC (GR/T02560/01,
EP/E047017/1) and European Commission (PRISM ToK project,
Contact No: MTKI-CT-2004-512233 and DIAMANTE ToK project,
Contract No: MTKI-CT-2005-IAP-029544)

Explicit robust MPC was investigated in Sakizlis et al.
(2004) for the case of linear dynamic systems with ad-
ditive state disturbances (right–hand side uncertainty in
the optimization model). A dynamic programming based
method, for linear dynamic systems with linear objec-
tive costs and uncertainties in left–hand side of the op-
timization model was studied in Bemporad et al. (2003).
Furthermore, an explicit robust MPC with a quadratic
objective and left–hand side uncertainties, based on robust
optimization methods (Ben-Tal and Nemirovski, 2000; Lin
et al., 2004), was presented in Kouramas et al. (2009)
where the MPC optimization is treated as a robust multi–
parametric optimization problem. Explicit robust MPC
problems with quadratic costs have not yet been fully
studied since the underlying multi–parametric optimiza-
tion problem becomes nonlinear due to the uncertain co-
efficients in the constraints (Kouramas et al., 2009). On
the other hand, employing dynamic programming methods
for even the simple case of explicit MPC (with no un-
certainties) results either into solving a demanding global
optimization problem (Fáısca et al., 2008) at each stage
of the dynamic programming procedure or overlapping
critical regions in the explicit solution.

This work presents a novel method for Explicit Robust
Model Predictive Control based on dynamic programming
methods (Bellman (2003); Fáısca et al. (2008)) and robust
optimization techniques (Ben-Tal and Nemirovski, 2000;
Lin et al., 2004) that (i) allows the use of quadratic
objective functions, (ii) accounts for the uncertainties in
the left–hand side of the underlying MPC optimization
problem, and (iii) overcomes the limitations of previous
methods and the need for global optimization at each stage
of the dynamic programming.

We focus on the following explicit robust MPC problem
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V ∗(x) = min
U
J(U, x)

= min
U

N−1∑
k=0

{xT
kQxk + uT

kRuk}+ xT
NPxN (1)

s.t. xk+1 = Axk +Buk, ∀ ΔA ∈ A, ΔB ∈ B
Cxk ≤ d, k = 0, 1, . . . , N
Muk ≤ μ, k = 0, 1, . . . , N − 1
TxN ≤ τ
x = x0

where x ∈ Rn is the system state, u ∈ Rm is the system
input and N the prediction horizon. We assume that the
underlying system is uncertain in that the system matrices
are described as
xk+1 = Axk +Buk, A = A0 + ΔA, B = B0 + ΔB (2)
ΔA ∈ A = {ΔA ∈ Rn×n| − εa|A0| ≤ ΔA ≤ εa|A0|}
ΔB ∈ B = {ΔB ∈ Rn×n| − εβ |B0| ≤ ΔB ≤ εβ |B0|}

where A0, B0 are of known constant values but the values
of matrices ΔA,ΔB are not known but are bounded as
given in (2) and εa, εβ ∈ [0, 1). The system states and
inputs are also subject to the following linear constraints

x ∈ X = {x ∈ Rn|Cx ≤ d} (3)
u ∈ U = {u ∈ Rm|Mu ≤ μ} (4)

where the sets X ,U are assumed to be compact, non-empty
polytopic sets that include the origin in their interior and
with C ∈ Rnc×n, d ∈ Rnc , M ∈ RmM×m and μ ∈ RmM .
The proposed approach and the underlying mathematical
framework for solving (1) will be discussed in detail in the
following sections.

2. EXPLICIT ROBUST MODEL PREDICTIVE
CONTROL

The proposed approach is realized in three key steps:

(1) dynamic programming: the MPC optimization is re-
cast in a multi-stage optimization setting,

(2) robust reformulation: the constraints at each stage
are reformulated to account for the worst-case uncer-
tainty, and

(3) multi-parametric programming: each one of the re-
formulated stages is solved as multi-parametric pro-
gramming problems where the optimization variables
are the incumbent control inputs, given the optimal
solutions of the previous steps.

These steps are described in detail in the following.

2.1 Dynamic Programming – Multi-stage optimization

The robust MPC problem (1) can be expressed as a multi–
stage optimization problem since it involves a discrete-time
dynamic system and a stage–additive quadratic objective
function. The same procedure was applied for the nominal
system case (where εa, εβ = 0) in Fáısca et al. (2008)
Dynamic programming techniques (Bellman, 2003) can
be applied to decompose (1) into a set of stage-wise
problems of smaller dimensions, significantly reducing the
complexity of the initial problem (Bellman (2003) and
Fáısca et al. (2008)) - at each stage k the following
optimization problem is considered

Vk(xk) = min
uk∈U

Jk(uk, xk)

= min
uk∈U

N−1∑
i=k

{xT
i Qxi + uT

i Rui}+ xT
NRxN (5)

s.t. xi+1 = Axi +Bui, i = k, . . . , N
Cxk ≤ d, Cxk+1 ≤ d, Muk ≤ μ,
∀ ΔA ∈ A, ΔB ∈ B

The optimization is taken only on the current stage input
uk and only the constraints on xk and xk+1 have to be
considered. The main idea is to solve the single–stage
optimization problem (5) as a robust mp–QP problem and
obtain the control variable uk at each stage as an explicit
function of current state xk

uk = f∗k (xk) (6)
or

uk = Ki
kxk + cik if xk ∈ CRi

k , i = 1, . . . , Lk

A method for solving (5) as a robust mp–QP problem
and deriving (6) is presented in the following sections.
The proposed procedure for solving (1) as a multi-stage
problem is the following: starting from time k = N − 1,
problem (5) is solved iteratively at each time k until k = 0
where the procedure stops. At the initial stage k = N − 1
the extra terminal constraint TxN ≤ τ should also be
added in (5).

In order to ensure that a feasible solution uk exists for
all k = 0, 1, . . . N − 1 an extra feasibility constraint is
introduced in each of the single stage problems (5)

xk+1 ∈ X k+1 , X k+1 = ∪Lk+1
i=1 CR

i
k+1 (7)

where X k+1 is the union of all critical regions of the
explicit solution uk+1 = f∗k+1(xk+1) from the previous
stage k + 1 i.e. X k+1 is the set of states xk+1 for which
the optimization problem at the stage k+ 1 has a feasible
solution. Since the set of all critical regions is a convex
polyhedral set (Pistikopoulos et al., 2002), the set X k+1 is
given by a set of linear inequalities

X k+1 = {x ∈ Rn|Hk+1x ≤ hk+1} (8)
Adding the constraints (8) in (5) will ensure that the
future state xk+1 lies in the set X k+1 and hence one of
the critical regions CRi

k+1, and therefore a feasible control
input uk+1 = f∗k+1(xk+1) at time k + 1 can be obtained.
For simplicity the inequalities Cxk+1 ≤ d and (8) will be
replaced by the single inequality

Gkxk+1 ≤ bk

where Gk = [CT Hk+1T ]T and bk = [dT hk+1T ]T .

We will now proceed to describe how to reformulate
(5) to a robust mp–QP problem. Considering uk as the
optimization variable and θk =

[
xT

k u
T
k+1 . . . u

T
N−1

]T as
the vector of parameters, and by incorporating the system
dynamics xk+1 = Axk + Buk into the objective and
constraints, one obtains the following multi-parametric
optimization problem
Vk(xk) = min Jk(uk, θk)

= min
uk∈U

{
1
2
uT

kHuk + θTk Fuk

}
+ θTk Y θk (9)

s.t. GkAxk + GkBuk ≤ bk, Cxk ≤ d, Muk ≤ μ
∀ ΔA ∈ A, ΔB ∈ B
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where the matrices H, F , Y are functions of the matrices
A, B, Q and R. When there is no uncertainty in the
underlying system dynamics εa = εβ = 0, (5) is a simple
mp–QP problem and can be solved with the known mp–
QP method (Pistikopoulos et al., 2007b). However, in the
presence of uncertainty (when εa, εβ ∈ [0, 1) are non-zeros)
special treatment of (9) is required to reformulate it into
mp–QP problem.
Remark 1. In conventional dynamic programming, the op-
timal value uk+1 = f∗k+1(xk+1) would have been incorpo-
rated into the formulation of (14) to create an optimiza-
tion problem where only uk is the optimization variable
and xk the parameter. However, even for the simple case
with no uncertainties, this would have resulted into a
nonlinear multi–parametric programming problem (since
uk+1 = f∗k+1(xk+1) is a piecewise affine function) that
would need to employ global optimization methods to be
solved (Borrelli, 2003; Fáısca et al., 2008). Our approach
is based on the work of Fáısca et al. (2008) for the case
of explicit MPC with no uncertainties, where this issue is
overcome by substituting previous solutions uk+1 in the
current solution uk after the multi–parametric program-
ming has been solved.

2.2 Robustification Step

The main issue for applying multi-parametric optimization
techniques for the solution of (9) is the presence of the un-
certain matrices A,B in the objective and the inequalities
of (9). The objective function can be set to penalize only
the behaviour of the nominal system xk+1 = A0xk +B0uk,
that is to say the objective function in (9) is formed
by replacing xk+1 = A0xk + B0uk in the objective (5)
and H, F , Y are constant matrices. However, it is very
important to guarantee the feasibility of the constraints in
the presence of the uncertainty. Problem (9) can then be
recast as

Vk(xk) = min
uk∈U

{
1
2
uT

kHuk + θTk Fuk

}
+ θTk Y θk (10)

s.t. GkA0xk + GkΔAxk + GkB0uk + GkΔBuk ≤ bk
Cxk ≤ d, Muk ≤ μ, ∀ ΔA ∈ A, ΔB ∈ B

It is obvious from (10) that due to variations of ΔA,ΔB
constraint violations might occur. Solving (10) is a robust
multi-parametric optimization problem where uk is the
optimization variable and θk is the vector of parameters.
The objective is to find a solution u∗k(θk) which can
guarantee constraint satisfaction for all admissible values
of the uncertainty i.e. for all ΔA ∈ A and ΔB ∈ B.
Definition 2.1. A solution u∗k(θk) of robust mp-QP prob-
lem (10) is a robust or reliable solution if it is feasible
for (10) both for the nominal system (A = A0, B = B0)
and the uncertain system i.e. if it is feasible for all ad-
missible values of the uncertainty i.e. for all ΔA ∈ A and
ΔB ∈ B.

In order to avoid constraint violations, the constraints
have to be immunized against the model uncertainty (see
Ben-Tal and Nemirovski (2000) and Lin et al. (2004)). In
order to account for the uncertainty in (10), the inequality
constraints of (10) are replaced by the following two
inequalities

GkA0xk + GkB0uk ≤ d (11)

GkA0xk + εa|Gk||A0||xk|+ GkB0uk

+ εβ |Gk||B0||uk| ≤ bk + δmax{1, |d|} (12)
The first inequality ensures that the problem is feasible for
the nominal system case while the second inequality rep-
resents the realisation of the constraint for the worst-case
value of the uncertainty. The newly introduced variable δ
is a measure of the infeasibility tolerance for the constraint
in the problem i.e. how much the constraint can be relaxed
to ensure a feasible solution. If no infeasibility is allowed
then δ = 0.

Replacing the new constraints (11)–(12) into (10) results
into a multi–parametric nonlinear programming problem.
To overcome this, (12) is replaced by the following linear
inequalities

GkA0xk + εa|Gk||A0|zk + GkB0uk

+ εβ |Gk||B0|ωk ≤ bk + δmax{1, |d|} (13)
− zk ≤ xk ≤ zk, −ωk ≤ uk ≤ ωk, zk, ωk ≥ 0

It is obvious that if a pair xk, uk satisfies (13) then,
since |xk| ≤ zk and |uk| ≤ ωk, it also satisfies (12). By
replacing (13) in (10) the new robust mp–QP formulation
is obtained for each stage

Vk(xk) = min
uk,zk,ωk

{
1
2
uT

kHuk + θTk Fuk

}
+ θTk Y θk (14)

s.t. GkA0xk + GkB0uk ≤ bk
GkA0xk + εa|Gk||A0|zk + GkB0uk

+ εβ |Gk||B0|ωk ≤ bk + δmax{1, |d|}
− zk ≤ xk ≤ zk, −ωk ≤ uk ≤ ωk, zk, ωk ≥ 0
Cxk ≤ d, Muk ≤ μ

where now the parameters are θk, the optimization vari-
able is πk =

[
uT

k , z
T
k , ω

T
k

]T , the objective function is a
quadratic function and the constraints are all linear in-
equalities. The new formulation (14) is an mp–QP problem
and can be solved by employing the mp–QP methods of
Pistikopoulos et al. (2002) and Pistikopoulos et al. (2007b)
which is discussed next.

2.3 Multi–Parametric Quadratic Programming

In order to solve (14) as an mp–QP problem, the following
three steps have to be followed

Step 1. The Karush–Kuhn–Tucker (KKT) conditions
are first applied for problem (14) (see Bazaraa and Shetty
(1979)):
∇L(πk, λ, θk) = 0, λiψi(πk, θk) = 0, ∀ i = 1, . . . , p

L = Jk(πk, θk) +
p∑

i=1

λiψi(πk, θk) (15)

where Jk(πk, θk) is the objective function of (14), ψ(πk, θk) ≤
0 is the vector of the inequality constraints in (14) and λ
is the vector of the Lagrange multipliers.

Step 2. The basic sensitivity theorem (Fiacco (1976)) is
then applied to the KKT conditions (15). For simplicity
we set θ = θk and π = πk.
Theorem 2. Let θ0 be a vector of parameter values and
(π0, λ0, μ0) a KKT triple corresponding to (15), where
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λ0 is nonnegative and π0 is feasible in (14). Also as-
sume that (i) strict complementary slackness (SCS) holds,
(ii) the binding constraint gradients are linearly inde-
pendent (LICQ: Linear Independence Constraint Qualifi-
cation), and (iii) the second-order sufficiency conditions
(SOSC) hold. Then, in neighbourhood of θ0, there ex-
ists a unique, once continuously differentiable function,
z(θ) = [π(θ), λ(θ)], satisfying (15) with z(θ0) = [π(θ0),
λ(θ0)] where π(θ) is a unique isolated minimiser for (14),
and (

dπ(θ0)/dθ
dλ(θ0)/dθ

)
= − (M0)−1N0, (16)

where, M0 and N0 are the Jacobians of system (15) with
respect to z and θ (Fiacco, 1983, pp. 80–81), (Pistikopoulos
et al., 2002).

Step 3. A general analytic expression for πk is then
derived by applying the following corollary of Dua et al.
(2002)
Corollary 3. First-order estimation of π(θ), λ(θ), near θ =
θ0 (Fiacco, 1983): Under the assumptions of Theorem 2,
a first-order approximation of [π(θ), λ(θ)] in a neighbour-
hood of θ0 is,[

π(θ)
λ(θ)

]
=
[
π0
λ0

]
+ (M0)

−1 ·N0 · θ + o(||θ||), (17)

where (π0, λ0) = [π(θ0), λ(θ0)],M0 =M(θ0), N0 = N(θ0),
and φ(θ) = o(||θ||) means that φ(θ)/||θ|| → 0 as θ → θ0.
The critical region (set of θ) where (17) remains optimal
can then be obtained as follows (Dua et al., 2002). If ψ̆ cor-
responds to the non-active constraints, and λ̃ corresponds
to the active constraints then each critical region is defined
by

ψ̆(u(θk), θk) ≤ 0 (Feasibility conditions),
λ̃(θk) ≥ 0 (Optimality conditions).

(18)

It is obvious from step 1.–3. and corollary 3 that the the
explicit solution π∗k of (14) is given by a conditional piece-
wise linear function (Dua et al. (2002) and Pistikopoulos
et al. (2007a)) i.e. πk = f∗k (θk). Consequently, the control
uk is also obtained as an explicit function of the parameter
θk as follows

uk = f∗k (θk) = f∗k (xk, uk+1, . . . , uN−1) (19)
or
uk = Ki

kθk + cik, if θk ∈ CRi
k, i = 1, . . . , Lk (20)

where Ki
k, cik are matrices and vectors of appropriate

dimensions and the critical regions CRi
k ⊂ Rn are sets

defined by (18). The same procedure repeats iteratively,
starting at k = N−1 and stopping at k = 0 and hence the
full profile of control policies uk(θk), k = 0, 1, . . . , N − 1 is
derived.

Although uk is a function of θk, the objective is to obtain
uk as an explicit control function of the incumbent state
xk thus obtaining a feedback control strategy. We can
overcome this issue by following an approach similar to
Fáısca et al. (2008) for the nominal explicit MPC case.
As the procedure is repeated repetitively and backwards

from k = N−1 to k = 0, the control inputs uk+1, . . . , uN−1

before stage k are obtained as in (19)
uk+1 = f∗k+1(xk+1, uk+2, . . . , uN−1)

...
uN−1 = f∗N−1(xN−1)

(21)

All the above control inputs are piecewise linear func-
tions of their arguments. Note also that since the control
inputs uk+1, . . . , uN−1 are functions of the future states
xk+1, . . . , xN−1 they are also functions of the incumbent
input uk and state xk. By incorporating the previous solu-
tions (21) into (19) and by performing algebraic manipula-
tion we obtain the explicit control law uk = f∗k (xk) (see for
more details Fáısca et al. (2008)). The final critical regions
of uk = f∗k (xk) are defined as a union of the inequalities
(of the critical regions) of (19) and of each of the critical
regions of (21). This results in (i) realisable feasible sets
of inequalities describing the feasible critical regions of
uk = f∗k (xk) and (ii) empty sets of inequalities where
no feasible solution exists. Feasibility tests, as the ones
presented in Fáısca et al. (2008), are finally performed,
during the substitution of (21) into (19), to obtain the
final feasible critical regions.

2.4 Algorithm for Robust mp–MPC

The dynamic programming based procedure that was
described above is summarized in table 1. The Algorithm
starts at k = N−1 and iterates through Steps 2 and 3 until
k = 0. At the kth stage of the algorithm, problem (14) is
solved following the analysis in sections 2.1–2.3. Each of
the inputs uk is obtained as an explicit function of the
corresponding state xk i.e. uk = fk(xk) where fk(xk) is a
piecewise linear function similar to (6). At the termination
of the algorithm a sequence of admissible control policies
is obtained u∗0 = f∗0 (x0), u∗1 = f∗1 (x1), . . . , u∗N−1 =
f∗N−1(xN−1). Each of these control policies are reliable (or
robust) control policies for each of the stage problems (14).
Since each control policy also guarantees that the state and
input constraints xk ∈ X and uk ∈ U at each stage are
satisfied, then the control sequence U = {u∗0, u∗1 . . . u∗N−1}
is also a robust solution for the initial robust mp-MPC
problem (1). The following lemma can then be stated
Lemma 4. The control sequence U = {u∗0, u∗1 . . . u∗N−1},
where u∗k, k = 0, 1, . . . , N − 1 are the optimal control
policies obtained by solving (14) iteratively using the
algorithm in table 1, is a robust (or reliable solution) of (1).

Table 1. Algorithm for Robust Multi–
Parametric MPC

Step 1. Set k = N − 1: solve the mp-QP problem (14) with
xN−1 being the parameters and obtain u∗

N−1 =
f∗

N−1(xN−1).

Step 2. Set k to the current stage: solve the kth stage–wise
mp–QP problem (14) with xk, uk, . . . , uN−1 being the
parameters and obtain u∗

k = f∗
k (xk, uk, . . . , uN−1).

Step 3. Obtain the control law uk = fk(xk) by comparing the
sets of solutions (19) and (21).

Step 4. Set k = k − 1: if k = 0 stop, else go to Step 2.

The main advantage of the proposed algorithm is that it
can handle robust Model Predictive Control problems with
quadratic objectives in the presence of uncertainties in the
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LHS of the underlying optimization model at each stage
of the proposed dynamic programming procedure. This
is achieved by treating the optimization problem for each
stage of the procedure as a convex robust mp–QP problem
(14) with linear constraints, avoiding the nonlinearities
introduced by the presence of uncertainty in (11).

The introduction of the two new variables z, ω also results
in an increase of the number of constraints in the opti-
mization as it can be seen from (13). The total number
of optimization variables in the resulting robust mp–QP
problem (14) is 2m + n, while the total number of linear
inequalities is 2nc + mM + n + m. One can notice that
both the number of optimization variables and inequalities
for problem (14), after the robustification step, is linear
with the number of system states and inputs. Thus the
complexity of the mp–QP problem is not significantly
increased. Finally, the number of parameters of the mp–
QP (14) at each stage is equal to n+ (N − k− 1)m, hence
it increases as k decreases. This will have an important
effect on the number of critical regions at each stage and
eventually in the overall number of critical regions.

3. EXAMPLE

Consider the following robust MPC example where

A0 =
[

1 1
0 1

]
, B0 =

[
0
1

]
, εa = εβ = 0.2

[
−10
−10

]
≤ xk ≤

[
10
10

]
, −1 ≤ uk ≤ 1

Q =
[

1 0
0 1

]
, R = 1 , P =

[
2.6005 2.081
2.081 3.3306

]
, N = 3

The target set in this example is considered to be simply
the set of state constraints while δ = 0 is set equal to zero.
The algorithm, presented in Table 1, is applied and the
results can be seen in Figures 1, 2, 3. In the first iteration
of the algorithm the robust multi-parametric programming
problem (14) for k = 2 is solved, where the parameter
is θ2 = x2. The critical regions of the explicit solution
u2 = f2(x2) are shown in Figure 1. Then, the procedure
is repeated for the stages k = 1 and k = 0 to obtain
the explicit controls u1 = f1(x1) and u0 = f0(x0). The
critical regions for these stages are shown in Figures 2
and 3 respectively. One can notice that the area of the
critical regions at each stage k decreases as k decreases.
This happens since the set of states which can be driven to
the target set (which here is the set of constraints) reduces
as k reduces. Also, the number of critical regions increases
since at each stage the number of parameters increases.
Two different simulations for two different initial states
of the explicit robust MPC control is shown in Figure 4
where the system matrices A,B are perturbed around their
nominal values. Finally, table 1 shows some of the critical
regions and corresponding control functions for the explicit
solution at stage 0.

4. CONCLUDING REMARKS

A new algorithm for robust multi–parametric MPC was
presented when uncertainty is introduced in the LHS of the

Fig. 1. Critical regions of the explicit robust MPC for stage
2, u2 = f2(x2)

Fig. 2. Critical regions of the explicit robust MPC for stage
1, u1 = f1(x1)

Fig. 3. Critical regions of the explicit robust MPC for stage
0, u0 = f0(x0)

underlying MPC optimization model. Based on dynamic
programming and robust optimization, the algorithm ob-
tains the control input explicitly as function of the states
by solving a set of convex mp–QP problems and avoid the
need for employing multi–parametric global optimization.
Current work is focusing on the generalisation of the pre-
sented results to the following problems: (i) explicit robust
MPC of constrained dynamic systems with uncertainty
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Fig. 4. Simulation of the uncertain system state trajectory
with explicit robust MPC.

Table 2. Critical Regions and the correspond-
ing Control Laws for stage 0

Critical

Regions

No.

Control Law Critical Regions

1 u = 1

⎡⎣ 0.2174 1

0 1

−0.5 −1

−0.3333 −1

1 0

⎤⎦ x ≤

⎡⎣ −1.748

−1.01

5.5

4.3333

−0.01

⎤⎦
2 u = 1

[
0.2174 1

−0.3333 −1

−1 0

1 0

]
x ≤

[ −1.7480

4.3333

0.01

0.0050

]

3 u = −1

⎡⎢⎣
−0.2513 −1

0.9 1

0 1

0 −1

−0.7821 −1

−1 −0.9524

⎤⎥⎦ x ≤

⎡⎢⎣
−0.1791

6.65

−1.6562

2.1250

−4.5301

−6.3333

⎤⎥⎦

4 u = −0.5662x1 −
1.3573x2 +1.0378

⎡⎣ −1 −0.2757

0.4172 1

1 0.631

−0.4172 −1

−1 −0.555

⎤⎦ x ≤

⎡⎣ −7.8743

1.5014

7.3523

−0.7720

−7.0852

⎤⎦

5 u = −0.4701x1 −
1.3476x2 −0.0001

⎡⎣ 1 0.9042

−1 −1

−1 −0.7395

−1 −0.1585

1 1

⎤⎦ x ≤

⎡⎣ 0.079

0.01

−0.0211

−0.0579

0.005

⎤⎦
and additive disturbance, both in the LHS and RHS of the
underlying multi–parametric optimization model (Sakizlis
et al. (2004)), (ii) explicit robust MPC of hybrid systems
– based on multi–parametric Mixed Integer Linear Pro-
gramming (Fáısca et al. (2009)) and (iii) multi–parametric
Global Optimisation (Dua et al. (2004))..
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Abstract: In this paper, we consider the problem of Adaptive model predictive control subject
to exogenous disturbances. Using a novel set-based adaptive estimation, the problem of robust
adaptive MPC is proposed and solved for a class of linearly parameterized uncertain nonlinear
systems subject to state and input constraints. Two formulations of the adaptive MPC routine
are proposed. A minmax approach is first considered. A Lipschitz-based formulation, amenable
to real-time computations, is then proposed. A chemical reactor simulation example is presented
that demonstrates the effectivenessof the technique.

Keywords: Adaptive control, Robust MPC, Nonlinear MPC

1. INTRODUCTION

Most physical systems possess consists of parametric and
non-parametric uncertainties and the system dynamics
can be influenced by exogeneous disturbances as well.
Examples in chemical engineering include reaction rates,
activation energies, fouling factors, and microbial growth
rates. Since parametric uncertainty may degrade the per-
formance of MPC, mechanisms to update the unknown
or uncertain parameters are desirable in application. One
possibility would be to use state measurements to update
the model parameters off-line. A more attractive possi-
bility is to apply adaptive extensions of MPC in which
parameter estimation and control are performed online.
In this paper, we extend an adaptive MPC framework to
nonlinear systems with both constant parametric uncer-
tainty and additive exogenous disturbances.

The literature contains very few results on the design
of adaptive nonlinear MPC Adetola and Guay (2004);
Mayne and Michalska (1993). Existing design techniques
are restricted to systems that are linear in the unknown
(constant) parameters and do not involve state constraints.
Although MPC exhibits some degree of robustness to un-
certainties, in reality, the degree of robustness provided by
nominal models or certainty equivalent models may not be
sufficient in practical applications. Parameter estimation
error must be accounted for in the computation of the
control law.

This paper is inspired by DeHaan and Guay (2007);
DeHaan et al. (2007). While the focus in DeHaan and
Guay (2007); DeHaan et al. (2007) is on the use of
adaptation to reduce the conservatism of robust MPC
controller, this study addresses the problem of adaptive
MPC and incorporates robust features to guarantee closed-
loop stability and constraint satisfaction. Simplicity is
achieved here-in by generating a parameter estimator for
the unknown parameter vector and parameterizing the
� The authors would like to acknowledge the financial support of the
Natural Sciences and Engineering Research Council of Canada.

control policy in terms of these estimates rather than
adapting a parameter uncertainty set directly.

First, a min-max feedback nonlinear MPC scheme is com-
bined with an adaptation mechanism. The parameter es-
timation routine are used to update the parameter un-
certainty set, at certain time instants, in a manner that
guarantees non-expansion of the set leading to a gradual
reduction in the conservativeness or computational de-
mands of the algorithms. The min-max formulation explic-
itly accounts for the effect of future parameter estimation
and automatically injects some useful excitation into the
closed-loop system to aid in parameter identification.

Second, the technique is extended to a less computa-
tionally demanding robust MPC algorithm. The nominal
model rather than the unknown bounded system state is
controlled, subject to conditions that ensure that given
constraints are satisfied for all possible uncertainties. State
prediction error bound is determined based on assumed
Lipschitz continuity of the model. Using a nominal model
prediction, it is impossible to predict the actual future
behavior of the parameter estimation error as was possible
in the min-max framework. It is shown how the future
model improvement over the prediction horizon can be
considered by developing a worst-case upper bound on the
future parameter estimation error. The conservativeness
of the algorithm reduces as the error bound decreases
monotonically over time.

The paper is as follows. The problem description is given
in section 2. The parameter estimation routine is presented
in section 3.Two approaches to robust adpative model
predictive control are detailed in section 4. This is followed
by a simulation example in section 5 and brief conclusions
in section 6.

2. PROBLEM SET-UP

Consider the uncertain nonlinear system
ẋ = f(x, u) + g(x, u)θ + ϑ � F(x, u, θ, ϑ) (1)
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where the disturbance ϑ ∈ D ⊂ Rnd is assumed to satisfy
a known upper bound ‖ϑ(t)‖ ≤Mϑ <∞. The objective of
the study is to (robustly) stabilize the plant to some target
set Ξ ⊂ Rnx while satisfying the pointwise constraints
x ∈ X ∈ Rnx and u ∈ U ∈ Rnu . The target set is a compact
set, contains the origin and is robustly invariant under no
control. It is assumed that θ is uniquely identifiable and
lie within an initially known compact set Θ0 = B(θ0, zθ)
where θ0 is a nominal parameter value, zθ is the radius of
the parameter uncertainty set.

3. PARAMETER AND UNCERTAINTY SET
ESTIMATION

3.1 Parameter Adaptation

Let the estimator model for (1) be selected as

˙̂x = f(x, u) + g(x, u)θ̂ + kw e+ w ˙̂
θ, kw > 0 (2)

ẇ = g(x, u)− kw w, w(t0) = 0. (3)
resulting in state prediction error e = x− x̂ and auxiliary
variable η = e− wθ̃ dynamics:

ė = g(x, u)θ̃ − kw e− w ˙̂
θ + ϑ

e(t0) = x(t0)− x̂(t0) (4)
η̇ = −kw η + ϑ, η(t0) = e(t0). (5)

Since ϑ is not known, an estimate of η is generated from
˙̂η = −kw η̂, η̂(t0) = e(t0). (6)

with resulting estimation error η̃ = η − η̂ dynamics
˙̃η = −kw η̃ + ϑ, η̃(t0) = 0. (7)

Let Σ ∈ Rnθ×nθ be generated from

Σ̇ = wTw, Σ(t0) = α I � 0, (8)
based on equations (2), (3) and (6), thye preferred param-
eter update law is given by

Σ̇−1 = −Σ−1wTwΣ−1, Σ−1(t0) =
1
α
I (9a)

˙̂
θ = Proj

{
γ Σ−1wT (e− η̂), θ̂

}
,

θ̂(t0) = θ0 ∈ Θ0 (9b)

where γ = γT > 0 and Proj{φ, θ̂} denotes a Lipschitz
projection operator such that

− Proj{φ, θ̂}T θ̃ ≤ −φT θ̃, (10)

θ̂(t0) ∈ Θ0 ⇒ θ̂(t) ∈ Θ0
ε , ∀ t ≥ t0. (11)

where Θ0
ε � B(θ0, z0θ +ε), ε > 0. More details on parameter

projection can be found in Krstic et al. (1995). To proof
the following lemma, we need the following result
Lemma 1. Desoer and Vidyasagar (1975) Consider the
system

ẋ(t) = Ax(t) + u(t) (12)
Suppose the equilibrium state xe = 0 of the homogeneous
equation is exponentially stable,

(1) if u ∈ �Lp for 1 < p <∞, then x ∈ �Lp and
(2) if u ∈ �Lp for p = 1 or 2, then x→ 0 as t→∞.
Lemma 2. The identifier (9) is such that the estimation
error θ̃ = θ − θ̂ is bounded. Moreover, if

ϑ ∈ L2 or
∫ ∞

t0

[
‖η̃‖2 − γ ‖e− η̂‖2

]
dτ < +∞

(13)

with γ = λmin (γ) and the strong condition

lim
t→∞λmin

(
Σ
)

= ∞ (14)

is satisfied, then θ̃ converges to zero asymptotically.

Proof: Let Vθ̃ = θ̃T Σ θ̃, it follows from (9) and the
relationship wθ̃ = e− η̂ − η̃ that

V̇θ̃ ≤ −2γ θ̃TwT (e− η̂) + θ̃TwTwθ̃

= −γ (e− η̂)T (e− η̂) + ‖η̃‖2, (15)

implying that θ̃ is bounded. Moreover, it follows from (15)
that

Vθ̃(t) = Vθ̃(t0) +
∫ t

t0

V̇θ̃(τ)dτ (16)

≤ Vθ̃(t0)− γ
∫ t

t0

‖e− η̂‖2 dτ +
∫ t

t0

‖η̃‖2 dτ (17)

Considering the dynamics of (7), if ϑ ∈ L2, then η̃ ∈ L2

(Lemma 1). Hence, the right hand side of (17) is finite in
view of (13), and by (14) we have
limt→∞ θ̃(t) = 0

3.2 Set Adaptation

An update law that measures the worst-case progress of
the parameter identifier in the presence of disturbance is
given by:

zθ =

√
Vzθ

λmin(Σ)
(18a)

Vzθ(t0) = λmax

(
Σ(t0)

)
(z0θ)2 (18b)

V̇zθ = −γ (e− η̂)T (e− η̂) +
(Mϑ

kw

)2

. (18c)

Using the parameter estimator (9) and its error bound zθ
(18), the uncertain ball Θ � B(θ̂, zθ) is adapted online
according to the following algorithm:
Algorithm 1. Beginning from time ti−1 = t0, the param-
eter and set adaptation is implemented iteratively as fol-
lows:

1 Initialize zθ(ti−1) = z0θ , θ̂(ti−1) = θ̂0 and Θ(ti−1) =
B(θ̂(ti−1), zθ(ti−1)).

2 At time ti, using equations (9) and (18) perform the
update

(
θ̂, Θ

)
=

⎧⎪⎪⎨⎪⎪⎩
(
θ̂(ti), Θ(ti)

)
, if zθ(ti) ≤ zθ(ti−1)

−‖θ̂(ti)− θ̂(ti−1)‖(
θ̂(ti−1), Θ(ti−1)

)
, otherwise

(19)
3 Iterate back to step 2, incrementing i = i+ 1.

The algorithm ensure that Θ is only updated when zθ
value has decreased by an amount which guarantees a
contraction of the set. Moreover zθ evolution as given in
(18) ensures non-exclusion of θ as shown below.
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Lemma 3. The evolution of Θ = B(θ̂, zθ) under (9), (18)
and algorithm 1 is such that

i) Θ(t2) ⊆ Θ(t1), t0 ≤ t1 ≤ t2
ii) θ ∈ Θ(t0) ⇒ θ ∈ Θ(t), ∀t ≥ t0

Proof:

i) If Θ(ti+1) � Θ(ti), then

sup
s∈Θ(ti+1)

‖s− θ̂(ti)‖ ≥ zθ(ti). (20)

However, it follows from triangle inequality and algo-
rithm 1 that Θ, at update times, obeys

sup
s∈Θ(ti+1)

‖s− θ̂(ti)‖

≤ sup
s∈Θ(ti+1)

‖s− θ̂(ti+1)‖+ ‖θ̂(ti+1)− θ̂(ti)‖

≤ zθ(ti+1) + ‖θ̂(ti+1)− θ̂(ti)‖ ≤ zθ(ti),
which contradicts (20). Hence, Θ update guarantees
Θ(ti+1) ⊆ Θ(ti) and the strict contraction claim
follows from the fact that Θ is held constant over
update intervals τ ∈ (ti, ti+1).

ii) We know that Vθ̃(t0) ≤ Vzθ(t0) (by definition) and
it follows from (15) and (18c) that V̇θ̃(t) ≤ V̇zθ

(t).
Hence, by the comparison lemma, we have

Vθ̃(t) ≤ Vzθ(t), ∀t ≥ t0. (21)

and since Vθ̃ = θ̃T Σ θ̃, it follows that

‖θ̃(t)‖2 ≤ Vzθ(t)
λmin(Σ(t))

= z2θ(t), ∀t ≥ t0. (22)

Hence, if θ ∈ Θ(t0), then θ ∈ B(θ̂(t), zθ(t)), ∀t ≥ t0.

4. ROBUST ADAPTIVE MPC

4.1 A Min-max Approach

The formulation of the min-max MPC consists of maxi-
mizing a cost function with respect to θ ∈ Θ, ϑ ∈ D and
minimizing over feedback control policies κ. The robust
receding horizon control law is

u = κmpc(x, θ̂, zθ) � κ∗(0, x, θ̂, zθ) (23a)

κ∗ � arg min
κ(·,·,·,·)

J(x, θ̂, zθ, κ) (23b)

where
J(x, θ̂, zθ, κ) � max

θ∈Θ, ϑ∈D

∫ T

0

L(xp, up)dτ

+W (xp(T ), θ̃p(T )) (24a)
s.t. ∀τ ∈ [0, T ]
ẋp = f(xp, up) + g(xp, up)θ + ϑ, xp(0) = x (24b)
ẇp = gT (xp, up)− kw wp, wp(0) = w (24c)
(Σ̇−1)p = −(Σ−1)pwTw(Σ−1)p,

(Σ−1)p(0) = Σ−1 (24d)
˙̂
θp = Proj

{
γ (Σ−1)pwT (e− η̂), θ̂

}
θ̃p = θ − θ̂p, θ̂p(0) = θ̂ (24e)

up(τ) � κ(τ, xp(τ), θ̂p(τ)) ∈ U (24f)
xp(τ) ∈ X, xp(T ) ∈ Xf (θ̃p(T )) (24g)

The effect of future parameter adaptation is also accounted
for in this formulation. The conservativeness of the algo-
rithm is reduced by parameterizing both W and Xf as
functions of θ̃(T ). While it is possible for the set Θ to
contract upon θ over time, the robustness feature due to
ϑ ∈ D will still remain.
Algorithm 2. The MPC algorithm performs as follows: At
sampling instant ti

(1) Measure the current state of the plant x(t) and
obtain the current value of matrices w and Σ−1 from
equations (3) and (9a) respectively

(2) Obtain the current value of parameter estimates θ̂ and
uncertainty bound zθ from (9b) and (18) respectively
If zθ(ti) ≤ zθ(ti−1)− ‖θ̂(ti)− θ̂(ti−1)‖

θ̂ = θ̂(ti), zθ = zθ(ti)

,
Else

θ̂ = θ̂(ti−1), zθ = zθ(ti−1)
End

(3) Solve the optimization problem (23) and apply the
resulting feedback control law to the plant until the
next sampling instant

(4) Increment i = i+1. Repeat the procedure from step
1 for the next sampling instant.

4.2 Lipschitz-based Approach

In this section, we present a Lipschitz-based method
whereby the nominal model rather than the unknown
bounded system state is controlled, subject to conditions
that ensure that given constraints are satisfied for all
possible uncertainties. State prediction error bound is
determined based on the Lipschitz continuity of the model.
A knowledge of appropriate Lipschitz bounds for the
x-dependence of the dynamics f(x, u) and g(x, u) are
assumed as follows:
Assumption 4. A set of functions Lj : X × U → R+,
j ∈ {f, g} are known which satisfy

Lj(X, u) ≥
min

{
Lj

∣∣∣ sup
x1,x2∈X

(
‖j(x1, u)−j(x2, u)‖−Lj‖x1−x2‖

)
≤ 0

}
,

where for j ≡ g is interpreted as an induced norm since
g(x, u) is a matrix.

Assuming a knowledge of the Lipschitz bounds for the x-
dependence of the dynamics f(x, u) and g(x, u) as given in
Assumption 4 and let Π = zθ +‖θ̂‖, a worst-case deviation
zpx ≥ maxθ∈Θ ‖x− xp‖ can be generated from

żpx = (Lf + LgΠ)zpx + ‖g(xp, u)‖zθ +Mϑ,

zpx(t0) = 0. (26)

Using this error bound, the robust Lipschitz-based MPC
is given by

u = κmpc(x, θ̂, zθ) = u∗(0) (27a)

u∗(.) � arg min
up

[ 0,T ]

J(x, θ̂, zθ, up) (27b)

where
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J(x, θ̂, zθ, up)=
∫ T

0

L(xp, up)dτ +W (xp(T ), zpθ ) (28a)

s.t. ∀τ ∈ [0, T ]
ẋp = f(xp, up) + g(xp, up)θ̂, xp(0) = x (28b)
żpx = (Lf + LgΠ)zpx + ‖gp‖zθ +Mϑ, z

p
x(0) = 0(28c)

Xp(τ) � B(xp(τ), zpx(τ)) ⊆ X, up(τ) ∈ U (28d)
Xp(T ) ⊆ Xf (zpθ ) (28e)

The effect of the disturbance is built into the uncer-
tainty cone B(xp(τ), zpx(τ)) via (28c). Since the uncer-
tainty bound is no more monotonically decreasing in this
case, the uncertainty radius zθ which appears in (28c)
and in the terminal expressions of (28a) and (28e) are
held constant over the prediction horizon. However, the
fact that they are updated at sampling instants when zθ
shrinks reduces the conservatism of the robust MPC and
enlarges the terminal domain that would otherwise have
been designed based on a large initial uncertainty zθ(t0).
Algorithm 3. The Lipschitz-based MPC algorithm per-
forms as follows: At sampling instant ti

(1) Measure the current state of the plant x = x(ti)
(2) Obtain the current value of the parameter estimates
θ̂ and uncertainty bound zθ from equations (9) and
(18) respectively,
If zθ(ti) ≤ zθ(ti−1)

θ̂ = θ̂(ti), zθ = zθ(ti)
Else

θ̂ = θ̂(ti−1), zθ = zθ(ti−1)
End

(3) Solve the optimization problem (27) and apply the
resulting feedback control law to the plant until the
next sampling instant

(4) Increment i:=i+1; repeat the procedure from step 1
for the next sampling instant.

5. CLOSED-LOOP ROBUST STABILITY

Robust stabilization to the target set Ξ is guaranteed by
appropriate selection of the design parameters W and Xf .
The robust stability conditions require the satisfaction of
the following criteria.
Criterion 5. The terminal penalty function W : Xf ×
Θ̃0 → [0, +∞] and the terminal constraint function Xf :
Θ̃0 → X are such that for each (θ, θ̂, θ̃) ∈ (Θ0 ×Θ0 × Θ̃0

ε),
there exists a feedback kf (., θ̂) : Xf → U satisfying

(1) 0 ∈ Xf (θ̃) ⊆ X, Xf (θ̃) closed
(2) kf (x, θ̂) ∈ U, ∀x ∈ Xf (θ̃)
(3) W (x, θ̃) is continuous with respect to x ∈ Rnx

(4) ∀x ∈ Xf (θ̃)\Ξ, Xf (θ̃) is strongly positively invariant
under kf (x, θ̂) with respect to ẋ ∈ f(x, kf (x, θ̂)) +
g(x, kf (x, θ̂))Θ +D

(5) L(x, kf (x, θ̂)) + ∂W
∂x F(x, kf (x, θ̂), θ, ϑ) ≤ 0, ∀x ∈

Xf (θ̃)\Ξ.

Criterion 6. For any θ̃1, θ̃2 ∈ Θ̃0 s.t. ‖θ̃2‖ ≤ ‖θ̃1‖,

(1) W (x, θ̃2) ≤W (x, θ̃1), ∀x ∈ Xf (θ̃1)
(2) Xf (θ̃2) ⊇ Xf (θ̃1)

The revised condition C5 require W to be a local robust
CLF for the uncertain system 1 with respect to θ ∈ Θ and
ϑ ∈ D.

5.1 Main Results

Theorem 7. Let Xd0 � Xd0(Θ0) ⊆ X denote the set of
initial states with uncertainty Θ0 for which (23) has a
solution. Assuming criteria 5 and 6 are satisfied, then the
closed-loop system state x, given by (1,9,18,23), originat-
ing from any x0 ∈ Xd0 feasibly approaches the target set
Ξ as t→ +∞.

Proof: Feasibility : The closed-loop stability is based upon
the feasibility of the control action at each sample time.
Assuming, at time t, that an optimal solution up

[0,T ] to
the optimization problem (23) exist and is found. Let Θp

denote the estimated uncertainty set at time t and Θv

denote the set at time t + δ that would result with the
feedback implementation of u[t,t+δ] = up

[0,δ]. Also, let xp

represents the worst case state trajectory originating from
xp(0) = x(t) and xv represents the trajectory originating
from xv(0) = x + δv under the same feasible control
input uv

[δ,T ] = up
[δ,T ]. Moreover, let Xa

Θb � {xa| ẋa ∈
F(xa, up,Θb) � f(xa, up) + g(xa, up)Θb}.
Since the up

[0,T ] is optimal with respect to the worst case
uncertainty scenario, it suffice to say that up

[0,T ] drives any
trajectory xp ∈ Xp

Θp into the terminal region Xp
f . Since Θ

is non-expanding over time, we have Θv ⊆ Θp implying
xv ∈ Xp

Θv ⊆ Xp
Θp . The terminal region Xp

f is strongly
positively invariant for the nonlinear system (1) under the
feedback kf (., .), the input constraint is satisfied in Xp

f and
Xv

f ⊇ Xp
f by criteria 2.2, 2.4 and 3.2 respectively. Hence,

the input u = [up
[δ,T ], kf [T,T+δ]] is a feasible solution of (23)

at time t+ δ and by induction, the optimization problem
is feasible for all t ≥ 0.

Stability : The stability of the closed-loop system is
established by proving strict decrease of the optimal
cost J∗(x, θ̂, zθ) � J(x, θ̂, zθ, κ∗). Let the trajectories
(xp, θ̂p, θ̃p, zpθ ) and control up correspond to any worst
case minimizing solution of J∗(x, θ̂, zθ). If xp

[ 0,T ] were ex-
tended to τ ∈ [0, T + δ] by implementing the feedback
u(τ) = kf (xp(τ), θ̂p(τ) ) on τ ∈ [T, T + δ], then criterion
5(5) guarantees the inequality∫ T+δ

T

L(xp, kf (xp, θ̂p) )dτ +W (xp
T+δ, θ̃

p
T )−W (xp

T , θ̃
p
T ) ≤ 0

(29)

where in (29) and in the remainder of the proof, xp
σ �

xp(σ), θ̃pσ � θ̃p(σ), for σ = T, T + δ.
The optimal cost

J∗(x, θ̂, zθ) =
∫ T

0

L(xp, up)dτ +W (xp
T , θ̃

p
T )

≥
∫ T

0

L(xp, up)dτ +W (xp
T , θ̃

p
T ) (30)
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+
∫ T+δ

T

L(xp, kf (xp, θ̂p) )dτ +W (xp
T+δ, θ̃

p
T )−W (xp

T , θ̃
p
T )

(31)

≥
∫ δ

0

L(xp, up)dτ +
∫ T

δ

L(xp, up)dτ (32)

+
∫ T+δ

T

L(xp, kf (xp, θ̂p) )dτ +W (xp
T+δ, θ̃

p
T+δ) (33)

≥
∫ δ

0

L(xp, up)dτ + J∗(x(δ), θ̂(δ), zθ(δ)) (34)

Then, it follows from (34) that

J∗(x(δ), θ̂(δ), zθ(δ))− J∗(x, θ̂, zθ) ≤ −
∫ δ

0

L(xp, up)dτ

≤ −
∫ δ

0

μL(‖x, u‖)dτ.
(35)

where μL is a class K∞ function. Hence x(t) → 0 asymp-
totically.
Remark 8. In the above proof,

• (31) is obtained using inequality (29)
• (33) follows from criterion 5.1 and the fact that ‖θ̃‖

is non-increasing
• (34) follows by noting that the last 3 terms in (33) is a

(potentially) suboptimal cost on the interval [δ, T +δ]
starting from the point (xp(δ), θ̂p(δ)) with associated
uncertainty set B(θ̂p(δ), zpθ (δ)).

The closed-loop stability is established by the feasibility
of the control action at each sample time and the strict
decrease of the optimal cost J∗. The proof follows from
the fact that the control law is optimal with respect to the
worst case uncertainty (θ, ϑ) ∈ (Θ, D) scenario and the
terminal region Xp

f is strongly positively invariant for (1)
under the (local) feedback kf (., .).

Theorem 9. Let X ′
d0 � X ′

d0(Θ
0) ⊆ X denote the set

of initial states for which (27) has a solution. Assuming
Assumption 4 and Criteria 5 and 6 are satisfied, then the
origin of the closed-loop system given by (1,9,18,27) is
feasibly asymptotically stabilized from any x0 ∈ X ′

d0 to
the target set Ξ.

The proof of the Lipschitz-based control law follows from
that of theorem 7.

6. SIMULATION EXAMPLE

To illustrate the effectiveness of the proposed design,
we consider the regulation of the CSTR subject to an
additional disturbance on the temperature dynamic:

ĊA =
q

V
(CAin − CA)− k0 exp

( −E
RTr

)
CA

Ṫr =
q

V
(Tin − Tr)−

ΔH
ρ cp
k0 exp

( −E
RTr

)
CA

+
UA

ρ cp V
(Tc − Tr) + ϑ

where ϑ(t) is an unknown function of time. We also assume
that the reaction kinetic constant k0 and ΔH are only
nominally known.

It is assumed that reaction kinetic constant k0 and heat of
reaction ΔH are only nominally known and parameterized
as k0 = θ1 × 1010 min−1 and ΔH k0 = −θ2 × 1015

J/mol min with the parameters satisfying 0.1 ≤ θ1 ≤ 10
and 0.1 ≤ θ2 ≤ 10. The objective is to adaptively regulate
the unstable equilibrium Ceq

A = 0.5 mol/l, T eq
r = 350 K,

T eq
c = 300 K while satisfying the constraints 0 ≤ CA ≤ 1,

280 ≤ Tr ≤ 370 and 280 ≤ Tc ≤ 370. The nominal
operating conditions, which corresponds to the given un-
stable equilibrium are taken from Magni et al. (2001):
q=100 l/min, V=100 l, ρ=1000 g/l, cp = 0.239 J/g K,
E/R = 8750 K, UA= 5×104 J/min K, CAin = 1 mol/l and
Tin = 350 K.

The control objective is to robustly regulate the reactor
temperature and concentration to the (open loop) unstable
equilibrium Ceq

A = 0.5 mol/l, T eq
r = 350 K, T eq

c = 300 K by
manipulating the temperature of the coolant stream Tc.

Defining x = [CA−Ceq
A

0.5 ,
Tr−T eq

r

20 ]′, u = Tc−T eq
c

20 , the stage
cost L(x, u) was selected as a quadratic function of its
arguments:

L(x, u) = xT Qx x+ uT Ru u (36a)

Qx =
[

0.5 0
0 1.1429

]
Ru = 1.333. (36b)

The terminal penalty function used is a quadratic parameter-
dependent Lyapunov function W (x, θ) = xTP (θ)x for
the linearized system. Denoting the closed-loop system
under a local robust stabilizing controller u = kf (θ)x as
ẋ = Acl(θ)x. The matrix P (θ) := P0 + θ1P1 + θ2P2 +
. . . θnθPnθ was selected to satisfy the Lyapunov system of
LMIs

P (θ) > 0
Acl(θ)TP (θ) + P (θ)Acl(θ) < 0

for all admissible values of θ. Since θ lie between known
extrema values, the task of finding P (θ) reduces to solving
a finite set of linear matrix inequalities by introducing
additional constraints Gahinet et al. (1996). For the initial
nominal estimate θ0 = 5.05 and z0θ = 4.95, the matrix
P (θ0) obtained is

P (θ0) =
[

0.6089 0.1134
0.1134 4.9122

]
(37)

and the corresponding terminal region is

Xf = {x : xTP (θ0)x ≤ 0.25}. (38)

For simulation purposes, the disturbance is selected as a
fluctuation of the inlet temperate ϑ(t) = 0.01Tin sin(3t)
and the true values of the unknown parameters were also
chosen as k0 = 7.2 × 1010min−1 and ΔH = - 5.0 ×
104 J/mol. The stage cost (36), terminal penalty (37)
and terminal region (38) were used. The Lipschitz-based
approach was used for the controller calculations and the
result was implemented according to Algorithm 3. As
depicted in Figures 1 to 3, the robust adaptive MPC drives
the system to a neighborhood of the equilibrium while
satisfying the imposed constraints and achieves parameter
convergence. Figure 4 shows that the uncertainty bound
zθ also reduces over time.
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Fig. 1. Closed-loop reactor trajectories under additive
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Fig. 2. Closed-loop input profiles for states starting at
different initial conditions (CA(0), Tr(0)): (0.3, 335)
is solid line, (0.6, 335) is dashed line and (0.3, 363) is
the dotted line
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7. CONCLUSIONS

The adaptive MPC design technique is extended to con-
strained nonlinear systems with both parametric and time
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Fig. 4. Closed-loop uncertainty bound trajectories for
initial condition (CA, Tr) = (0.3, 335)

varying disturbances. The proposed robust controller up-
dates the plant model online when model improvement is
guaranteed. The embedded adaptation mechanism enables
us to construct less conservative terminal design parame-
ters based upon subsets of the original parametric uncer-
tainty. While the introduced conservatism/computation
complexity due to the parametric uncertainty reduces over
time, the portion due to the disturbance ϑ ∈ D remains
active for all time.
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Energy Consumption Optimization of RO
Membrane Desalination Subject to

Feed Salinity Fluctuation �
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Abstract: We study the energy consumption optimization of a reverse osmosis water desalination
process producing a constant permeate flow in the presence of feed concentration fluctuation.
We propose a time-varying optimal operation strategy that can significantly reduce the specific
energy consumption compared to time-invariant process operation.

Keywords: specific energy consumption optimization, reverse osmosis, thermodynamic
restriction, feed concentration fluctuation

1. INTRODUCTION

Reverse osmosis (RO) membrane water desalination is now
well established as a mature water desalination technology.
However, energy consumption is a major portion of the
total cost of water desalination and can reach as high as
about 45% of the total permeate production cost (Manth
et al. (2003); Busch and Mickols (2004); Wilf and Bartels
(2005)). The energy cost per volume of produced permeate
(i.e., the specific energy consumption or SEC) is significant
in RO operation due to the high pressure requirement (up
to about 1000 psi for seawater and in the range of 100-
600 psi for brackish water desalting). Considerable effort,
dating back to the initial days of RO development in the
early 1960s (as reviewed in Zhu et al. (2008)), has been
devoted to minimizing the specific energy consumption of
water desalination. The introduction of highly permeable
membranes in the mid 1990s with low salt passage (Wilf
(1997)) has generated considerable interest (Zhu et al.
(2008)), given their potential for reducing the energy re-
quired to attain a given permeate flow, since the operating
pressure can be greatly reduced to approach the osmotic
pressure difference at the exit of a membrane module (Wilf
(1997), Song et al. (2003a); Song and Tay (2006)).

In a previous work (Zhu et al. (2008)), we systematically
studied the effect of the thermodynamic restriction (i.e.,
the fact that the applied pressure cannot be lower than
the osmotic pressure of the exit brine stream plus pressure
losses across the membrane module) on the optimization
of the specific energy consumption of an RO process.
Specifically, we computed the optimum SEC, correspond-
ing water recovery, and permeate flux for single-stage and

� The present work was supported in part by the International De-
salination Association (Channabasappa Memorial Scholarship to Ai-
hua Zhu), California Department of Water Resources, the Metropoli-
tan Water District of Southern California, the University of Califor-
nia Water Resources Center, and the United States Environmental
Protection Agency. Corresponding author: Panagiotis D. Christofides
(e-mail: pdc@seas.ucla.edu)

two-stage RO membrane desalination systems. We also
studied the effect of energy recovery device, membrane cost
and brine disposal costs on SEC. The developed approach
can also be utilized to evaluate the energy savings of a
two-stage RO system over single-stage RO and the impact
of extra membrane area consumption of two-stage over
single-stage. In a recent work (Zhu et al. (2009)), we
carried out a systematic study of the energy consump-
tion of two-pass reverse osmosis membrane desalination
accounting for key practical issues like membrane salt
rejection, presence/absence of energy recovery devices and
concentration polarization. We established that if the salt
rejection level of the available membranes can achieve the
desired permeate salt content, then a single-pass configura-
tion is more energy favorable than a two-pass configuration
for the same level of total water recovery and salt rejection.
However, if it is not possible to obtain the desired permeate
salt content with the available membranes, then a two-
pass configuration has to be used, and in this case, the
energy optimal solution is to operate the first-pass using
the membranes with the maximum rejection.

In the present work, we extend our previous results to
account for the effect of feed salinity fluctuation on energy
consumption optimization. Due to seasonal rainfalls, the
feed water salinity will fluctuate both for seawater and
brackish water. For example, at one location in the cen-
tral San Joaquin Valley, the total dissolved solid (TDS)
deviated up to 52% from its annual average (McCool
(2008)). The objective of the present work is to determine
the optimal time-varying operating policy to produce a
constant permeate flow in the presence of a given feed
salinity fluctuation profile.

2. RO PROCESS

2.1 Description and Modeling

In order to illustrate the approach to energy cost op-
timization it is instructive to consider a membrane RO
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process without the deployment of an energy recovery
device (ERD) as shown schematically in Fig. 1.

Brine

Permeate

FeedRaw

Water

P0, CF PF, QF, CF

PF, QB, CR

P0, QP, CP

Figure 1. Schematic of simplified RO system.

The energy cost associated with RO desalination is eval-
uated in the present analysis as the specific energy con-
sumption (SEC) defined as the electrical energy needed to
produce a cubic meter of permeate. Pump efficiency can
be included in the following analysis in a straightforward
fashion as presented in Zhu et al. (2008). As a first
step, however, in order to simplify the presentation of
the approach, the required electrical energy is taken to be
equal to the pump work, (i.e., assuming a pump efficiency
of 100%). Accordingly, the SEC for the plant shown in
Fig. 1 is given by:

SEC =
Ẇpump

Qp
(1)

where Qp is the permeate flow rate and Ẇpump is the rate
of work done by the pump, given by:

Ẇpump = ΔP ×Qf (2)

in which
ΔP = Pf − P0 (3)

where Pf is the water pressure at the entrance of the
membrane module, P0 is the pressure of the raw water
which is assumed (for simplicity) to be the same as the
permeate pressure, and Qf is the volumetric feed flow
rate. In order to simplify the analysis, we initially assume
that the impact of the pressure drop (within the RO
module) on locating the minimum SEC is negligible; this
issue is addressed further in Zhu et al. (2008). It is
acknowledged that, fouling and scaling will impact the
selection of practical RO process operating conditions and
feed pretreatment. However, the inclusion of such effects
is beyond the scope of the present paper.

The permeate product water recovery for the RO process,
Y , is an important measure of the process productivity,
defined as:

Y =
Qp

Qf
(4)

and combining Eqs. (1), (2) and (4), the SEC can be
rewritten as follows:

SEC =
ΔP
Y

(5)

The permeate flow rate can be approximated by the
classical reverse osmosis flux equation Mulder (1997):

Qp = AmLp(ΔP − σΔπ) = AmLp(NDP ) (6)

where Am is the active membrane area, Lp is the mem-
brane hydraulic permeability, σ is the reflection coefficient
(typically assumed to be about unity for high rejection
RO membranes and in this study σ = 1), ΔP is the
transmembrane pressure, Δπ is the average osmotic pres-
sure difference between the retentate and permeate stream
along the membrane module, (ΔP − σΔπ) is the average
trans-membrane net driving pressure designated as NDP .
We also invoke the typical approximation in Mulder
(1997) that the osmotic pressure varies linearly with con-
centration (i.e., π = fosC where fos is the osmotic pressure
coefficient and C is the solution salt concentration). For
the purpose of the present analysis and motivated by
our focus on RO processes that utilize highly permeable
membranes, the average osmotic pressure difference (up
to the desired level of product water recovery), Δπ, can
be approximated as the log-mean average along the mem-
brane (ASTM (2000)) as confirmed in a previous work Zhu
et al. (2008),

Δπ = fosCf

ln( 1
1−Y )
Y

(7)

where Cf is the salt concentration of the feed to the
membrane module. The osmotic pressures at the entrance
and the exit of the membrane module, relative to the
permeate stream, are approximate by:

Δπentrance = fosCf − πp (8)

Δπexit = fosCr − πp (9)

where Cr is the salt concentration of the exit brine (i.e.,
concentrate) stream. For sufficiently high rejection level,
the osmotic pressure of the permeate can be taken to be
negligible relative to the feed or concentrate streams and
Cr can be approximated by:

Cr =
Cf

1− Y (10)

Thus, by combining Eqs. (8)–(10), the osmotic pressure
difference between the retentate and permeate stream at
the exit of the module can be expressed as:

Δπexit =
π0

1− Y (11)

where π0 = fosCf is the feed osmotic pressure. Eq. (11)
is a simple relationship that illustrates that the well
known inherent difficulty in reaching high recovery in RO
desalting is due to the rapid rise in osmotic pressure with
increased recovery.

2.2 Thermodynamic Restriction of Cross-flow RO Operation

In the process of RO desalting, an external pressure is
applied to overcome the osmotic pressure, and pure water
is recovered from the feed solution through the use of a
semipermeable membrane. Assuming that the permeate
pressure is the same as the raw water pressure, P0, the
applied pressure (ΔP ) needed to obtain a water recovery
of Y should be no less than the osmotic pressure difference
at the exit region (Wilf (1997); Song et al. (2003b)), which
is given by Eq. (11). Therefore, in order to ensure permeate
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productivity along the entire RO module (or stage), the
following lower bound is imposed on the applied pressure:

ΔP ≥ Δπexit =
π0

1− Y (12)

This is the so-called thermodynamic restriction of cross-
flow RO (Song et al. (2003a); Song and Tay (2006))
and referred to as the “thermodynamic restriction” in
the current work. The equality on the right-hand-side of
Eq. (12) is the condition at the “limit of thermodynamic
restriction” in the exit of the membrane module and is
attained at the limit of infinite membrane permeability
for a finite membrane area. It is particularly important
from a practical point of view when a highly-permeable
membrane is used for water desalination at low pressures.
It is emphasized that the constraint of Eq. (12) arises
when one wants to ensure that the entire membrane area
is utilized for permeate production.

The specific energy consumption (SEC) for the RO desalt-
ing process can be derived by combining Eqs. (1)–(4) and
(12), to obtain:

SEC ≥ π0
Y (1− Y )

(13)

where SEC is in pressure units. It is convenient to nor-
malize the SEC, at the limit of thermodynamic restriction
(i.e., operation up to the point in which the applied pres-
sure equals the osmotic pressure difference between the
concentrate and permeate at the exit of the membrane
module), with respect to the feed osmotic pressure such
that:

SECtr,norm =
SECtr

π0
=

1
Y (1− Y )

(14)

and this dependence is plotted in Fig. 2 showing that there
is a global minimum. In order to obtain the analytical
global minimum SECtr,norm, with respect to the water
recovery, one can set (dSECtr,norm)/(dY ) = 0 from which
it can be shown that the minimum SECtr,norm occurs
at a fractional recovery of Y = 0.5 (or 50%) where
(SECtr,norm)min = 4 (i.e., four times the feed osmotic
pressure). The above condition, i.e., (SECtr,norm)min =
4 at Y = 0.5, represents the global minimum SEC
(represented by the equality in Eq. 13). In order to achieve
this global minimum energy cost, the RO process should
be operated at a water recovery of 50% with an applied
pressure equivalent to 2π0 (i.e., double that the feed
osmotic pressure).

2.3 Feed Salinity Fluctuation

For the purpose of illustration of the proposed optimal
operation approach, we consider a simple feed salinity
fluctuation profile shown in Fig. 3. Specifically, we consider
a 20-hour time window in which the feed osmotic pressure
in the first 10 hours is 500 psi, and it is then reduced to
200 psi for the remaining 10 hours. For a single-stage RO
system with constant feed flow rate Qf , the average feed
osmotic pressure is 350 psi. We will study the minimum
specific energy consumption (SEC) of two difference cases.
In case 1, the operating pressure is a constant, while in case
2, it will change with the instantaneous feed osmotic pres-
sure and will always be double that of the instantaneous
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Figure 2. Variation of the normalized SEC with water
recovery for a single-stage RO at the limit of ther-
modynamic restriction.
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Figure 3. Feed osmotic pressure profile within 20 hours.

feed osmotic pressure. Both cases are operated at the limit
of thermodynamic restriction.

3. RESULTS

In the presence of the feed salinity fluctuation of Fig. 3,the
following two operating strategies may be considered.

• Operating strategy A: The transmembrane pressure
is maintained at double that of the average (over the
whole 20-hour time window) feed osmotic pressure,
i.e. 700 psi.

• Operating strategy B: The transmembrane pressure
is maintained at double that of the instantaneous feed
osmotic pressure.

For a built plant to produce the same amount of perme-
ate volume for both operating strategy A and operating
strategy B, the permeate flow rates in the first 10hrs and
the last 10hrs have to be the same. The specific energy
consumption (SEC) comparison of operating strategy A
and operating strategy B will be first done for an RO
process without an energy recovery device (see Fig. 1) and
the case of an RO process with an energy recovery device
(see Fig. 4) will be then addressed. In Fig. 4, Pe and Pp are
the brine discharge and permeate pressure, respectively,
which are assumed here to be equal to P0.

The rate of work done by the pump on the raw water, in
the presence of an ERD, is given by:
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Figure 4. Simplified RO system with an energy recovery
device (ERD).

Ẇpump = ΔP × (Qf − ηQb) (15)

where η is the efficiency of the energy recovery device.

3.1 RO Process without ERD

Operating strategy A. At the limit of thermodynamic
restriction, according to Eq. 11, the water recovery in the
first 10 hrs, Y1 = 1 − 500

700 = 2
7 and the water recovery in

the last 10 hrs, Y2 = 1− 200
700 = 5

7 . In order to produce the
same amount of permeate volume, the feed flow rate in the
first 10 hrs has to be 2.5 times that of the feed flow rate
in the last 10 hrs (Qf,2). Therefore, the permeate flow and
energy consumption in the first and last 10 hrs are:

Vp,1 = 2.5×Qf,2 ×
2
7
× 10hr =

50
7
Qf,2 × hr (16)

W1 = ΔP1 × Vf,1 = 17500Qf,2 · psi · hr (17)

Vp,2 = Qf,2 ×
5
7
× 10hr =

50
7
Qf,2 × hr (18)

W2 = ΔP2 × Vp,2 = 7000Qf,2 · psi · hr (19)

Therefore, the average SEC is:

SEC
A

=
W1 +W2

Vp,1 + Vp,2
= 1715 psi (20)

Operating strategy B. The water recovery in the last 10
hrs is the same as the water recovery in the first 10 hrs
(both at 50%). In order to produce the same amount of
permeate volume, the feed flow rate in the first 10 hrs
should be the same as the feed flow rate in the last 10 hrs
(Q′

f,2). The permeate flow and energy consumption in the
first and last 10 hrs are:

V ′
p,1 = Q′

f,2 ×
1
2
× 10hr = 5Q′

f,2 × hr (21)

W ′
1 = ΔP ′

1 × V ′
f,1 = 10000Q′

f,2 · psi · hr (22)

V ′
p,2 = Q′

f,2 ×
1
2
× 10hr = 5Q′

f,2 × hr (23)

W ′
2 = ΔP ′

2 × V ′
f,2 = 4000Q′

f,2 · psi · hr (24)

Therefore, the average SEC is:

SEC
B

=
W ′

1 +W ′
2

V ′
p,1 + V ′

p,2

= 1400 psi (25)

From Eq. 20 and Eq. 25, we see that the operating strategy
A has a higher SEC than operating strategy B about 22.5%
( 1715−1400

1400 = 22.5%). Furthermore, in order to equate

the total permeate volume in operating strategy A and
operating strategy B, Q′

f,2 = 10
7 Qf,2. Thus, the total feed

volume in operating strategy B is 2 × 10
7 Qf,2 = 20

7 Qf,2,
while the total feed volume in operating strategy A is
(2.5 + 1)Qf,2 = 3.5Qf,2. Therefore, in order to get the
same amount of permeate volume, operating strategy A
requires a higher amount of feed water, and thus, it has a
lower overall water recovery.

3.2 RO Process with ERD: Efficiency is 100%

Operating strategy A. The water recovery in the last 10
hrs is 2.5 times that of the water recovery in the first 10
hrs. In order to produce the same amount of permeate
volume, the feed flow rate in the first 10 hrs has to be 2.5
times that of the feed flow rate in the last 10 hrs (Qf,2).
Therefore, the permeate flow and energy consumption in
the first and last 10 hrs are:

Vp,1 = 2.5×Qf,2 ×
2
7
× 10hr =

50
7
Qf,2 × hr (26)

WERD
1 = ΔP1 × Vp,1 = 5000Qf,2 · psi · hr (27)

Vp,2 = Qf,2 ×
5
7
× 10hr =

50
7
Qf,2 × hr (28)

WERD
2 = ΔP2 × Vp,2 = 5000Qf,2 · psi · hr (29)

Therefore, the average SEC is:

SEC
A

=
WERD

1 +WERD
2

Vp,1 + Vp,2
= 700 psi (30)

Operating strategy B. The water recovery in the last 10
hrs is the same as the water recovery in the first 10 hrs.
In order to produce the same amount of permeate volume,
the feed flow rate in the first 10 hrs has to be the same
as that the feed flow rate in the last 10 hrs (Qf,2’). The
permeate flow and energy consumption in the first and last
10 hrs are:

V ′
p,1 = Q′

f,2 ×
1
2
× 10hr = 5Q′

f,2 × hr (31)

W
′ERD
1 = ΔP ′

1 × V ′
p,1 = 5000Q′

f,2 · psi · hr (32)

V ′
p,2 = Q′

f,2 ×
1
2
× 10hr = 5Q′

f,2 × hr (33)

W
′ERD
2 = ΔP2 × V ′

p,2 = 2000Qf,2 · psi · hr (34)

Therefore, the average SEC is:

SEC
B

=
W1 +W2

V ′
p,1 + V ′

p,2

= 700 psi (35)

From Eq. 30 and Eq. 35, we see that in the presence of
an ERD with a 100% efficiency, operating strategy A and
operating strategy B have the same SEC. Furthermore, in
order to equate the total permeate volume in operating
strategy A and operating strategy B, Q′

f,2 = 10
7 Qf,2.

Thus, the total feed volume in operating strategy B is 2×
10
7 Qf,2 = 20

7 Qf,2, while the total feed volume in operating
strategy A is (2.5 + 1)Qf,2 = 3.5Qf,2. Therefore, in order
to get the same amount of permeate volume, operating
strategy A requires a higher amount of feed water, and
thus, it has a lower overall water recovery.
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3.3 ERD Efficiency between 0 and 1

Operating strategy A. The water recovery in the last 10
hrs is 2.5 times that of the water recovery in the first 10
hrs. In order to produce the same amount of permeate
volume, the feed flow rate in the first 10 hrs has to be 2.5
times the feed flow rate in the last 10 hrs (Qf,2). Therefore,
the permeate flow and energy consumption in the first and
last 10 hrs are:

Vp,1 = 2.5×Qf,2 ×
2
7
× 10hr =

50
7
Qf,2 × hr (36)

WERD
1 = ΔP1 × (Vf,1 − η(Vf,1 − Vp,1)) (37)

Vp,2 = Qf,2 ×
5
7
× 10hr =

50
7
Qf,2 × hr (38)

WERD
2 = ΔP2 × (Vf,2 − η(Vf,2 − Vp,2)) (39)

Therefore, the average SEC is:

SEC
A

ERD =
WERD

1 +WERD
2

Vp,1 + Vp,2
= (1715− 1015η) psi (40)

Operating strategy B. The water recovery in the last 10
hrs is the same as the water recovery in the first 10 hrs.
In order to produce the same amount of permeate volume,
the feed flow rate in the first 10 hrs has to be the same as
that the feed flow rate in the last 10 hrs (Qf,2’). Therefore,
the permeate flow and energy consumption in the first and
last 10 hrs are:

V ′
p,1 = Q′

f,2 ×
1
2
× 10hr = 5Q′

f,2 × hr (41)

W
′ERD
1 = ΔP ′

1 × (V ′
f,1 − η(V ′

f,1 − V ′
p,1)) (42)

V ′
p,2 = Q′

f,2 ×
1
2
× 10hr = 5Q′

f,2 × hr (43)

W
′ERD
2 = ΔP2 × (V ′

f,2 − η(V ′
f,2 − V ′

p,2)) (44)

Therefore, the average SEC is:

SEC
B

ERD =
W

′ERD
1 +W

′ERD
2

V ′
p,1 + V ′

p,2

= 700(2− η) psi (45)

The SEC difference between operating strategy A and
operating strategy B is (1715− 1015η)− 700(2− η) psi =
315(1 − η) psi. Thus, when 0 < η < 1, the SEC of
operating strategy A will be always greater than the SEC
of operating strategy B. The fractional SEC increase is,

SEC
A

ERD − SECB

ERD

SEC
B

ERD

=
315
700

(1− η)
[1 + (1− η)] (46)

which is plotted in Fig. 5. For example, when the ERD
efficiency is 90%, the fractional SEC increase is 4.1%.
Furthermore, in order to equate the total permeate volume
in operating strategy A and operating strategy B, Q′

f,2 =
10
7 Qf,2. Thus, the total feed volume in operating strategy
B is 2 × 10

7 Qf,2 = 20
7 Qf,2, while the total feed volume in

operating strategy A is (2.5+1)Qf,2 = 3.5Qf,2. Therefore,
in order to get the same amount of permeate volume,
operating strategy A requires a higher amount of feed
water, and thus, it has a lower overall water recovery.

In summary, operating strategy A is worse since we need
to process more feed water to obtain the same permeate
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Figure 5. Percentage SEC increase when feed pressure is
not adjusted. vs. ERD efficiency.

and has a higher SEC. In others words, by adjusting
operating pressure to be double that of the instantaneous
feed osmotic pressure, the system needs to process less
volume of feed water to produce the same amount of
permeate water and has a lower SEC.

4. DISCUSSION

4.1 Effect of the Feed salinity Fluctuation Percentage on
Energy Savings

The effect of the fluctuation amplitude on energy savings
can be studied following the same procedure presented
in Section 3.3. Assuming the average osmotic pressure is
π0, the osmotic pressure in the first 10 hrs is (1 + σ)π0
(0 < σ < 1), and the osmotic pressure in the last 10 hrs
is (1 − σ)π0. Therefore, the feed fractional fluctuation is
σ. Similarly, the following two operating strategies may be
considered.

• Operating strategy A: The transmembrane pressure is
maintained at double that of the average feed osmotic
pressure, i.e. 2π0.

• Operating strategy B: The transmembrane pressure
is maintained at double that of the instantaneous feed
osmotic pressure.

Operating strategy A. The water recovery in the last 10
hrs, Y1 = 1 − (1+σ)π0

2π0
= 1−σ

2 , and in the last 10 hrs,

Y2 = 1 − (1−σ)π0
2π0

= 1+σ
2 . In order to produce the same

amount of permeate volume, the feed flow rate in the first
10 hrs has to be 1+σ

1−σ times that of the feed flow rate
in the last 10 hrs (Qf,2). The permeate flow and energy
consumption in the first and last 10 hrs are:

Vp,1 =
1 + σ
1− σ ·Qf,2 ·

1− σ
2

· 10hr = 5(1 + σ) ·Qf,2 · hr(47)

WERD
1 = ΔP1 × (Vf,1 − η(Vf,1 − Vp,1)) (48)

Vp,2 = Qf,2 ×
1 + σ

2
× 10hr = 5(1 + σ) ·Qf,2 · hr (49)

WERD
2 = ΔP2 × (Vf,2 − η(Vf,2 − Vp,2)) (50)

Therefore, the average SEC is:

SEC
A

ERD =
WERD

1 +WERD
2

Vp,1 + Vp,2
= 2π0[

(1− η)
1− σ +

(1 + ησ)
1 + σ

](51)
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Operating strategy B. The water recovery in the last 10
hrs is the same as the water recovery in the first 10 hrs.
In order to produce the same amount of permeate volume,
the feed flow rate in the first 10 hrs has to be the same as
the feed flow rate in the last 10 hrs (Qf,2’). The permeate
flow and energy consumption in the first and last 10 hrs
are:

V ′
p,1 = Q′

f,2 ×
1
2
× 10hr = 5Q′

f,2 × hr (52)

W
′ERD
1 = ΔP ′

1 × (V ′
f,1 − η(V ′

f,1 − V ′
p,1)) (53)

V ′
p,2 = Q′

f,2 ×
1
2
× 10hr = 5Q′

f,2 × hr (54)

W
′ERD
2 = ΔP2 × (V ′

f,2 − η(V ′
f,2 − V ′

p,2)) (55)

Therefore, the average SEC is:

SEC
B

ERD =
W

′ERD
1 +W

′ERD
2

V ′
p,1 + V ′

p,2

= 2(2− η) · π0 (56)

The SEC difference of operating strategy A from operating
strategy B is (2[ (1−η)

1−σ + (1+ησ)
1+σ ] − 2(2 − η)) · π0. When

0 < η < 1, the SEC of operating strategy A will be
always greater than the SEC of operating strategy B. The
fractional SEC increase is:
SEC

A

ERD − SECB

ERD

SEC
B

ERD

=
[ (1−η)

1−σ + (1+ησ)
1+σ ]

(2− η) − 1 (57)

which is plotted in Fig. 6 when the efficiency of the ERD is
set to be 90%. Fig. 6 shows that as feed salinity fluctuation
percentage increases, time-invariant operation increases
SEC more remarkably. Even in some cases there is only
marginal energy savings, it is still worthwhile to adopt
the proposed operating strategy accompanied by the con-
trol algorithms developed at UCLA M3 group regarding
reverse osmosis water desalination system (McFall et al.
(2008); Bartman et al. (2008)) since we will not be able
to know what the future salinity profile would exactly
be. Furthermore, in order to equate the total permeate
volume in operating strategy A and operating strategy
B, Q′

f,2 = (1 + σ)Qf,2. Thus, the total feed volume in
operating strategy B is 2(1+σ) ·Qf,2, while the total feed
volume in operating strategy A is ( 1+σ

1−σ + 1)Qf,2 = (1 +
2σ

1−σ +1)Qf,2 > (1+2σ+1)Qf,2. Therefore, in order to get
the same amount of permeate volume, operating strategy
A requires a higher amount of feed water, and thus, it has
a lower overall water recovery.

5. CONCLUSION

Based on a model for a reverse osmosis membrane desali-
nation plant and the feed concentration fluctuation (which
is common in both seawater and brackish water desalina-
tion) profile, the proposed approach requires less amount
of feed water and decreases specific energy consumption
by as much as 22%, providing the same permeate flow.
Experimental results confirming the proposed operating
policy will be presented at the conference.

REFERENCES

Manual. Standard Practice for Standardizing Reverse
Osmosis Performance Data, ASTM international, April
2000.

0 50 100
2

2.5

3

3.5

4

Fluctuation of feed salinity (%)

N
or

m
al

iz
ed

S
E

C
av

g

Constant operating pressure

Time−varying operating pressure

Figure 6. Percentage SEC increase without adjusting the
operating pressure vs. feed concentration fluctuation
percentage.

Bartman, A., McFall, C.W., Christofides, P.D., and Co-
hen, Y. (2009). Model-predictive control of feed flow
reversal in a reverse osmosis desalination process. Jour-
nal of Process Control, 19, 433–442.

Busch, M. and Mickols, W. (2004). Reducing energy
consumption in seawater desalination. Desalination,
165, 299–312.

Manth, T., Gabor, M., and Oklejas, E. (2003). Minimizing
RO energy consumption under variable conditions of
operation. Desalination, 157(1-3), 9–21.

McCool, B.C. (2008). The feasibility of reverse osmosis
desalination of brackish water in the San Joaquin Valley.
UCLA master thesis.

McFall, C.W., Bartman, A., Christofides, P.D., and Co-
hen, Y. (2008). Control and monitoring of a high
recovery reverse osmosis desalination process. Industrial
& Engineering Chemistry Research, 47(17):6698–6710.

Mulder, M. (1997). Basic Principles of Membrane Tech-
nology. Kluwer Academic Publishers (Boston).

Song, L., Hu, J.Y., Ong, S.L., Ng, W.J., Elimelech, M.,
and Wilf, M. (2003a). Emergence of thermodynamic
restriction and its implications for full-scale reverse
osmosis processes. Desalination, 155(3), 213–228.

Song, L., Hu, J.Y., Ong, S.L., Ng, W.J., Elimelech, M.,
and Wilf, M. (2003b). Performance limitation of the
full-scale reverse osmosis process. Journal of Membrane
Science, 214(2), 239–244.

Song, L. and Tay, K.G. (2006). Performance prediction
of a long crossflow reverse osmosis membrane channel.
Journal of Membrane Science, 281(1-2), 163–169.

Wilf, M. (1997). Design consequences of recent improve-
ments in membrane performance. Desalination, 113(2-
3), 157–163.

Wilf, M. and Bartels, C. (2005). Optimization of seawater
RO systems design. Desalination, 173(1), 1–12.

Zhu, A., Christofides, P.D., and Cohen, Y. (2008). Effect of
thermodynamic restriction on energy cost optimization
of RO membrane water desalination. Industrial & En-
gineering Chemistry Research, Publication Date (Web):
August 29, 2008 (DOI: 10.1021/ie800735q).

Zhu, A., Christofides, P.D., and Cohen, Y. (2009). Mini-
mization of Energy Consumption for a Two-Pass Mem-
brane Desalination: Effect of Energy Recovery, Mem-
brane Rejection and Retentate Recycling. Journal of
Membrane Science, doi:10.1016/j.memsci.2009.04.039.

267



A novel image based algorithm for interface
level detection in a separation cell

Phanindra Jampana ∗ Sirish Shah ∗∗

∗ Department of Chemical Engineering, University of Alberta,
Edmonton, Canada (e-mail: pjampana@ualberta.ca)

∗∗ Department of Chemical Engineering, University of Alberta,
Edmonton, Canada (e-mail: slshah@ualberta.ca)

Abstract: Controlling the interface between Bitumen-froth and Middlings in separation cells
in the oil sands industry is important for economical and environmental reasons. Traditional
sensors do not provide reliable measurements of this interface level and image based sensors
are being used to alleviate this problem. Previous work in this area has focussed on separation
cells with a single side-view glass. The current work describes a new image based algorithm for
interface level detection and confidence estimation based on the concept of image differencing.
The algorithm can be extended in a straight-forward manner to separation cells with arbitrary
number of side-view glasses. Off-line and on-line results show that the algorithm accurately
detects the interface level in normal process conditions and outputs correct confidence values in
other situations with very low false positive and negative rates.

Keywords: Bitumen-froth Middlings interface, image sensors, image differencing

1. INTRODUCTION

The control of Bitumen-froth and Middlings interface us-
ing image based sensors has been approached previously
(Jampana et al., 2008) via particle filtering techniques.
Images obtained from a side-view glass camera are pro-
cessed in real time for estimates of the interface level
and its quality. These estimates are used subsequently for
automatic control. A typical camera image from this setup
is shown in Fig 1. For separation cells with multiple side-
view glasses (Fig 2) the algorithm described there does
not generalize in a straight forward manner. The current
work describes an interface level detection algorithm based
on image differencing which can be easily generalized to
arbitrary number of side-view glasses.

Fig. 1. Separation cell with single side view glass

The generalization property is achieved by computing a
confidence estimate (in addition to the interface level
estimate) for each side-view glass. This confidence estimate
quantifies the chance of the presence of an interface. The
final interface level estimate is obtained from the view
� Financial support from NSERC, Matrikon, Suncor and iCORE
in the form of the Industrial Research Chair(IRC) program at the
University of Alberta is gratefully acknowledged.

Fig. 2. Separation cell with three side view glasses

glass with the highest quality. As confidence estimation is
not entirely independent of the interface level estimation
procedure, the interface level estimation procedure should
facilitate the computation of quality values in an easy
manner. The image differencing algorithm described in
this paper is one such method.

The image differencing method is based on the idea that
the change from any previous video frame to the current
video frame is maximum near the current interface, though
this maximum need not be unique. This change is detected
here through (absolute) image differencing. To ensure that
the maximum change occurs very close to the current
interface, (absolute) image differences between the current
and many previous frames are used. The sum image of all
these differenced images has maximum values located close
to the current interface level for ideal interface images, i.e.
images which are completely free from noise. The proof of
this fact is given in section 2.

In reality, interface images are seldom noise free. This leads
us into estimating a quality value which reflects whether
the current interface level estimate is purely a result of
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noise. To compute the final confidence estimate however,
the noise based quality value alone would not suffice. This
is because abnormal changes might occur in the separation
cell, which cannot be ascribed to noise alone and which do
not necessarily imply the existence of a true interface. Fig
3 shows an example of such a change where the noise based
quality described above might be high but the interface is
spurious.

Spurious Interface

Fig. 3. Abnormal process condition resulting in a spurious
interface

Therefore, apart from the noise based quality value, an
edge quality is also estimated. This quality value quantifies
the number of edges detected near the interface estimate.
The edge detection method employed here is described in
(Elder and Zucker, 1998). A combination of both these
quality estimates suppresses most false negatives. In a few
pathological cases however, both the noise based quality
and the edge based quality can be high, even though
the detected interface is spurious. To make the algorithm
robust to these, a change based quality is estimated. The
final confidence estimate is then based on the three values
- noise based quality, edge based quality and change based
quality.

The rest of the paper is organised as follows: Section 2
presents the image differencing based interface level de-
tection algorithm in detail followed by section 3 which
describes the confidence estimation procedure. Results are
displayed in section 4 and section 5 gives the concluding
remarks.

2. INTERFACE LEVEL DETECTION USING
ABSOLUTE IMAGE DIFFERENCING

This section presents two results which describe the image
differencing method for ideal images and also provide the-
oretical bounds for the interface level estimates obtained.
The following notation is fixed first.

Let,

(1) It represent the video frame obtained at time t
(2) Dt1,t2 = It1 − It2 , be the difference of two images at

times t1 and t2
(3) ADt1,t2 = abs(It1 − It2), be the absolute difference of

two images at times t1 and t2
(4) il(t) represent the interface level at time t (The inter-

face level is always assumed to be on the Middlings
side of the interface).

(5) μB(t), μM (t) represent the average intensity values of
pixels in the Bitumen-froth and Middlings regions at
time t, respectively.

(6) W and H represent the width and height of the
interface image

(7) C be the maximum change in the interface level
between two successive video frames

(8) The origin of images is always assumed to be at the
top-left corner

Lemma 1. Consider a noise free interface having dynamics
such that it remains horizontal at all times and having ho-
mogeneous pixel intensities in the Bitumen and Middlings
regions. Let {It, t = 0, 1, ...} be a sequence of completely
noiseless images from such an interface such that μB(0) =
μB(1) = μB(2) = ... and μM (0) = μM (1) = μM (2) = ....
If there is a change in the interface level in a time window
[t0, tN ] and if:-

JN (i, j) =
N−1∑
k=0

ADtN ,tk
(i, j),

∀i ∈ {0, 1, 2, ..., H − 1},
j ∈ {0, 1, 2, ...,W − 1}

PN (i) =
W−1∑
j=0

JN (i, j), ∀i ∈ {0, 1, 2, ..., H − 1}

îl(tN ) = inf(arg max
i

PN (i))

then,

(1) PN (i) is decreasing in i ∈ [îl(tN ), H − 1] and increas-
ing in i ∈ [0, îl(tN )],

(2) 0 ≤ il(tN )− îl(tN ) ≤ C
In reality the interface is seldom horizontal. Lemma 2
guarantees similar bounds as above for the interface level
estimate even for the more general case of non-horizontal
interfaces:

Lemma 2. Consider the more general case of an interface
having dynamics such that it can become non-horizontal.
Let ip(t, v) for v ∈ [0,W − 1] be the interface pixels at
time t. If |ip(t, v)− ip(t,m)| < Q, for all v,m ∈ [0,W − 1],
t ∈ [t0, tN ] and |ip(t1, v) − ip(t2, v)| < C whenever |t1 −
t2| = 1, v ∈ [0,W − 1] and if there is a change in the
interface in the time window [t0, tN ] then it is true that
−C ≤ îl(tN )− ip(tN , v) ≤ C +Q for some v ∈ [0,W − 1].

(Proof for both proofs are omitted due to a lack of space
but are available from the authors). The above lemma
shows that in the absence of noise and non-homogeneties
in images, the estimated interface level is close to the
actual interface, especially if C and Q are small. However,
when the images are corrupted by noise and other non-
homogenties in pixel intensities, the estimated interface
level might not be close to the actual interface. Hence
a confidence value of the interface level estimate is com-
puted.

3. CONFIDENCE ESTIMATION

The analysis above assumed that images obtained are
completely noise free - an assumption that is never met
in practice. Image noise is modelled to be additive, homo-
geneous and Gaussian with zero mean and variance σ2.

In the presence of noise, it might no longer be true that
îl(tN ) will lie close to an interface point as predicted by
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Lemmas 1 and 2. This is because the images observed
are only instantiations of a (two dimensional) random
field, which is completely described only by the noise
statistics, the interface level il(tN) and the Middlings and
Bitumen pixel intensities μM (t), μB(t). Hence, each PN (i)
for i ∈ [0, H−1] now has a probability distribution. In the
case of a horizontal interface, given the noise distribution,
the probability that is of interest is the following:-

P (PN (il(tN)) > max
|j−il(tN )|>G

PN (j))

The above probability quantifies the chance of obtaining
an interface level estimate (by following the differencing
method described before), îl(tN ), which satisfies |îl(tN )−
il(tN)| ≤ G. This probability can be used as the confidence
value but it cannot be determined, as il(tN) cannot be
known a priori.

As the theoretical confidence (the probability above) can-
not be computed, a confidence estimate is obtained by
heuristic methods. The confidence estimate is based on
the following three quality values, which are explained
subsequently:

• Noise based quality
• Edge based quality
• Change based quality

3.1 Noise based quality

Let TP (t, i, j) represent the true (expected) pixel value
in the image at time t and at the location i, j. Then
the observed value of each pixel It(i, j) can be written as
TP (t, i, j)+Y (t, i, j), where Y (t, i, j) is a random variable
whose distribution is the same as the estimated noise
distribution. Using this, the following can be derived:

PN (i)−
W−1∑
j=0

N−1∑
k=0

|Y (tN , i, j)− Y (tk, i, j)|

≤
W−1∑
j=0

N−1∑
k=0

|TP (tN , i, j)− TP (tk, i, j)|

≤ PN (i) +
W−1∑
j=0

N−1∑
k=0

|Y (tN , i, j)− Y (tk, i, j)|

The above inequality gives loose bounds on the actual
values,

∑W
j=0

∑N−1
k=0 |TP (tN , i, j) − TP (tk, i, j)| ≡ M(i),

i.e., the values which would have resulted if the images
are noise free. In practice, only one instance of PN (i) is
observed. From this value, the value of the corresponding
instance of RN (i) ≡ ∑W

j=0

∑N−1
k=0 |Y (tN , i, j) − Y (tk, i, j)|

cannot be computed. Therefore the bounds above cannot
be determined exactly.

Given PN (i) = P̂N (i), RN (i) follows the conditional prob-
ability distribution given by P (RN (i)|PN (i) = P̂N (i)).
Considering the instances (R̂N (i)) of this distribution
allows us to compute inequalities which are be obeyed
with a certain degree of probability. For example, if
PRN (i)|PN (i)(RN (i) ≤ R̂N (i)) = r(i), then the inequalities

P̂N (i)− R̂N (i) ≤M(i) ≤ P̂N (i) + R̂N (i)

are true with a probability of r(i). If R̂N (i) are chosen
such that r(i) are very high, then the inequalities are very
likely to be satisfied. On the other hand, if the R̂N (i) are
chosen such that r(i) are very low, it is very unlikely that
the inequalities will be correct. Given a choice of R̂N (i),
the noise based quality can be defined as:

Qnoise(tN ) =

⎧⎪⎪⎨⎪⎪⎩
0; if ∃i, |i− îl(tN )| > NTH ,

P̂N (i) + R̂N (i) >
P̂N (îl(tN ))− R̂N (îl(tN ))

1; otherwise

This quality value penalizes the interface level estimates
when the minimum bound of M(îl(tN )) is less than the
maximum bound of M(i), for i far away (NTH > C) from
the current interface. In this case, the interface estimate is
said to be obtained purely due to camera noise and other
irregularities in the images.

As the conditional probability distribution cannot be es-
timated, the instance R̂N (i), is chosen based on the un-
conditional one. The support of the unconditional dis-
tribution is a superset of the support of the conditional
distribution. Hence, for high values of R̂N (i) (based on
the unconditional distribution) the inequalities obtained
will very likely be true. But high values of R̂N (i) make
the bounds very loose and are not useful for noise based
quality estimation as most quality estimates will be zero.
On the other hand, for small values of R̂N (i), the quality
estimates might be high but the inequalities themselves
are true only with a very small probability.

The problem is to obtain estimates R̂N (i), for which the in-
equalities will be true with a high probability and are tight
enough for use in noise based quality estimation. In the
absence of any other information, the choice E(RN (i)) =
R̂N (i), where E represents mathematical expectation can
be considered a possible candidate. From basic probability
and the properties of the Gaussian distribution, it can be
computed that E(RN (i)) = NWσ

√
( 8

π ).

The accuracy of the noise based quality estimates
Qnoise(tN ), obtained by the choice R̂N (i) = E(RN (i))
depends on the absolute difference of average pixel in-
tensities |μB(tN ) − μM (tN )|, the size of the images and
the noise standard deviation σ. Based on this dependence,
false positive and false negative error rates for the noise
based quality are estimated.

When σ is small and |μB(tN )− μM (tN )| is high, the false
positive rate is approximately 0 − 2%, which is small as
expected. This rate increases with an increase in σ but
decreases with an increase in |μB(tN )−μM (tN )|. The ratio
|μB(tN )−μM (tN )|

σ can be considered as an upper bound on
the Signal to Noise ratio (SNR). If |μB(tN )−μM (tN )|

σ = 10,
the false positive error rate is 7− 8% on an average.

For computing the false negative error rates, random
interface images, which do not contain an interface are
created. As these images do not contain any interface
the percentage of time Qnoise(tN ) = 1 is considered an
estimate of the false negative error rate. In a simulation
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study using the same parameters as above (except that
μB(tN ) = μM (tN )), it has been found that there were
no false negatives. As other type of examples cannot be
readily created to study the false positive and negative
error rates, they are estimated on real videos collected from
a plant site. These are presented in Section 4.

3.2 Edge based quality

Noise based quality alone is not sufficient for estimating
confidence. This is due to the fact that false negatives
result when abnormal changes occur inside the separation
cell (scenarios as shown in Fig 3) which cannot be ex-
plained by noise alone. Hence, an additional edge detection
algorithm is used to aid in the estimation of the confidence.

The motivation for using edge detection to estimate a qual-
ity value is that the available information in images would
be utilised in a very efficient manner as the edge based
algorithm captures information which cannot be obtained
by image differencing. Given only the difference images
I(t) − I(s) for s < t, it is impossible to recover the edge
map of I(t) and similarly given only the edge map of I(t),
it is impossible to estimate the difference images except in
a few pathological cases. Using the image differencing and
the edge detection algorithms simultaneously most false
negatives (high confidence values when the interface level
estimates are wrong), can be avoided.

The algorithm described in (Elder and Zucker, 1998) is
used here with the already estimated variance σ2 of the
Gaussian noise distribution. The advantage of this par-
ticular edge detection algorithm over standard algorithms
(Sobel, Canny etc.) is its ability to detect edges over a large
blur scale and contrast. The Bitumen-Middlings interface
tends to become fuzzy when the percent of sand in the
oil sands ore is high. The chosen algorithm can detect
edges under these situations and hence is suitable for the
purpose. Another reason for the choice is that spurious
edges that occur due to sensor noise are minimised because
of statistical bound checking based on the sensor noise
variance in the algorithm. This increases the efficiency of
the edge based quality.

A simple heuristic based on the number of edge points in a
predefined window near the detected interface level is used
to estimate the edge based quality. If EI is the edge map
returned by the edge detection algorithm, and if nedges
represent the number of edges in a predefined window near
the detected interface level and ETH is a given threshold
then the edge based quality is defined as:

Qedge(tN ) =
{

0;nedges < ETH

1; otherwise

3.3 Change based quality

The edge detection algorithm, in most cases does not
produce the exact edge map, EI. When spurious edges
are detected (due to shadows, lighting glare etc.), the
edge based quality might be high even when the interface
level estimate is not correct. If the noise variance is
under estimated, the noise based quality would also be
high resulting in a wrong estimate of the interface level.
False negatives in interface level detection can have an

undesired effect on the overall process as the controller
takes immediate corrective action based on these false
readings.

To make the algorithm robust to such cases a quality based
on the percent change near the interface is estimated.
The change based quality analyzes the instance of PN

observed, P̂N . An example P̂N (for a normal interface
image sequence) is shown in Fig 4.

Fig. 4. An example of the profile, PN obtained by the
image differencing method

For a normal interface, based on test videos, the average
and minimum values of P̂N have been observed to be close
to each other as shown in the figure above. The maximum
value of PN , P̂N (îl(tN )), is in general high compared to
both these values. Based on this, the change based quality
is defined simply as:

Qchange(tN ) =

⎧⎪⎪⎨⎪⎪⎩
0;

max(P̂N )− avg(P̂N )
max(P̂N )− ((1 − ε)min(P̂N ))

< CTH

1; otherwise

Here, 0 < ε ≈ 10−2 << min(P̂N ). The change based
quality value would be high when the average value of P̂N

is close to the minimum value of P̂N . When the average is
close to the maximum this quality value would be small.

The thresholds – NTH , ETH , CTH and N determine the
performance of the final algorithm. The value of ETH is
chosen as a percentage of the width of the image W and
the value of CTH ∈ [0, 1]. Hence both these thresholds are
relative in nature. The value of NTH is chosen based on
the dynamics of the interface. Based on the three quality
values, the final confidence is defined as

ilconf(tN ) =

⎧⎪⎨⎪⎩
1;Qnoise(tN ) = 1,
Qedge(tN ) = 1,
Qchange(tN ) = 1
0; otherwise

4. RESULTS

4.1 Off-line results

The algorithm is first tested off-line on three videos
recorded at the Suncor Energy Inc. plant site located at
Fort McMurray, Alberta, Canada. The first video con-
tained only one side view glass whereas the other two were
equipped with three side view glasses. In the first video
(Fig 5a) the view glass was wider and the interface was
always present inside it. There was also significant lighting
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glare present on the top of the glass window. The other
two videos had considerably smaller view glasses. In one of
these two videos (Fig 5c), the interface was only present in
two of the three view glasses. In the other video (Fig 5b),
spurious changes occurred (due to Bitumen sticking on
the inside) in one of the glasses initially and the interface
reappeared at the end.

The original videos were from colour cameras and for
the purpose of analysis, they were converted to grayscale
by averaging across all the three (RGB) colour channels.
For single side view glass, the algorithm as described in
the sections before can be applied directly. Whereas, in
the case of three view glasses, the algorithm is extended
in a straightforward manner. Each glass window is anal-
ysed separately and finally the window with the highest
confidence value is chosen along with its interface level
estimate. In cases where the interface is present in two
or more glasses, more than one window can have a high
confidence value. In such situations, the final interface
level is chosen at random from these glasses, as all of the
interface level estimates refer to the same interface.

In all the videos the same parameters,N = 100,NTH = 30
pixels, ETH = W

4 , CTH = 0.75 were used. Fig 6a shows
the true and the estimated interface level values for the
video with a single side view glass (H = 188 pixels,
W = 61 pixels). It can be seen that the estimated value
is very close to the actual value. The average absolute
error was calculated to be approximately two pixels. This
corresponds to an average error of less than one percent
with respect to the height of the view glass. The confidence
estimate was equal to one throughout(except at one frame
where the edge based quality was zero). Noise standard
deviation was estimated to be σ = 1.0 pixels and |μB(tN )−
μN (tN )| = 21.9 intensity units. The corresponding false
positive has been estimated to be zero which explains
the fact that the noise based quality was equal to one
throughout. Edge based quality was also high because
the interface was clear and easily detectable by the edge
detection algorithm. The change based quality was one
throughout.

For the video with three side view glasses shown in Fig 5c,
the results obtained are shown in Fig 6b. Note that
in this case, the interface level estimate corresponds to
the view glass with the highest confidence value. The
average absolute error was calculated to be three pixels
approximately, which corresponds to an average error of
less than one percent with respect to the height of the
view glass, as before. The confidence estimate was equal
to one at all times except for three frames. The noise based
quality was equal to one throughout but the edge based
quality was zero at these three frames owing to significant
fuzziness in the interface (not shown here). The change
based quality was one throughout as before.

Finally, the video shown in Fig 5b is split into two seg-
ments. In the first part, the interface was either spurious or
not present in the view glass. For this segment of the video
the false negative rate obtained was equal to zero, i.e. the
confidence value was identically zero all the time. Fig 6c
shows the estimated and the actual interface level for the
second part of the video, when the interface reappeared in
the view glass. The average absolute difference was equal

to three pixels which corresponds to an error of less than
one percent with respect to the height of the view glasses.
The false positive rate during this time was estimated to be
10%, due to zero edge based quality during those frames.
The high false positive rate in this video can be attributed
to following:-

• Loss of resolution from the original to the recorded
video resulting in a poor quality of the video

• Highly fuzzy interfaces occur due to a high fines
situation – too many sand particles in the Bitumen-
froth

The false positive rate can be minimized by employing a
simple filtering rule. In the industry, a single occurrence of
a confidence value of zero triggers an alarm for operator in-
tervention. As the confidence value is susceptible to sudden
changes in the fuzziness of the interface it is reasonable to
wait until the confidence value stabilizes. Hence, instead
of signalling an alarm for a single occurrence, alarm is
only signalled when the confidence value is zero for a
sustained period of time (τ ≈ 5s). The interface level
estimate used for control during this phase is the most
recent estimate with a confidence value of one. This simple
filtering rule has been observed to increase the efficiency
of the algorithm.

4.2 On-line results

The algorithm described in this paper has been imple-
mented on two separation cells (previously shown in Fig 5b
and Fig 5c) at Plant 86, Suncor Energy Inc., Fort Mc-
Murray, Alberta, Canada. A frame grabber card is used
to transfer the images from the analog cameras to the
PC. Software has been built in in the C programming
language based mainly on the Intel OpenCV library for
image manipulation.

Fig 7a compares the true and estimated interface level
values for the separation cell shown in Fig 5b. In this
plot, hourly data is collected at random times and stitched
together for the final result. A total of eight hours of data is
used for comparison. On this data set, the average absolute
error(in percentage) was calculated to be four percent.
Similarly, Fig 7b compares the true and estimated interface
level values for the separation cell shown in Fig 5c. The
average absolute error was equal to three percent of the
total height of the view glasses. These results suggest that
the estimates from the vision sensor very closely reflect the
true interface level values.

5. CONCLUSIONS

This work has presented a novel image differencing method
for Bitumen-froth and Middlings interface level detection.
It has been shown that in the case of noiseless images
the estimation error is bounded. For nominal values of the
dynamics of the separation cell, the bounds are very small.

When noise is present in the images, a confidence value
which estimates the correctness of the detection is com-
puted. The confidence value is based on a novel noise
based quality estimate along with simple edge and change
criterion. Analysis and results show that the final algo-
rithm accurately detected the interface level and exhibited
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(a) Video with one side
view glass

(b) Video with spurious
changes

(c) Video with interface
present in two glasses

Fig. 5. Interface levels in different separation cells

(a) (b)

(c)

Fig. 6. True and estimated interface levels - Off-line results

(a) True and estimated interface levels for separation cell
shown in Fig 5b

(b) True and estimated interface levels for separation cell
shown in Fig 5c

Fig. 7. True and estimated interface levels - On-line results

very few false positive and negative error rates. The sensor
has been installed at Suncor Energy. Inc, Fort McMurray,
Canada and has been yielding highly satisfactory results.
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Abstract: The control of a drinking-water treatment plant aims to produce the correct quantity
of water, with a constant quality. Achieving constant water quality is not an obvious task,
since the online water-quality measurements and possible control actions are limited. Applying
model-based control improves disturbance rejection and online process optimisation. For the
softening process step, the integral control scheme is shown with multiple controllers for different
time scales and process detail. The dosing control is elaborated and verified using simulation
experiments. The control is implemented and tested in the pilot plant of Weesperkarspel
(Amsterdam). It shows that in the case of accurate state estimation, quick changes in setpoint
can be tracked.

Keywords: multivariable control; MPC; crystallisation

INTRODUCTION

In the last decades, most drinking-water treatment plants
have been automated. During these first automation real-
isations, the goal was to operate the treatment plant in
the same way as the operators did before. Therefore the
control configurations consisted of a heuristic control strat-
egy, based on historical operator knowledge. The controls
are designed for the static situation, including extra safety
margins to take operator response into account. This was
a logical and practical solution. However, this heuristic
solution does not optimise the control of a treatment plant.

The heuristic control is based on static local control ob-
jectives, without taking the current state of the treatment
plant into account. Therefore it is necessary to adopt a
new control strategy, which can take into account quality-
related and economic criteria and optimise the overall
performance of the plant, based on the current state of
the processes.

Since the treatment steps are coupled, local changes affect
other treatment steps and therefore local optimisations
should be considered in a global context. It is necessary
that operational actions do not introduce new disturbances
to other processes. This must be considered in all levels of
control, from basic valve controllers to plant-wide quantity
control. At the same time, the control should consider the
actual state of the process and optimise plant operations.

The information density in the online measured data of
water treatment plants is limited and multiple measure-
ments have to be used to obtain a good view of the actual
treatment performance (van Schagen et al., 2006b). By

using white or grey models, the process knowledge is no
longer stored as historical heuristic rules of thumb or static
local control objectives. The local control objectives evolve
from applying the new criteria to the existing models
in the case of changes to the process, such as boundary
conditions, influent properties and desired treated water
quality.

The model-based dosing control is part of the new model-
based control configuration for the pellet-softening treat-
ment step, consisting of a number of pellet reactors
and a bypass. The pellet softening process step at the
Weesperkarspel treatment plant is described in the first
section. The model-based control configuration is elabo-
rated in the second section. Finally the model-based dos-
ing control scheme is validated in simulation experiments
and finally validated in the pilot plant of Weesperkarspel
(Amsterdam).

PROCESS DESCRIPTION

In the Netherlands, softening of drinking water in treat-
ment plants is mainly carried out with fluidised pellet
reactors. The pellet reactor consists of a cylindrical ves-
sel that is partly filled with seeding material (figure 1).
The diameter of the seeding grain is small, between 0.2
and 0.4 mm and consequently the crystallisation surface
is large. The water is pumped through the reactor in
an upward direction at high velocities, maintaining the
seeding material in a fluidised condition. In the bottom of
the reactor, chemicals are dosed (caustic soda, soda ash or
lime). Calcium carbonate then becomes super-saturated
and crystallises on the seeding material, resulting in the
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formation of pellets. At regular intervals, pellets at the
bottom of the reactor are removed. These pellets can be
re-used in industry (van Dijk and Wilms, 1991).

Fig. 1. Fluidised bed reactor for water softening.

Softening in a reactor is normally deeper than the required
levels. Therefore, part of the water can be bypassed and
mixed with the effluent of the reactors. In general, several
identical parallel reactors are installed to increase the
reliability of the system and the flexibility in operation.
Reactors can be switched on and off in case of flow changes,
maintaining water velocities between 60 and 100 m/h.

The mixture of the effluent of the reactors and the bypass
water must be chemically stable to avoid crystallisation in
the filters after the softening step.

At Weesperkarspel caustic soda (NaOH) is dosed for soft-
ening. The seeding material is garnet sand. The dosing of
caustic soda in the pellet reactor is adjusted to realise the
mixed effluent hardness of 1.5 mmol/l. The pellet removal
is based on the hydraulic resistance of the fluidised bed
(head loss) and the goal was to keep the hydraulic resis-
tance constant. The garnet sand dosage was a manually set
percentage of the mass of discharged pellets. The pH, flow,
water temperature and hydraulic resistance were measured
every minute, while hardness, calcium, bicarbonate, super
saturation, pellet diameter and bed height were measured
at longer intervals (Rietveld, 2005).

The characteristics of the softening process at Weespekar-
spel are given in table 1.

Table 1. Characteristics of softening reactors
at Weesperkarspel.

Number of reactors 8 -
Surface area of reactor 5.3 m2

Maximum bed height 5 m
Typical water velocity 60-100 m/h
Grain size of seeding material 0.25 10−3 m
Density of the seeding material 4114 kg/m3

CONTROL CONFIGURATION

The aim of the control of the softening process is to achieve
a desired calcium concentration and, at the same time,
minimise the use of dosage material (caustic soda, seeding
grains and acid). The available control inputs are the
water flow through the bypass and for each reactor the
water flow through the reactor, the grain supply rate, the
pellet discharge rate, the caustic soda dosage and the acid
dosage.

To control the complete treatment step, a modular control
setup is chosen. In this way, the controller complexity
is minimised, maximising operator understanding of the
control structure. Due to the diverse time constants in
the process, these controllers are implemented on dif-
ferent platforms, with appropriate performance for the
controllers. Figure 2 shows the control modules that are
related to the softening process step. On the vertical axis
represents the typical time constant of the controller and
the horizontal axis shows the process level of the controller.

Fig. 2. Control setup for the pellet-softening treatment
step. Modular controllers for different time constants
and control levels.

The Strategic Quantity Control determines the amount of
water, which has to be produced at the treatment plant.
This is based on yearly consumption patterns, available
resources at this plant and, in a multiple plants setup, the
other treatment plants. The amount of water to be treated,
is then passed to the Model-Based Quantity controller and
the Model-Based Lane Optimisation.

The Model-Based Quantity Control determines the actual
production rate of the entire plant, based on expected daily
consumption pattern and the available water in the storage
tanks. Restrictions in production rate, due to short-term
maintenance, are taken into account and fluctuations of
production rate are minimised (DHV, 2008).

The Model-Based Lane Optimisation determines the ideal
pellet size, bypass ratio and the optimal number of reactors
in operation, based on the expected production rate from
the Stategic Quantity Control and the expected tempera-
ture variations. Changing bed configurations is a long term
optimisation, due to the retention time of seeding material
in the reactor of approximately 100 days. An extensive
description of this optimisation scheme can be found in
(van Schagen et al., 2008c).
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The Model-Based Bed Control achieves the optimal bed
composition as found with the Model-Based Lane Opti-
misation by determining the required pellet discharge and
seeding material rates (van Schagen et al., 2008c). It uses
the estimation of the current bed composition, determined
by the Model-Based Monitor. This can be the model-based
monitor of the complete reactor as shown in van Schagen
et al. (2006b).

The Model-Based Monitor estimates the accuracy of the
measurement devices and determines the actual state of
the softening process. This monitor is used to verify the
measurements that are used by the other controllers. In the
case of unexpected differences between measurement and
model outcome, operators are notified to take appropriate
action. If measurement accuracy is sufficient, the model
can be used to estimate unmeasured quality parameters
using online measurements and historical laboratory re-
sults. Finally the actual state of the process can be esti-
mated, such as the diameters of the pellets in the softening
reactor at different heights. An extensive description of
this monitoring scheme can be found in van Schagen et al.
(2006b).

The Model-Based Lane Control determines the current
flow and quality setpoints for each lane. It uses the
estimated bed composition from the Model-Based Monitor
and the actual production rate from the Model-Based
Quantity Control. This controller is introduced, since the
fluidised bed has limited control possibilities and it is
expected that the actual bed composition is different
for each reactor. The Model-Based Bed Control strives
for the optimal bed composition, while the Model-Based
Lane Control adapts to the current bed composition. The
Model-Based Lane Control is elaborated in van Schagen
et al. (2006a).

The Model-Based Dosing Control determines the actual
dosing of caustic soda in the reactor to achieve the desired
calcium concentration after the reactor, while respect-
ing the constraints of the reactor. The objective of this
controller is to follow the setpoint for the Model-Based
Lane Control smoothly. The Model-Based Dosing control
is shown in this article.

The Pellet Discharge, Seeding Dosage, Dosing Control and
Flow Control follow the setpoints from the model-based
controllers, by adjusting the physical devices such as valves
and pumps. These local controllers are implemented in the
process automation system of the plant.

MODEL-BASED DOSING CONTROL

The control of water flow and base dosage in the softening
reactor is not straightforward. The dosing control and
flow control are strongly interrelated. The retention time
in the reactor is at least five minutes and response to
control actions can only be detected after this time, since
water quality can only be measured in the effluent of
the reactor. The measurement of the total hardness (the
main controlled variable), is a semi-online measurement
and has a delay of at least ten minutes. The online pH
measurement is inaccurate and has a tendency to drift.
Changes in flow and dosing must be gentle, to prevent
introduction of process disturbances and fast-changing

water quality parameters, which cannot be compensated
in consecutive treatment steps. Since the water production
rate is predicted, setpoint changes can be predicted as well.
Ideally the control should take these predicted changes
into account. Finally, the constraints of the reactor, such
as maximal height and maximal dosing must never be
violated.

Controller Configuration

A model-based multivariable controller is used to meet
all requirements. A linear Model Predictive Controller
(linear MPC) is used, since in this case calculation time
is limited and valid solutions must be guaranteed. The
information density in the process is insufficient to use
a data-based model. The controller model is therefore
obtained through numerical lineralisation of the white
nonlinear model described in van Schagen et al. (2008a).
The nonlinear model is linearised using the current bed
composition found by the Model-Based Lane Control for
the given reactor, and the current influent water quality
parameters, water flow and caustic soda dosage.

Model predictive control is an online model-based optimal
control technique based on the receding horizon principle.
An online optimisation algorithm (normally a linear or
quadratic programming algorithm) is applied to compute
a series of control actions that minimizes a pre-defined
cost function or ’performance index’, subject to certain
constraints. Applying the receding horizon principle means
that only the first control sample is implemented and the
horizon is shifted one time-step. Then the optimisation
starts all over again. Figure 3 shows the principle of
receding horizons graphically: r(k), y(k) and u(k) are the
reference, output and control (or manipulated) signals,Nm

is the ’Minimum cost horizon’, Nc is the ’Control horizon’
and N the ’Prediction horizon’.

k

present
past future

N
m

N
c

N

r(k)

y(k)

u(k)

time

Fig. 3. The principle of linear model predictive control

At time instant k the system output is predicted from time
step k until k+N as a function of the control actions. Then
the performance index is minimized resulting in an optimal
control trajectory {u(k|k), ..., u(k+Nc−1|k)}.The outputs
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from k until k + Nm − 1 are left out of the optimisation
(to ignore minimum-phase and dead-time behaviour of the
system) and the control actions are not allowed to change
after time step k +Nc − 1.

Many different varieties of model predictive control config-
urations exist. The one chosen to implement for the pellet
reactor controller is the so called ’Standard Predictive
Control’ (SPC) configuration (van den Boom and Backx,
2001). The advantage of this configuration is its flexibility
and its state-space formulation.

The control objectives are to follow the current and future
setpoints of the Model-Based Lane Control under smooth
variation of the manipulated inputs, as formulated in the
following cost function:

J =
N∑

j=Nm

‖y(k + j|k)− ry(k + j)‖2P

+
N∑

j=1

‖Δu(k + j|k)‖2QΔu

+
N∑

j=1

‖u(k + j|k)− ru(k + j)‖2Qu
(1)

where N and Nm are the prediction horizon and the
minimum costing horizon, and ru and ry are the references
for the inputs and the outputs. In this way the control can
use the setpoint predictions from the Model-Based Lane
Control, due to predicted production rate changes.

The inputs are the caustic soda dosage and the water
flow through the reactor. The outputs are the fluidised
bed height in the reactor and the following water quality
parameters in the effluent of the reactor: calcium concen-
tration, pH, M-alkalinity and conductivity.

To meet the physical constraints in the process the linear
MPC takes these constraints into account:

umin < uk < umax

ymin < yk < ymax (2)
To introduce extra integration action in the MPC con-
troller, the model is modified to an IIO model. The new
state vector consists of the previous output and the differ-
ence of the sate vector of the linearised model. The state
update equation is now given by:[

yk

xk+1 − xk

]
=
[

I C
0 A

] [
yk−1

xk − xk−1

]
+[

D
B

]
(uk − uk−1) (3)

with the corresponding output function:

yk = [ I C ]
[

yk−1

xk − xk−1

]
+D (uk − uk−1) (4)

where A, B, C and D are the system matrices of the
linearised model.

To compensate for plant-model mismatch an observer is
used, to estimate the offset in ŷk. The state update in the
MPC controller is therefore given by:

[
ŷk

x̂k+1 − x̂k

]
=
[

I C
0 A

] [
ŷk−1

x̂k − x̂k−1

]
+[

D
B

]
(uk − uk−1) +[

L
0

]
(yk−m − ŷk−m) (5)

where yk−m is the measurement result of m samples ago,
due to the measurement delay.

A detailed explanation of the linear MPC algorithm is
given in van den Boom and Backx (2001).

Simulation Results

To evaluate the performance of the controller, simulations
were performed for the full-scale plant. The sample time
for the controller was chosen to be 1 minute. The minimum
cost horizonNm, the control horizonNc and the prediction
horizon N are chosen to be 3,10,20 respectively, since the
hydraulic retention time of the reactor is about 3 to 5
minutes. The setpoint for reactor flow and calcium concen-
tration were taken from the lane controller. The simulation
is started with a lane flow of 400 m3/h, increasing the lane
flow to 570 m3/h, due to a production rate change after
1 hour. The reactor flow is kept constant and the bypass
flow is increased. As a result from this flow change, the
calcium concentration has to change from 50 to 35 mg/l.
This is a regular change in calcium setpoint to produce
constant water quality in the mixed effluent of reactor and
bypass:

[Ca2+]l =
[Ca2+]inFBP + [Ca2+]rFw,r

Fw,l
(6)

Finally, if all lanes are operated at maximum capacity, the
lane controller can increase the reactor flow for all reactors
that are not yet limited by fluidised bed height. Therefore,
in the simulation, the reactor flow is increased to 450 m3/h
(the maximum flow for this reactor). The lane flow in this
case is 640 m3/h.

The operating point for the linearised model is the steady-
state of the dissolved components in the nonlinear model
with current estimated bed composition and the current
influent flow and dosage. The states, which describe the
bed composition (mg and mc) are kept constant during
numerical linearisation. The weighting matrices in equa-
tion 1 are diagonal, and the non-zero diagonal elements
are given by:

P (Ca2+) = 0.1

Qu(Fw) = 1

QΔu(Fw) = 1 (7)

QΔu(Fs) = 0.1
The non-zero weights in P and Qu penalise the deviation
of the calcium concentration and water flow from their
reference values. Change in the manipulated variables
are penalised to achieve a smooth transition between
operation points. In addition, level constraints are defined
for all outputs and inputs, based on their physical ranges.
To make the simulation more realistic, noise was added to
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the simulated outputs. For the measurements of calcium
and M-alkalinity the measurement noise was set at 2%, for
bed height, pH and conductivity 1%.

The observer gain was chosen to be diagonal and the same
for all measurements, since it is used to estimate model
offset. The change in offset is expected to be equal for all
measurements.

L = diag ([0.2 0.2 0.2 0.2 0.2]) (8)

The simulation results using the nonlinear process model
are shown in figures 4 and 5. In figure 4 the dashed-dot
line is the setpoint for the calcium concentration, changing
from 50 to 35 mg/l, due to a lane flow increase. The solid
line is the simulated process values without measurement
noise, while the dots are the actual measurement values
available for the MPC controller. For calcium, M-alkalinity
and conductivity, these measurements are only taken every
10 minutes, with a 10 minute delay. In the graph the
measurements are therefore shifted by 10 minutes. The
pH measurement and bed height measurements are online
measurements and available every minute. The dashed line
is output estimation ŷ)k of the MPC controller. In figure
5 the dashed-dot line is the setpoint for the reactor flow
from the lane controller and the solid lines are the actual
setpoints from the MPC controller.
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Fig. 4. Simulation results outputs. dashed-dot: Reference,
dashed: Estimate, solid: Process, dots: Measurements
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Fig. 5. Simulation results control inputs. dashed-dot: Ref-
erence, solid: MPC.

It can be observed, that the tracking of the reference signal
is appropriate, including the desired smooth transition.
The calcium concentration and the flow change starts
before the actual setpoint change, as expected, to get a
smooth transition close to the desired setpoint. Another
interesting observation is that the water flow through
the reactor and the caustic soda dosage are not strictly
linked (as opposed to the current heuristic strategy).
A flow reference change shows a rapid flow response,
but a relatively slow dosage response, which results in
a negligible change of the calcium concentration. Finally
it can be seen that the MPC controller prevents a flow
increase to the setpoint of 450 m3/h, due to the limitation
in bed height.

Pilot plant Results

The MPC controller is also implemented on the pilot
plant of Weesperkarspel. The setpoints for the calcium
concentration and reactor flow follow a similar pattern as
in the full-scale reactor simulation. In this experiment the
weighting matrices in equation 1 are diagonal, and the
non-zero diagonal elements are given by:

P (Ca2+) = 3

Qu(Fw) = 1

QΔu(Fw) = 0.01 (9)

QΔu(Fs) = 0.01

The matrices are selected to focus on setpoint achievement
and less on smooth transition. The non linear model is the
model from a validation experiment. The bed composition
in this experiment is determined using the pressure drop
measurement with different flows in the reactor. In the
pilot-scale plant the pH measurement is not available as
online measurement, and is determined semi-online during
the M-alkalinity titration. The results from the pilot plant
experiments are shown in figures 6 and 7.

The MPC controller in the pilot plant is performing
as expected. The relatively small weighting matrix for
control variations in equation 10 cause more variation in
the caustic soda dosage and flow than for the full-scale
simulation experiment.
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Fig. 6. Pilot plant experiment results outputs. dashed-dot:
Reference, dashed: Estimate, dots: Measurements
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CONCLUSIONS

The performance of the softening process step can be
improved by applying a model-based control scheme. The
control configuration is split in separate controllers for
different control levels and time constants. To achieve
smooth but quick responses to changing setpoints, a linear
MPC is shown to be an effective controller.

A linear MPC controller shows a smooth transition be-
tween sudden changes of setpoints, while using a limited
number of online and semi-online measurements. The con-
troller is shown to function appropriately in the pilot-scale
plant of Weesperkarspel.
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Abstract: The Catofin propane process is an emerging industrial process for propylene production 
through dehydrogenation of propane. It is composed of multiple adiabatic fixed-bed reactors which 
undergo cyclic operations where propane dehydrogenation and catalyst regeneration alternate over 
roughly ten minute period for each. One of the major concerns in the operation of the Catofin process is 
maintaining the reactor at an optimum condition while overcoming gradual catalyst deactivation. 
Addressing this issue, an online optimization of the Catofin process combined with a repetitive control 
has been investigated. The optimizer computes optimum initial bed temperatures for dehydrogenation 
and optimum air flow rate for regeneration, and the repetitive controller performs cycle-wise feedback 
action during regeneration to attain the target bed temperatures at the terminal time of the regeneration 
period. Numerical studies have shown that the proposed online optimizing control system performs 
satisfactorily coping with the catalyst deactivation and other disturbances. 

Keywords: Catofin process, online optimization, repetitive control, adiabatic fixed-bed reactor 

�

1. INTRODUCTION 

Advanced control and online optimization are now accepted 
as an essential process intensification technology that can 
create an additional profit in process industries wherever they 
are applicable. During the past two decades or more, there 
have been numerous industrial projects for advanced process 
control alone or integrated with online optimization as 
reviewed in Qin and Badgwell (2003). Such projects have 
typically proceeded for continuous processes with linear 
MPC only or cascaded by online steady state optimization. 
While the continuous process with steady state operation 
represents the majority of the chemical processes, non-
continuous processes such as batch, semi-batch, and 
repetitive processes also take an important part. Such 
processes are run under unceasing dynamics, which renders 
conventional advanced control and online optimization 
techniques to show limitations in the performance. In this 
research, a repetitive process called the Catofin propane 
process (ABB, 2008) has been addressed and an advanced 
control technique combined with online optimization that 
exploits the unique nature of the Catofin process has been 
investigated.  

In this study, an on-line optimizing control system for the 
Catofin propane process has been proposed and investigated 
numerically. The optimizing control system is composed of 
two tiers, a repetitive controller cascaded by an online 
optimizer. Repetitive control is put into an action during the 
regeneration (RG) steering the bed temperatures at two axial 
positions to reach the target values at the terminal time of the 
RG period. The open-loop operation with only a state 
estimation is conducted during the dehydrogenation (DH). 
The optimizer calculates the optimum target values for the 

bed temperatures and the RG air flow rate under a cyclic 
steady state. Both repetitive control and online optimization 
were constructed on the basis of a first principle reactor 
model reduced to a set of ordinary differential equations 
(ODE’s) using the cubic spline collocation method (CSCM) 
(Yun and Lee, 2007). For the repetitive control, the model is 
linearized before the start of each RG cycle around the 
operating trajectories in the previous cycle. The performance 
of the proposed optimizing control scheme has been 
investigated numerically.

2. PROCESS DESCRIPTION 

Fig. 1 shows a simplified process flow diagram of the Catofin 
propane process. It consists of multiple parallel adiabatic 
fixed-bed reactors that contain Cr2O3/Al2O3 catalyst, where 
the DH of propane and RG of catalyst are carried out 
alternatively over roughly ten minute period each with short 
periods of purging and evacuation operations in-between. 

 

Fig. 1. Process flow diagram of the Catofin propane process. 
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The DH reaction is endothermic and produces a significant 
amount of coke. The bed temperatures are decreased and the 
catalyst loses activity by coke deposit and chromium 
reduction during this period. The RG reaction is coke burning 
by hot air and both the bed temperatures and catalyst activity 
are recovered under the oxidizing condition. The catalyst is 
known to have two years of life time and gradually loses the 
activity as the number of active sites is diminished by surface 
migration and agglomeration of Cr2O3 (Nijhuis, Tinnemans, 
Visser, and Weckhuysen, 2004). 

The following apparent reaction kinetics proposed by Kim, 
Lee, and Song (1980) for the propane DH and Mickley, 
Nestor, and Gould (1965) and Pena, Monzon, and Santamaria 
(1993) for the coke combustion were assumed: 

1 3
3 8 3 6 2 3 6 2

2

4
3 8 3 6 4 2 6

rrC H C H +H C H 3C+ 3H
r

rC H +C H 2CH + C H +2C

� DDE�
�
� DDE�

��������       (1) 

5
2 2

rC+O CODDE                              (2) 

The rate constants are given in Table 1, which were slightly 
adjusted from the original values (Kim, Lee, and Song, 1980; 
Mickley, Nestor, and Gould, 1965; Pena, Monzon, and 
Santamaria, 1993) to more closely fit the conversion and 
yield of the real process (ABB, 2008). 

Table 1. Parameters and normal operating conditions for 

the Catofin reactor model 

Constants 

Bed length = 1.5 (m), Bed diameter = 5.7 (m) 
Cc = 0.80 (kJ/kg•K), �c=8x102 (kg/m3),  
Cg = 3.71 for DH, 5.66 (kJ/kg•K) for RG 
D =1.7  for DH, 0.76 (m2/min) for RG 
kB=1.982 (kJ/min•m•K),  
R= 8.3462 (kJ/kmol K), DH and RG periods 
= 9min each 

Normal 
operating 

condition for 
DH 

Inlet temp=650 , 
Propane flow=56.8(kmol/min), 
P=0.5 (atm) 

Reaction rates 
(kmol/kg-

cat.min) for 
DH 

r1= k1[C3H8]RT,   k1=3.126*107e(-47100/RT) 

r2=k2[C3H8][H2]R2T2,  k2=9.70*10-3e(-12800/RT) 

r3=k3[C3H6]R2T2,      k3=8.407*109e(-62900/RT) 

r4= k4 [C3H8][C3H6]R2T2,k4=9.498*105e(-47800/RT) 

Normal 
operating 

condition for 
RG 

Inlet temp=690 , 
Air flow=103.4 (kmol/min), 
P=2.0 (atm) 

Reaction rate 
for RG r5=k5[C][O2]RT,       k5=4.129*103e(-25575/RT) 

It is assumed that the bed temperatures are measured at z = 
0.2, 0.4, 0.6, 0.8, and 1.0, respectively, and the product gas 
compositions are available as the time average values over 
the DH and RG periods each with one cycle of measurement 
delay. It is also assumed that the RG is conducted under 

feedback control while the DH is carried out in an open loop 
state under a constant propane flow rate. The control 
objective during the RG is to steer the bed temperatures at 
z=0.2 and 0.4 to the target values provided by the optimizer 
using the RG air temperature as a manipulating variable 
(MV). The RG air flow rate was chosen as a decision variable 
for the optimizer together with the bed temperature target 
values. 

3. REACTOR MODELLING 

3.1  Mass and Energy Balances 

In an adiabatic fixed-bed reactor, radial distribution of the 
concentrations and temperatures can be neglected. Under this 
assumption, the component mass and energy balance 
equations are written as 
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where ir  and iC  represent the rate of generation (kmol/kg-

cat min) and concentration (kmol/m3) of component i , which 
refers to C3H8, C3H6, H2, CH4, C2H6 for DH operation, and 
CO2, O2 for RG operation, respectively; cr  and cC  represent 

the rate of generation (kmol/kg-cat min) and concentration 
(kmol/m3) of coke, respectively; jr  referes to the rate of the 
jth reaction; z  denotes the normalized axial distance. Note 
that cr  for DH is different from cr  for RG. Other parameters 
and variables in the above model equations are given in Table 
1. 

In the above, the second boundary condition is specified at 
5z 
   instead of 1z 
  whereas the spatial domain is 
(0,1]z. . The reason for this is to more reasonably represent 

the true phenomenon, / 0dT dz E  as z E< , using a 
condition at a distant axial position, which was named as the 
far-side boundary condition (Yun and Lee, 2007). 

3.2  ODE Models by Cubic Spline Collocation Method 

ODE models for the virtual process and nominal model were 
derived separately using the CSCM (Yun and Lee, 2007) 
using ten and five equally spaced collocation points over 
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(0,1]  plus an additional point at 5z 
 , respectively. The 
resulting ODE models can be concisely written as 

( , ), ,
i

i i ik
k k

dx f x u i DH RG
dt


 
                         (5) 

In the above, the subscript k  denotes the cycle number; DHx  
represents the state for the DH model, that consists of bed 
temperatures, concentrations of C3H8, C3H6, H2, CH4, C2H6, 
and C at the internal collocation points; RGx  is similar to 

DHx   except that the concerned chemical components are C 
and O2; u  denotes the MV and represents the air temperature  

airT  for i=RG and is void for i=DH, respectively. 

3.3  Process Behavior under a Cyclic Steady State 

Fig. 2 shows the bed temperature trajectories of the virtual 
process under a cyclic steady state at the nominal operating 
condition. The bed temperatures are initially increased as the 
higher bed temperatures in the fore part of the respective 
collocation points recede by the gas flow. After a while, 
however, bed temperatures are decreased by the endothermic 
reactions as the propane DH proceeds and restored again by 
the coke combustion during the RG. The amount for the coke 
deposit changes during this operation are as shown in Fig. 3. 
The coke generation is larger at the higher temperature 
positions and vice versa. 

 

Fig. 2. Bed temperature trajectories at six axial positions 
under a cyclic steady state. 

 

Fig. 3. Trajectories of coke deposit at six axial positions 
under a cyclic steady state. 

The associated propane and propylene concentration 
trajectories during propane DH are shown in Fig. 4.  Over an 
initial period while the bed temperatures are high, almost 
complete propane conversion and high propylene yield are 
obtained at the reactor outlet. As the bed temperatures begin 

to fall, both the propane conversion and propylene yield 
decrease. If we scrutinize Fig. 4, it can be seen that the front 
half of the bed where temperatures are higher than the rear 
half contribute more than 78.2% of the propylene production. 
The propane conversion and propylene selectivity averaged 
over a DH period are 51.5% and 86.2%, respectively. 

 
(a)                                            (b) 

Fig. 4. Trajectories of propane and propylene concentrations 
under a cyclic steady state. 

4. OPTIMIZING CONTROL SYSTEM 

4.1  Structure 

The optimizing control system consists of three major parts: 
the online cyclic steady state optimizer, the repetitive 
controller, and the model estimator. Fig. 5 shows the overall 
structure of the proposed system. 

State estimator
Nominal Catofin model

Parameter estimator

linearizationRepetitive controller

Online cyclic 
steady state optimizer

bed temp. and product 
comp. measurements

To nominal 
model

From optimizer
From controller

target bed temp.

state

paramter estimatemodel output

linearized model
J

J
ĴF 2 ĴF

airm

airT

spT

Catofin process

Regen Dehydro

 

Fig. 5. Structure of the optimizing control system. 

Fig. 6 illustrates the information flow through the state 
estimators along the operational sequence in more detail.  
The state estimation continues for the DH as well as RG 
periods based on the measurements of the bed temperatures 
and average product gas compositions in the previous cycle. 
Estimates of the coke deposit and bed temperature at the 
collocation points are transferred from the DH to RG and also 
from the RG to DH. 

 

Fig. 6. Information flow along the sequence of operations. 
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4.2  Repetitive Control 

4.2.1  Discrete-time Nominal Model 

We first describe how the discrete-time nominal model for 
the state estimator and controller design is derived. The 
forward difference approximation applied to (5) results in 

( 1) ( ( ), ( )), DH,RGi i i i
k k kx t g x t u t i� 
 
                    (6) 

The output  equation can be written as 
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                       (7) 

where y  and p  represent the bed temperatures at z=0.2, 
0.4,…,1.0 and the average product gas composition measured 
at the end of the DH and RG periods with one cycle of 
measurement delay, respectively; N  denotes the total 
number of sampling instance during the period of DH (or  
RG). V  is a matrix that extracts the bed temperatures from 
the state and H  is defined in a similar way for the 
compositions at the bed outlet. Hereafter, let us drop the 
superscript i  for notational simplicity wherever there is no 
confusion. 

The composition equation in (7) can be rewritten in the form 
of a state space equation. For this, let us define 
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Then the associated state transition equations are recast to 
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The resulting model equation can be rewritten in the 
following simplified form: 
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Note that (10) and (11)  holds for DH and RG separately. 

4.2.2  Control Algorithm for RG Operation 

The repetitive control conducts cycle-wise integral control 
action. To facilitate the construction of the control law, it is 
convenient to transform (10) to a state space model with 

1( ) ( ) ( )k k ku t u t u t�� ��  and ( )ky t  as the input and output 
variables, respectively. Linearization of (10) around the 
trajectories of the process variables in the k-1th cycle yields 

1 1

1 1
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k k k k k
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            (12) 

where 1( ) ( ) ( )k k kx t x t x t�� �� ; 1( )kA t�  represents a  

shorthand notation of 1 1 1( ( ), ( | ))k k kA u t x t t� � � , and 

similarly for 1( )kB t�   and 1( )kC t� .  ( )ku t�  is allowed to 
change P times at 1 2( 0) , , , Pt t t
 �  during the RG period and 
determined at each time moment to satisfy the following 
quadratic prediction objective: 
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At other occasions than , 1, ,mt m P
 �  ( ) 0u t� 
 .  In the 
above, ˆ ( | )k my N t  represents a prediction of ˆ ( )ky N , the bed 
temperatures at z=0.2 and 0.4, on the basis of the information 
up to mt  at the kth cycle; sp

kT  denotes the target value of 
ˆ ( )ky N . ˆ ( | )k my N t   is given by the following form: 
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It is straightforward to derive (14) from (12). Note that the 
state estimate 1( | )kx t t�   and ( | )RG

k m mx t t�  are needed to 
construct (12) (for linearization) and to solve (13) for ( )ku� �  
(using (14)), respectively. 

4.2.3  State Estimator 

The state estimator is constructed separately for DH and RG 
in the form of the extended Kalman filter (EKF) for (10) and 
is given as 

� �
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       (15) 

The observer gain ( )kK t  was obtained according to the EKF 
law using the process and measurement noise covariance 
matrices as the tuning factors. Using ( | )RG

k m mx t t  and 

1( | )RG
k m mx t t� ,  ( | )RG

k m mx t t� = ( | )RG
k m mx t t - 1( | )RG

k m mx t t�   for 
(14) was estimated. The state estimator acts as a fixed-lag 
smoother at t=N because the average product gas 
compositions are measured with one cycle of delay. 

4.2.4  Implementation procedure 
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Over a DH-RG cycle, the following steps take turns in the 
repetitive control level: 

[Step 1]  DH period 

( | )DH
kx t t   is estimated for 1, ,t N
 �  using (15). 

[Step 2]  Transition from DH to RG 

Initialize (1 | 0)RG
kx  by carrying over the coke deposit and bed 

temperature estimates in ( | )DH
kx N N  to (1 | 0)RG

kx . Obtain the 
linearized model in (12) by linearizing (10) around  

1( | )RG
kx t t� and 1( 1), 1, ,ku t t N� � 
 � . 

[Step 3]  RG period 

Perform the state estimation using (15). Compute 
1( | ) ( | ) ( | )RG RG RG

k k kx t t x t t x t t�� 
 � . Determine ( )k mu t� ,  
1, ,m M
 �  according to (13) and (14). Implement 

1( ) ( ) ( ) ( )air
k k k kT t u t u t u t�
 
 � �  to the process. 

[Step 4]  Transition from RG to DH 

Initialize (1 | 0)DH
kx  by transferring the coke deposit and bed 

temperature estimates in ( | )RG
kx N N  to (1 | 0)DH

kx . 

4.3  Online Cyclic Steady State Optimizer 

The online optimizer determines spT  and airm , the target bed 
temperatures and the combustion air flow rate, respectively, 
that minimize the cost function under a cyclic steady state 
whenever the optimizer is invoked. 
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where refT , pm , and pY  represent the reference temperature, 
propane mass flow rate, and average propylene yield over a 
DH period, respectively and the subscript css means the 
cyclic steady state. The summation is taken over the RG 
period. 

The last term in J  is to enforce the cyclic steady state 
condition, which is slackened by introducing a slack variable 
s defined the last equation in (16). 

4.4  Model Parameter Estimator 

In this study, the catalyst deactivation was assumed to be the 
most important process change and the parameter estimator 
was designed to update the pre-exponent rate constants by 
minimizing the following quadratic objective on the 
prediction error: 
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where , ( )m i
ky t  and ( ; )i i

ky t �  represent the measurement and 
model prediction of ( )i

ky t  based on i� , respectively. 

We devised a three parameter function as in (18), which is to 
be multiplied to each of the pre-exponent rate constants. 

� �� �1 sin ( / 2 )( )
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        (18) 

Since there are four rate constants for the DH, DH� �  
� �1 4 1 4 1 4a a b b d d� � � . Likewise, � �5 5 5

RG a b d� � . 

It is true that (18) is only a rough description of the catalysts 
activity distribution in the real process. Nonetheless, both the 
repetitive controller and the optimizer can achieve highly 
precise tracking as well as the true minimum, respectively, 
overcoming model uncertainties since the controller performs 
the cycle-wise integral action and the optimizer searches for 
the minimum on the basis of the process  measurements. 

5. SIMULATION CONDITIONS 

The sampling period was chosen to be 3 sec resulting in total 
sampling instants of 360 with 180RG DHt t
 
  over an entire 
cycle. The number control moments P was chosen as 3 and t1, 
t2, and t3 were selected as 1, 60, and 120, respectively. The 
following constraints were imposed on the MV movements 
for repetitive control: 

o600 ( ) ( ) 750( C)airu t T t� 
 �                      (19) 

In the virtual process, the case of catalyst deactivation is 
represented by multiplying all ik ’s by 2.41 0.5 ze�� . 

6.  RESULTS AND DISCUSSION 

The performance of the optimizing control system has been 
investigated for two cases. In the first case, the reactor was 
assumed to be initially at an arbitrary open-loop cyclic steady 
state and the optimizer steers the reactor to an optimum 
condition. In this case, the model parameter estimator was 
not invoked. In the second case, the optimum operation 
condition was assumed to be changed by catalyst deactivation, 
and the optimizer seeks for a new optimum condition from 
the previous operating condition determined in the first case. 
In the second case, the model parameter estimator plays an 
important role for both the repetitive controller and the online 
optimizer. 
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The simulation results for the first case are summarized in 
Fig. 7. It shows the response of the bed temperatures to their 
respective target values sent by the optimizer and the 
decrease of the objective function as the online optimization 
proceeds. The online optimizer calculates the new optimal 
target values once a cyclic steady state is reached on the basis 
of the nominal model and process measurements whereas the 
repetitive controller maneuvers the air temperature to attain 
the target values. 

 

Fig. 7. Results of online optimization starting from an 
arbitrary open-loop state; (a) bed temperatures and their 
target values, (b) combustion air flow rate, (c) objective 
function. 

The simulation results for the second case are given in Fig. 8. 
It can be seen that the overall responses are similar to Fig. 7. 
Unlike in the previous case, however, DH�  and RG�  were 
recurrently updated during the optimization. One thing to 
note is that the bed temperatures are raised even higher from 
the values determined in the first case to compensate for the 
catalyst deactivation. 

 

 

Fig. 8. Results of online optimization after the catalyst 
deactivation occurs; (a) bed temperatures and their target 
values, (b) combustion air flow rate, (c) objective function. 
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Abstract:
This paper proposes a control strategy for a Diesel Oxidation Catalyst (DOC) which is grounded on
a one-dimensional distributed parameter model. This first principles model for the propagation of the
temperature variations accounts for spatially distributed heat generation (due to oxidation of reductants).
As is discussed, heat generation can be regarded as equivalent inlet temperature variations. This fact is
supported by experimental results. By nature, DOC outlet temperature response includes long and time-
varying delays. An approximation of the proposed model allows to derive delays analytically, and can be
used to schedule control parameters. As a consequence, it is easy to design several standard controllers
for the DOC outlet temperature which account for the effects of the inlet temperature (disturbance)
and the reductant (control). In this paper, simulation results are presented for a PI, a PID, and a Smith
predictor. Interestingly, the three controllers use solely parameters determined from the previous analysis
and do not need any extra tuning parameter. The strategies are tested on a standard NEDC driving cycle
in simulation. It appears that, among these standard strategies, the DOC partial derivative equations can
be efficiently controlled using the presented Smith predictor.

Keywords: Automotive exhaust aftertreatment systems, Diesel oxidation catalyst, Distributed-parameter
systems, Boundary control, Control applications

1. INTRODUCTION

1.1 Motivation

On most new Diesel vehicles, increasing requirements regard-
ing particulate matter emissions (Ecopoint Inc., 2008) are sat-
isfied using a Diesel Particulate Filter (DPF). This filter, lo-
cated in the vehicle exhaust line, stores particulate matter until
it is burnt in an active regeneration process (Bisset, 1984).
During this phase, DPFs behave like potentially unstable reac-
tors (Achour, 2001), and their inlet temperature must be care-
fully controlled to prevent filter runaway.

In most current aftertreatment architectures (Koltsakis and Sta-
matelos, 1997), a Diesel Oxidation Catalyst (DOC) is placed
upstream the DPF in the vehicle exhaust line. To increase
the DPF inlet temperature, reductant is oxidized in the DOC,
which, in turn, increases its outlet temperature. The DOC also
conveys, up to some heat losses, its inlet enthalpy flow: in other
words, inlet temperature variations propagate through the DOC.

A DOC is a chemical system difficult to control. Classical
models are usually composed of a dozen of coupled partial dif-
ferential equations (PDEs) (Depcik and Assanis, 2005), which
complexify the development of model-based control laws. Ex-
perimentally, it can be observed that a step change on the inlet
temperature propagates to the output of the system with long
response times (Oh and Cavendish, 1982). Depending on the
engine outlet gas flow rate, these response times significantly

vary: they roughly decrease by a factor of 10 from idle speed
to full load. Strategies that are commonly used to deal with this
problem rely on look-up tables, which, in practice, are difficult
and time-consuming to calibrate.

The purpose of this paper is to propose implementable control
laws tuned according to a simple control-oriented model. This
approach allows faster calibration. To achieve this goal, simpli-
fication of the above-mentioned classical models is needed.

After a presentation of a mathematical formulation of the
control problem in the second part of this introduction, we show
in section 2 how the model proposed in Lepreux et al. (2008),
initially using inlet temperature as control variable, can be used
to accurately describe actual cases of engineering interest, i.e.
cases where the reductant flow is the control variable. Then,
we show in section 3 how to approximate the model. Finally,
in section 4, this approximation is used to tune several classic
controllers. Simulation results serve as comparisons and stress
that a Smith predictor tuned using the proposed methodology
represents an efficient controller for the DOC.

1.2 Problem Formulation

It has been shown in Lepreux et al. (2008) that, considering only
inlet temperature variations and neglecting chemical reactions,
a DOC thermal behavior can be accurately described by the
following model
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⎧⎪⎪⎨⎪⎪⎩
∂T

∂t
(z, t) + v

∂T

∂z
(z, t) = −k1(T (z, t)− Ts(z, t))

∂Ts

∂t
(z, t) = k2(T (z, t)− Ts(z, t))

(1)

with boundary control
T (z = 0, t) = T in(t)

where T and Ts are respectively gas and solid temperature
variations about steady state, v is the channel gas speed which
can be derived from mass flow, parameters (k1,k2) can be either
derived from usual correlation (Osizik, 1977) or identified from
experimental data (Lepreux et al., 2008). The output of the
system is the outlet gas temperature

T out(t) = T (z = L, t)
Considering steady-state initial conditions{

T (z, 0) = 0
Ts(z, 0) = 0

system (1) yields the transfer function

T̂ (z, s) = T̂ in(s) exp
(
−z
v
s− k1z

v
+
m(z)
s+ k2

)
(2)

wherem(z) = k1k2z/v, x̂ is the Laplace transform of x, and s
is the Laplace variable. We denote Υ the Heaviside function and
Ii the modified Bessel functions of the first kind. The system
step response is

T (z, t) = Υ(t− z
v
) exp

(
−k1z
v

)
×[

1 +
∫ t−z/v

0

exp (−k2τ)
√
m(z)
τ

I1(2
√
m(z)τ)dτ

] (3)

For an easy evaluation of (3), a formulation using power series
expansion is given in Lepreux et al. (2008).

2. REDUCTANT FLOW AS CONTROL VARIABLE

It is shown in Lepreux et al. (2008) that experimentally mea-
sured step responses of the system can be identified to model (1)
with good quality. However, this representation might seem a
bit simplistic in view of real applications since inlet temperature
variations are difficult to control and cannot be used directly
as control variable. In practice, reductants (hydrocarbons HC)
are injected at the inlet of the DOC. They are oxidized on the
catalyst and, consequently, increase the DOC temperature. In
this section, we compute HC step response and compare it
against T in step response.

2.1 Model with Heat Source

During the regeneration process, the DOC is working at high
temperatures, which ensures that the rate of conversion of
reductants is high. Moreover, large quantity of HC is injected
to generate exothermicity. Consequently, the inlet fraction of
this reductant is very important, and its effect is dominating
over other species’. By construction, a DOC is designed to
yield large heat and mass transfer. These transfers are very
effective, and the time scales implying the thermal phenomena
are much lower than the ones implying chemical reactions. For
the experiments presented in § 2.3 gas flows through the DOC
approximatively 1000 times faster than the outlet temperature
response time. For these reasons, to model the DOC thermal

behavior, we propose to encompass all the chemical reactions
in a “source term Ψ”, leading to the following model⎧⎪⎪⎨⎪⎪⎩

∂T

∂t
(z, t) + v

∂T

∂z
(z, t) = −k1 (T (z, t)− Ts(z, t))

∂Ts

∂t
(z, t) = k2 (T (z, t)− Ts(z, t)) + Ψ(z, t)

(4)

where Ψ(z, t) is the control variable and T in(t) is regarded as a
disturbance. Ψ includes the sum of the enthalpies of the various
reactions taking place inside the DOC. We formulate a strong
simplifying assumption. Namely, we assume that the rate of
reaction is independent of the species concentration. Further,
we also assume that it is independent of the temperature. In
other words, Ψ is constant over some spatial interval. These
assumptions are supported by experimental identification re-
sults of § 2.3. Over the whole range of considered operating
conditions, the obtained results are quite accurate. We note
Lc the length of the portion of the DOC where the enthalpy
of reaction is released (see Fig. 1). Formally, we consider the

Fig. 1. HC reaction zone

following discontinuous function{
Ψ̂(z, s) = α/s, 0 ≤ z ≤ Lc

Ψ̂(z, s) = 0, Lc < z ≤ L
(5)

Then, several steps of operational calculus on (4) lead to

T̂ (Lc, s) = T̂ in exp
(
−Â(s)Lc

)
+
B̂(s)
Â(s)

(
1− exp

(
−Â(s)Lc

))
(6)

with Â(s) =
1
v

(
s+ k1 −

k1k2
s+ k2

)
and B̂(s) =

k1
v

α

s(s+ k2)
.

In (6), the first term corresponds to the transfer from the inlet
temperature T in(t) to the output T (Lc, t), while the second
term corresponds to the transfer from the input signal Ψ̂ de-
fined in (5) to the output T (Lc, t). The linearity of the two
effects will be used to study these phenomena separately in
our control strategy. Further, for z > Lc, equation (4) gives
T̂ (z, s) = T̂ (Lc, s) exp

(
−Â(z − Lc)

)
and, we get

T̂ (z, s) = T̂ in exp
(
−Âz

)
− B̂
Â

exp
(
−Âz

)
+
B̂

Â
exp

(
−Â(z − Lc)

) (7)

Eventually, by an inverse Laplace transform of (7) (Abramowitz
and Stegun, 1965), one obtains the reductant step response

T (z, t) = Υ (t− z/v) exp
(
−k1z
v

)
M(z, t− z/v)

−Υ (t− z/v) exp
(
−k1z
v

)
F (z, t− z/v)

+ Υ (t− z/v) exp
(
−k1z
v

)
F (z − Lc, t− z/v)

(8)

where
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(z, t) = T in(t)

+
∫ t

0

exp (−k2τ)
√
m(z)
τ

I1(2
√
m(z)τ)T in(t− τ)dτ

F (z, t) = g(t)

+
∫ t

0

exp (−k2τ)
√
m(z)
τ

I1(2
√
m(z)τ)g(t− τ)dτ

g(t) =
k1α

k1 + k2
t− k1α

(k1 + k2)2
(1− exp (−(k1 + k2)t)) .

2.2 Fitting the heat source model with an equivalent no-source
model

The static gain GT in of the transfer from the inlet temperature
T in to the output T (z, t) is equal to 1 (Lepreux et al., 2008).
The static gainGu of the transfer from the input signal Ψ̂ to the
output T (z, t) can be computed using (7)

Gu = lim
t→∞T (t) = lim

s→0
sT̂ (s) =

k1αLc

k2v
(9)

These last formulas are used during the identification and
normalization process in this Section and for controllers design
in Section 4. In practice, it is possible to relate α, Lc, the
current HC conversion efficiency and the amount of injected
reductants (which is itself related to the injector energizing
time): for a given (identified)Lc, α can be regarded as a control
variable.

In Fig. 2a, it is shown that the overall shape of the reductant
step response, computed with (8), is very similar to the T in

step response (3). This similarity suggests that it is possible

(a) Comparison between HC step response and T in step response. Analytic
results obtained respectively from (8) and (3).

(b) Comparison between HC step response (model with source) and adapted
T in step response (model with no source)

Fig. 2. HC step response approximation in various operating
conditions

to approximate HC step response by T in step response at
the expense of an additional identification procedure. We show
in Fig. 2b that it suffices to adapt the DOC length, using the
model with no source (1), to get results very close to the ones
obtained with the model with source (4) 1 . In other words,
generating enthalpy by HC is quite equivalent to generating
1 further details of this adaptation will be treated in a forthcoming publication

enthalpy by T in with a DOC having a shorter length. Hence,
the temperature response of the DOC associated to the T in vari-
ations are slower than those associated to HC. From a control
point of view, this allows us to reject the T in disturbance.

2.3 Experimental model validation

Fig. 3. Experimental HC step response identified to T in

model (1) in various operating conditions

As we stressed it in the previous discussion, considering an
additional model adaptation of parameters (Lc is a piecewise
linear function of v), model (1) and model (4) yield pretty
similar results. In Fig. 3, we present experimental HC step
responses under various operating conditions. To obtain these
data, a 2.2-L 4-cylinder Diesel engine equipped with a 3-
inch long 5.66-inch diameter 400-cpsi DOC was tested. These
responses are well represented by the equivalent T in step
response (3) corresponding to the model with no source (1). It
is shown that the model with no source kindly fits experimental
data, usually described using a source term.

3. APPROXIMATING DOC EQUATIONS

We wish to simplify the previous model further. The desired
representation is a first order plus delay model, which belongs
to a class of models relatively easy to design a controller
for (Silva et al., 2005).

For small values of |s| (i.e. the range of low frequencies), the
DOC transfer function (2) can be approximated in the following
way

exp
(

m(z)
s+k2

)
= exp

(
−(1− ν)k1z

k2v s
)

exp
(

k1z
v

(
(1− ν)s/k2 + 1

1+s/k2

))
≈ exp

(
−(1− ν)k1z

k2v s
)

exp ((1− ν)s/k2 + 1− s/k2)
k1z

v

≈ exp
(
−(1− ν)k1z

k2v s
)

exp
(

k1z
v

)
exp (−νs/k2)

k1z

v

≈ exp
(
−(1− ν)k1z

k2v s
)

exp
(

k1z
v

) 1
1 + ν k1z

k2v s

where ν ∈]0, 1[ can be seen as a weighting variable which
will be discussed later on. This leads to the following transfer
function as an approximation of (2)

exp

(
−
(
z

v
+ (1− ν)k1z

k2v

)
s

)
1

1 + ν k1z
k2v s
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As a result, one obtains a delayed first-order step response
exp (−δs)

1 + τs
where τ = ν

k1z

k2v
and δ =

z

v
+ (1− ν) k1z

k2v
.

The weighting variable ν relates τ and δ. Explicitly, we get
δ = z

v + k1z
k2v −τ. In an identification standpoint, the next step is

to determine a constraint to set the value of τ , which implicitly
sets the value of ν.

Inflexion point The second-order derivative of the step re-
sponse (3) with respect to time is

∂2

∂t2
T (z, t+

z

v
) = −Υ(t) exp

(
−k1z
v

)
exp (−k2t)×[(

k2 +
1
t

)√
m(z)
t

I1
(
2
√
m(z)t

)
− m(z)

t
I0
(
2
√
m(z)t

)]

Using the following asymptotic expansion of Bessel func-
tion (Abramowitz and Stegun, 1965)⎧⎨⎩ Iν(z) ≈ ez

√
2πz

(
1− μ− 1

8z
+

(μ− 1)(μ− 9)
2!(8z)2

− . . .
)

μ = 4ν2
(10)

at first-order, we get, for
3

16
√
m(z)t

� 1,

∂2

∂t2
T (z, t+

z

v
) ≈ −Υ(t) exp

(
−k1z
v

)
exp (−k2t)×⎡⎣(k2 +

1
t

)√
m(z)
t

e2
√

m(z)t√
4π
√
m(z)t

− m(z)
t

e2
√

m(z)t√
4π
√
m(z)t

⎤⎦
The equation of the inflexion point, of which tI is the unknown

abscissa, is given by
∂2

∂t2
T (z, tI) = 0 . With tI′ = tI − z/v,

this leads to k2 +
1
tI′

−
√
m(z)
tI′

= 0 . Then,

tI′ ≈ k1z
k2v

(
1
2

+
1
2

√
1− 4v
k1z

)
− 1
k2

and assuming
4v
k1z

� 1, we finally obtain tI ≈
k1z

k2v
+
z

v
.

Parameters τ and δ Note f the delayed first order model step
response f(t) = 1 − exp

(− t−δ
τ

)
. Let tE be the solution of

f(tE) = T (z, tI). We impose the slope of f at abscissa tE to
equal the slope of T at tI , i.e.

d

dt
f(tE) =

∂

∂t
T (z, tI) (11)

then, we get τ =
1− T (z, tI)

exp (−2k1z/v)k2I1(2k1z/v)

To sum up, with the additional requirement (11), it is possible
to write explicit values of τ and δ⎧⎪⎪⎨⎪⎪⎩

τ =
1− T (z, tI)

exp (−2k1z/v)k2I1(2k1z/v)

δ =
z

v
+
k1z

k2v
− 1− T (z, tI)

exp (−2k1z/v)k2I1(2k1z/v)

(12)

Typical identification results are presented in Fig. 4. Two differ-
ent cases that are representative of real DOC parameter values,
as motivated by Lepreux et al. (2008), are reported.

Fig. 4. Matching the DOC response with a first order plus delay
model. k1=400, k2=0.35, v=4 (up). k1=1591.09, k2=0.82,
v=4.597 (down).

Further approximation of τ and δ It has been shown that
the choice of the constraint (11) leads to good matching of re-
sponses results. Further approximation can be made to prevent
evaluation of the Bessel function. In experiment of Fig. 4, we
get 3

8
1

2k1z/v � 1 for the two presented cases. Referring to (10),
this validates the use an asymptotic expansion of I1. We can
make the approximation I1(2k1z/v) ≈ exp (2k1z/v)√

2π2k1z/v
. Then, we

get the following expressions⎧⎨⎩τ = 1
k2

(1− T (z, tI)) · 2 ·
√
π ·
√

k1z
v

δ = z
v + 1

k2

k1z
v − 1

k2
(1− T (z, tI)) · 2 ·

√
π ·
√

k1z
v

(13)
It is interesting to note that, considering requirement (11), δ
does not have an hyperbolic behavior with respect to v. Experi-
mental results for evolution of τ and δ are shown in Fig. 5 (see
also Frobert et al. (2009) for more complete results and details
about the identification process). Corresponding analytical val-
ues are obtained using constant parameters k1 and k2, and Lc a
function of v as mentioned in section 2.

Fig. 5. Experimental evolution of δ and τ versus v

To sum up, the derived model is a combination of two first order
plus delay models as shown in Fig. 6. The first one uses T in as
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Fig. 6. Scheme of the first order plus delay model

input and τT in and δT in parameters are evaluated by (12) using
the whole DOC length. The second one uses T in-equivalent-to-
Ψ as input, and corresponding τu and δu are evaluated by the
same formula (12) using a part of the DOC length as explained
in section 2. In both submodels, k1 and k2 are constant and
equal.

Despite the fact that the proposed method of approximation
does not allow to evaluate errors a priori, it is shown in sim-
ulations of subsection 4.2 that these methods provide accurate
results for real cases of engineering interest such as those of a
DOC used in driving conditions.

4. CONTROLLER PRESENTATION

4.1 Control Designs

Based on the results of section 3, we consider three classical
control designs and evaluate their performance. The first two
designs are simple PI and PID controllers with a feedforward
term as presented in Fig. 7. We use respectively Tavakoli and
Fleming (2003) and Tavakoli and Tavakoli (2003) parameters
tuning for the PI and the PID controllers. Parameters τ and δ are
evaluated using (12). The third controller, presented in Fig. 8,

Fig. 7. Control scheme for the PI(D) controller

consists of a Smith controller (Abe and Yamanaka, 2003). For

Fig. 8. Control scheme for the Smith controller

the three controllers, the gain Gu is calculated using (9). The
FF block is dedicated to treating the T in disturbance. Here, we
use a standard feedforward strategy given by

FF =
GT in

Gu

τus+ 1
τT ins+ 1

exp (− (δT in − δu) s)

Transfer functions for the Smith controller are given as follows

PISmith =
1
Gu

(
1 +

1
τus

)
IMC = Gu

1
τus+ 1

TheDelay operator applies a delay of δu. The robustness filter
F is a first order filter which time constant set to 1 s. It is
not primordial here because, thanks to the presented detailed
analysis of the DOC equations, delays are well approximated.

4.2 Simulation Results

First, we study the influence of a disturbance step variation.
Then, we present control performance during a NEDC driv-
ing cycle. Simulation results are shown on the model with
source (4) with k1 = 870 s−1, k2 = 0.45 s−1, Lc = 0.0305 m,
L = 0.0762 m.

Basic performance Fig. 9 compares performance of the three
controllers for a setpoint change. Setpoint is risen from 0
to 50 at t = 200. At the end of the rise, the system is
disturbed by an important gas speed variation. These variations
are directly linked to driver’s power request, they are very fast
and cannot be avoided. Although both controllers show similar
tracking performance, the Smith controller shows much better
disturbance rejection. Similar results are presented in Fig. 10

Fig. 9. Step setpoint transition and step v variation for PI, PID,
and Smith controllers. T in = 0.

with a 20% error on the k1 parameter, implying important delay
misestimation. All three proposed controllers are quite robust
regarding this error.

Fig. 10. Step setpoint transition and step v variation for PI, PID,
and Smith controllers with a 20%-error on k1. T in = 0.

Performance on the NEDC cycle The three controllers are
now tested on a simulated NEDC cycle. Results are presented
in Fig. 11. In this case of a constantly-varying air flow rate,
the differences between controllers are very small. Similar
results are presented in Fig. 12 with a 20% error on the k1
parameter. Once again, the presented controllers show good
results regarding robustness on this fundamental parameter.
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Fig. 11. PI, PID, and Smith controllers on NEDC cycle

Fig. 12. PI, PID, and Smith controllers on NEDC cycle with a
20%-error on k1

Conclusion The presented Smith controller requires more
computational effort than the presented PI(D) controllers and
shows some advantages in specific cases (setpoint transition,
large air flow rate variation). It should be discussed based on
further experimentations if it is necessary to use it or not for
every specific case of application. It should be noted that its
major drawback (lack of robustness toward a misestimation
of the delay) has been circumvented thanks to the presented
detailed analysis of the DOC equations.

5. CONCLUSIONS AND FUTURE WORKS

Control-oriented DOC modeling has been validated with exper-
imental data in a former work (Lepreux et al., 2008). Grounding
the current work on these equations and using several steps
of approximation lead us, in this paper, to present a simple
delayed first-order control-oriented model to approximate the
DOC thermal behavior. This model is used as a starting point
for control design. Interestingly, presented controllers require
no particular tuning effort. They are tested in simulation on
NEDC driving cycle. First, a simple PI or PID in which param-
eters are scheduled using developed approximations, reveal to
be overreactive in certain specific cases. Alternatively, a Smith
design shows good results and turns out to be fairly robust.

The presented experimental results allow a good level of con-
fidence in our model. However, the next step is to present

experimental results on the driving cycle using the proposed
controllers.

A significant part of performance achieved by controllers pre-
sented in this paper, is due to the feedforward treatment of
disturbances. To simplify the analysis, the presented controllers
use classical feedforward control laws. However, going deeper
into analysis, allows to achieve much better results. This feed-
forward control will be fully detailed in a forthcoming publica-
tion.

Being a part of an integrated system in the vehicle, the DOC
is subject to whole class of reductants oxidizing onto it. It is
worth properly estimating their flow, resulting from in-cylinder
combustion, because it represents important disturbances for
the DOC outlet temperature controller. This estimator is the
subject of future works.
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Abstract: In this paper, the control problems that arise during dynamic operation of a fuel-cell
powered automobile, are analyzed. In particular, it is shown that there are three distinct control
problems that need to be solved when the power demand fluctuates. A logic-based switching
controller is proposed that switches to the battery backup when the fuel cell is unable to provide
the necessary power to the motor. An adaptive controller is developed based on a linear model
that adjusts the hydrogen flow into the fuel cell in response to changing power demand. Finally,
a thermal controller is developed based on a nonlinear model that regulates the temperature
of the fuel cell. Interaction between these controllers is analyzed via simulations under realistic
road conditions.
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1. INTRODUCTION

Fuel cell power systems for automotive applications have
received increased attention in recent years because of
their potential for high fuel efficiency and lower emissions
[Zalc and Loffler, 2002]. While there have been significant
advances in fuel cell technology, one reason this technology
has not seen wide-spread applications in the automotive
industry has been the lack of an efficient hydrogen distri-
bution center and the difficulties associated with storing
hydrogen onboard an automobile. One option to alleviate
these problems is to develop a system that utilizes a
commonly available carbon-based hydrogenous fuel such
as gasoline or methane to generate the necessary hydrogen
in situ on an “as needed” basis. In this paper, we identify
three separate control problems that need to be solved in
a fuel-cell powered automobile.

2. SYSTEM DESIGN CONSIDERATIONS

A schematic of the fuel cell system under consideration
is shown in Fig. 1. The two main components of the
overall system are (1) the fuel processing subsystem and
(2) the power generation subsystem. Methane enters the
fuel processing subsystem and is converted to hydrogen.
Hydrogen enters the fuel cell where it mixes with oxygen to
generate electrical power which drives an electric motor. In
addition to the fuel cell, there is a battery backup that the
electric motor switches to when the hydrogen delivered to
the fuel cell is insufficient to meet the instantaneous power
demands of the electric motor. This battery backup is es-
sential because significant load transitions occur frequently
as a result of sudden acceleration on highway ramps as well
as terrain changes [Zalc and Loffler, 2002].

1 Corresponding author: palanki@usouthal.edu
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In an earlier paper [Kolavennu et al., 2006], the primary
components of a fuel cell power system, that utilizes
methane to generate hydrogen, were analyzed. In particu-
lar, basic chemical engineering principles were utilized to
design a reactor train that converts methane to hydrogen
of the desired purity. The relation between power produced
by a PEM fuel cell and methane entering the reactor
train at steady state was calculated. However, a typical
automobile does not operate at steady state. The power
demand for an automobile motor undergoes significant
variations due to acceleration, changes in road surface and
traffic conditions.

In this paper, we analyze the control problems that arise
during dynamic operation of a fuel-cell powered automo-
bile in the face of fluctuating power demand. In particular,
it is shown that there are three distinct control problems
that need to be solved when the power demand fluctuates.
When power demand goes down, the excess hydrogen can
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be diverted from the fuel cell. A sudden increase in power
demand requires an instantaneous increase in hydrogen
flow rate into the fuel cell. However, the conversion of
methane to hydrogen takes several seconds which leads
to an unacceptable lag between power demand of the
motor and the power supplied by the fuel cell. For this
reason, a backup battery is required that takes over this
power load during the time it takes for the fuel cell to
generate the necessary power and a suitable controller
is required that switches between the fuel cell and the
battery backup. If sufficient hydrogen is being produced
by the fuel processor, a separate controller is required to
adjust the hydrogen flow into the fuel cell in response to
changing power demand. Finally, the fuel cell is subject to
temperature changes and a thermal controller is required
to regulate the temperature to the desired setting. In the
paper, we propose the following controllers:

• A logic-based switching controller that switches to the
battery backup when the fuel cell is unable to provide
the necessary power to the motor.

• An adaptive controller based on a linear model that
adjusts the hydrogen flow into the fuel cell in response
to changing power demand.

• A thermal controller based on a nonlinear model that
regulates the temperature of the fuel cell.

The design of these controllers is described in the sections
below.

3. SWITCHING CONTROLLER DESIGN

There has been considerable research effort in modeling
fuel cells [Nguyen and White, 1993]. In electric and fuel
cell vehicles the battery is charged and discharged con-
tinuously and so knowledge of the transient behavior of
the batteries is very important. Dynamic models devel-
oped from electrochemical principles like the cell sandwich
model give spatial distribution of potentials and chemi-
cal compositions inside the cell as well as the transient
behavior of cell potential and temperature. However for
control oriented studies we require models which can be
simulated quickly. Equivalent electric circuit models have
been developed in the literature which give an accurate
prediction of state-of-charge (SOC) of the battery [He and
Hodgson, 2002].

He and Hodgson [2002] have observed that while discharg-
ing a battery over a period of time there exists a cutoff
or critical voltage beyond which the battery performance
deteriorates rapidly as the voltage begins to fall rapidly.
To avoid operation near the critical voltage the state of
charge is set to zero at the cutoff voltage and is defined as

SOC = 1− V occutoff

V ocfull
(1)

where V ocfull is the voltage of the battery at full capacity
and V occutoff is the battery terminal voltage at the critical
point. Practically, it is difficult to measure the open circuit
voltage at each instant hence utilizing the relationship
between the SOC and the available battery capacity SOC
can be redefined as

SOC = 1− UsedCapacity
TotalCapacity

(2)

The total current drawn from the battery can be used as
an indicator for the used capacity and is given by.

CAPused =
∫ t

0

I.dt (3)

So now the SOC is one when the battery is fully charged
and zero when discharged to the critical voltage. It is
desirable to maintain the SOC around 0.5-0.7.

A battery model which requires experimentally obtained
open-circuit voltage and battery resistance data and pre-
dicts the battery terminal voltage, current, and SOC as a
dynamic function of operator imposed power demand has
been developed based on the model by He and Hodgson
[2002]. The model consists of the battery as an ideal volt-
age source with an internal resistance. This battery model
is characterized by the idealized open circuit voltage, Voc,
and the internal battery resistance, Rb. The terminal volt-
age can be expressed in terms of Voc and Rb as

Vterm = Voc − I ∗Rb (4)
The terminal voltage of a battery during discharge is lower
than the instantaneous open circuit voltage because of the
internal resistance inside the battery. Hence current I is
given a positive sign when the cell is discharging. Similarly
when the cell is charging we need to apply a voltage greater
than the Voc to overcome the internal resistance inside the
cell so the current in this case is chosen to be negative.

The open circuit voltage and the internal resistance of the
battery are both functions of SOC and temperature. For
a battery operating at constant temperature the relation-
ship between Voc, Rb and the SOC can be determined
experimentally.

The power available at the terminals of the battery is given
by the product of voltage and current and substituting the
expression for voltage from equation 4. we have

Pwrterm = VtermI = IVoc − I2 ∗Rb (5)
For a particular power demand we can calculate the
current by solving equation 5 which is a quadratic equation
in I.

I =
Voc −

√
(V 2

oc − 4.Rb.Pwr)
2Rb

(6)

where V oc and Rb are both functions of the SOC. The
same sign convention as was used for the current is used
i.e. the power is positive during discharge and negative
during charge. The current calculated from eq. 6 is used
to calculate the used capacity from eq. 3, which in turn is
used to calculate the SOC by eq. 2. The Voc and Rb are
obtained for the new SOC from the experimental data.
Using the new values of Voc and Rb the current is estimated
using eq. 6.

The switching controller is a logic based on-off controller
that switches back and forth between the fuel cell and
the battery to meet the power demand. As discussed
earlier there is a time lag between the methane entering
the reformer and the hydrogen coming out of the fuel
processor. If the power demand remains constant the
power produced by the fuel cell is sufficient to meet the
power demand. The actual power demand curve is not a
straight line and has a lot of fluctuations. To meet this
fluctuating power demand, the fuel cell may switch to
the battery. The switching controller has to address the
following scenarios:
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• Increase in Power Demand : Whenever there is an
increase in power demand the fuel cell cannot produce
the required power (Pr) because of the time delay (τ)
in producing power and hence any deficit in power
demand is handled by switching to the battery until
the fuel cell can produce sufficient power. During this
time delay the power produced by the battery is

Pbat = Pr − Pfc for t < τ (7)
• Decrease In Power Demand : During deceleration or

decrease in power demand the fuel cell continues to
produce the power requested until the time delay has
elapsed. This excess power produced by the fuel cell
during decrease in power demand should be routed to
the battery, so that the battery can be charged. The
same equation used in the scenario above can be used
here. Since here the power requested is less than the
power produced by the fuel cell the Pbat is negative
which indicates that the battery is being charged.

• State of Charge: The state of charge of the bat-
tery should be always maintained above a speci-
fied target(SOCtarget). But during sudden increase
in power demand the battery might be discharged
rapidly and the SOC might fall below the specified
target and also the initial SOC itself might be less
than the SOCtarget. When the SOC of the battery
falls below SOCtarget the controller should direct the
fuel cell to produce power to charge the battery in
addition to the power demand.

Pfc = Pr + Pbat if SOC < SOCtarget (8)
• Total Power Demand : Since the fuel processor and

the fuel cell system were designed for a maximum
power output of 50 kW, the switching controller
should make sure that the power demand from the
fuel cell is not greater than 50 kW.

The fuel processor, fuel cell system and battery model
along with the switching controller were simulated in
MATLAB for different power demands. For a simple case
where the power demand is a step increase followed by
a step decrease the power profiles are given in Figure 2.
Notice that the fuel cell supplies the power with a time
delay of 4 seconds in the meantime the battery supplies
the requested power demand. Once the fuel cell is able to
meet the power demand the battery is turned off until 15
seconds at which time the battery again is used to supply
the necessary power demand. At 30 seconds when there is
a decrease in power demand the deficit power is sent to
the battery to charge it until the fuel cell reaches the level
of the new power demand.

To get a more realistic power vs time profile we obtained
the power profile for a small car from an existing speed
vs time profile using ADVISOR software package [NREL,
2002]. The Urban Dynamometer Driving schedule (UDDS)
which is designed for light duty vehicle testing in city driv-
ing conditions has been used. The speed versus time profile
is shown in Figure 3. The profiles of power requested, fuel
cell power and battery power versus time are plotted in
Figure 4.

The power supplied by the battery also depends on the
initial SOC of the battery. For the same cycle the system
was simulated for different initial SOC as shown in Figure
5. The controller was designed to maintain the SOC above
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0.5. For the initial conditions where the battery is almost
charged (SOC=0.9) and semi charged (SOC=0.64) the
profiles look similar. But for the case where the initial
SOC is less than 0.5 the controller is activated and brings
the SOC level to above 0.5.
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Current battery technology in hybrid vehicles involves the
use of nickel metal hydride (NiMH) battery packs. For
instance, the Toyota Prius consists of 38 prismatic mod-
ules of a new generation NiMH design with a total pack
nominal voltage of 273.6 V and a total energy capacity
of 1.8 kWh [Kelly et al., 2001]. The dimensions of this
battery pack are 19.6 mm x 106 mm x 275 mm (volume
of 57 l). The battery considered in this paper is of the
same order of magnitude with a peak voltage of 300 V.
If we assume that the energy capacity of the battery is
1.8 kWh (same as the Prius battery) and the battery has
to have a state of charge of at least 50%, this battery
would deliver 50 kW for 1 minute starting from a fully
charged state before depleting to 50%. Thus, from a cold
start, the reformer would have to be operational within
1 minute so that the car can switch from the battery
to the fuel cell. It was shown in the previous section
that once the fuel cell is operational, under realistic city
driving conditions, the charge of the battery never goes
under 50%. Newer gas-electric and fuel cell-electric hybrid
vehicles use lithium ion battery technology. These bat-
teries have superior power density versus energy density
characteristics when compared to either NiMH batteries
or supercapacitors. The second generation Honda Clarity
fuel cell-electric hybrid is equipped with such a battery
module. It is rated for 283 volts, and replaces the super
capacitor energy storage system of the first generation
Clarity. Improvement in lithium ion battery technology is
ongoing. Current research indicates that energy capacity
of 6-18 kWh are achievable with a calendar life of 15 years
and 2500-5000 charge depleting cycles [Axsen et al., 2008].
Preliminary research on magnesium ion battery systems
suggest another order of magnitude in performance im-
provent is achievable [Axsen et al., 2008].

4. ADAPTIVE CONTROLLER DESIGN FOR POWER
GENERATION SUBSYSTEM

Pukrushpan [2003] developed and experimentally verified
a dynamic model for a PEM fuel cell stack system similar
to the one shown in Fig. 1. The model incorporates tran-
sient behavior that is important for controller design and
analysis. In particular, a time-scale analysis of the various
components was conducted and dynamic balances were

developed for those operations that relate to automobile
operations. Slower dynamics associated with temperature
regulation and heat dissipation were ignored. Inertia dy-
namics along with nonlinear curve fitting of the compressor
characteristic map were used to model the compressor.
The manifold dynamics were based on lumped-volume
filling dynamics. Static models of the air cooler and air
humidifier were developed from thermodynamic relations.
The fuel cell stack model was composed of four interacting
submodels, namely stack voltage, cathode flow, anode flow
and membrane hydration. The dynamic equations at the
cathode and anode were developed using mass conser-
vation principles and thermodynamic and psychometric
properties of air. All gases were assumed to behave like
an ideal gas. Spatial variations in temperature and con-
centration were ignored. It was assumed that the anode
inlet flow rate could be instantaneously adjusted by a valve
to maintain the minimum pressure difference between the
cathode and the anode. Mass transport of water across the
fuel cell membrane was calculated in membrane hydration
model. Both water content and mass flow were assumed
to be uniform over the surface of the membrane. How-
ever, this model developed by Pukrushpan [2003] consists
of a large number of coupled, nonlinear differential and
algebraic equations (DAE) and adaptive control theory
cannot be applied directly to this system.After suitable
substitution of variables, we obtained a reduced model of
the fuel cell system that is a set of nine ordinary differential
equations and is suitable for controller design and analysis
[Kolavennu et al., 2008]. In this model, it is assumed
that all the cells in the stack perform similarly, i.e., by
analyzing the polarization curve of a single cell, the stack
performance can be estimated. The power from the fuel
cell, which is a function of the current and voltage, is given
by:

P = VstI = (NcVc)(iAc) (9)
where P is the power produced by the fuel cell, Vst is the
voltage of the stack which is the product of the number of
cells Nc and the individual cell voltage Vc, I is the current
drawn from the cell and is the same for each cell and
depends on the area of cross section Ac, i is the current
density.

The reversible standard potential Eo for the above cell
reaction is 1.23 V at 25 oC as determined from the change
in the Gibb’s free energy. The actual voltage depends upon
the concentration of the species and temperature at which
the fuel cell is operating. The concentration dependence is
given by the Nernst equation [Pukrushpan, 2003] as shown
below:
E = 1.229− 8.5× 104(Tfc − 298.15)+

4.3085× 10−5Tfc

[
ln(PH2)−

1
2
ln(PO2)

]
(10)

where E is the open circuit voltage, the fuel cell tem-
perature Tfc is in K, and reactant partial pressures PH2

and PO2 are expressed in atm. The actual cell voltage
at any given current density is obtained by subtracting
the activation, ohmic and concentration losses from the
reversible potential as expressed below.

νfc = E − νact − νohm − νconc (11)
where νact, νohm and νconc are activation, ohmic and
concentration overvoltages. These losses are a function
of the current density, pressure, membrane humidity and
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also on the type of membrane and are represented by the
empirical equations given below

νact = ν0 + νa(1− e10i) (12)

νohm = i.Rohm (13)

νconc = i
(
c2
i

imax

)2

(14)

where ν0, νa and c2 are functions of temperature, pressure
and membrane humidity of the cell. Using this model we
can calculate the power produced by the fuel cell based
on the voltage current characteristics. For a given current
demand the voltage is calculated using Eq. 11 and thereby
the power output of the fuel cell.

For the fuel cell systems to operate at levels compara-
ble to existing internal combustion engines, the key is-
sue that should be addressed is the transient behavior
of fuel cell systems. Automobiles are subjected to sig-
nificant load transitions during operation and the fuel
cell system should be able to produce power which can
follow this varying load profile. Power produced by the fuel
cell is dependent on the voltage current characteristics.
The transient response data from the nonlinear model
presented in [Kolavennu et al., 2008] was generated by
subjecting the nonlinear system to a series of step inputs
in the current around the 100 Amperes operating point.
Utilizing this input output data from the nonlinear model
system identification techniques were employed to derive
a linear second order model was fit between the current
demand and the voltage produced by the fuel cell stack.
The transfer function Gp is given below

Gp =
−390.78

s2 + 27.291s+ 2068.8
(15)

This transfer function is used in this paper to design an
adaptive controller to regulate the power output of the
fuel cell to the power demand. This adaptive controller
is then implemented on the nonlinear model described
in [Kolavennu et al., 2008]. The control problem is to
track the power demand of the motor using current as
the manipulated variable.

To get a more realistic power vs time profile we obtained
the power profile for a small car from an existing speed
vs time profile using ADVISOR software package [NREL,
2002]. The Urban Dynamometer Driving schedule(UDDS)
which is designed for light duty vehicle testing in city
driving conditions was used.

Model reference adaptive control (MRAC) is derived from
the model reference control (MRC) problem. The objective
of MRC is to find the feedback control law that changes
the structure and dynamics of the plant so that its I/O
properties are exactly the same as those of a reference
model. The structure of an MRC scheme for a LTI, SISO
plant is shown in Fig. 6 [Ioannou and Sun, 1996]. Here,
Wm(s) is the transfer function of the reference model, r(t)
a given reference input signal, ym(t) the output of the
reference model and y(t) is the plant output. The feedback
controller, denoted by C(Θc), is designed so that all signals
are bounded and the closed-loop plant transfer function
from r to y is equal to Wm(s). This transfer function
matching guarantees that for any given reference input
r(t), the tracking error e = y − ym, which represents the

Fig. 6. Model Reference Adaptive Control

Table 1. Performance of MRAC on different
road profiles

Profile or Cycle ITAE error

UDDS 40.5
Federal Test Procedure 42.76

US06 55.13
Highway Fuel Economy Test 11.09
Extra Urban Driving Cycle 8.20

Indian Highway Profile 10.20

deviation of the plant output from the desired trajectory
ym, converges to zero with time.

The model reference is chosen to be:

Wm =
1

s+ 0.023
(16)

The performance of the adaptive controller can be im-
proved by adding some derivative action, i.e., using a PD
controller in conjunction with the adaptive controller. This
essentially makes the linearized plant represented by eq. 15
of unity relative degree which is the same as that of the
reference model eq. 16.

The Environmental Protection Agency (EPA) reviews and
revises as necessary the regulations governing the Fed-
eral Test Procedures (FTP) to insure that vehicles are
tested under circumstances which reflect the actual current
driving conditions under which motor vehicles are used,
including conditions relating to fuel, temperature, accel-
eration, and altitude. The adaptive controller was tested
on a variety of profiles. The controller was designed for
the UDDS profile using the linearized model represented
by eq. 15 and the same settings were employed for the
remaining profiles. The resulting adaptive controller was
implemented on the nonlinear model given in [Kolavennu
et al., 2008]. The Integrated Time Averaged Error (ITAE)
was computed for each power profile. The results are shown
in Table 1. It is observed that the adaptive controller with
derivative action is able to track power profiles resulting
from a wide variety of road conditions. A PID tuning
procedure for the UDDS profile resulted in an ITAE error
of 91.46. However, this controller when implemented on
the US HWY profile resulted in loss of stability. On the
other hand, the adaptive controller that was designed for
the UDDS profile was able to successfully track the Federal
Test Procedure profile, the US06 profile, the Highway Fuel
Economy Test profile, the Extra Urban Driving Cycle
profile, and the Indian Highway profile with no off-line
tuning.
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5. THERMAL CONTROLLER FOR FUEL CELL
TEMPERATURE REGULATION

In this section, a dynamic model is developed that ac-
counts for temperature changes in a PEM fuel cell. The
dynamic model is obtained by extending a static current-
voltage description to include temperature difference and
by dynamically modeling the stack temperature. The fol-
lowing chemical reaction occurs in the fuel cell:

2H2 +O2 → 2H2O (17)

The accumulation term for each species is negligible in the
fuel cell compared to the mass of the fuel cell stack. Thus,
a steady state model can be assumed for the gaseous and
liquid species as follows:

Ṅi,out = Ṅi,in + νiξ̇ (18)

where Ṅi is the molar flow rate of species i, νi is the
stoichiometric coefficient and ξ̇ is the reaction rate. It can
be shown that this steady state assumption leads to the
following dynamic balance for the temperature of the fuel
cell stack:

mfcCpfc

dTfc

dt
= −C∗

pI(Tfc−T∞)−ΔH̃I−hA(Tfc−T∞)−V I
(19)

where mfc is the mass of the fuel cell stack, Cpfc
is the

specific heat of the fuel cell stack, C∗
p is the mole average

specific heat of the reacting species, and T∞ is the ambient
temperature.

This provides a dynamic relation between the stack tem-
perature, current and voltage. Fig. 7 shows the steady
state relationship between temperature and current at a
humidity of 50% in the cell. It is observed that the cell
temperature increases nearly linearly with current until
the design point (167 A), which is at optimum power
output, and then increases rapidly due to cell inefficiency.
The above equation was integrated numerically with re-
alistic operating conditions of the fuel cell system and it
was observed that the temperature dynamics are very slow
compared to the dynamics of the fuel cell. In particular,
it takes about 50 minutes to go from a cold start to the
steady state temperature when the current is 150 A.

We are currently developing a nonlinear controller that
utilizes the above model to regulate temperature to the
desired set-point in the face of fluctuating power demand.
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Abstract: Fault detection and diagnosis is critical for maintaining the health of process systems.
Common fault signals include process and disturbance parameter changes, as well as sensor
and actuator malfunctions (such as persistent drifts and biases). These may be characterized
by the existence of latent ‘fault’ states. This work examines the effectiveness of a Hidden
Markov Model framework for modeling such fault regimes. The proposed methodology may
be interpreted as a generalization of a commonly-employed Mixture-of-Gaussians (Kesavan and
Lee (1997)) approach and is demonstrated through a shell-and-tube heat exchanger problem.
Furthermore, the flexibility of the method is shown in the context of detecting valve stiction.
This is a significant problem in process industries where a valve’s output suffers from excessive
friction and is unable to track its input leading to degradation in closed-loop performance.
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1. INTRODUCTION

Tracking the closed-loop performance and health of
process systems, although intuitively important, is often-
times overlooked during the design of control solutions.
Maintenance, required to mitigate the effects of system
faults, typically necessitates expert personnel not found
within normal plant situations (Kesavan and Lee (1997)).
For this reason, multiple process monitoring algorithms
have been developed so that such faults may be automat-
ically detected, diagnosed and eventually removed.

Process monitoring methods may be further classified
as i) data-driven ii) analytical and/ or iii) knowledge-
based (Chiang et al. (2001)). The first involves statistical
treatment of large quantities of process data and are
typified by data-mining and machine learning techniques
(such as principal and independent component analysis),
statistical control charts and so on. Knowledge-based
methods employ qualitative reasoning and are oftentimes
rules-based with a strong logic underpinning. A thorough
overview of all three classes is presented by Chiang et al.
(2001) and the references therein.

This work, relying on dynamical models of the process for
fault detection, is a particular type of analytical approach.
Consequently, a necessary standing assumption is the
availability of a mathematical model derived from first
principles or otherwise. Given the wide-spread popularity
of model-based control (such as Model Predictive Control),
the controller’s model can be readily ported over for the
purpose of fault-detection. A model structure, such as in
(1), (2), is therefore relevant in subsequent developments.

xt = f(xt−1, θt−1, ut−1, ωt)

yt = g(xt, θt, vt) (1)

γt = Atγt−1 + Btϕt

θt = Ctγt + et (2)

Here, xt ∈ Rnx represents the state at discrete time index
t, ut ∈ Rnu , the control input, and yt ∈ Rny , a noise-
corrupted measurement signal. θt ∈ Rnθ represents a fault
vector with potentially time-varying dynamics governed
by matrices (At,Bt,Ct) and noise vectors (ϕt, et) 1 . ωt and
vt are process and measurement noise signals respectively.
f(·), which may represent an integration of the continuous-
time model over a unit sample-time, is the state transition
map. Similarly, g(·) represents the state-to-output map.

Faults are typically manifested (Kesavan and Lee (1997))
as i) process parameter changes, and/ or ii) disturbance
parameter changes, as well as iii) actuator and sensor
problems – all captured by θ. Depending on circumstances,
these may be sudden jumps (e.g. due to an abrupt intro-
duction of significant sensor bias), or slow drifts or random
walk-type changes (e.g. as a result of catalyst fouling) or
even a mixture of both (Fig. 1). Such failure modes, which
cannot be directly observed, and need to be estimated,
are conveniently incorporated into the fault model (2) by
adding the notion of latent states (denoted by r), each of
which modifies the fault model (see (2)) differently. This
work explores the use of a Hidden Markov chain, used
previously to model realistic disturbances in the context
of process control (Wong and Lee (2007)), to describe
the temporal, probabilistic transitions between the latent
states. Furthermore, this work can be interpreted as a gen-
eralization of the popular approach of assuming statistical
independence, from one time period to the next, between
hidden states. For example, at each time step t, Willsky
(1976) and Kesavan and Lee (1997) allowed the statistics

1 In practice, the user would model θ according to disturbance
scenarios of interest.
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(b) Abrupt jumps.

Fig. 1. Possible disturbance signals (θ).

of ϕt and et to be described by a Mixture-Of-Gaussians
(MOG) 2 . This captures the situation where faults that
do occur happen infrequently but with significantly larger
magnitudes. Persistent faults like drifts, which are easily
described by the proposed Hidden Markov Model (HMM)
approach, are captured in the MOG context by introduc-
ing additional states or non-linearities in the model.

The main contribution is to show that the aforementioned
faults (abrupt jumps/ biases and drifts) can be better
modeled and detected by the proposed method. Another
novel application is in the context of detecting valve
stiction, where it is demonstrated that the output of the
valve (which is not normally measured) can be effectively
tracked using the same proposed framework.

Section 2 provides the details behind an HMM, its subse-
quent use for fault detection and relevance to prior work.
Section 3 demonstrates the effectiveness of the proposed
method in the context of a heat exchanger. Section 4
explores the valve stiction issue before concluding remarks
regarding future research are presented in Section 5.

2. FAULT MODELING USING HIDDEN MARKOV
MODELS

HMMs represent a useful class of statistical models where
a latent state, taking values from an alphabet J ∈
{1, 2, . . . , J ∈ Z+} of cardinality J , transitions probabilis-
tically in a Markovian 3 fashion from one sampling time
to the next. Mathematically, a finite-state Markov chain
is a sequence of random variables (r0, r1, ..., rt, ...), where
the transition probability matrix Π = (πij) = (pr(rt =
j|rt−1 = i), i, j ∈ J) :

∑J
j=1 πij = 1,∀i ∈ J , governs

the probabilistic temporal transitions. The term ‘Hidden’
signifies that the actual regime label is usually not known
with complete certainty and must be inferred from avail-
able noisy measurements of itself or other related states.
In the simplest case, each latent state has a probability
distribution over a finite set of possible output symbols.
All Markov chains under consideration are ergodic. For
simplicity, the Markov chain is assumed to be at steady
state, satisfying π = Π′π, where π is a column vector
containing the unconditional and initial probabilities of
each regime. HMMs have found widespread applications in
2 i.e., at each time step, a member from a set of Gaussians, from
which the noise signal is to be sampled, is selected with some time-
invariant probability.
3 transitions depend only upon the immediate past.

science and engineering - ranging from speech recognition
(Rabiner (1989)) to bioinformatics and diverse fields such
as econometrics.

HMMs and their generalizations have been used in fault
detection, with significant differences to our proposed ap-
proach. Smyth (1994), for example, did not consider an
explicit fault model (i.e., (2)). Instead, the process para-
meters are continuously estimated (in batch mode) and
treated as output of an underlying Markov chain. This
necessitates linking the process parameter vector to fault
modes, which is not always possible. A recursive maximum
a posteriori filter is then used for fault-mode detection.
Huang (2008) suggested a similar (see Section 2.1) HMM
approach to sensor problem diagnosis but limited con-
siderations to faults in the output channels and input
signals taking values from a finite, discrete set. Almeida
and Park (2008) learned an HMM corresponding to each
operating condition and, unlike the approach proposed in
this work, does not make use of the process model. There,
fault detection is achieved by a classification scheme that
chooses the HMM that maximizes the probability of a
given sequence of observations.

2.1 Proposed Fault Model: Intermittent Drifts & Abrupt
Jumps

Following the successes in other fields, a generalization of
(2) is considered by allowing the statistics of (ϕt, et) (and
potentially the fault model parameters (A,B,C)) to vary
according to a hidden Markov chain.

Intermittent Drifts. In the case of one-dimensional inter-
mittent drifts (Fig. (1a)), one has:

γt+1 = γt + ϕrt+1

θt = γt + et
rt ∈ 1, 2

π11 ≈ 1, π11 < 1

π22 ≈ 1, π22 < 1 (3)
Here, ϕrt

and et are uncorrelated, zero-mean Gaussian
signals with covariances (that may depend on rt) of Qϕ

rt

and Qe
t . The abuse of notation on the subscript of ϕ

emphasizes the dependence of the covariance of the noise
signal on the underlying Markov chain. When rt = 1 (i.e.,,
the white-noise regime), Qϕ

rt=1 ≈ 0. Random-walk type
behavior occurs when the hidden state switches to rt = 2,
where Qϕ

rt=2 >> 0; Qe
t is invariant to the hidden regime

and of appropriate magnitude. Since it is common that
there is low probability of switching once the system enters
a particular regime, a diagonally-dominant Π is employed.

Abrupt Jumps. In the case of modeling abrupt jumps, (3)
is adjusted such that π11 = π12 = p ≈ 1, p < 1, so that
Π = [p, 1 − p; p, 1 − p]. This ensures that the jump state
(the second one, in this case) is infrequently accessed and
when it is, a significant step-change occurs.

In this latter case, since it is assumed that the Markov
chain is at steady state, this form of the transition matrix
implies that the probability of entering a particular regime
is independent of the current mode. It is thus clear that
the HMM framework subsumes an MOG description.
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Fault detection and diagnosis is performed via state esti-
mation (in particular to track θ) without the knowledge
of the latent state trajectory. Hence, a brief mention of
state estimation, based on a model resulting from the
concatenation of (1), and (2) is necessary.

2.2 Fault Detection via State Estimation of Jump Markov
Systems

Equations (1) and (2) can be merged to yield:[
xt+1

γt+1

]
=Frt+1

([
xt

γt

]
, ut, ξrt+1

)
yt = Grt

([
xt

γt

]
, nrt

)
pr(rt = j|rt−1 = i) = πij (4)

Here, F is implicitly understood to include model struc-
tures and parameters from {f,A,B,C} and the hidden
Markov chain. A similar remark is extended to G. Besides
F and G, the statistics of the noise ξ (a concatenation
of (ω,ϕ, e)) and n (a concatenation of (v, e)) can depend
on r. The system represented by (4) is also termed a
Markov jump system. Without knowledge of the sequence
(r0, . . . , rt), the optimal filter involves averaging over an
exponentially growing number of linear filters. The number
of filters scales as J t, where J is the cardinality of the set
containing all possible realizations of r.

The following paragraphs outline the Generalized Pseudo
Bayesian estimation algorithm of order 2 (GPB2), a pop-
ular sub-optimal method, developed by Bar-Shalom and
Li (1993). The main idea to have trajectories whose last
2 terms differ be merged (via moment-matching) into a
single Gaussian. Using the law of total probability and
Bayes’ Rule, it can be shown that:

xt+1|t+1 =
∑
rt+1

p(rt+1|t+ 1)xt+1|(t+1,rt+1)

xt+1|(t+1,rt+1) �
∑
rt

xt+1|(t+1,rt+1,rt)p(rt|rt+1, t+ 1)

Pt+1|t+1 =
∑
rt+1

{(xt+1|t+1 − xt+1|(t+1,rt+1))(·)′

+Pt+1|t+1,rt+1}p(rt+1|t+ 1)

Pt+1|t+1,rt+1 =
∑
rt

{(xt+1|t+1,rt+1 − xt+1|(t+1,rt+1,rt))(·)′

+Pt+1|t+1,rt+1,rt
}p(rt|rt+1, t+ 1)

p(rt|rt+1, t+ 1) =
1
c1
p(yt+1|t, rt+1, rt)p(rt|rt)p(rt|t)

p(rt+1|t+ 1) =
1
c2

∑
rt

p(yt+1|t, rt+1, rt)p(rt+1|rt)p(rt|t)

The term p(yt+1|t, rt+1, rt) refers to the probability density
of the corresponding one-step ahead output prediction.
xt+1|(t+1,rt+1) refers to the estimate of xt+1 given output
measurements {y0, . . . , yt+1} and a certain realization of
rt+1; Pt+1|(t+1,rt+1) denotes the corresponding error co-
variance matrix. The pair (xt+1|(t+1,rt+1,rt), Pt+1|(t+1,rt+1,rt))
are similarly defined. It is noted that starting from

(xt|(t,rt), Pt|(t,rt)), a single application of the time and
measurement update steps of the (extended) Kalman filter
yields these latter quantities. c1 and c2 are normalizing
constants such that the merging probabilities p(rt|rt+1, t+
1) and p(rt+1|, t+ 1) sum to unity.

2.3 A-posteriori Regime Estimation

If required, a prediction and/ or filtered estimate of the
hidden regime can be obtained viz:

r̂t+1|t = arg max
rt+1

{
p(rt+1|t) �

∑
rt

pr(rt+1|rt) · pr(rt|t)
}

r̂t|t = arg max
rt

{p(rt|t)} (5)

3. EXAMPLE 1: FAULT TRACKING IN A SHELL &
TUBE HEAT EXCHANGER

In this example, the usefulness of the proposed method
in detecting faults is studied in the context of a shell
and tube heat exchanger (6) also considered by Kesavan
and Lee (1997). In particular, we contrast the proposed
HMM approach against an MOG method (Kesavan and
Lee (1997)) in modeling the latent states that govern the
fault signals (see Section 3.1 for simulation details). The
main difference is that the latter framework assumes that
each latent state occurs with a (time-invariant) probability
that is independent of the previous realization. The gov-
erning non-linear ordinary differential equations used for
simulation but not estimator design, are:

dTc

dt
=
qc
Vc

(Tci − Tc) +
αc

Vc
(Th − Tc)

dTh

dt
=
qh
Vh

(Thi − Th)− αh

Vh
(Th − Tc)

y =
(
Tc

Th

)
+ μv + v (6)

Here, the measured state variables are the temperatures
of the hot and cold streams respectively: [Tc;Th]. [Tci;Thi]
are the temperatures of the incoming cold and hot streams
respectively. [αc;αh] are system parameters reflecting the
heat transfer coefficient, heat transfer area, density, spe-
cific heat capacity of the cold and hot streams respectively.
Similarly, [qh; qc] are the flow rates of the hot and cold
streams and represent the degrees of freedom available to
a controller. [Vc;Vh] are the volumes of the cold and hot
sides. Steady-state values are reported in Table 1. v refers
to zero-mean measurement noise of covariance R � E[vv′].
μv is nominally a null vector but might be subject to
changes due to disturbances.

3.1 Simulation Conditions

Although a variety of fault types may be considered (e.g.
those affecting the various input and output channels and/
or changes in parameters (αc, αh), as discussed in Section
1), for clarity of exposition, only two different fault types
are assumed. Furthermore, these affect only the cold side.
Given initially quiescent conditions (see Table 1), one
considers:
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(1) An abrupt step that is normally distributed with zero
mean [L/min] and variance qhi

u [L2/min2] affecting the
input channel on the cold side (qc) at some unknown
time tu. This may be thought of as a sudden bias
developing in the input channel:

qct = qct−1 + ϕu
t · δ(t, tu), ϕu

t ∼ N (0, qhi
u ) (7)

δ(·, ·) is the Dirac delta function. qhi
u has a value of 2

in the following experiments.

(2) A sudden drift (see Fig. 1a) affecting the sensor relay-
ing Tc (i.e., y1) measurements between an unknown
time span: T � [ty,1, ty,2]. Namely, one has:

μv,1t = μv,1t−1 + ϕy
t (8)

where E[ϕtϕ
′
t] = qhi

y = 0.5 if t ∈ T and E[ϕtϕ
′
t] =

qloy = 10−10 ≈ 0, for other time periods. μv,2 remains
at the origin for all time.

The above non-linear model is not available for state
estimation. Instead, a version linearized about the nominal
operating conditions is available. With a sampling time of
0.5 min, A = [0.91, 0.03; 0.03, 0.91], B = [-0.12, 0.002; -
0.002, 0.12], C = diag([1, 1]). Measurement covariance, R,
is set to diag([0.5, 0.5]) and known. Since estimation is the
focus of this example, the system is run in the absence of
feedback control.

3.2 Proposed HMM Method to Handle Abrupt Jumps &
Intermittent Drifts

The following Markov jump linear model, a specialization
of (4), is employed:

xt+1 =Axt +But + bθut + ωt+1

θut+1 = θut + ϕu
rt+1

θyt+1 = θyt + ϕy
rt+1

yt =Cxt + θyt + vt (9)

where xt, the state variable at discrete time index t
are deviations from [T ∗

c ;T ∗
h ]. Similarly, the vector ut ∈

R2 represents deviations from [q∗c ; q∗h]. b represents the
first column of matrix B, consistent with the fact that
disturbances enter the qc channel. [θu; θy] are input and
output disturbance state variables respectively. Both θu
and θy are modeled as integrators but distinguished by
the effects of the hidden Markov regime on the second
moments of ϕu and ϕy. Consistent with the assumption
of an abrupt jump, the covariance of ϕu is assumed to
be large with a small probability, and vice versa. θy

Table 1. Nominal steady state operating con-
ditions

Variable Value Units

q∗c = q∗h 10 L/min
T ∗

ci 25 oC
T ∗

hi 100 oC
T ∗

c 43.75 oC
T ∗

h 81.25 oC
α∗

c 5 m3/min
α∗

h 5 m3/min
V ∗

c = V ∗
h 75 L

is naturally modeled as an intermittent drift (see (3)).
Details are given in the following paragraphs.

A four-regime Markov chain is considered. These regimes
represent the following scenarios:

(1) No disturbance in input channel, No disturbance in
output channel (‘LO-LO’)

(2) No disturbance in input channel, Drifting disturbance
in output channel (‘LO-HI’)

(3) Abrupt disturbance in input channel, No disturbance
in output channel (‘HI-LO’)

(4) Abrupt disturbance in input channel, Drifting distur-
bance in output channel (‘HI-HI’)

Accordingly, a simple method for determining the values
of the transition probability matrix (Π) is proposed. Per
the earlier discussion (Section 2.1), two (sub) transition
probability matrices are appropriate for the input (Πu)
and output channels (Πy) respectively, the first state being
the ‘normal’ regime in both cases.

Πu =
(

0.99 0.01
0.99 0.01

)
; Πy =

(
0.99 0.01
0.01 0.99

)
(10)

An overall transition probability matrix (Π) accounting for
the four scenarios can be obtained by assuming statistical
independence between the input and output channels. For
example in computing π23, one has transitions between the
‘normal’ to ‘abnormal’ state for the input channel and the
opposite transitions for the output channels so that

π23 = πu
21π

y
12 (11)

The overall Π 4 is:⎛⎜⎝ 0.98 0.01 0.01 0.01
0.01 0.98 0.01 0.01
0.98 0.01 0.01 0.01
0.01 0.98 0.01 0.01

⎞⎟⎠
In accordance to the noise statistics of the possible fault
scenarios, the covariance of the overall noise vector ξt �
[ωt, ϕ

u
t , ϕ

y
t ] for the 4 regimes are:

(1) ‘LO-LO’: E[ξtξ′t] = diag([10−10, 10−10, 10−10, qloy ])
(2) ‘LO-HI’: E[ξtξ′t] = diag([10−10, 10−10, 10−10, qhi

y ]
(3) ‘HI-LO’: E[ξtξ′t] = diag([10−10, 10−10, qhi

u , q
lo
y ]

(4) ‘HI-HI’: E[ξtξ′t] = diag([10−10, 10−10, qhi
u , q

hi
y ]

Process noise ω is negligible compared to θu and will be
assumed to be absent for simplicity.

3.3 Alternative MOG Description

If one were to be restricted to an MOG description of the
latent regime, then an additional state (θβ) is required:

xt+1 =Axt +But + bθut + ωt+1

θut+1 = θut + ϕu
t+1

θβt+1 = θβt + ϕβ
t+1

θyt+1 = θyt + θβt
yt =Cxt + θyt + vt (12)

Similar to (9), θu refers to the input channel disturbance
and is modeled as an abrupt jump. However, the output
4 the rows do not sum to unity due to rounding errors
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disturbance (θy) is now modeled as a double integrator
(driven by θβ). θβ itself may be interpreted as a velocity
term and is driven by ϕβ which is set to have a small
covariance (10−10) with large probability and a large
covariance (of qhi

y ) with small probability. This captures
the (rare) event of a velocity change when the output
disturbance transitions from the white-noise regime to the
random-walk mode and vice versa (see Fig. 1(a)). In this
case, the sub transition matrices for the input and output
channels are:

Πu = Πy =
(

0.99 0.01
0.99 0.01

)
The overall transition matrix may be obtained as before,
per (11). The covariance of the overall noise vector ξt �
[ωt, ϕ

u
t , ϕ

β , ϕy
t ] for the 4 regimes are:

(1) E[ξtξ′t] = diag([10−10, 10−10, 10−10, qloy , 10−10])
(2) E[ξtξ′t] = diag([10−10, 10−10, 10−10, qhi

y , 10−10]
(3) E[ξtξ′t] = diag([10−10, 10−10, qhi

u , q
lo
y , 10−10]

(4) E[ξtξ′t] = diag([10−10, 10−10, qhi
u , q

hi
y , 10−10]

3.4 Example 1: Results

Table 2 presents a summary (average over 100 realizations)
of the state-estimation error for both the input and output
channel. A typical realization is depicted in Fig. 2.

Table 2. 2-norm of state-estimation error (Av-
erage of 100 realizations)

Channel Proposed MOG approach
see (9) see (12)

Input 11.4 12.9
Output 13.3 19.7

Due to the similarities in modeling the abrupt jump in
the output channel, it can be seen from Fig. 2(a) and
the first line of Table 2 that the performance of the
state estimator corresponding to both approaches yield
similar performances. However, the MOG approach fares
significantly worse than the proposed HMM approach in
tracking the fault signal (which is an intermittent drift)
corresponding to the output channel (see Fig. 2(b) and
the second row of Table 2).

4. EXAMPLE 2: VALVE STICTION

Valve stiction is a common problem in control valves, the
latter being widely used in process industries (Choudhury
et al. (2005)). Due to the effects of friction, the output
(ux) of the control valve does not track its input (uc) (i.e.,
the control signal prescribed by the controller) instanta-
neously. Instead, ux has been observed to demonstrate
a delayed and sluggish response to uc, where the valve
‘sticks’ to its current position if changes in the control
signal (and/ or the absolute magnitude itself) are insuf-
ficiently large to overcome friction effects. This is usually
to the detriment of closed-loop performance. It is assumed
that the plant is linear and therefore parameterized by
matrices (A,B,C), where A is the state-transition map,
B, the input-to-state map and C, the state-to-output map.
Technical definitions, first-principles and empirical models
of stiction can be found in the articles by Choudhury et al.
(2005, 2008) and the references therein. For simplicity,
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Fig. 2. Tracking θu and θy. Comparing the proposed HMM
vs. MOG approaches. Legend: solid line - actual fault
signal; Dots (·) - HMM; Crosses (x) - MOG

an efficient single-parameter model employed by Stenman
et al. (2003) and Srinivasan and Rengaswamy (2005) for
stiction detection is used for simulations in the sequel:

ux
t =

{
ux

t−1, if |uc
t − ux

t−1| ≤ d
uc

t , otherwise (13)

where d represents the valve stiction band. The larger the
value of d, the more severe the stiction problem.

The detection, diagnosis and compensation-for valve stic-
tion has received much attention in academia and industry.
Based on (13), Stenman et al. (2003) proposed a suitable
model for detecting stiction:

ux
t = δ̃t · ux

t−1 + (1− δ̃t) · uc
t

where δ̃t is a binary (0/1) mode parameter occurring with
a certain (i.i.d) probability.

For the same purpose of stiction detection and estimating
the typically unmeasured ux

t , we allow δ̃t to have sta-
tistics governed by an underlying Markov chain so that
observations reflecting persistent ‘stickiness’ can be more
effectively modeled. Also, instead of identifying the seg-
mentation sequence {δ̃1, . . . , δ̃t} that maximizes the pos-
terior quantity pr(δ̃1, . . . , δ̃t|y1, . . . , yt) through dynamic
programming, we propose a novel Markov jump linear
description that is consistent with (13) to be used by a
GPB2 state-estimator:
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(
xt

ux
t−1

)
=
(
A Bx

rt−1

0 δ̃rt−1

)(
xt−1

ux
t−2

)
+
(
Bc

rt−1

1− δ̃rt−1

)
uc

t−1

yt = (C 0 )
(
xt

ux
t−1

)
+ vt (14)

When r = 1, stiction is absent, δ̃ = 0, Bx = 0, Bc = B.
Conversely, when r = 2, stiction is present, δ̃ = 1, Bx = B,
Bc = 0.

4.1 Simulation Studies: Mixing Tank

For simulation studies, we consider a simple isothermal
mixing-tank (of cross-sectional area A) with an outlet
stream whose flow-rate is controlled by a valve (with
resistance R):

dm

dt
=

1
A (q1 + q2 −

m

R ) (15)

The controlled (and also measured) variable is the liquid
level (m). The flow-rate of the first stream, q1, is a
measured disturbance whereas that of the other stream
(q2) represents the manipulated variable. A PI controller
(with gain Kc, and integral time constant τI) is given by:

uc
t = uc

t−1 +Kc[et − et−1 +
h

τI
et], et � l − yt

Here l is the set-point, nominally calibrated to a value of
6. For ease, A, R, Kc, τI and the measured disturbance
signal q1, are all set to nominal values of 1. A relatively
large value for the stiction band is employed: d = 0.5. A
sampling time of h = 0.05 is employed, resulting in the fol-
lowing parametrization to be used by the state estimator:
A = 0.951, B = 0.0488 and C = 1. Measurement noise is
set to have a known covariance of R � E[vtv′t] = 10−4. To
reflect the high degree of stiction, the transition probabil-
ity matrix Π is: (

0.01 0.99
0.01 0.99

)
(16)

4.2 Results: Estimating Valve Output & Detecting Stiction

Tracking results for a typical closed-loop realization are
shown in Fig. 3. The existence of the cycles in uc and ux

(Fig. 3(a)) is due to the presence of integral action as well
as the valve stiction phenomenon. From Fig. 3(a), it can
be seen that the proposed methodology is able to estimate
ux. Observing the (a-posteriori) probability (see (5) and
Fig. 3(b)) of the first mode (or equivalently the second)
via reveals the time instances where a switch occurs (by
means of the probability peaks). Doing so represents an
effective way for detecting stiction.

5. CONCLUSIONS & FUTURE WORK

The main contribution of this work is to show that the
common faults (abrupt jumps/ biases and drifts) can be
better modeled and detected by the proposed HMM-based
method. Another novel application is in the context of
detecting valve stiction, where it is demonstrated that the
output of the valve (which is not normally measured) can
be effectively estimated. Future work involves extending
the problem to large scale systems (e.g. a network of unit
operations) of industrial interest.
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Abstract: Disturbances in the form of oscillations are usually originated in process plants due to various
faults such as sensor faults, valve faults, process faults and controller tuning faults. Many of these faults
can be represented as nonlinearities. Faults in the form of nonlinearities may produce oscillations with
a fundamental frequency and its harmonics. This study presents a novel method based on the estimated
frequencies, amplitudes and phases of the fundamental oscillation and its harmonics to troubleshoot
or isolate the root-cause of plantwide or unit-wide disturbances. Once the root cause is known, the
oscillations can be eliminated, and the process can be operated more economically and profitably. The
successful application of the method has been demonstrated both on simulated and industrial data sets.

Keywords: Plantwide oscillations, nonlinearity, harmonic, control performance, stiction

1. INTRODUCTION

Modern process plants are designed based on the concept of
energy and material integration in order to minimize the energy
requirements and pollution levels. Large process plants, such
as oil refineries, power plants and pulp mills, are complex in-
tegrated systems, containing thousands of measurements, hun-
dreds of controllers and tens of recycle streams. The inte-
gration of energy and material flow, required for efficiency,
results in the spread of fluctuations throughout a plant. The
fluctuations force the plant to be operated further from the
economic optimum that would otherwise be possible, and thus
cause decreased efficiency, lost production and in some cases
increased risk. Because of the scale of operation of process
plants, a small percentage decrease in productivity has large
financial consequences. It can be extremely difficult to pinpoint
the cause of these fluctuations. In the most difficult case, the
fluctuations are in the form of oscillations. The problem is that
oscillations have no defined beginning and end, and so the cause
cannot be isolated by standard techniques. Finding the cause
of oscillations is a tedious, labor-intensive, often fruitless task.
Once the cause is understood, removal of the oscillations is
usually straightforward. Therefore, it is important to detect and
diagnose the causes of oscillations in a chemical process.

Most of the available techniques for oscillation detection focus
on a loop by loop analysis (Hagglund, 1995). Thornhill and
co-workers have presented some detection tools that consider
the plant-wide nature of oscillations (Thornhill et al., 2003). To
detect oscillations in process measurements and identify signals
with common oscillatory behavior, use of spectral principal
component analysis (Thornhill et al., 2002) or autocorrelation
functions (acf) (Thornhill et al., 2003) is suggested. Xia and
Howell (2003) have proposed a technique that takes into ac-
count the interactions between control loops. Thornhill and
Horch (2007) provided an overview of the advances and new
direction for solving plantwide oscillation problems. A recent
book (Choudhury et al., 2008) provides two chapters on the

state of the art technologies for plantwide oscillation detection
and diagnosis. This paper demonstrates a method for detecting
plantwide oscillations and isolating the root causes of such
oscillations.

2. WHAT ARE PLANTWIDE OSCILLATIONS?

When one or more oscillations is generated somewhere in
the plant and propagates throughout a whole plant or some
units of the plant, such oscillations are termed as plantwide
or unitwide oscillations. Oscillation may propagate to many
units of the process plants because of the tight heat and mass
integration in the plant as well as the presence of recycle
streams in the plant. Figure 1 shows an example of a plant-
wide oscillation problem. The top panel shows the time trends
of 37 variables representing a plant-wide oscillation problem in
a refinery (courtesy of South-East Asia Refinery). The bottom
panel shows the power spectra of these variables. A common
peak in the power spectra plot indicates the presence of a
common disturbance or oscillation at a frequency of 0.06 or
approximately 17 samples/cycle in many of these variables. The
presence of such plant-wide oscillations takes a huge toll from
the overall plant economy.

3. DETECTION OF PLANTWIDE OSCILLATIONS

Detection of plantwide oscillation is relatively an easy problem.
Often times the plant operators notice some oscillations in the
plant, which leads to a deeper investigation of the problem and
may cause the invention of a plantwide oscillation of a larger
nature. Over the last few years, some studies were carried out
to detect plantwide oscillations (Tangirala et al., 2005; Jiang
et al., 2006) and to group the similar oscillations together. The
following are the brief description of some of these techniques
that can be used for detecting plant-wide oscillations.
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(a) Time Trends

(b) Power Spectra

Fig. 1. Time trends and their power spectra for the South-East
Asia Refinery data set

3.1 High Density Plot - An Excellent Visualisation Tool

This plot describes time series data and their spectra in a nice
compact form in one plot. From this plot, one can easily vi-
sualize the nature of the data and the presence of common os-
cillation(s) in the data. However, this method is not automated
and cannot provide a list of the commonly oscillating variables.
Figure 1 is an example of a high density plot.

3.2 Power Spectral Correlation Map (PSCMAP)

The power spectral correlation index (PSCI) is defined as the
correlation between the power spectra of two different measure-
ments. It is a measure of the similarity of spectral shapes, i.e.,

measure of the commonness of frequencies of oscillations. The
PSCI for any two spectra |Xi(ω)|2 and |Xj(ω)|2 is calculated as

PSCI = correlation(|Xi(ω)|2, |Xj(ω)|2) =
∑ωk

|Xi(ωk)|2|Xj(ωk)|2√
|Xi(ωk)|4|Xj(ωk)|4

(1)

The PSCI always lies between 0 and 1. In the detection of
plantwide oscillations, the objective is to collect variables with
similar oscillatory behaviour.

For multivariate processes, the PSCI is a matrix of size m ×
m, where m is the number of measured variables. In order to
provide an effective interpretation of the PSCI, the matrix is
plotted as a colour map, which is termed as the power spectral
correlation map. An important aspect of this colour map is its
ability to automatically re-arrange and group variables together
with similar shapes, i.e., variables, which oscillate at a common
frequency and have therefore similar values of PSCI. For a
detailed discussion on this method, refer to (Tangirala et al.,
2005).

3.3 Spectral Envelope Method

In (Jiang et al., 2007), the spectral envelope method has been
used to troubleshoot plantwide oscillations.

Let X is a data matrix of dimension n×m, where n is the
number of samples and m is the number of variables. If the
covariance matrix of X is VX and the power spectral density
(PSD) matrix of X is PX(ω), then the spectral envelope of X is
defined as:

λ (ω) � sup
β �=0

{β ∗PX(ω)β
β ∗VXβ

} (2)

where ω represents frequency and is measured in cycles per
unit time, for −1/2 < ω ≤ 1/2, the λ (ω) is the spectral
envelope at the frequency ω , β (ω) is the optimal scaling
vector that maximizes the power (or variance) at the frequency
ω , the ‘*’ represents conjugate transpose. The quantity λ (ω)
represents the largest portion of the power (or variance) that
can be obtained at frequency ω from a scaled series. Jiang et. al
(2007) provided a detailed description of this method.

4. DIAGNOSIS TECHNIQUES FOR PLANTWIDE
OSCILLATIONS

In a control loop, oscillations arises due to the following pri-
mary reasons:

(1) Presence of a poorly tuned controller
(2) An oscillatory external disturbance
(3) Presence of a faulty valve, e.g., a sticky valve or saturated

valve.
(4) A highly nonlinear process
(5) Model-plant mismatch for an active MPC controller.

As described, the detection of plant-wide oscillation is rela-
tively an easy problem compared to the diagnosis of its root-
cause. Recently a number of papers appeared in the literature
describing a few techniques to perform root-cause diagnosis
of plant-wide oscillation (Thornhill et al., 2001; Thornhill and
Horch, 2007; Choudhury et al., 2007; Jiang et al., 2007; Zang
and Howell, 2007; Choudhury et al., 2008).
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Oscillations originated in process plants due to various faults
such as sensor faults and valve faults may be represented
as nonlinearities. Faults in the form of nonlinearity produce
oscillations with a fundamental frequency and its harmonics. It
is well known that the chemical processes are low-pass filters in
nature. Therefore, when a fault propagates away from its origin
or source, the higher order harmonics get filtered out.

4.1 Oscillation and Harmonics

Sinusoidal fidelity states that if a sinusoidal input passes
through a linear system, the output of the linear system is a
sinusoid with the same frequency, but with a different mag-
nitude and phase. A linear system does not produce any new
frequency. On the other hand, when a sinusoidal signal with
a certain frequency passes through various types of nonlinear
systems or functions such as a square function, an exponen-
tial function, a logarithmic function and a square-root func-
tion, nonlinear systems may generate harmonics in addition
to the original fundamental frequency of the input sinusoid.
Therefore, nonlinearity induced oscillatory signals generally
contain a fundamental frequency and its harmonics. Harmonics
are oscillations whose frequencies are integer multiples of the
fundamental frequency.

4.2 Fourier Series and Harmonics

Fourier series states that any signal can be represented as
a summation of sinusoids. Therefore, any time series, y(t),
where, t ∈ℜ can be represented as

y(t) =
∞

∑
i=0

Ai cos(λi t +φi) (3)

For a signal containing harmonics, Equation 3 can be rewritten
as:

y(t) =
M

∑
i=0

Ai cos(i∗λ t +φi)+ ε(t) (4)

where λ is the fundamental frequency. Each term of equation 4
contains three unknowns namely, amplitude, frequency and
phase. The basic idea is to estimate the amplitudes, frequencies
and phases for each term of equation 4 for any time series and
then examine the relationships among the frequencies to find
whether they are harmonically related.

From the experience of the author, for useful application of the
harmonic analysis of chemical process data, it suffices to use
M = 5.

4.3 Total Harmonic Content (T HC)

A new index called Total Harmonic Content (T HC) can be
defined as:

T HC = n∗WHM (5)

where n is the number of harmonics found and WHM is the
Weighted Harmonic Mean. WHM is defined as

WHM = ∑M
i=1 wi

∑M
i=1

wi
Ai

(6)

where wi is weights and is defined as wi = i/∑M
i=1 i so that the

summation of the weights are equal to 1 and the weights for
the higher harmonics are large. More weights are given to the
higher harmonics because due to the low-pass filtering effect

of the chemical processes the higher harmonics get filtered out
gradually as the signal propagates away from the source or the
root cause.

For plant-wide oscillations, the amplitudes, frequencies and
phases of first five term of Equation 4 are estimated. For all
tags or variables which have the same fundamental frequency
are identified and the Total Harmonic Contents (T HC) are
calculated using Equation 5. After calculating the T HCs, the
variables are ranked according to the descending order of T HC.
The variable with the highest T HC is likely to be the root
cause. Plant information such as Piping and Instrumentation
(P&I) diagrams, Process Flow Diagrams (PFD) and operators’
knowledge should be utilised in conjunction with the informa-
tion provided by T HC to confirm the root cause. The chance
of being right first time is high. However, if the variables with
the maximum value of T HC is not the root cause, the variable
with the second highest value of T HC should be investigated
as a root cause. Thus maintenance effort should be started from
variable with the maximum value of T HC to the variables in
the descending order of T HC.

Thornhill et al. (2001) described a similar method using a
distortion factor, which was defined as the ratio of the total
power of the signal except the power at the fundamental fre-
quency to the power of the fundamental frequency. They used
power spectrum to estimate the distortion factor. The method
was successful to a limited extent because the power spectrum
is heavily affected by the signal noise. On the other hand, the
method described here uses only the amplitudes of the harmon-
ics and the fundamental frequency, therefore the T HC is not
influenced by the signal noise except some small contamination
occurs during the frequency and amplitude estimation.

5. SIMULATION EXAMPLE

This simulation example describes a hypothetical process
where a nonlinear function, a square function, followed by
some linear filters are present. The simulink block diagram
is shown in figure 2. The process was excited by a sinusoid

Fig. 2. Simulink block diagram for simple oscillation propaga-
tion

with frequency 0.25 rad/sec. Random noise with variance 0.05
was added to the sinusoid. The simulated time series data with
their power spectra are shown in Figure 3. From the power
spectra, it is hard to see the harmonics generated by the square
function because the fundamental frequency has high power. It
is interesting to note that for tags 4, 5 and 6, a low frequency os-
cillation has been developed due to the low pass filtering of the
random noise by the process. The fundamental oscillation and
its harmonic are gradually filtered out as the signal propagates
through the system.
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Fig. 3. Simulated data and their power spectra

Table I shows the harmonic analysis of the simulated data.
The algorithm correctly identifies the presence of sinusoids in
the signal. Five sinusoids are estimated for each signal. For
the first signal (tag 1), the magnitude of the first sinusoid is
much larger (more than 50 times) than the other sinusoids.
The other sinusoids came into play due to the addition of
random noise which has power in all frequencies. Research is
undergoing to formulate a statistical hypothesis test to detect
the presence of true sinusoids. The current algorithm correctly
estimates the frequency of the main sinusoid as 0.25 rad/sec.
Two dominant sinusoids with frequencies 0.25 and 0.5 rad/sec
are estimated for tag 2. For tag 3, the sinusoid with frequency
0.5 rad/sec is present but its power has been decreased because
of its attenuation by the first order filter. For tag 4, 5 and 6,
the fundamental frequency sinusoid (0.25 rad/sec) has become
gradually weak and has been masked with the noise, as evident
from the estimated magnitudes shown in the table. The Total
Harmonic Content (THC) was calculated for each tag where
oscillation with fundamental frequency and its harmonic are
found. The maximum T HC corresponds to tag 2 indicating the
source or root-cause of the propagated oscillation.

6. CASE STUDIES

6.1 Simulation Example - A Non-Linear Dynamic Vinyl Acetate
Process

This example describes a simulation case study for root-cause
diagnosis of plantwide oscillations using a non-linear dynamic
model of a Vinyl Acetate process. The nonlinear dynamic
model of the Vinyl Acetate process is published by (Chen et
al., 2003) and is freely available from the authors’ website.
Figure 4 shows a simplified schematic of the Vinyl Acetate
Process. The process model contains 246 state variables, 26
manipulated variables and 43 measurements. The process takes
approximately 300 minutes time to reach steady state. For
details, refer to (Chen et al., 2003).

After the process reached steady state, a 5% stiction (S = 5,
J = 2) in the manipulated variable corresponding to the cooling
water flow rate for the separator jacket temperature cooling
valve was introduced using the stiction model developed in
(Choudhury et al., 2005). Simulation data set consisted of 1000
minutes of data with a sampling time of 15 seconds containing
a total of 4000 observations for each variable. The last 1024
data points were used in this analysis in order to avoid transient
behaviour due to the sudden introduction of stiction. Figure 5
shows the time trends and power spectra of the manipulated
variables of the Vinyl Acetate process. The power spectra
show that the variables 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14, 19,
21, 22 and 23 are oscillating with a common oscillation at

Fig. 4. Schematic of the Vinyl Acetate Process

a normalized frequency of 0.0505. Total Harmonic Content
(T HC) was calculated for these variables. Figure 6 shows the
calculated T HC values against the variable or tag number. The
maximum T HC corresponds to the tag 9 correctly indicating
the root-cause of the plantwide oscillation because stiction was
introduced in this variable during simulation.
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6.2 An Industrial Example - Application to a Refinery Data Set

The proposed method was applied to a benchmark industrial
data set for plantwide oscillations study appeared in the liter-
ature such as (Tangirala et al., 2007; Tangirala et al., 2005;
Thornhill et al., 2001). The data set, courtesy of a SE Asian
Refinery, consists of 512 samples of 37 measurements sampled
at 1 min interval. It comprises measurements of temperature,
flow, pressure and level loop along with some composition mea-
surements. The time trends of the controller errors are shown in
Figure 1(a) and the corresponding power spectra are shown in
Figure 1(b). From these figures or using the technique of power
spectral correlation map (PSCMAP) described in (Tangirala et
al., 2005), it can be found that the tags 2, 3, 4, 8, 9, 10, 11,
13, 15, 16, 17, 19, 20, 24, 25, 28, 33 and 34 are oscillating to-
gether with a common frequency of 0.0605 or 17 samples/cycle
approximately. All data corresponding to the variables with the
common frequency were first normalized so that they had zero-
mean and unit variance. Then the amplitudes, frequencies and
phases for first five sinusoids were estimated and T HC were
calculated for these variables. The calculated T HC values are
plotted against the tag number in Figure 7. The highest T HC
value corresponds to the tag no. 34, which is the first candidate
for the possible root-cause of this plantwide oscillation. In
real plant investigation if this tag is not found to be the root
cause, then the tag corresponding to next highest value of T HC
should be investigated. For this case, earlier studies (Thornhill
et al., 2001; Tangirala et al., 2005; Tangirala et al., 2007) found
tag 34 as the root-cause. Therefore, the proposed T HC index
correctly detected the root-cause of this plantwide oscillations.

7. CONCLUSIONS AND FUTURE WORKS

This study describes a method to troubleshoot plantwide os-
cillation using harmonic information present in the signal. The
amplitudes, frequencies and phases of the fundamental signal
component and its harmonics are estimated and used for the di-
agnosis of the root-cause of plantwide oscillation. A new index
called Total Harmonic Contents (T HC) has been defined and
used for isolating the root-cause. The method can be automated
to facilitate troubleshooting of plantwide oscillation.
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Abstract: A SDG-based simulation procedure is presented in this study to qualitatively predict all 
possible effects of one or more fault propagating in a given process system. All possible state evolution 
behaviors are characterized with an automaton model. By selecting a set of on-line sensors, the 
corresponding diagnoser can be constructed and the diagnosability of every fault origin can be 
determined accordingly.  Furthermore, it is also possible to construct a formal diagnostic language on the 
basis of this diagnoser.  Every string (word) in the language is then encoded into an IF-THEN rule and, 
consequently, a comprehensive fuzzy inference system can be synthesized for on-line diagnosis.  The 
feasibility of this approach is demonstrated with a simple example in this paper.  

Keywords: fault diagnosis, automata, signed directed graph, formal language, fuzzy logic. 

 

1. INTRODUCTION 

The fault diagnosis methods have been widely recognized as 
indispensable tools for enhancing process safety. Generally 
speaking, they could be classified into three distinct groups, 
i.e., the model based approaches, the knowledge based 
approaches, and the data-analysis based approaches 
(Venkatasubramanian et al., 2003a, b). However, in order to 
carry out these strategies on-line, it is usually necessary to 
first analyze the historical data and/or operational 
experiences obtained during every serious accident.  This 
requirement cannot always be satisfied in practice.  

To circumvent the above drawbacks, a qualitative cause-and-
effect model, i.e., the signed directed graph (SDG), is used in 
the present study to characterize fault propagation 
mechanisms.  The advantage of this modelling approach is 
mainly due to the fact that the causal relations in process 
systems can always be established according to generic 
engineering principles without any quantitative knowledge. 
On the other hand, it should be noted that such causal models 
are basically static in nature. Many SDG-based fault 
identification techniques were therefore implemented on the 
basis of the steady-state symptoms only, e.g., Maurya et al. 
(2006). Since the effects of fault(s) and/or failure(s) usually 
propagate throughout the entire system dynamically in 
sequence, a series of intermediate events may occur before 
the inception of catastrophic consequences. Thus, the 
performance of a qualitative diagnosis scheme should be 
evaluated not only in terms of its correctness but also its 
timeliness.   

To enhance diagnostic efficiency, it is obviously necessary to 
consider the precedence order (in time) of various fault 

propagation effects derived from the qualitative models. 
Extensive studies have already been carried out to develop 
effective diagnosis strategies by incorporating both the 
eventual symptoms and also their occurrence order into a 
fuzzy inference system (FIS). This approach has been 
applied successfully to a number of loop-free processes  
(Chang et al., 2002) and also to systems with feedback 
and/or feed forward control loops (Chang and Chang, 2003; 
Chen and Chang, 2006; 2007).  

Despite the fact that diagnostic performance can be 
significantly improved with the aforementioned technique, 
the representation, analysis and synthesis of inference 
systems are still very cumbersome. In particular, many 
different versions of the symptom occurrence orders can 
often be deduced from a single fault origin on the basis of 
SDG model. Manual enumeration of all such scenarios for 
all origins may become intractable even for a moderately 
complex system. Furthermore, the diagnosability issues 
concerning the resulting FIS have never been systematically 
addressed in the past. Thus, there is a definite need to 
develop a unified theoretical framework to extract the 
intrinsic features of dynamic fault propagation mechanisms.  
Our concern here is primarily with the sequence of system 
states visited after the occurrence of fault origin(s) and also 
the associated events causing the state transitions. A 
systematic procedure is proposed in this paper to construct 
automata and language models for the purpose of 
representing these sequences accurately and succinctly. As a 
result, additional insights can be revealed and, also, more 
compact inference rules can be produced accordingly.  A 
simple example is provided at the end of this paper to 
demonstrate the feasibility and effectiveness of the proposed 
procedures for FIS synthesis and for fault diagnosis. 
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2. AUTOMATA CONSTRUCTON  

2.1  Qualitative Simulation Procedure 

Although other qualitative models may be equally acceptable, 
the SDG is adopted in the present study to simulate (or 
predict) the effects of faults and failures. This is due to the 
fact that the needed implementation procedure is 
conceptually straightforward. Notice first that the fault 
origins can usually be associated with the primal nodes, i.e., 
the nodes without inputs. A set of five values, i.e., {-10, -1, 0, 
+1, +10}, may be assigned to every node in the digraph to 
represent deviation from the normal value of corresponding 
variable. The value 0 represents the normal steady state. The 
negative values are used to denote the lower-than-normal 
states and the positive values signify the opposite.  The 
magnitudes of non-zero deviations, i.e., 1 or 10, can be 
interpreted qualitatively as “small” and “large” respectively. 
The causal relation between two variables can be 
characterized with a directed arc and the corresponding gain. 
Each gain may also assume one of the five qualitative values 
mentioned above. The output value of every arc in digraph 
can be computed with the gain and its input value according 
to the following equation: 

if 10 10
10 if 10
10 if 10

in in

out in

in

g v g v
v g v

g v

× − ≤ × ≤ +�
�= + × > +�
� − × < −�

            (1) 

where g , inv  and outv  denote respectively the gain, input 
and output values. It is obvious that the deviation values of 
all variables affected by one or more fault origin can always 
be computed with this formula, but the time at which each 
deviation occurs is indeterminable. Without the reference of 
time in the SDG-based simulation results, it can nonetheless 
be safely assumed that the change in an input variable 
should always occur earlier than those in its outputs.  In 
essence, this is the most basic assumption adopted in this 
study. Notice that, if the precedence order of various fault 
propagation effects is to be considered in fault diagnosis, a 
large number of different versions of qualitative simulation 
results may be generated accordingly. All such scenarios can 
be captured with the automaton model described in the 
sequel.  

2.2  System Automata 

A formal definition of a deterministic automaton �  can be 
found in Cassandras and Lafortune (1999). Specifically, it is 
a six-tuple 

( )0, , , , , mf x= Γ� � ��                     (2) 

where, �  is the set of system states; �  is the finite set of 
events associated with the transitions in automaton; 

:f × →� � �  is the transition function; : 2Γ → ��  is 
the active event function; 0x  is the initial system state; 

m ⊆� �  is the set of marked states. In the present 

application, each system state x∈�  is either a collection of 
node values at a particular instance after an initiating failure 

occurs or the initial state itself.  Every event e ∈�
represents a previously nonexistent fault effect.  Notice that 
the precedence order of these events must be consistent with 
the basic assumption mentioned above.  The active event 
function ( )xΓ  is used to specify the events which could 
change the system state x , while the transition function 

( ),f x e  is used for stipulating the resulting state caused by 

( )e x∈ Γ . Finally, it should be noted that the initial state 0x
in this study is always associated with the normal condition 
and the set m�  contains the final steady states reached in all 
possible fault propagation scenarios. 

To facilitate illustration of the automaton construction steps, 
let us consider the most fundamental digraph configuration, 
i.e., tree. More specifically, let us use the fictitious SDG 
model in Figure 1 as an example and also assume that a 
positive deviation in the upstream variable d , i.e., ( 1)d + , 
is the only possible fault origin in this case. Notice that, 
although the precedence order of any two effects along the 
same branch path in this digraph can be uniquely identified 
with the proposed qualitative simulation procedure, the order 
of two distinct events located on separate branches should be 
considered as indeterminable. The corresponding automaton 
can thus be described with the state transition diagram 
presented in Figure 2. Every system state here is 
characterized with a collection of the qualitative values of all 
variables in the digraph and all of them are listed in Table 1.  
Three equally possible event sequences between the initial 
and final system states can be identified from this automaton 
model, i.e.,  

1. ( 1) ( 1) ( 1) (-1) ( 1)d x y z u+ + + + ,
2. ( 1) ( 1) ( 1) ( 1) (-1),d x y u z+ + + +
3. ( 1) ( 1) ( 1) ( 1) (-1).d x u y z+ + + +

Fig. 1. A tree-shaped SDG model.  
    

Fig. 2. The state transition diagram of automaton derived 
from Figure 1. 

The automaton resulting from a “large” disturbance can be 
obtained by following a similar procedure. An auxiliary 
assumption is introduced in this work to facilitate an accurate 
description of the fault propagation mechanism, i.e., the 
smaller deviation of a process variable must occur before 

312



    

reaching a larger one of the same variable. Thus, the 
automaton in Figure 2 can be revised to incorporate this 
requirement (see Figure 3).  

Table 1. System states in Figure 2.

State d x y z u 
0 0 0 0 0 0 

1 +1 0 0 0 0 

2 +1 +1 0 0 0 

3 +1 +1 +1 0 0 

4 +1 +1 +1 -1 0 

5 +1 +1 0 0 +1 

6 +1 +1 +1 0 +1 

7 +1 +1 +1 -1 +1 

Fig. 3. The automaton resulted from ( 10)d +  in Figure 1 

2.3  Diagnoser and Diagnisability 

In realistic applications, the fault origins (i.e., failures or 
upsets) and some of the process variables cannot be 
monitored on-line.  Thus, the event set of an automaton 
model can be further divided into the observable and 
unobservable event subsets, i.e., o uo= �� � � . To check 
diagnosability of each fault origin and also facilitate 
diagnostic inference with the available sensors, the system 
automaton �  should be converted to a diagnoser diag� , 
which is in essence a transformed automaton with the 
observable subset o� as its event set. Although a systematic 
construction procedure has already been developed by 
Sampath et al. (1996) for the discrete event systems in 
general, the diagnosers for the present applications are built 
with an intuitive but more convenient alternative approach. 
Specifically, if a state is reached immediately after an 
unobservable event, then this state is merged with its 
predecessor(s) in the original automaton model.  For 
example, let us assume that ( 1)d +  is the fault origin and 

( 1)y +  is not observable in Figure 2.  The corresponding 
diagnoser can be easily obtained by applying the 
aforementioned principle (see Figure 4).  The numerical 
node labels here are the same as those in Figure 2, while the 
subscript of each label is used to reflect whether or not the 
fault origin has occurred at the corresponding state.  

Fig. 4. The diagnoser obtained by assuming ( 1)y +  in 
Figure 2 is unobservable. 

It should be noted that this construction method is applicable 
even when multiple scenarios are possible. For example, let 
us consider the SDG model in Figure 5 and assume that there 
are two measured variables, i.e., y and z , and four potential 

fault origins, i.e.,  (1) ( 1)xd + ,  (2) ( 1)yd + , (3) ( 1)zd +
and (4) ( 1)ud + .  

Fig. 5. A SDG model with negative feedback loop 

The automaton model of this system and the corresponding 
diagnoser can be found in Figures 6(A) and 6(B) respectively.   
Obviously, the issue of diagnosability becomes important in 
this situation. Although the formal necessary and sufficient 
conditions of system diagnosability has also been derived 
and proven rigorously by Sampath et al. (1995), the 
identifiability of each fault origin in our studies can be 
determined simply by inspecting the diagnoser. In particular, 
the diagnosability of a fault origin can be established if it is 
the unique cause of at least one diagnoser state. Otherwise, 
the corresponding on-line symptoms should be 
indistinguishable from those of one or more scenarios caused 
by other origins. It can be determined on the basis of this 
criterion that fault origins (3) and (4) are both diagnosable, 
while the observable event sequences in scenarios (1) and (2) 
are identical and thus cannot be differentiated from one 
another. 

The feasibility of this simple checking procedure is 
attributed mainly to the fact that the automata used in the 
present applications form a special subclass of those for 
modelling the discrete event systems. More specifically, 
since the continuous chemical processes are considered in 
this work, the corresponding automata can be characterized 
with the following unique features: 

1. The initial automaton state is always associated 
with the normal system condition. 

2. Every initial state transition is triggered by 
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failure event(s). 
3. Recurrence of system state is not possible, i.e., 

the automaton is free of any feedback loop. 
Notice that this feature is due to our assumption 
that a final steady state is reachable in every 
possible scenario. 

(A) 

(B) 

Fig 6. The automaton (A) and diagnoser (B) constructed 
according to the SDG in Figure 5 

3. LANUGAE GENERATION 

A language �  is regarded in this work as a collection of 
finite-length event sequences.  These sequences are referred 
to as strings or words.  The set of all possible events 
(alphabets) is the set �  defined in equation (2).  An 
additional set *�  is also utilized here to include all possible 
strings (including the empty string ε ) constructed over� .  
Thus, it is obvious that *⊆ �� . 

Since fault diagnosis can only be performed according to the 
on-line symptoms, the automaton diag�  (not� ) is used to 
generate a diagnostic language for the purpose of 
enumerating all observable event sequences caused by a 
given fault origin.  Specifically, 

( ) ( ){ }0* |  ,  is defined by     (3)diag diags f x s= ∈� �� �

The transition function ( )0 ,f x s  here can be evaluated 
recursively according to the following rules: 

                   
( )
( ) ( )( )

,

, , ,

f x x

f x se f f x s e

ε =

=
                    (4) 

where, *s ∈�  and e∈� . In addition, the marked
language of automaton diag�  can be defined as 

( ) ( ) ( ){ }0|  ,diag diag ms f x s= ∈ ∈��� �� �      (5) 

Notice that an automaton-based language can be synthesized 
by first identifying the longest strings and then obtaining all 
their prefixes. Since the marked states in the present 

application are always terminal, ( )diag� �  can be produced 

by taking the prefix closure of ( )diag�� � (Cassandras and 

Lafortune, 1999), i.e. 

( ) ( )diag diag= �� �� �                        (6) 

where, ( )diag�� � denotes the set of all prefixes of the 

strings in ( )diag�� � . From equation (6), it can be shown 

that every diagnoser considered in this study must be 

nonblocking, i.e., any string ( )diags A∈�  can be always 

extended by another string t  such that ( )diagst A∈ �� . 

Let us use the diagnoser in Figure 4 as an example to 
illustrate the proposed approach.  The two languages marked 
and generated respectively by diag� in this case should be 

( ) { }

( )

( 1) ( 1) ( 1),  ( 1) ( 1) ( 1)    (7)

, ( 1),  ( 1) ( 1),  ( 1) ( 1),  
     (8)

( 1) ( 1) ( 1),  ( 1) ( 1) ( 1)

diag

diag

x z u x u z

x x z x u
x z u x u z
ε

= + − + + + −

+ + − + +� �
= � �+ − + + + −� �

��

�

�

�

If the possibilities of multiple fault origins are incorporated 
in a diagnoser, then it is necessary to further generate a 
sublanguage specific to every fault origin, i.e. 

( ) ( )iF
diag diag

i

=�� �� �                         (9) 

where, iF
diag�  is an automaton obtained by removing all the 

abnormal states in diagA  which are not caused by the i th 

fault origin iF . The marked sublanguages of the fault origins 
in Figure 6(B) can be easily produced with this method, i.e., 

( )( ) ( )( ) { }
( )( ) [ ]{ }
( )( ) { }

11

1

1

( 1) ( 1) (0)    (10)

( 1) ( 1) (0), (0)                (11)

( 1) ( 1) (0)                           (12)

yx

z

u

dd
diag diag

d
diag

d
diag

y z y

z y y z

y z y

++

+

+

= = + +

= + −

= − −

� �

�

�

� �

�

�

� �

�

�

314



    

4. FUZZY INFERENCE SYSTEM 

Every string in ( )diag� �  is encoded with an IF-THEN rule 

in this work.  These rules can be incorporated in a fuzzy 
inference system to evaluate the existence potential of the 
corresponding fault origin. In particular, if at least one event 

sequence in the marked sublanguage ( )iF
diag�� �  can be 

confirmed, then it is highly possible that they are caused by 
the corresponding fault origin iF . To assert such a belief, the 

fuzzy conclusion “ ics  is OCR” is adopted in the inference 
rule, where OCR is the linguistic value of the occurrence 
index ics  reflecting the highest confidence level in 

confirming the existence of iF . More specifically, this rule 
can be written as 

( )IF   THEN OCRiF
o diag is cs∈ =�� �

where os  denotes the observed event string.  

On the other hand, it is certainly reasonable to disregard the 
possibility of a fault if none of the corresponding event 
strings in ( )iF

diag� �  can be observed. Thus, the diagnosis 

for this scenario should be “ ics  is NOC”, where NOC is the 
linguistic value representing the lowest level of confidence. 
In other words, 

( )IF   THEN NOCiF
o diag is cs∉ =� �

The diagnostic conclusion for each of the remaining strings 
should be UCT� , i.e., uncertain with confidence level � . In 
particular, this rule can be written as 

( ) ( )IF \   THEN UCTi iF F
o diag diag is cs∈ =�� �� � �

In this study, the confidence level �  in confirming the 
existence of the root cause(s) is assumed to be proportional 
to the string length.  The highest possible confidence level is 

of course assigned to the strings in ( )iF
diag�� � . 

Finally, it should be noted that the aforementioned IF-THEN 
rules can be implemented with the two-layer fuzzy inference 
framework developed by Chen and Chang (2006).  

5.  CASE STUDY 

Let us consider the level control system presented in Figure 
7 and the corresponding SDG model in Figure 8. All on-line 
signals, i.e., 5s - 8s , are assumed to be available for fault 
diagnosis in this example. For illustration convenience, only 
two possible scenarios are considered here, i.e., (1) a 
moderate (controllable) increase in the flow rate of stream 3 
while control valve CV-01 sticks and (2) an uncontrollable 
increase in the flow rate of stream 3.  

Fig. 7.  A level-control system. 

Fig. 8. The SDG model of level-control system. 

The diagnoser for these two fault origins can be found in 
Figure 9. Notice that this automaton is presented in two parts 
for clarity. States 0  and 0′  are used to represent the 
combined states of the normal condition and the system 
conditions reached immediately after the occurrence of fault 
origin in scenario 1 and scenario 2 respectively. These two 
states, i.e., 0  and 0′ , should be lumped into a single one in 
the actual diagnoser.  

Part 1

Part 2

Fig. 9.  The diagnoser used  for level-control system 
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To verify the effectiveness of the proposed fault diagnosis 
approach, extensive numerical simulation studies have been 
carried out in this work. The on-line measurement data of all 
fault propagation scenarios were generated with SIMULINK. 
These data were then used in Sugeno's inference procedure 
with the fuzzy-logic module of MATLAB toolbox. As an 
example, let us first examine the occurrence index of the 
event ( )3 10m +  in scenario 2. It can be observed from 
Figure 10(A) that the diagnosis is clearly swift and quite 
accurate.  Specifically, the existence of fault origin is 
detected almost immediately and fully confirmed at about 
500 second after its introduction. On the other hand, the 
occurrence index of the incorrectly assumed fault origin in 
scenario 2, i.e., ( )3 10m + , is presented in Figure 10(B). 
Notice that the nonzero occurrence index in the period 
between 1000 and 2600 sec can be attributed to the fact that 
the observed event strings caused by the two fault origins 
can be matched partially during the initial stage.  More 
specifically, the set of matched strings is 

{ }5( 1) 6( 1) 7( 1), 5( 1) 7( 1) 6( 1)s s s s s s+ − + + + −
As the on-line symptoms developed further, none of the 
longer strings generated by the first part of automaton in 
Figure 9 can be used to characterize the measurement data 
obtained after 2600 sec and thus the occurrence possibility of 
the second fault origin was rejected with the proposed 
inference mechanisms (Chen and Chang, 2006).. 

Fig. 10.  Diagnosis results of two different scenarios in the 
level control system.  (A) Occurrence index of the second 
fault origin using simulation data obtained by introducing the 
same event; (B) Occurrence index of the second fault origin 
using simulation data obtained by introducing the basic 
events in the first scenario.  

6. CONCLUSIONS 

In this study, a SDG-based reasoning procedure is proposed 
to qualitatively predict all possible symptom patterns and 
also their progression sequences. These intrinsic features of 
symptom evolution patterns are captured with automata and 

language models. The resulting IF-THEN rules can be 
incorporated in a fuzzy inference system and this system can 
be installed on-line to identify not only the locations of fault 
origins but also their magnitude levels with relatively high 
resolution. 
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Abstract: It is clear from worldwide research that micro chemical processes (MCPs) offer a unique 
approach to the spatial and temporal control of chemical reactions.  The well-known advantages of MCPs 
are often counterbalanced by serious faults such as channel blockage and catalyst deterioration.  To 
realize stable long-term operation of MCPs, it is necessary to develop a monitoring system that can detect 
and diagnose these faults.  In this work, a physical model-based process monitoring system for a tubular 
microreactor is developed.  A state space model is derived by using the orthogonal collocation method, 
and the extended Kalman filter is used as an observer.  The optimal sensor locations are determined so 
that unknown parameters such as catalyst effectiveness can be estimated most accurately.  In addition, the 
validity of the conventional observability measures in solving the sensor location problems of MCPs is 
assessed.   

Keywords: Microreactor, Sensor location, Process monitoring, Parameter estimation, Fault diagnosis. 

�

1. INTRODUCTION 

In microspaces, viscous force, surface tension, conduction 
heat transfer, and molecular diffusion become dominant.  In 
addition, the contact time and interfacial area between fluids 
are precisely controlled.  These features achievable in 
microspaces enable us to handle highly exothermic and rapid 
reactions and to produce fine particles with narrow size 
distribution (Hessel et al., 2005).  However, the above 
features are often counterbalanced by serious faults such as 
channel blockage and catalyst deterioration.  To realize stable 
long-term operation of micro chemical processes (MCPs), it 
is necessary to develop a monitoring and control system 
suitable for MCPs.  Such a system is usually based on the 
measurements available from installed sensors.  However, the 
existing miniaturized sensors are too expensive in terms of 
the initial as well as the maintenance costs.  In addition, the 
sensors connected to microreactors in series are not allowed 
to observe the internal states of microreactors, because they 
generate dead volume and affect the flow conditions.  
Therefore, it is important to develop a monitoring system that 
can estimate unmeasured variables and unknown parameters 
from a few indirect on-line measurements and quickly detect 
and diagnose faults.  Thus, our technical imperatives are to 
develop MCPs-oriented sensing devices, to develop a system 
that can estimate the internal states of MCPs, to propose an 
approach for effective fault detection and diagnosis in MCPs, 
etc.  So far, there are only few papers about fault detection 
and diagnosis of MCPs (Kano et al., 2007).  In this work, 
optimal sensor locations for effective fault diagnosis of a 
tubular microreactor (TMR) are investigated.  In addition, the 
validity of the conventional observability measures in solving 
the sensor location problems of the TMR is assessed.  Finally, 

operation policies and control structures for MCPs with an 
external numbering-up structure are investigated.  Two types 
of operation policies, total flow control and pressure drop 
control, are compared from the viewpoint of flow uniformity 
when blockage occurs.   

2. TUBULAR MICROREACTOR (TMR) 

Applications of TMRs can be found in nitration of aromatic 
compounds, radical polymerization reactions, etc. 

2.1  Concept of Fault Detection and Diagnosis 

The following method to detect and diagnose faults in TMRs 
is proposed.  A limited number of temperature sensors are 
embedded in walls of TMRs.  Wall temperatures are used to 
estimate unknown parameters such as catalyst effectiveness.  
At the same time, the optimal sensor location problems have 
to be solved so that unknown parameters can be estimated 
most accurately.  Previous similar researches on conventional 
reactors often neglect heat conduction inside walls when 
constructing their process models.  In case of TMRs, it is 
crucial to rigorously model the wall heat conduction due to 
high volume ratio of walls to channels.  In addition, there are 
two methods to formulate process models: empirical model-
based method and physical model-based method.  In this 
work, the latter method is adopted.   

2.2  Physical Model 

Figure 1 shows a schematic diagram of a TMR.  Premixed 
reactants, A and B, are fed into the inner tube, and a coolant 
is fed into the outer tube.  Each flow is assumed to be plug  
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Fig. 1. Schematic diagram of TMR. 

flow, and the inner wall surface is coated with a catalyst.  On 
the catalyst surface, the following exothermic reactions take 
place:   

A + B � P r1 = k1 CA    (1) 
A + B � Q r2 = k2 CA    (2) 
P + B � R r3 = k3 CP    (3) 

 
P is a desired product, and Q and R are by-products.  The 
temperature-dependent rate constant ki in each reaction is 
presented by Arrhenius form:   

� �exp 1 2 3, , ,ii i Sk A E RT i
 � 
  (4) 

 
Table 1 shows the reaction parameters.  A and P are treated 
as key components, and the TMR can be described by the 
following mass and energy balance equations:    
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where z and r are the axial and radial space coordinates [m], 
and other variables are summarized in Table 2.  Subscripts s, 
f, and w are catalyst surface, fluid, and wall, respectively.  
Catalyst thickness, @H is set to 0.2 mm.   

3 PROCESS MODEL FORMULATION 

TMR’s physical model described in the previous section is 
regarded as a real process.  Fault diagnosis will be based on a 
state space model, which is derived from the distributed 
parameter model (5)-(10). 

3.1  Process Model 

Using the orthogonal collocation method, each state variable 
is approximated by the following:  

 

Table 1.  Reaction parameters. 

Reaction Ai [1/s] Ei [J/mol] �Hi [kJ/mol] 
(1) 86760 71711.7 - 2980 
(2) 37260 71711.7 - 4622 
(3) 149.4 36026.3 - 1664 

 

Table 2.  Model parameters. 

Parameter Value  
Reactant velocity v 1 m/s 
Mass diffusion coefficient D 1 x 10-5 m2/s 
Heat diffusion coefficient kf 0.041 J/m K s 
Heat conductivity of wall kw 16.3 J/m K s 
Density of reactant �f 1.01 kg/m3 
Density of wall �w 8000 kg/m3 
Viscosity of fluid 5 2.92 x 10-5 Pa s 
Heat capacity of reactant Cpf 1090 J/kg K 
Heat capacity of wall Cpw 500 J/kg K 
Reactor length L 1 m 
Channel diameter d 1 mm 
Wall thickness dw 1 mm 
Inlet conc. of species A CA 4 mol/m3 
Inlet conc. of species P CP 0 mol/m3 
Inlet temp. of reactant Tf,in 733 K 
Coolant temp. Tc 733 K 
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where Xi,j (t) and Xi (t) are the value of X (t, z, r) at the axial 
collocation points z1 ~ zn (0 = z1<z2<…<zn = L) and the radial 
collocation points r1 ~ rm (0 = r1<r2<…<rm = d/2), 
respectively.  Li (z) and Lj (r) are Lagrange polynomials.  In 
this study, n and m are set to 30 and 5, respectively, and the 
collocation points are chosen as roots of a Chebyshev 
polynomial.  The above approximation is also applied to the 
states at boundaries.  Equations (5)-(10) are transformed into 
the following:  
 

� �intft uxx ),()( 
�  (13) 
 
where uin denotes the input vector and x the state vector:  
 

� �PA AS PS
T T T T T T T

wSf
T
 C C C C T T Tx . (14) 

3.2  Observer Design 

Nonlinear estimation problems in this research are solved 
with the extended Kalman filter (EKF), which is based upon 
the principle of linearization of the state transition matrix and 
the observation matrix with Taylor series expansions.  Wall 
temperature measurements are used as observed variables.  
To obtain the best estimates, the locations of the available 
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sensors must be selected carefully.  The sensor location 
candidates in the axial direction of TMR are prepared 
according to the collocation points, and the optimal sensor 
locations are selected according to the following performance 
index, 

� �
1

211
N

estreal
k

J k
N 


� A

 �� B

� C
� � �  (15) 

 
where N is the number of iteration steps, �real and �est the real 
and estimated values of parameters.  J means the rate of 
convergence towards real values.  As J becomes larger, the 
estimation performance becomes higher. 

4. SIMULATION RESULTS 

Three different examples of fault diagnosis of TMR are 
presented in this section.  In addition, the conventional 
observability measures are examined for the selection of 
optimal sensor locations in TMR.   

4.1  CASE 1: Catalyst Deterioration 

In CASE 1, an optimal sensor location problem for 
estimation of catalyst effectiveness � is investigated.  It is 
assumed that reaction rate constant k1 includes �: 

� �),(exp),( 111 ztRTEAztk S�
 3  (16) 
 
An initial value of � = 1 is considered, followed by an abrupt 
change from 1 to 0.8 at time t = ts.  After catalyst 
deterioration, � is estimated from one temperature 
measurement by using EKF.  The normal steady state (� = 1) 
is used as the initial state of parameter estimation.  J is 
calculated at every candidate for sensor locations.  As shown 
in Fig. 2 (left), the largest value of J can be found near the 
inlet of TMR.  This result is well illustrated by Fig. 2 (right).  
The solid and dotted curves in Fig. 2 (right) correspond to the 
wall temperature profiles along TMR having � = 1 and 0.8, 
respectively.  The great differences between the solid and 
dotted curves mean the high responses of temperature to a 
parameter change.  This physical interpretation confirms that 
the optimal sensor location is near the inlet of TMR.   

4.2  CASE 2: Channel Blockage 

In CASE 2, a blockage diagnosis problem in TMR is 
investigated.  Specifically, the inlet flow rate is constant, and 
one temperature sensor is used to estimate fluid velocity v.  
An initial value of v = 1 m/s is considered, followed by an 
abrupt change from 1 m/s to 1.2 m/s at time t = ts.  After 
channel blockage, v is estimated by using EKF.  The normal 
steady state (v = 1 m/s) is used as the initial state of 
parameter estimation.  J is plotted as a function of sensor 
position.  The relative large values of J can be found in the 
latter part of TMR, as seen in Fig. 3 (left).  This result is well 
illustrated by Fig. 3 (right).  As well as CASE 1, the large 
differences between both profiles mean the high responses of 
temperature to a fluid velocity change.  All things considered,  
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Fig. 2. Estimation results of CASE 1. 
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Fig. 3. Estimation results of CASE 2. 
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Fig. 4. Results of CASE 3.              Fig. 5. Rank of WO. 
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the optimal sensor location is in the latter part of TMR, which 
differs from CASE 1. 

4.3  CASE 3: Simultaneous Diagnosis of Multi-Faults  

This study is similar to the previous cases, but the two 
unknown parameters, 3�and v, are simultaneously estimated 
by using two temperature sensors.  The simulation conditions 
of the observer are the same as used in the previous cases.  
Figure 4 suggests that one sensor should be located near the 
inlet of TMR and the other in the latter part of TMR to 
realize successful fault diagnosis.   

4.4  Observability Measures  

Over the years, several studies on sensor locations for 
estimation in conventional processes have been reported.  
The representative approaches are to define optimal criteria 
based on the observability Gramian WO.  An overview of 
several criteria is summarized below.  Muller et al. (1972) 
examine the smallest singular value, the determinant, and the 
trace of WO as a measure for sensor location.  Dochain et al. 
(1997) present the condition number of WO, and van den 
Berg et al. (2000) use the trace of WO as a criterion for sensor 
location.  While the above presented WO is suitable only for 
linear systems, one alternative is to use the observability 
covariance matrix WO

cov if systems are nonlinear.  Singh et al. 
(2005) present the trace of WO

cov for sensor location.  The 
aim of this section is to assess the effectiveness of the 
existent sensor location criteria for parameter estimation 
problems in TMR.   

In the above presented TMR, observability analysis is 
performed by determining the rank of WO.  Figure 5 shows 
the rank of WO at every possible sensor location.  Since WO at 
every location is rank deficient, then the system is not 
observable.  In such a situation, the smallest singular value of 
WO is zero.  Accordingly, it is not suitable to use criteria such 
as the smallest singular value, the smallest eigenvalue, the 
determinant, and the condition number of WO.  Therefore, the 
trace of WO

cov is appropriate to the determination of the 
optimal sensor location for parameter estimation.  However, 
for this work, WO

cov is used instead of WO because the 
process is a time-variant system in case of parameter 
estimation problem.  WO

cov can be decomposed into (Singh et 
al., 2005):   

O, nn O, pn
O

O, np O, pp

cov cov

cov cov
cov W W

W W

, )

 * '
* '+ (

W  (17) 

 
where cov

nnO, W  the observability covariance matrix of the 
system, cov

O, ppW  the covariance of the outputs caused by 
changes in the parameters, and cov

O, pnW  and cov
O, pnW  the 

covariance of the outputs resulting from changes in the states 
and parameters.  The optimal sensor location for parameter 
estimation is computed by maximizing the traces of cov

O, ppW .  
The traces of cov

O, ppW  in CASEs 1 and 2 are plotted for possible 
sensor locations in Figs. 6 and 7.  Figs. 6 and 7 are similar to 

Figs. 2 (left) and 3 (left), respectively.  That is, the trace of 
cov

O, ppW  is useful as a criterion for judging where the sensors 
should be located.  On the other hand, the trace and 
determinant of cov

O, ppW  in CASE 3 are plotted in Figs. 8 and 9, 
respectively.  As compared with Fig. 4, it is clarified that the 
determinant of cov

O, ppW  is effective as a criterion of optimal 
sensor locations for estimating multi-parameters.   
 

5. OPERATION POLICY FOR MCPs 

The production capacity of MCPs is usually increased by 
numbering-up, which means the repetition of a microdevice. 
One of the critical operational issues of MCPs with 
numbering-up structure is to keep a uniform flow distribution 
among parallelized microdevices even when blockage occurs 
in one or more microdevice.  Since it is not practical to install 
flow controllers in all the microdevices, a simple and 
effective operation policy against blockage occurrence needs 
to be developed.  In this work, two types of operation policies, 
total flow control and pressure drop control, are compared 
from the viewpoint of flow uniformity when blockage occurs. 

5.1  Total Flow Control and Pressure Drop Control 

To maintain the desired product quality, it is important to 
keep a uniform flow rate in each microdevice of the micro 
chemical plant when blockage occurs, because flow 
maldistribution worsens the performance of the micro 
chemical plant. In this research, pressure drop control is 
proposed to achieve the uniform flow distribution.   

 

 

Fig. 10. Parallelized microdevices under two operation 
policies: (A) total flow control and (B) pressure drop control.   
 

 

Fig. 11. Mass flow rate of each microdevice under blockage 
occurrence: (A) total flow control and (B) pressure drop 
control.   
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A micro chemical plant consisting of four parallelized 
microdevices in Fig. 10 is used to demonstrate the difference 
of two operation policies, total flow control and pressure drop 
control.  When blockage occurs in microdevice 2, the flow 
distribution under the pressure drop control is derived by 
simulation and compared with that under the total flow 
control.  In Fig. 10, reactant is fed to the parallelized 
microdevices at 0.1 m/s in the normal condition.  The 
physical properties of the reactant are assumed to be the same 
as water (293 K).  The results are shown in Fig. 11.  In the 
case of blockage occurrence, mass flow rates of unblocked 
microdevices are significantly increased under the total flow 
control (Fig. 11 left), while they are kept constant at the value 
in a normal condition under pressure drop control (Fig. 11 
right).  These results show that the proposed pressure drop 
control is effective in making flow distribution uniform even 
when blockage occurs.   

5.2  Comparison of Control Structures in Pressure Drop 
Control 

In the previous section, it was confirmed that pressure drop 
control is superior to total flow control in realizing uniform 
flow distribution among unblocked microdevices when 
blockage occurs.  In this section, two different control 
structures based on pressure drop control, pumping pressure 
control and pressure drop control over the parallelized section, 
are investigated.   

5.2.1  Experimental Apparatus  

Micro chemical plants having four or eight parallelized 
microdevices are used to grasp the distinction between two 
control structures.  A schematic drawing of a micro chemical 
plant having four parallelized microdevices is shown in Fig. 
12.  Reactant is fed with a double plunger pump.  The 
product line is open to the atmosphere.  The flow rate of each 
microdevice is measured by using an in-line mass flow meter, 
and blockage in each microdevice is artificially realized by 
closing the valve located between the pump and each 
microdevice.  Each microdevice consists of an SUS tube 
having 0.3 mm inner diameter and 2 m in length.  In addition, 
an SUS tube with 0.5 mm in inner diameter and various 
lengths is installed after the parallelized microdevices to 
represent units that are not necessary to be parallelized.  
Hereafter, this section is referred to as a residence time 
section.  The pressure drops over the parallelized section and 

the residence time section are denoted by �Pa and �Pb, 
respectively.  The ratio of �Pa to �Pb is changed by 
adjusting the length of the residence time section.   

5.2.2  Pumping Pressure Control  

Under pumping pressure control, the double plunger pump is 
operated at constant pumping pressure. In experiments, 
pumping pressure is kept at a gauge pressure of 500 kPa – 1 
MPa.  Pressure drop over the whole micro chemical plant is 
kept constant under pumping pressure control, because the 
product line is open to the atmosphere.   

The influence of blockage on flow distribution under 
pumping pressure control is investigated through both 
simulations and experiments with changing the ratio �Pa/� 
Pb in the range of one-fifth to seven.  The first step in the 
experimental procedure is to adjust the pumping pressure to 
realize a total flow rate of 12 mL/min.  This operating 
condition is regarded as the normal condition.  Then, 
microdevice 1 is artificially blocked by closing the valve.  In 
300 s, the micro chemical plant is returned to the normal 
condition by opening the valve.  These procedures are 
repeated for the other valves to imitate blockage in the other 
microdevices.   

Figure 13 shows the normalized average mass flow rate, 
which is defined as the ratio of average mass flow rate of 
unblocked microdevices under blockage occurrence to that 
under the normal condition at each  �Pa/ �Pb.  There is little 
difference between the results of experiments and those of 
CFD simulations.  The normalized average mass flow rate 
becomes closer to the flow rate under the normal condition as  
�Pa/�Pb becomes larger.  In other words, �Pa should be 
significantly larger than �Pb to keep the flowrate of 
unblocked microdevices unchanged when blockage occurs.  
It is concluded that pumping pressure control is effective to 
realize uniform flow distribution when the pressure drop over 
the parallelized section is dominant.   

5.2.3  Pressure Drop Control Over the Parallelized Section 

The flow uniformity achieved by pumping pressure control 
depends on �Pa/�Pb, which is the ratio of the pressure drop 
over the parallelized section to that over the residence time 
section.  The flow uniformity in the parallelized microdevices 
deteriorates when �Pa/�Pb is small.  In this subsection, 

Plunger pump 
uf-3020SZB2 

Flow rate [mL/min] : 0.1~20.0
Accuracy : 0.3%
Reproducibility: 1% or less
Volume/Stroke [μL] : 308
Setting press. Range [MPa] : 0.1~8.0  

Fig. 12. Micro chemical plant under pumping pressure control. 
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Fig. 13. Influence of blockage on the mass flow rate.   

another pressure drop control structure where �Pa is directly 
controlled by manipulating the flow rate of the bypass line is 
proposed.   

The performance of the proposed control structure is 
evaluated experimentally by using the micro chemical plants 
with four (Type A) and eight (Type B) parallelized 
microdevices.  The plunger pump is operated so that the total 
flow rate is kept constant. The other conditions are the same 
as those in the previous subsection.   

The experimental results for a Type A plant are shown in Fig. 
14.  The top and bottom figures correspond to the case where 
�Pa/�Pb = 50 and �Pa/�Pb = 1, respectively.  In the range 
of 0–300 s, the micro chemical plant is operated under the 
normal condition.  The difference in flow rate between 
microdevices 1 and 2 is due to the degree of precision in the 
fabrication.  When blockage occurs in microdevice 1 at 300 s, 
the flow rate of microdevice 1 goes to zero instantaneously 
and the flow rate of microdevice 2 deviates from its set-point.  
However, the flow rate of microdevice 2 returns to the 
normal level in a few tens of seconds.  Flow rate deviation 
becomes small when blockage occurs gradually.  The 
transient responses of microdevices 3 and 4 are similar to that 
of microdevice 2; they are not shown in Fig. 14 to identify 
the transient response of each microdevice easier.  The top 
and bottom figures in Fig. 14 show almost the same profiles.  
This result shows that the efficiency of the proposed control 
structure does not depend on �Pa/�Pb.   

The experimental result of a Type B plant is almost the same 
as that of the Type A plant.  These results show that the 
proposed control structure has the function of keeping the 
flow rate of the unblocked devices constant regardless of the 
changes in �Pa/�Pb and the number of parallelized 
microdevices.   

6. CONCLUSIONS 

In this study, sensor locations for effective fault diagnosis of 
TMR are investigated.  It is clarified that two different faults 
are accurately diagnosed by using only two wall temperature 
sensors, which are optimally located in the axial direction of 
TMR.  In addition, the optimality criteria for sensor locations 
in TMRs are investigated.  The results obtained from case 
studies demonstrate that the criteria based on observability 
covariance matrix are effective and their maximization allows  

 

Fig. 14. The time series of mass flow rate in each 
microdevice in Type A: (A) �Pa/�Pb = 50, (B) �Pa/�Pb = 1.   

one to determine where the sensors should be located.  
Finally, we have discussed operation policies and control 
structures for micro chemical plants with an external 
numbering-up structure.  Two operation policies, total flow 
control and pressure drop control, were compared.  The 
simulation result shows that the pressure drop control is 
effective to keep a uniform flow distribution among the 
parallelized microdevices even when blockage occurs.  In 
addition, two control structures based on pressure drop 
control, pumping pressure control and pressure drop control 
over the parallelized section, were investigated 
experimentally.  The former control structure is simple.  
However, this structure functions only when the ratio of the 
pressure drop over the parallelized section to that over the 
residence time section, �Pa/�Pb, is large.  On the other hand, 
the latter control structure can make the flow distribution 
uniform for any �Pa/�Pb.   
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Abstract: Conventional Bayesian methods commonly assume that the evidences are
temporally independent. This condition does not hold for most practical engineering
problems. With evidence transition information being considered, the temporal domain
information can be synthesized within the Bayesian framework to improve the diagnosis
performance. A data-driven algorithm is developed to estimate the evidence transition
probabilities. The application in a pilot scale process is presented to demonstrate the data
dependency handling ability of the proposed approach.

Keywords: Performance monitoring, Performance assessment, Bayesian diagnosis, Evidence
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1. INTRODUCTION

Control loop performance assessment and diagnosis has
been an active area of research in the process control
community. A number of control performance methods
are available, including the ones based on minimum vari-
ance control (MVC), linear quadratic Gaussian control
(LQG), historical data trajectories, and user-specified
control, etc (Huang and Shah, 1999; Harris et al., 1999;
Qin, 1998; Jelali, 2006; Schafer and Cinar, 2004; Pat-
wardhan and Shah, 2002). Several surveys on the control
performance assessment research are available (Harris
et al., 1999; Qin, 1998; Hoo et al., 2003; Hugo, 2006;
Jelali, 2006). Besides performance evaluation of control
loops, significant progress has also been made in the
development of monitoring algorithms for process and
instrument components within the control loops, such
as sensor monitor, valve stiction monitor, process model
validation monitor (Qin and Li, 2001; Ahmed et al.,
2009; Choudhury et al., 2008; Mehranbod et al., 2005). A
number of successful industry applications of the process
monitors have been reported. However, many practical
problems remain. One of the outstanding problems is
that the monitoring algorithms are often designed for
one specific problem. An implicit assumption that other
unattended components are in good shape is made.
Clearly this assumption does not always hold, and thus it
may lead to misleading results. It is desirable to develop
approaches that not only monitor the performances of
single components, but also are capable of synthesizing
the information from different monitor outputs to isolate
underlying source of problematic control performance.

� This work is supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Alberta Ingenuity
Fund.

According to Huang (2008), several challenging issues
exist for the process monitor synthesizing problem. The
first one is the similar symptoms among different prob-
lem sources. For instance, oscillations can either be in-
voked by a sticky valve or an improperly tuned con-
troller. Another problem is that no process monitor
has 100% detection rate and 0% false alarm rate, and
thus a probabilistic framework should be built to rep-
resent the uncertainties. Third, a large number of the
developed monitoring algorithms are purely data based
without any a priori process information. Incorporating
a prior process knowledge into the diagnosis framework
is challenging, but better diagnosis performance can be
expected by doing so.

The Bayesian method sheds lights on the problem so-
lutions by providing a probabilistic information synthe-
sizing framework. Applications of the Bayesian methods
have been reported in medical science, image process-
ing, target recognition, pattern matching, information
retrieval, reliability analysis, and engineering diagnosis
(Dey and Stori, 2005; Mehranbod et al., 2005; Steinder
and Sethi, 2004; Chien et al., 2002). It is one of the
most widely applied techniques in probabilistic inferenc-
ing. Built upon previous work in Bayesian fault diag-
nosis by Pernestal (2007) and a framework laid out by
Huang (2008), Qi and Huang (2008) developed a data-
driven Bayesian algorithm for control loop diagnosis
with consideration of missing data. The algorithm is
tested through simulation, where the information syn-
thesizing ability of the proposed approach is demon-
strated. However, the existing Bayesian methods have
not considered temporal dependency problem. In this
paper, a new algorithm is developed with consideration
of temporal dependency, so as to achieve more reliable
and better diagnosis performance.
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The remainder of this paper is organized as follows.
In Section 2, the control loop diagnosis problem and
related preliminaries are described, and the data-driven
Bayesian approach developed in (Qi and Huang, 2008)
is briefly revisited. The rationale to consider evidence
temporal dependency is detailed in Section 3. The esti-
mation algorithm for the evidence transition probability
is developed in Section 4. Section 5 presents application
of the proposed approach to a pilot scale process. Finally
the Section 6 concludes this paper.

2. DATA-DRIVEN BAYESIAN DIAGNOSIS
METHOD REVISIT

2.1 Control Loop Diagnosis Problem

Generally a control loop consists of the following com-
ponents: controller, actuator, process, and sensor. These
components may all suffer from malfunctions. In this
work, monitors are assumed to be available for some
or all of the components of interest. These monitors,
however, are all subject to disturbances and thus can
produce false alarms, and each monitor can be sensitive
to abnormalities of other problem sources. Our target
is to pinpoint the source of problematic control perfor-
mance based on the collected monitor output data.

To adopt the Bayesian method for control loop diagnosis,
several notations need to be introduced (Qi and Huang,
2008).

Mode M Assume that a control loop under diagnosis
consists of P components of interest: C1, C2, · · · , CP ,
among which the problem source may lie in. Each
component is said to have a set of discrete operating
status. For instance, the sensor might be “biased” or
“unbiased”. An assignment of operating status to all the
components of interest in the control loop is called a
mode, and denoted as M ; M can take different values
and a specific value is denoted by m. For example,
m=(C1=well tuned controller, C2=valve with stiction,
· · · ). Suppose that component Ci has qi different status.
Then the total number of possible modes is

Q =
P∏

i=1

qi,

and the set of all possible modes can be denoted as

M = {m1,m2, · · · ,mQ}.

Evidence E The monitor readings, called evidence, are
the input to the diagnostic system, and are denoted as
E = (π1, π2, · · · , πL), where πi is the output of the i-
th monitor, and L is the total number of the monitors.
Often the continuous monitor readings are discretized
according to predefined thresholds. In this work, monitor
readings all take discrete values. For example, the control
performance monitor may indicate “optimal”, “normal”,
or “poor”. A specific value of evidence E is denoted
as e; for example, e=(π1=optimal control performance,
π2=no sensor bias, · · · ). Suppose that the single monitor
output πi has ki different discrete values. Then there are
totally

K =
L∏

i=1

ki

different evidences, and the set of all possible evidence
values can be denoted as

E = {e1, e2, · · · , eK}.
Historical evidence data set D In this paper, process
data refer to the readings from physical instruments such
as temperature, pressure, etc. The evidence data refer to
the readings of monitors which are calculated typically
from a section (window) of process data. Historical
evidence data are retrieved from the past record where
the mode of the control loop, namely, status of the
components of interest in the control loop, is available,
and the monitor readings are also recorded. Each sample
dt at time t in the historical evidence data set D consists
of the evidence Et and the underlying mode M t. This
can be denoted as dt = (Et,M t), and the set of historical
evidence data is denoted as

D = {d1, d2, · · · , dÑ},
where Ñ is the number of historical evidence data sam-
ples. In (Qi and Huang, 2008), all the historical evidence
data samples are assumed to be independent as com-
monly assumed in the data-driven Bayesian approaches.

2.2 Data-driven Bayesian Diagnosis Approach

This section will give a brief review of the data-driven
Bayesian approach proposed by Qi and Huang (2008).
Given current evidence E, historical evidence data set
D, the posterior probability of each possible operating
mode can be calculated according to Bayes’ rule:

p(M |E,D) ∝ p(E|M,D)p(M), (1)
where p(E|M,D) is the likelihood probability; p(M) is
the prior probability of mode M . Among all the possi-
ble modes, generally the one with the largest posterior
probability is taken as the underlying mode based on the
maximum a posterior (MAP) principle, and the abnor-
mality associated with this mode is normally diagnosed
as the problem source.

Since prior probabilities are determined by a priori in-
formation, the main task of building a Bayesian diagnos-
tic system is the estimation of the likelihood probabilities
with historical evidence data D. In (Qi and Huang,
2008), a data-driven Bayesian algorithm for estimation
of the likelihood probability is proposed based on the
work by Pernestal (2007) and Huang (2008).

Suppose that the likelihood of evidence E = ei under
mode M = mj is to be calculated, where

ei ∈ E = {e1, · · · , eL},
and

mj ∈ M = {m1, · · · ,mQ}.
The following result can be obtained for calculating the
likelihood (Pernestal, 2007):

p(E = ei|M = mj ,D) =
ni|mj

+ ai|mj

Nmj +Amj

, (2)

where ni|mj
is the number of historical evidence samples

with the evidence E = ei, and mode M = mj ; ai|mj

is the number of prior samples that is assigned to
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evidence ei under mode mj ; Nmj =
∑

i ni|mj
, and

Amj =
∑

i ai|mj
.

3. DEPENDENCY IN HISTORICAL EVIDENCE
DATA

Note that in the approach described in Section 2, an
assumption is that the current evidence only depends on
current mode, and is independent on the previous sam-
ples. This assumption is true for appropriate designed
monitors, as explained below.

The independency among evidences relies on how the
evidence data are sampled, and how the disturbance
affects the monitor outputs. If the evidence samples are
collected with sufficiently large intervals, or if the dis-
turbance has no or weak correlation among the evidence
samples, the evidences may be considered as indepen-
dent. Generally the first requirement regarding the sam-
pling interval can be easily satisfied by leaving sufficient
gap between consecutive monitor readings. However,
there is no guarantee that the disturbance is uncorre-
lated in practical applications. If disturbance has long-
term autocorrelation and the gap between consecutive
monitor readings is not large enough, then the temporal
independency assumption of monitor readings can not
apply. A simple practical example of long-term autocor-
relation of the disturbance is the ambient temperature
change. Consider that each monitor reading is calculated
based on 1-hour data and there is no overlap in the use
of data. Assume that some of the monitor outputs are
affected by the ambient temperature. Due to the cyclic
change of temperature within 24 hours, the evidence
samples should follow a predictable pattern. Apparently
it is more justifiable to consider the dependency between
those evidence samples than ignoring it in this example.

Besides the practical issues, another limitation with
the conventional Bayesian approach ignoring evidence
dependency is its inability to capture all time domain
information. An illustrative problem is presented in the
following. Suppose that the system under diagnosis has
two modesm1 andm2. One monitor π, with two discrete
outcomes, 0 and 1, is available. A set of 100 samples of
the monitor outputs is shown in Figure 1. The title in
each plot indicates the underlying operating mode under
which the data are collected.

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2
m1

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2
m2

Fig. 1. Monitor outputs of the illustrative problem

The likelihood probability of evidence being 0 or 1 is
calculated according to Equation 2, as summarized in

Table 1. Clearly the likelihood of the evidence being

Table 1. Likelihood estimation of the illustra-
tive problem

e = 0 e = 1

m1 0.46 0.54

m2 0.48 0.52

0 or 1 under the two modes is almost identical. This
may invoke confusion in the diagnosis, which will lead
to higher false diagnosis rate. By looking at the data
plot in Figure 1, one can argue that distinguishing the
two modes should not be such a difficult task. Although
the evidences under m1 and m2 share similar likelihood,
the frequencies of the evidence change apparently differ
far from each other. The limitation with the conven-
tional Bayesian method without considering evidence
dependency is that the temporal information has not
been completely used, leading to less efficient diagnosis
performance. In summary it is desirable to take the
evidence dependency into consideration when building
the diagnostic model.

With the consideration of evidence dependency, the
mode posterior probability is calculated as
p(M t|Et−1, Et,D) ∝ p(Et|M,Et−1,D)p(M). (3)

Comparing the difference between Equation 1 and Equa-
tion 3, the main task of building a Bayesian diagnostic
system boils down to the estimation of the evidence
transition likelihood probability with historical evidence
data D, p(Et|M,Et−1,D).

4. EVIDENCE TRANSITION PROBABILITY
ESTIMATION

The intention of the estimation of evidence transition
probability is to make the estimated likelihood proba-
bilities be consistent with historical evidence data set
D in which the evidence dependency exists. Our goal
is to calculate the likelihood probability of an evidence
Et given current underlying mode M t and previous ev-
idence Et−1 to reflect the dependency with the Markov
property, so every composite evidence sample for evi-
dence transition probability estimation purpose should
include three elements,

dt−1
E = {M t, Et−1, Et}. (4)

Accordingly, the new composite evidence data set DE ,
which is assembled from historical evidence data set D
to estimate transition probability, is defined as

DE = {d1E , · · · , dt−1
E }

= {(M2, E1, E2), · · · , (M t, Et−1, Et)}, (5)
Figure 2 depicts how the original collected historical
evidence data are divided to form composite evidence
samples. In Figure 2, the part highlighted with shadows
or gray and enclosed by the dash-lined or solid-lined
frame is a single composite evidence sample described
by Equation 4.

Suppose that the evidence transition probability from
Et−1 = es to Et = et under mode M t = mk is to be
estimated from the composite evidence data set,

p(Et|Et−1,M t,DE) = p(et|es,mk,DE) (6)
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Fig. 2. Bayesian model considering dependent evidence

where
es, et ∈ E = {e1, · · · , eL}, (7)

and
mk ∈ M = {m1, · · · ,mQ}. (8)

The transition probability p(et|es,mk,DE) can only
be estimated from the composite evidence data subset
DE|mk

where the mode M t = mk,

p(et|es,mk,DE) = p(et|es,mk,DE|mk
,DE|¬mk

)
= p(et|es,mk,DE|mk

), (9)
where DE|¬mk

is the composite evidence data set whose
underlying mode M t is not mk. To simplify notations,
the subscript mk will be omitted when it is clear from
the context.

Define Φs = {φs,1, φs,2, · · · , φs,K} as the likelihood
parameters for all possible evidence transition from
evidence es under modemk, where φs,j = p(ej |es,mk) is
the transition probability from evidence es to ej , and K
is the total number of possible evidences. The likelihood
probability can be computed by marginalization over all
possible evidence transition likelihood parameters,
p(et|es,mk,DE)

=
∫

Ψ1,··· ,ΨK

p(et|Φ1, · · · ,ΦK , es,mk,DE)

· f(Φ1, · · · ,ΦK |es,mk,DE)dΦ1 · · ·ΦK

=
∫

Ψ1,··· ,ΨK

φs,t · f(Φ1, · · · ,ΦK |es,mk,DE)dΦ1 · · ·ΦK ,

(10)
where Ψi is the space of all the likelihood parameters
Φi.

f(Φ1, · · · ,ΦK |es,mk,DE) can be calculated according
to Bayes’ rule,
f(Φ1, · · · ,ΦK |es,mk,DE)

∝ p(DE |es,mk,Φ1, · · · ,ΦK)f(Φ1, · · · ,ΦK |es,mk).
(11)

In Equation 11, the first term, p(DE |ei,mk,Φ1, · · · ,ΦK)
is the composite evidence data likelihood given parame-
ter sets {Φ1, · · · ,ΦK}. It should be noted that likelihood
of composite evidence data DE is solely determined by
the mode and parameter sets {Φ1, · · · ,ΦK}, and thereby
is independent of es given the mode and the likelihood
parameters, i.e.,
p(DE |es,mk,Φ1, · · · ,ΦK) = p(DE |mk,Φ1, · · · ,ΦK)

=
K∏

i=1

K∏
j=1

φ
ñi,j

i,j , (12)

where ñi,j is the number of evidence transition from ei
to ej in the composite evidence data set.

Assume that the priors for different parameter sets Φi

and Φj , for i �= j, are independent (Pernestal, 2007),
f(Φ1, · · · ,ΦK |es,mk) = f(Φ1|es,mk) · · · f(ΦK |es,mk).

(13)
Dirichlet distribution is commonly used to model priors
of the likelihood parameters with parameters bi1, · · · , biK ,

f(Φi|es,mk) =
Γ(
∑K

j=1 bij)∏K
j=1 Γ(bij)

K∏
j=1

φ
bij−1
ij , (14)

where bij can be interpreted as the number of prior
samples for evidence transition from ei to ej. Γ(·) is the
gamma function,

Γ(x) = (x− 1)!, (15)
where x is positive integer.

Substituting Equation 14 and Equation 12 in Equation
11, and then combining it with Equation 10, the follow-
ing result is obtained,

p(et|es,mk,DE) =
ñs,t + bs,t

Ñs +Bs

, (16)

where Ñi =
∑

j ni,j is the total number of historical data
samples with evidence transition from ei under mode
mk, and Bi =

∑
j bi,j is the corresponding total number

of prior samples.

By comparing Equation 2 and Equation 16, we can see
that the evidence transition probabilities are also de-
termined by both prior samples and historical samples,
similar to the evidence likelihood calculation when the
evidences are independent. The difference lies in how
the numbers of prior and historical evidence samples are
counted. In Equation 2 the prior and historical evidence
samples refer to a simple count of the evidence samples
corresponding to a certain mode, while in Equation 16
the prior and historical evidence samples refer to the
count of composite evidence samples corresponding to a
evidence transition under the target mode. Readers are
referred to (Qi and Huang, 2008) for detailed explana-
tion of the likelihood calculation.

5. PILOT SCALE EXPERIMENT

5.1 Process Description

The experiment setup is a water tank with one inlet
flow and two outlet flows. The schematic diagram of the
process is shown in Figure 3. The inlet flow is driven by a

Fig. 3. Pilot scale tank process

pump. Of the two outlet flow valves, one is adjusted by a
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PID controller to provide level control for the tank, and
the other one is a manual bypass valve. It is assumed
that the bypass valve is closed when the system in its
normal operation condition.

Three operating modes are defined, including the normal
functioning (NF ) mode, and two problematic modes
leakage and bias. The problems associated with the two
faulty modes are: the tank leakage problem defined as
leakagemode, implemented by opening the bypass valve
manually, and the sensor bias problem defined as bias
mode, implemented by adding a constant bias to the sen-
sor output. The two problems share similar symptoms in
terms of shifting the steady state operation point of the
process. For instance, when there is a leakage in the tank,
the valve adjusted by the PID controller will decrease to
maintain the water level; when there is a negative sensor
bias, the valve will also decrease. Thus it is not obvious
how to distinguish the two faulty modes without any
advanced information synthesizing approach. To make
things worse, the external disturbance introduced by
changing the pump input will also shift the operation
point. Thus the operation point may also change during
normal operation.

Random binary sequence is introduced into the inlet
pump input to simulate temporal dependent distur-
bances. By defining the high value as 1, and the low
value as 0, the disturbance transitions are designed to
follow the transition probability matrices presented in
Equation 17.

P dis
NF =

( 0 1
0 0.9 0.1
1 0.2 0.8

)
, P dis

leakage =
( 0 1

0 0.1 0.9
1 0.8 0.2

)
,

P dis
bias =

( 0 1
0 0.5 0.5
1 0.5 0.5

)
. (17)

Two process monitors, process model validation monitor
and sensor bias monitor, are designed. Since we mainly
focus on the study of the information retrieving and syn-
thesizing abilities of Bayesian approaches with different
diagnosis strategies, the selected monitor algorithms are
not necessary to have good performances.

The output of process model validation monitor π1 is
given by the squared sum of the nominal model output
residuals, scalded by the magnitude of the process out-
put. Let the simulated output of the nominal model be
ŷt at each sampling instance t, and the real output be
yt. The output of the model validation monitor π1 is
calculated as

π1 =
∑N

t=1(yt − ŷt)2
ȳ

, (18)

where ȳ = 1
N

∑N
t=1 yi is the mean value of the process

output over one monitor reading period, and N is the
length of data segment over the one monitor reading.

The sensor bias monitor output π2 is obtained by exam-
ining the operation point shift. For illustration, consider
the scenario when a negative sensor bias occurs. The
steady state in terms of the sensor output will not
change, since it is controlled by the PID. The steady

state output of the controller, i.e., the valve position,
however, will decrease. The valve position will reverse
in the presence of the positive sensor bias. Thus we
can detect the sensor bias by monitoring the deviation
of the controller output mean value from the nominal
operation point. The output of the sensor bias monitor
π2 is calculated as

π2 =

∣∣∣∣∣u0 − 1
N

N∑
t=1

ut

∣∣∣∣∣ , (19)

where u0 is the nominal operation point of the controller
output, ut is the controller output at each sampling
instance t, and N is the length of process data segment
for a single monitor reading. Note that this monitor will
fail for the transition data, thus only steady state data
are collected and used in this example.

5.2 Diagnosis Settings and Results

Process data are collected for the three predefined
modes. The sampling interval is set to be one second. Ev-
ery 100 seconds of process data are used for calculation
of one monitor reading. Totally 600 monitor readings are
calculated from 16.5 hours of process data samples. The
collected evidence data of the three modes are divided
into two parts for estimation of the likelihood, and for
cross-validation respectively. Table 2 summarizes the
Bayesian diagnosis parameters.

Table 2. Summary of Bayesian diagnosis pa-
rameters

Discretizaion ki = 2, K = 22 = 4

Historical data 120 monitor readings for each mode

Uniformly distributed with prior sample,
Prior samples for single evidence space,

and evidence transition space

Prior probabilities p(NF ) = p(mother) = 1/3

Evaluation data 80 independently generated cross-
validation monitor readings for each mode

With the data-driven Bayesian approaches of two dif-
ferent strategies, namely, considering and ignoring the
evidence dependency, the diagnosis results in Figure 4
are obtained based on the cross-validation data. In the
plot, the gray bars are the numbers of the underlying
modes occurred in the validation data set; the light gray
and dark bars are the numbers of the diagnosed mode
by two diagnostic approaches respectively.
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Fig. 4. Numbers assigned to each mode
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Owing to the dependent external disturbance, the
Bayesian approach ignoring evidence dependency sig-
nificantly overestimates the number of leakage mode
occurrence, and underestimates the number of NF
mode. Therefore, its overall correct diagnosis rate is
only 51.45%, and is much lower in comparison to the
diagnosis rate of the proposed method, which is 73.86%.
Not only can better overall performance be obtained
by the proposed approach, the diagnosis performance
of each single mode, as will be also investigated, is more
favorable.

Figure 5 summarizes the diagnosis results in the form
of average posterior probabilities. The title of each plot
denotes the true underlying mode, and the posterior
probability corresponding to the true underlying mode
is highlighted with light gray bars. The left panel sum-
marizes the diagnosis results calculated by the approach
ignoring evidence dependency; the right panel summa-
rizes the diagnosis results obtained by the approach with
consideration of evidence dependency. It is observed that
for the three modes, the posterior probabilities assigned
to the true underlying modes by the proposed approach
are all higher than these assigned by the method ignoring
dependency. Thus we can conclude that the proposed
approach has better performance for diagnosis of all
modes. This conclusion is confirmed by computing the
correct diagnosis rate for each mode, as presented in
Table 3.
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Fig. 5. Average posterior probability for each mode

Table 3. Correct diagnosis rate for each single
mode

NF leakage bias

Ignore evidence dependency 6.25% 73.75% 70%

Consider evidence dependency 55% 78.75% 92.5%

6. CONCLUSION

In this work, a data-driven approach considering evi-
dence dependency is presented. Temporal dependency
of monitor outputs is taken into consideration to obtain
more accurate diagnosis results. The evidence transition
probabilities are estimated from historical data with the
developed data-driven algorithm. The method is applied
to a pilot scale process, where the performance of the
proposed approach is shown superior to that of the
method ignoring evidence dependency. In summary, the
more information from the time domain is synthesized,
the better diagnosis performance is expected.
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Abstract: This work focuses on data-based fault detection and isolation (FDI) of nonlinear
process systems. Working within the framework of controller-enhanced fault detection and
isolation that we recently introduced, we address and solve an unresolved, practical problem.
We consider the case where only output measurements are available and design appropriate
state estimator-based output feedback controllers to achieve controller-enhanced fault detection
and isolation in the closed-loop system. The necessary conditions for achieving fault detection
and isolation using output feedback control are provided. We use a nonlinear chemical process
example to demonstrate the applicability and effectiveness of the proposed method.

Keywords: Process control, process monitoring, state estimation, fault detection and isolation

1. INTRODUCTION

Advanced automation technology has changed how the
chemical process industry operates in many ways. Over the
last few decades, advancements in plant operations have
led to higher efficiency and improved economics through
better control and monitoring of process systems. These
technological advances have resulted in process systems
becoming increasingly automated, no longer requiring op-
erators to open and close valves in order to manually per-
form process control. In general, there is a trend towards
such“smart” plants that are capable of highly automated
control with decision making at the plant level taking
into account environmental, health, safety and economic
considerations (Christofides et al. (2007)). With increased
amounts of sensors and actuators, it becomes possible to
design systems capable of detecting and handling pro-
cess or control system abnormalities through fault-tolerant
control (FTC) (see for example, Mhaskar et al. (2006,
2007)). This is an important area of research as abnormal
situations cost U.S. industries over $20 billion each year
(Nimmo (1995)). A key element of a successful FTC sys-
tem is a fast, accurate method for detecting faulty process
behavior and isolating its cause. The fault detection and
isolation (FDI) problem is the focus of the present work.

In a previous work (Ohran et al. (2008)), we developed an
FDI method that takes advantage of both model-based and
data-based approaches. This method brought together ele-
ments of model-based controller design and statistical pro-

� Financial support from NSF, CTS-0529295, is gratefully acknowl-
edged.
1 Corresponding author: P.D. Christofides, pdc@seas.ucla.edu

cess monitoring. In this method, the controller is designed
with the FDI scheme in mind in addition to stability and
performance criteria. By enforcing an isolable structure in
the closed-loop system, it becomes possible to perform FDI
based on statistical evaluation of process measurements.
The purpose of the present work is to further develop
the approach proposed in Ohran et al. (2008) by relaxing
the requirement of full state feedback control. Specifically,
we consider the case where only output measurements
are available and design appropriate state estimator-based
output feedback controllers to achieve controller-enhanced
fault detection and isolation in the closed-loop system.
This is demonstrated using a nonlinear chemical process
example to show the applicability and effectiveness of the
proposed method.

2. PRELIMINARIES

2.1 Process system structure

We consider nonlinear process systems with the following
general state-space description:

ẋ = f(x, u, d) (1)
where x ∈ Rn is the vector of process state variables,
u ∈ Rm is the vector of manipulated input variables and
d ∈ Rp is the vector of p possible actuator faults or
disturbances. Vector d is equal to zero when the system
is under normal operating conditions. When fault k, with
k = 1, ..., p occurs, dk can take any time-varying value. The
approach of controller enhanced FDI was introduced in
Ohran et al. (2008) as a method of dividing the state vector
into a number of partially decoupled subvectors. These
subvectors can be monitored using measured process data.
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Based on their responses and the system structure enforced
by the decoupling controller, it is possible to discriminate
between individual faults or groups of faults. In order to
understand the necessary structure to perform isolation,
we review the definitions of the incidence graph, the
reduced incidence graph and the isolability graph (Ohran
et al. (2008)).
Definition 1. The incidence graph of the system of Eq.1
is a directed graph defined by n nodes, one for each state,
xi, i = 1 . . . n, of the system. A directed arc with origin
in node xi and destination in node xj exists if and only if
∂fj

∂xi
�= 0.

The arcs in the incidence graph illustrate dependencies
within the states of the system. A path through more than
one arc that starts and ends at the same node is denoted
as a loop.
Definition 2. The reduced incidence graph of the system
of Eq.1 is the directed graph of N nodes, one for each qi,
i = 1 . . . N , where N is the maximum number of nodes
that satisfy the following conditions:

• Each node qi corresponds to a set of statesXi = {xj}.
These sets of states are a partition of the state vector
of the system, i.e.,⋃

Xi = {x1, . . . xn}, Xi

⋂
Xj = ∅, ∀i �= j.

• A directed arc with origin qi and destination qj exists
if and only if ∂fl

∂xk
�= 0 for some xl ∈ Xi, xk ∈ Xj .

• There are no loops in the graph.

The reduced incidence graph reveals the partially decou-
pled subsystems within the structure of the states in x.
Definition 3. The isolability graph of the system of Eq.1
is a directed graph made of the N nodes of the reduced
incidence graph and p additional nodes, one for each
possible fault dk. In addition, a directed arc with origin
in fault node dk and destination to a state node qj exists
if and only if ∂fl

∂dk
�= 0 for some xl ∈ Xj .

These definitions present the basic dependencies within a
state vector. In most nonlinear process systems, the states
are fully coupled and the isolability graph contains a single
node representing all of the states in the system. However,
in systems with partially decoupled dynamics these figures
demonstrate graphically the subsets of the state vector.

With the isolability graph of a system, we can perform
fault isolation based upon monitoring the subsystems. For
this purpose, it is necessary to review the definition of a
fault signature given below (Ohran et al. (2008)):
Definition 4. The signature of a fault dk of the system of
Eq.1 is a binary vector W k of dimension N , where N is
the number of nodes of the reduced incidence graph of
the system. The ith component of W k, denoted W k

i , is
equal to 1 if there exists a path in the isolability graph
from the node corresponding to fault dk to the node qi
corresponding to the set of states Xi, or 0 otherwise.

2.2 Process monitoring

For the purpose of monitoring whether or not a state has
deviated from its normal behavior, we use statistical pro-
cess monitoring methods. Specifically, we use Hotelling’s

T 2 statistic developed in Hotelling (1947), a well estab-
lished method in statistical process control that moni-
tors multivariate normal (Gaussian) data using a single
statistic. Because of its suitability for continuous, serially
correlated chemical processes, the method of using single
observations is employed (Tracy et al. (1992)). Given a
multivariate state vector x of dimension n, the T 2 statistic
can be computed using the mean x̄ and the estimated
covariance matrix S of process data obtained under nor-
mal operating conditions (see, for example, Kourti and
MacGregor (1996)), as follows:

T 2 = (x− x̄)TS−1(x− x̄). (2)
The upper control limit (UCL) for the T 2 statistic can
be calculated from its distribution, under the assumption
that the data are multivariate normal, according to the
following formula:

T 2
UCL =

(h2 − 1)n
h(h− n) Fα(n, h− n) (3)

where h is the number of historical measurements used in
estimating S, Fα(n, h−n) is the value on the F distribution
with (n, h − n) degrees of freedom for which there is
probability α of a greater or equal value occurring.

In order to perform FDI, the T 2 statistic based on the
full state vector x with upper control limit T 2

UCL is first
used to detect the presence of a fault. Subsequently, the
T 2

i statistic is used to monitor the status of each subset of
the state vector with an upper control limit T 2

UCLi where
i = 1, . . . , N that is based on each of the subvectors and
their states xj ∈ Xi. The fault detection and isolation
procedure then follows the steps given below (Ohran et al.
(2008)):

1. A fault is detected if T 2(t) > T 2
UCL ∀t tf ≤ t ≤ tf+TP

where tf is last time when T 2 crossed the UCL and
TP is the fault detection window chosen. Choosing
TP depends on the process time constants and on
historical information of past process behavior.

2. Fault isolation can be performed by comparing fault
signatures with the process signature W (tf , TP )
which can be built as follows:
T 2

i (t) > T 2
UCLi ∀t tf ≤ t ≤ tf + TP →Wi(tf , TP ) = 1.

T 2
i (t) ≯ T 2

UCLi ∀t tf ≤ t ≤ tf + TP →Wi(tf , TP ) = 0.

A fault dk is isolated at time tf + TP if W (tf , TP ) =
W k. If two or more faults are defined by the same sig-
nature, further isolation between them is not possible
on the basis of the fault signature.

2.3 Controller design for enhanced FDI

Decoupling controller design The approach to fault de-
tection and isolation discussed in the previous section can
be applied if the signatures of the faults in the closed-
loop system are distinct. The uniqueness of a fault de-
pends on the structure of the closed-loop system and the
faults considered. In general, complex nonlinear systems
are fully coupled (i.e., cannot be broken down into partially
decoupled subvectors). However, an isolable structure in
the closed-loop system may still be achieved through the
application of appropriately designed nonlinear control
laws. As an example, consider a controller that can be
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applied to nonlinear systems with the following state space
description:

ẋ1 = f11(x1) + f12(x1, x2) + g1(x1, x2)u+ d1
ẋ2 = f2(x1, x2) + d2

(4)

where x1 ∈ R, x2 ∈ Rn, u ∈ R and g1(x1, x2) �= 0 for
all x1 ∈ R, x2 ∈ Rn. With a nonlinear state feedback
controller of the form:

u(x1, x2) = −f12(x1, x2)− v(x1)
g1(x1, x2)

(5)

the closed-loop system takes the form
ẋ1 = f11(x1) + v(x1) + d1
ẋ2 = f2(x1, x2) + d2

(6)

where v(x1) has to be designed in order to achieve asymp-
totic stability of the origin of the x1 subsystem when
d1 = 0. In this case, the controller of Eq.5 guarantees
asymptotic stability of the closed-loop system, as well as
different signatures for faults d1 and d2. For more detailed
results, see Ohran et al. (2008).

Input/output linearizable nonlinear systems Input/output
linearizable nonlinear systems constitute a special class of
nonlinear systems for which it is possible to systematically
design nonlinear controllers to achieve controller-enhanced
fault detection and isolation. Using a feedback-linearizing
control law that takes the following general form,

u(x) =
1

LgL
r−1
f h(x)

[v(x)− Lr
fh(x)] (7)

where Lr
fh(x) is the r-th order Lie derivative, LgL

r−1
f h(x)

is a mixed Lie derivative and v(x) is an external controller
for the purpose of stabilizing the system, the system
under closed loop operation will have linear input-output
dynamics.

If the state-feedback law given in Eq.7 is applied to
an input/output linearizable system, faults affecting the
system can be isolated into two different groups: those
that affect the output and those that do not affect the
output. The induced structure of the closed-loop system
provides different signatures for the faults depending on
the relative degree of the output with respect to the fault
and the relative degree of the output with respect to the
input. Faults with relative degree higher than the relative
degree of the input will not affect the output. Thus, when
a fault occurs, taking into account whether the trajectory
of the output has deviated from the normal case or not, it
is possible to isolate to which group the fault belongs. For
the definitions of relative degree and an in depth discussion
of feed-back linearization in this context, see Ohran et al.
(2008).

3. CONTROLLER ENHANCED FDI USING OUTPUT
FEEDBACK CONTROL

3.1 State estimation

In order to perform controller enhanced FDI using output
feedback control, any unknown process state variable must
be quickly and accurately estimated from the available
output measurements so that the decoupling state feed-
back controller designs of subsections 2.3.1 and 2.3.2 can
be implemented. The state estimation is performed for

the state vector x (or a subset thereof) with the outputs,
or measured states, defined as y = Cx. In this work, we
consider only outputs of the form yi = xi, i = 1, . . . , q < n.
In other words, C is a matrix with one and only one
non-zero entry in each row and that entry is equal to
unity. This set-up is appropriate in chemical process con-
trol applications where measurements of a few states like
temperature and concentrations of a few species, like key
products, are available, but concentrations of some species
are not measured. This set-up also allows obtaining a
clear picture of the use of output feedback instead of full
state feedback in controller enhanced FDI. The theory for
the state estimator design is based upon a linear system,
but can also be applied to nonlinear systems, using a
local stability analysis around the operating point (origin).
Specifically, the linearized model of the nonlinear system
of Eq.1 takes the following form:

ẋ = Ax+Bu+Wd
y = Cx (8)

where A is the Jacobian matrix of the nonlinear system
at the operating point, u is the manipulated input vector
and d is the fault vector. The matrices B and W can be
computed from the linearization of Eq.1 around the origin.
Under the assumption that (A,C) forms an observable
pair, each state variable x can be estimated by the fol-
lowing dynamic equation:

˙̂x = Ax̂+Bu+ L(y − Cx̂) (9)
where x̂ is the state estimate and L is the estimator gain
that can be chosen so that all the eigenvalues of the matrix
(A − LC) are placed at appropriate locations in the left-
half of the complex plane to guarantee a desirable rate of
convergence of the estimation error to zero. The compu-
tation of L can be done using standard pole placement
techniques or via a Kalman filtering framework by adding
process and measurement noise in the linearized model of
Eq.8. In either case, the linearized state estimation error
equation with d(t) = 0 takes the form:

ė = (A− LC)e. (10)
where e = x − x̂ is the estimation error. While it is
possible to perform state estimation using the full state
vector in the state estimator of Eq.9 when d(t) ≡ 0, it
becomes necessary to use a reduced-order process model
when designing a state estimator-based output feedback
controller to enhance FDI. This need for a reduced-order
model arises due to faults that affect the state estimator
and introduce error into the estimate (i.e., the full state
estimation scheme of Eq.9 works when d(t) = 0, but not
when d(t) �= 0). Specifically, if the error vector d on the
right-hand side of Eq.8 is nonzero, the new equation for the
estimator error becomes ė = (A−LC)e+Wd. Thus, in the
presence of a fault, the state estimates no longer converge
to their actual values, and the isolable structure attained in
the closed-loop system under state feedback control cannot
be maintained. However, it is possible in some process
systems to perform the state estimation task using a subset
of the states that are not directly affected by the expected
faults, i.e., effectively eliminating d in the estimation error
system. The general structure of the model in Eqs.8-10
remains the same for the reduced-order system, but it is
based on a subset of the full state vector, xr ⊂ x. To
mathematically realize this notion, consider a system with
the following structure, where time derivatives of the states
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xr are not functions of d and include all unknown states
to be estimated along with some measured states, and xd

includes the remaining measured states, whose dynamic
equations may be functions of d. Specifically, we consider
the following decomposition of the vectors and matrices of
the linearized system of Eq.8

x =
[
xr

xd

]
, A =

[
Ar Ard

Adr Ad

]
, W =

[
0
Wd

]

B =
[
Br

Bd

]
, C =

[
Cr 0
0 Cd

]
, y =

[
yr
yd

]
.

(11)

Provided that the pair (Ar, Cr) is observable, the state
estimator based on the reduced-order system then takes
the form:

˙̂xr = Arx̂r +Ardxd +Bru+ Lr(yr − Crx̂r) (12)
Eq.12 uses the actual measured values for all of the states
in xd. We can break xr down further into measured states
and unmeasured states, xr = [xT

rm x
T
ru]T . Note that xrm

must include enough measured states independent of d
for the system to be observable. Given the restrictions
on C, this implies that yr = Crxr = xrm and Cd = I
(i.e., yd = xd). Finally, we define a vector with full state
information by combining the measured and estimated
data, x̂ = [xT

rm x̂
T
ru x

T
d ]T . Note that x̂rm is only used

as the driving force for convergence of the state estimator.
With these definitions, the reduced-order state estimator
of Eq.12 is not a direct function of d and the dynamics
of the estimation error, er = xr − x̂r, take the form
ėr = (Ar −LrCr)er which implies that er(t) will converge
to zero even in the presence of a change in d.

Once the estimator gain obtained from the linearized
model of the system is calculated, it can then be used
to estimate the states of the process using the nonlin-
ear model dynamics. Once again, for the nonlinear sys-
tem, the state vector, x, decomposes into the one of the
reduced-order system (independent of d) and the remain-
ing states, i.e., x = [xT

r x
T
d ]T and f([xT

r x
T
d ]T , u, d) =

[fr(xr, xd, u)T fd(xr, xd, u, d)T ]T . The nonlinear dynamic
equations for the reduced-order system are then combined
with the estimator gain and the output error to create a
nonlinear state estimator as follows:

˙̂xr = fr(x̂r, xd, u) + Lr(yr − hr(x̂r)) (13)
where the measured values are used for the states in
xd, i.e., by assumption yd = xd. Note that following
the previous assumption, hr(xr) = Crxr. Combining the
nonlinear state estimator of Eq.13 with a nonlinear state
feedback controller, u = pDC(x), that enforces an isolable
structure in the closed-loop system and can be designed
following the approaches presented in subsections 2.3.1
and 2.3.2, we obtain the following dynamic nonlinear
output feedback controller:

˙̂xr = fr(x̂r, xd, pDC(x̂)) + Lr(yr − Crx̂r)
u = pDC(x̂) (14)

Due to the effect of estimation error, it is not possible
to achieve complete decoupling. However, it is possible
to achieve a near isolable structure that is sufficient for
practical purposes. In this sense, we consider a near
isolable structure to be one where the closed-loop system
under output feedback control can be seen as an O(er)
regular perturbation of the closed-loop system under state

feedback control which is locally exponentially stable and
has an isolable structure. Thus, the estimation error can be
viewed a small perturbation error that will be accounted
for by the FDI thresholds designed to filter out normal
process variation. Theorem 1 below summarizes the main
analysis and controller design result of this section as well
as the closed-loop FDI properties.
Theorem 1. Consider the closed-loop system of Eq.1 under
the nonlinear output feedback controller of Eq.14 and
assume that the pair (Ar, Cr) is observable and Lr is de-
signed such that the matrix (Ar−LrCr) has all of its eigen-
values in the left-half of the complex plane. Then, there
exist δ, ε and Ty such that if f is continuously differentiable
on D = {x ∈ Rn| ‖x‖2 < δ}, the Jacobian of f is bounded
and Lipschitz onD and max{‖x(t0)‖2, ‖x̂r(t0)‖2} < δ then
‖xr(t) − x̂r(t)‖2 < ε, ∀t > t0 + Ty, and a near isolable
structure is enforced in the closed-loop system.

Proof. Under the control law of Eq.14, the closed-loop
system of Eq.1 takes the form,

ẋ = f(x, pDC(x̂), d), y = h(x)
˙̂xr = fr(x̂r, xd, pDC(x̂)) + Lr(yr − hr(x̂r)).

(15)

Linearizing the closed-loop system of Eq15 around the
equilibrium point (origin) yields,

ẋ=Ax+BpDC(x̂), y = Cx (16)
˙̂xr =Arx̂r +Ardxd +BrpDC(x̂) + Lr(yr − Crx̂r).(17)

The error between the actual and estimated states of the
reduced-order, linearized system is then er = xr − x̂r with
the dynamics ėr = (Ar − LrCr)er. Assuming that the
pair (Ar, Cr) is observable and that Lr is chosen such
that the matrix Ar − LrCr has eigenvalues in the left-
half of the complex plane, the estimation error, er, in the
linearized system has exponentially stable dynamics. If
the vector field of the nonlinear system, f(x, pDC(x̂), d),
is continuously differentiable and the Jacobian matrix is
bounded and Lipschitz on D = {x ∈ Rn| ‖x‖2 < δ},
then the nonlinear system dynamics are also locally, ex-
ponentially stable within some region around the equi-
librium point Khalil (1992). For some initial condition
max{‖x0‖2, ‖xr0‖2} < δ, the state estimation error, er,
will be bounded such that ‖xr − x̂r‖ < ε ∀t > t0 + Ty,
where Ty is a time interval of O(ε). Thus, the output
feedback control approaches state feedback control with
error of order ε, i.e., xr = x̂r + O(ε) ∀t > t0 + Ty. For
sufficiently small ε, this leads to a near isolable structure in
the closed-loop system for almost all times since the state
feedback controller pDC(x) enforces an isolable structure
in the closed-loop system.

3.2 Application to a CSTR example

The example considered is a well-mixed CSTR in which a
feed component A is converted to an intermediate species
B and finally to the desired product C, according to the
reaction scheme

A
1� B 2� C.

Both steps are elementary, reversible reactions and are
governed by the following Arrhenius relationships:
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r1 = k10e
−E1
RT CA, r−1 = k−10e

−E−1
RT CB (18)

r2 = k20e
−E2
RT CB , r−2 = k−20e

−E−2
RT CC (19)

where ki0 is the pre-exponential factor and Ei is the
activation energy of the ith reaction where the subscripts
1,−1, 2,−2 refer to the forward and reverse reactions of
steps 1 and 2. R is the gas constant, while CA, CB and
CC are the molar concentrations of species A, B and C,
respectively. The feed to the reactor consists of pure A at
flow rate F , concentration CA0 and temperature T0. The
state variables of the system include the concentrations of
the three main components CA, CB , and CC as well as the
temperature of the reactor, T . Using first principles and
standard modeling assumptions, the following mathemat-
ical model of the process is obtained

ĊA =
F

V
(CA0 − CA)− r1 + r−1 + d1

ĊB = −F
V
CB + r1 − r−1 − r2 + r−2

ĊC = −F
V
CC + r2 − r−2

Ṫ =
F

V
(T0 − T ) +

(−ΔH1)
ρcp

(r1 − r−1)

+
(−ΔH2)
ρcp

(r2 − r−2) + u+ d2

(20)

where V is the reactor volume, ΔH1 and ΔH2 are the
enthalpies of the first and second reactions, respectively, ρ
is the fluid density, cp is the fluid heat capacity, u = Q/ρcp
is the manipulated input, where Q is the heat input to the
system, d1 denotes a disturbance in the inlet concentration
and d2 denotes a fault in the control actuator. The
system of Eq.20 is modeled with sensor measurement
noise and autoregressive process noise. For details on noise
generation and for complete system parameter values,
please refer to Ohran et al. (2008).

In order to obtain the estimated trajectory for CB , a state
estimator as in Eq.13 was implemented using the reduced-
order system x̂r = [ĈB ĈC ]T . The process measurements
for CA and T were used in computing the dynamics of
x̂r. Note that although CC is measured, it is used in the
reduced-order state estimator so that the reduced-order
system is observable. The control input was updated at
each sampling interval with the measured values for CA, T
and CC and the estimated value of ĈB . As discussed
in subsection 3.1, CA and T should not be modeled as
dynamic states in the estimator since they are directly
affected by the faults d1 and d2. Thus, the measured data
for CA and T must be used in modeling the estimator, and
the final form of the state estimator based on the reduced
subsystem x̂r = [ĈB ĈC ]T is as given below:

˙̂
CB = −F

V
ĈB + r1 − r−1 − r2 + r−2 + L1(CC − ĈC)

˙̂
CC = −F

V
ĈC + r2 − r−2 + L2(CC − ĈC)

(21)
with

r1 = k10e
−E1
RT CA, r−1 = k−10e

−E−1
RT ĈB

r2 = k20e
−E2
RT ĈB , r−2 = k−20e

−E−2
RT ĈC

where L is the filter gain obtained using Kalman-filtering
theory based on the reduced-order system.The resulting
value for Lr is [Lr1 Lr2]T = [0.0081 0.0559]T .

The controlled output of the system, for the purpose
of feedback linearization, is defined as the concentration
of the desired product y = h(x) = CC (although, the
measured output vector is ym = [CA T CC ]T .) We consider
only faults d1 and d2, which represent undesired changes
in CA0 (disturbance) and Q (actuator fault), respectively.
In this process, the manipulated input u appears in the
temperature dynamics and the output, y = CC , has
relative degree 2 with respect to u. The fault d1 appears
only in the dynamics of CA and the output, y = CC , has
relative degree 3 with respect to d1. Finally, the output has
relative degree 2 with respect to d2. Based on the relative
degrees of the output with respect to the input and with
respect to the faults, under feedback linearizing control
the system structure will be such that the state vector
can be separated into two subsets: X1 = {CA, ĈB , T} and
X2 = {CC}. Thus, the fault signature for d1 = [1 0]T
and for d2 = [1 1]T . During the simulation, the T 2 for
the full state vector is monitored in order to perform fault
detection (substituting the estimate ĈB for the unknown
state CB .) Each of the subsystems is monitored to compute
the system signature upon detection of a fault. Based
on observation of the system dynamic behavior, a fault
detection window, TP , of 1 min is used.

The control objective is to regulate the system at the
equilibrium point

CAs = 2.06
kmol

m3
, CBs = 1.00

kmol

m3
, CCs = 0.937

kmol

m3
,

Ts = 312.6K, us = 0K/s
(22)

where the subscript s refers to the steady state values of
the variables. It should be noted that the CSTR system
of Eq.20 belongs to the class of systems of Eq.1 with
x = [CA−CAs, T −Ts, CB−CBs, CC −CCs]T where CB

is replaced with ĈB in the definition of x̂. This implies that
we can apply the output feedback scheme presented using
the controlled output y = CC . Using Eq.7, the feedback-
linearizing controller takes the following form:

u =
v − L2

fh(x̂)
LgLfh(x̂)

(23)

with
v = [−2ζ1 − 2ζ2].

where

ζ1 = CC , ζ2 = −F
V
CC + r2 − r−2

r2 = k20e
−E2
RT ĈB , r−2 = k−20e

−E−2
RT CC .

The state variables are in the transformed space and are
shifted so that the origin represents the desired set-point.

The closed-loop system was simulated for each of the two
faults considered. Each simulation was run for a process
time of 1 hour with the fault occurring at t = 40 min.
The values for the faults were each zero prior to the fault
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Fig. 1. Plot of measured state values for the CSTR under
output feedback decoupling control with fault d1.
CB shows both actual (solid) and estimated (dotted)
values.

occurring and took constant values of d1 = 1 kmol/m3min
and d2 = 10 K/min at t = 40 min. The state estimator
was initialized far from the operating point at ĈB(0) =
1.5 kmol/m3 and ĈC(0) = CC(0) = CCs in order to
demonstrate convergence.
Figure 1 shows the trajectories for each of the states in the
simulation with a failure in d1. The fault is apparent at
approximately t = 40 min (0.667hr). We can readily see
from the state trajectories, that the decoupling scheme
was effective as evidenced by the fact that the output,
CC , is unaffected by the fault. Also, we see that the state
estimator converged at around t = 3 min.

For the system with a failure in d1, Figure 2 shows the
Hotelling’s T 2 statistic for the two subvectors X1 and X2

as well as for the full state vector. From the graph, we can
see that a fault is clearly detected at the expected time
t = 40 min as shown in the plot of the T 2 statistic for the
full state vector (T 2

3 ). Although there were a few single
incidents of data breaching the upper control limit, none
of them represented sustained departures for the length
of the fault detection window, TP . Also note that values
above the upper control limit before t = 0.1hr were due to
the state estimator not having converged. Upon detection
of the fault, the system signature can be computed asW =
[1 0]T due to the fact that the T 2 statistic for the subvector
X1 exceeded the upper control limit for a sustained period
and the T 2 for the subvector X2 remained within the
bounds of normal operation. Because the system signature
matches that of the fault signature for d1, a fault in d1
is declared at time t ≈ 41 min. In Figure 3, we see the
simulation results for the same system with a failure in d2.
Again, the failure is evident around t = 40 min. However,
in this case we see that both subsystems are affected.
The process signature obtained from the T 2 statistics in
Figure 3 shows that both subvectors were affected and this
process signature matches the fault signature of d2.
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Abstract: This paper describes the main problems associated to the management of hydrogen networks 
in petrol refineries and presents an approach to deal with them with the aim of operating the installation 
in the most profitable way. In particular, the problems of data reconciliation, economic optimization and 
interaction with the underlying basic control structure are reviewed. The paper provides also a proposal 
for the implementation of the system and illustrates the approach with results obtained using real data 
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�
1. INTRODUCTION 

Hydrogen has become one of the main products in petrol 
refineries due to several factors, among them the new 
legislation about the reduction in the polluting compounds 
content (sulphur, nitrogen, aromatics, etc.), the need to 
convert heavy into light products to improve the economic 
balance of the refineries, and the installation of platformer 
plants,  with the purpose of increasing the octane degree of 
the gasoline, as an alternative path to the use of lead 
compounds, operations that involve the use of  large amounts 
of hydrogen.

As a result, hydrogen management plays a key role in the 
production of the different commercial oil fractions. Three 
different types of units are involved in a typical plant: 
dedicated hydrogen production units, hydrogen consuming 
units, and production units where hydrogen is the by-product 
of another process. All these kinds of units are interconnected 
through a hydrogen pipeline network. 

Hydrogen is quite often produced on site from hydrocarbons 
in reformer ovens Control of these units, its temperature in 
particular, is not easy and MPC is frequently used to direct its 
operation. Demands of H2 from the consumers change from 
time to time and constitute at the same time, a disturbance to 
reject with respect to the H2 purity and a target to follow with 
regards to the mass flow. Adaptation to these demands plays 
an important role in order to operate with minimum losses 
while satisfying the orders from other units. The hydrogen 
production is fed at a given pressure and purity to the 
hydrogen pipeline network for distribution. 

Most of the consumer plants have as a goal the 
desulphurization of different oil fractions and are named with 
the acronym HDS. They receive a mixture of hydrocarbons 
which react with H2 at the appropriate temperatures and with 

the adequate catalysers in the HDS reactors. In order to 
secure the life of the catalysers, a given excess ratio hydrogen 
/ hydrocarbons must be kept on the reactors. The surplus 
hydrogen from the reactors is separated and partially 
recycled, the excess being sent to the fuel-gas network. In the 
recovery of H2, flash units can be employed as well as special 
membranes, which are used to separate high-purity H2 from 
other gases. 

The operation of the HDS is quite complex and its is affected 
by different disturbances, in particular the supply of 
hydrocarbons that may change in quantity as well as in 
composition according to the type of crude being processed 
and the global production aims. Important operating 
constraints are linked to the hydrogen / hydrocarbon ratio and 
to the operation of the compressors that maintain the 
hydrogen flows and inject it from the H2 distribution 
network. This one should be able to provide the required 
amounts requested by the changing operation of the HDS 
along time. 

There are a final set of plants, mainly platformers, which 
increase the octane index of the gasoline (catalytic reforming 
process) and generate hydrogen as result of these reactions. 
These plants generate a positive net flow of low purity 
hydrogen (between 75 % and 85 %) as a by-product, which is 
incorporated to the hydrogen pipeline network for use in 
other plants. Being a secondary product, there is no direct 
control of the H2 production, so that it can be considered as a 
disturbance in flow and purity from the point of view of the 
network conditions.  

All these types of plants are interconnected by several 
kilometres diverse pipes forming a distribution network with 
different purities, capacities and operating at several 
pressures. Fig. 1 displays the structure of one of such 
networks with three main hydrogen collectors, high purity 
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manifold (C-H4), medium purity manifold (C-H3) and low 
purity manifold (C-BP). The boxes represent the different 
types of production (H3 and H4), consumer and net 
production units (P1 and P2). Production and net production 
units dump hydrogen to the collectors (C-H4, C-H3, C-P1N1 
and C-P2N2), while the HDS are fed from the different 
sources according to the choice of the operators. 

In the picture we can see also the outputs from the plants to 
fuel-gas network, where the excess hydrogen is sent to be 
consumed in furnaces. Part of this flow also comes from the 
pressure controllers of the collectors (i.e. from manifold C-
BP on the left). In order to guarantee that enough hydrogen is 
available to the consumer units when need it, a surplus of it 
must be maintained in the collectors, the excess being 
released by the pressure controllers to the fuel-gas network. 

Hydrogen networks have received attention in the literature 
from the point of view of its (re)design, but very few from the 
one of real-time operation and, as far as we know, no 
commercial software is available in the sector for this 
purpose. The most used method of analysis is the so-called 
hydrogen pinch to evaluate the scope for hydrogen savings, 
Alves (1999). On the other hand, Hallale and Liu (2001) 
developed an improved methodology for hydrogen network 
retrofit that considers pressure constraints as well as the 
existing compressors. 

To improve the day-to-day operation of the whole hydrogen 
supply network, this paper presents an integrated 
optimization based framework to optimize the distribution of 
the available hydrogen from producers to consumer facilities, 
so as to take advantage of low purity hydrogen supplies by 
combining streams of different purity levels and flows and, at 
the same time, ensuring operational restrictions. This work is 
carried out within an industrial project in close collaboration 
with Petronor, an oil refining company belonging to the 
Repsol-YPF Group, Spain. The major aim of the project is to 
provide an effective and integrated decision support system 
for on-line, open-loop optimization and data reconciliation. 
The proposed optimization tool has been validated with real-
world data provided by the Petronor refinery.  

The paper is organized as follows: after the introduction, the
main problems of the hydrogen network operation and a 
proposal for a decision support system (DSS) are described in 
section two. The formulation of the hydrogen network model 
is given in section three, then, data reconciliation and 
hydrogen optimal management problems are described in 
sections four and five respectively while results obtained 
using plant data are presented in section 6. The paper ends 
with some conclusions and a short bibliography. 

Fig. 1. A typical hydrogen network of a petrol refinery. 

2. THE HYDROGEN NETWORK 

2.1 Operational problems  

Being a product heavily used and expensive to produce, 
optimizing the use of hydrogen is a clear target in any 
refinery. The problem can be formulated as of balancing the 
hydrogen that is being produced and consumed in the refinery 
and distribute it through the existing pipeline network in such 
a way that an economic target is optimized, while satisfying a 
set of operational constraints. Many aims appear as possible 
targets for the problem. For instance, minimizing the 
production of H2, maximizing the use of lower cost hydrogen, 

minimizing the flow of H2 to the fuel gas network, 
maximizing the use of low purity H2, etc. the choice of one of 
them or a suitable combination being dependent of the 
particular situation of the refinery. 

Several problems are related to the hydrogen management 
and optimization that are worth to mention, among them, the 
lack of reliable information about many streams and 
compositions and the large scale of the system that creates 
additional difficulties. 

Regarding the first one, it is clear that reliable information of 
the network is required if we wish to perform optimal 
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decisions. Part of the uncertainty comes from the 
measurement system, but mainly from unmeasured variables 
and from partial measurements. In particular, gas flows, 
which are the main variables of the process, are measured 
usually in terms of volumetric flows that require 
compensation in order to be converted to mass or normalized 
flows required for the models, based on mass balances. This 
compensation involves pressure, temperature and molecular 
weight of the streams. Nevertheless, the last one are quite 
often non available, partly because of the price and reliability 
of the instruments measuring hydrogen purity and partly 
because the purity of the flows do not reflect directly its 
composition. With other gases this would not be a problem, 
but hydrogen has a molecular weight of only two, so that a 
small change in the composition of the (unmeasured) 
impurities, for instance from methane to propane, can have a 
significant impact on the molecular weight of the stream and 
hence on its mass flow. 

Consequently, improving the information about the hydrogen 
network implies then the need of a data reconciliation system 
able to correct the readings of the process transmitters and 
estimate the unknown variables Cronkwright (2007). 

Regarding the large scale of the system, it imposes 
computational barriers for a global solution of the problem. 
Firstly, because the size of the problem, but also for the wide 
range of time scales involved. The problem is dynamic in 
nature, being one of its aspects the need to adapt the rhythm 
of production of hydrogen to its consumption in order to 
minimize losses to the fuel-gas network. It operates with the 
changes in global production at the time scale of hours-days, 
changes in the operation of the producer and consumer units 
at the time scale of minutes-hours and the fast dynamics of 
the pressures and gas flows in the order of seconds. Trying to 
find solutions involving all these elements at the same time 
would be unrealistic, but the division in time scales allows 
separating the decision problems in different layers, 
facilitating in this way the solution as a set of linked sub-
problems. The separation can be considered also from a 
functional point of view: producer and consumer units can 
perform local optimizations of its functioning provided that 
they have predictions of its future loads, while the optimal 
distribution of these loads must be performed in the network, 
which operates with a much faster dynamics and can be 
considered static in relation to the slower producer and 
consumer units.  

Finally, notice that the implementation of optimally 
computed targets for the units and the distribution network 
will require a control layer that takes into account its 
dynamics and associated constraints. Alternatively, a decision 
support system (DSS) could give recommendations to the 
operators of the control room about these targets, being them 
the ones in charge of the implementation using the existing 
plant controllers.  

2.2 Proposed architecture 

In view of the above mentioned problems, the following 
supervisory architecture, depicted in Fig. 2, is proposed. It 

consists of four stages: the first one, corresponding to data 
reconciliation, allows fitting periodically the network and 
units models to the state of the plant. The second stage uses 
simplified models of the consumer units to compute the 
future profile of the hydrogen consumption at the unit 
hydrogen entrance, required to treat the future loads. This 
profile can be locally optimized or taken as the one 
corresponding to the current operating policy. The third stage 
considers the whole distribution network and, using a model 
of it, computes the optimal production profile of each 
production unit as well as the optimal distribution that 
satisfies the consumer units needs. Notice that, formulated in 
this way this problem can be considered as a series of 
constraint programming problems. Finally, the last stage is 
performed either by local MPC controllers (model predictive 
controllers) that implement the required distribution of flows, 
or as a DSS that gives the recommendations to the operators. 

Fig. 2. A schematic of the proposed control and optimization 
system, with only one producer and one consumer unit. 

In this paper, the reconciliation and optimization problems 
corresponding to the third stage are described assuming 
constant demands from the consumer units. 

3. THE NLP MATHEMATICAL MODEL 

All nodes in the complete hydrogen network are modelled by 
mass balances in terms of purity, flow and molecular weight 
for every stream, considering also a mixture of ideal gases.  
For example, a node consisting in one input stream F1 and 
two output streams F2 and F3 with hydrogen purities X1, X2
and X3 and molecular weights MW1, MW2 and MW3
respectively is described by, 
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On the other hand, the molecular weight of every stream is 
calculated from the hydrogen purity X, hydrogen molecular 
weight and molecular weights of all impurities
according to: 
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Volumetric flows Fi (Nm3/h) in (1) are measured at standard 
temperature (0ºC) and pressure (1 Atm) conditions and 
purities are measured in percentage of volume. 

In the particular industrial case considered, the nonlinear 
model consists of 142 equations like (1) and (2) and 263 
variables, 137 of them are flows, 42 are purities, 42 are 
molecular weights of the streams and 42 are molecular 
weights of impurities of every stream. From a mathematical 
point of view it is necessary to define 121 boundary variables  
and the remaining 142 are considered explicit variables. On 
the other hand, there are 138 measured data from the process, 
so, 121 are assigned to boundary variables and the remaining 
17 are redundant (explicit variables but with a measured data 
available).

4. DATA RECONCILIATION PROBLEM  

The data reconciliation problem can be formulated as to 
compute the decision variables Fi,dec, Xi,dec and imp

deciMW ,

(flows,  purities and molecular weights of impurities that 
minimize the function J (3) given by the sum of the squares 
of the deviations between the (compensated) measured data 
( ) and the calculated variables 

( ), while satisfying the nonlinear 
model (4),  and the ranges on the explicit and decision 
variables (5), (6). 
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The stationary model of the hydrogen network is represented 
by (4), where explicit variables , , ,

, and  are calculated solving the model 
g(�) with values of the boundary variables F

expiF , expiX , exp,iMW
imp
expiMW ,

red
expiF ,

red
expiX ,

i,dec, Xi,dec and 
 respectively. imp

deciMW ,

The lower and upper limits of the decision variables 
associated to flows and purities come from the range of their 
corresponding instruments. But the limits for molecular 
weights of impurities are obtained through historical data of 
laboratory analysis in the associated streams, because there 
are not measured online. Finally, all terms in the cost 
function (3) have been normalized by means of the variance 
( ) of data measured and can also be weighted by w2

i� i (from 
0 to 1) which indicates the level of importance of the 
corresponding instrument. The problem is a NLP (nonlinear 
programming) one that consists of 121 decision variables, 
142 nonlinear equations (network model), 148 nonlinear 
constraints (74 lower limits and 74 upper limits of explicit 
variables) and 121 linear inequalities (lower and upper limits 
of decision variables). 

There is another issue associated to flow measurements 
which must be taken into account: Most flowmeters in the 
refinery are orifice plates and they provide volumetric flows 
at standard conditions considering a specific pressure, 
temperature and molecular weight of design. However, these 
values change during the operation, being necessary 
compensate the corresponding measured flow. The 
compensated flow is given by,     

icompensateimediimedicompensatei FcFFFcFF /,,,, 
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  (7) 

where Fi,med is the measured flow and Fci is the factor of 
compensation defined for each orifice plate, 
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Pi,dis, Ti,dis and MWi,dis are the design values for pressure, 
temperature and molecular weight of the stream (in kg/cm2,
ºC and g/mol respectively) and “op” are the operating values. 
Then, pressures and temperatures are also measured data 
from the process, and the molecular weight of every stream is 
a variable of the model, which is calculated through the 
model (4) or equation (2) in the small example.  

So, the compensation factor Fci is a function of the hydrogen 
purity and molecular weight of each stream and indirectly a 
function of molecular weight of impurities for every stream 
and has been included in cost function (3). In this way, the 
reconciliation of mass and volume is made simultaneously in 
a rigorous manner.  
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5. OPTIMAL MANAGEMENT PROBLEM 

According to the policy depicted in Fig.2, the main goal in 
this step is to distribute the hydrogen in the network and 
recirculate most of the excess of hydrogen from consumer 
units into the low purity manifold (C-BP), minimizing the 
hydrogen production from units H3 and H4 and all flows to 
the fuel gas manifold, while satisfying predefined 
hydrocarbon production targets, actual topological 
restrictions (10) as well as the exact demand in flow and 
purity of the hydrogen makeup flowing from the different 
sources to each consumer unit. The cost function Jc is shown 
bellow and the 11 flows to be minimized are shown in Table 
2.

�





11

1
},{ ,,

min
i

iiPuF
FwJc

decideci

 (9) 

Subject to: 

2,...,1),(

24,...,1),(

15,...,1),(

33,...,1),(

,,,

,,,

,,,

,,,

















iXFgX

iXFgX
iXFgF

iXFgF

deckdecj
red
expi

deckdecjexpi

deckdecj
red
expi

deckdecjexpi

 (10) 

2,...,1

24,...,1

15,...,1

33,...,1

max,,min,

max.,min,

max,,min,

,,min,


��


��


��


��

iXXX

iXXX
iFFF

iFFF

red
i

red
expi

red
i

iexpii

red
i

red
expi

red
i

maxiexpii

 (11) 

16,...,1
89,...,1

max,,min,

max,,min,


��


��

iXXX
iFFF

idecii

idecii  (12) 

This problem assumes that the dynamics of the network is 
faster than the one of the production and consumer ones, 
distributing in a better way the hydrogen available in the 
refinery. This is possible because in several units the excess 
hydrogen in the reactions can be sent to fuel gas manifold or 
recirculated to the low purity manifold (C-BP). Moreover, 
medium purity manifold (C-H3), low purity manifold (C-
BP), manifold from unit N1 to G1 (C-N1G1) and manifold 
from unit N2 to G2 (C-N2G2) can send hydrogen to fuel gas 
if there is an overpressure, that is, if the hydrogen in these 
manifolds is not consumed/used in other units. Table 1. lists 
the decision variables of the problem: hydrogen production 
flow in units H4 and H3 (H4.F and H3.F) and all flows to 
fuel gas manifold which we want to minimize. 

Notice that the model of the hydrogen network represented in 
(10), and used to solve the optimal management problem 
only includes flows and purities. The molecular weight of 
every stream, and the molecular weight of impurities are 
considered constant because all flows measured come from 
the solution of reconciliation problem previously solved. 
Equations (11) and (12) are the lower and upper limits of all 
flows and purities. In many cases these upper and lower 
limits are equal, forcing to maintain the exact flow and purity 

of hydrogen makeup in each consumer unit and forcing to 
maintain the exact excess of hydrogen and its purity from 
units as the current ones, letting unmodified in this way the 
internal operation of the HDS. For example, in unit G2 the 
decision variables are the inflow from manifold C-H4 (C-
H4_G2.F), the inflow from manifold C-H3 (C-H3_G2.F) and 
the inflow from manifold C-N2G2 (C-N2G2_G2.F), 
imposing the constraints on the total inflow and purity to the 
unit. Others decision variables are the outflow from G2 to 
fuel gas (G2_FG.F) and from G2 to low purity manifold 
(G2_C-BP.F) being their sum fixed by the operation of the 
unit.  

6. RESULTS AND DISCUSSION 

The approach presented before has been tested with sets of 
real operation data of the refinery. Here we present some of 
them in a certain normalized scale. They corresponds to the 
average of two hours of operation and the corresponding 
standard deviation of the measured variables in this period. 
First, the data reconciliation methodology has been applied 
and then, the optimal management problem has been solved 
with all data reconciled.  In both cases, the CPU time 
necessary to solve the optimization problem is lower than 3 
minutes in a Intel Corel Duo with 2.13 GHz. Notice that all 
flows presented here have been scaled between 0 and 100 
Nm3/h and the purities of H2 are in percentage (%). 

6.1 Data reconciliation 

The optimization problem (3) has been solved with a set of 
weights wi equal to 1 for all terms in cost function (3), that is, 
we suppose that all measured data has the same accuracy. 
Fig. 3 shows the standard deviation times between the 
reconciled data (the solution) and measured data. Notice that, 
measured flows are not compensated but the solution flows 
are compensated in pressure, temperature and molecular 
weight, so, to compare both quantities the flows have been 
de-compensated. The solution of NLP problem provide a 
coherent close balance of hydrogen in all hydrogen network, 
108 reconciled measures have a difference lower than 4 
sigmas. These differences can be due to a bad flowmeter 
calibration or other causes. In order to eliminate its effect, the 
data reconciliation is repeated, this time with a weight wi
equal to zero in the potentially faulty variables, and the new 
reconciled data are used in the following step, while an order 
is given to recalibrate the defective instruments. 
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Fig. 3. Difference between reconciliated and measured data 
in number of standard deviations. 
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6.2 Optimal management of hydrogen network  

The optimization problem (9) has been solved with the set of 
reconciled data obtained before. Results of the optimization 
are given in Table 1 besides their initial values(reconciled 
data): the cost function Jc and individual values of each term 
in this cost function. The cost function has been reduced from 
100 Nm3/h to 81.76 Nm3/h. The optimal solution obtained 
reduces the total flow produced in units H4 and H3, from 
73.22 Nm3/h to 64.10 Nm3/h and decrease the flow sent to 
fuel gas, from 24.98 Nm3/h to 16.76 Nm3/h, that is, the 
results show the possibility to reuse the hydrogen available in 
the refinery in a better way: i) without modifying the 
operation of each consumer unit ii) without increasing the 
production of hydrogen and iii) without increasing the purity 
of hydrogen produced. The minimum and maximum 
production of hydrogen allowed in unit H4 is 27.84 Nm3/h 
and 62.77 Nm3/h respectively and 15.57 Nm3/h and 34.53 
Nm3/h for unit H3. Notice that the flow production of unit H3 
(H3.F) has been reduced to the minimum production allowed, 
15.57 Nm3/h.  

Table 1.  Solution of the hydrogen optimal management 

problem

Flows (Fi) Units Data
reconciled  

Optimal 
solution

H4.F Nm3/h 50.76 48.53
H3.F Nm3/h 22.46 15.57
G1_FG.F Nm3/h 0.00 0.00
G2_FG.F Nm3/h 2.42 10.11
P1_FG.F Nm3/h 2.64 0.00
P2_FG.F Nm3/h 5.75 0.00
C-BP_FG.F Nm3/h 0.26 0.29
C-BP_FG2.F Nm3/h 12.72 6.36
C-N1G1_S1.F Nm3/h 0.08 0.00
C-N2G2_S2.F Nm3/h 1.72 0.89
C-H3_FG.F Nm3/h 1.20 0.00

Sum of all flows (Jc) Nm3/h 100.00 81.76
Economical cost (Je) €/h 100.00 66.50

It is interesting to evaluate the economical cost of this 
solution Je. To do this, we are going to use the economical 
criteria used in the refinery. That is, the economical cost Je is 
the total hydrogen sent to fuel gas manifold times the total 
cost of hydrogen production minus the price of hydrogen as 
fuel,

� 222 eHcombustiblHProductionFGH PriceCostFJe �
 � �  (13) 

On the other hand, the total cost of hydrogen production is 
calculated by means, 

FHFH
FHCostFHCostCost inHHinHH

HProduction .3.4
.3.4 3242

2 �
�


 (14)

where H4.F and H3.F are the flow production in H4 and H3 
respectively, the cost of hydrogen production in unit H4 is 
CostH2inH4 = 77.0€/KNm3, in unit H3 is CostH2inH3 =

88.1€/KNm3 and the price of hydrogen used as combustible 
in the fuel gas manifold is PricecombustibleH2=6.55 €/KNm3.
These are scaled values and they are related to pure hydrogen 
(100 % of purity). Table 1. shows the economical cost before 
hydrogen optimal management Je = 100.00 €/h and for the 
optimal solution Je = 66.5 €/h, so, it is possible a economical 
reduction of 33.5 %. Of course, this solution is not directly 
applicable to the refinery mainly due to the pressure 
constraints in hydrogen network. At present, further research 
is conducted to include the dynamical constraints imposed by 
the lower network control layer on the network optimization.  

6. CONCLUSIONS 

An approach has been presented to optimally manage 
complex hydrogen networks of refinery operations. The data 
reconciliation and optimal hydrogen distribution steps have 
been described with more detail using a NLP based 
optimization.  The proposed method is able to systematically 
reduce utility cost by increasing hydrogen recovery in 
consumer units and reducing production cost in the 
alternative hydrogen suppliers. This paper is mainly focused 
on the treatment of hydrogen mass balances. Future work is 
aiming at extending the model to actual compression costs 
and other operational constraints as well as the use of 
alternative separation units (membranes) to recycle higher-
purity off-gas to consumer units. In particular, including 
membranes in the model, convert it in a hybrid process, 
because membranes are formed by discrete package which 
can be turn on or turn off. Other improvements are related to 
the gross errors detection must be added to the DSS to 
enhance the quality and coherence of the reconciled data as 
well as better detect instrumentation malfunctions in the 
refinery.   
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Abstract: The overall task of a supermarket refrigeration system is to maintain the quality of
the foodstuff. This is done by making use of a refrigeration cycle in which a refrigerant transport
heat from the refrigerated display-cases to the outdoor surroundings. Typically the system
is equipped with a decentralized control system neglecting interactions between subsystems.
Though these interactions are minor they from time to time lead to a synchronization of the
operation of the display-cases which causes an inferior control performance and increased energy
consumption. In this paper we will analyze the synchronization using bifurcation theory and
show that the system has a chaos-like behavior when it is not synchronized. Therefore, it is a
good choice to de-synchronize the system by making the system chaotic. The positive maximal
Lyapunov exponent is usually taken as an indication that the system is chaotic, it is used in
this paper as a measure of performance for the tendency of the system to synchronize.

Keywords: Refrigeration system, Chaotic behavior, Hybrid system, Performance monitoring,
Complex system.

1. INTRODUCTION

A supermarket refrigeration system consists of a central
compressor rack that maintains the required flow of re-
frigerant to the refrigerated display cases located in the
supermarket sales area. Each display case has an inlet
valve for refrigerant that needs to be opened and closed
such that the air temperature in the display case is kept
within tight bounds to ensure a high quality of the goods.
For many years, the control of supermarket refrigeration
systems has been based on distributed control systems,
which are flexible and simple. For example, each display
case used to be equipped with an independent hysteresis
controller that regulates the air temperature in the display
case by manipulating the inlet valve. The major drawback,
however, is that the control loops are vulnerable to self-
inflicted disturbances caused by the interaction between
the distributed control loops. In particular, practice and
simulations show that the distributed hysteresis controllers
have the tendency to synchronize [Larsen (2006)], meaning
that the opening and closing actions of the valves coincide.
Consequently, the compressor periodically has to work
hard to keep up the required flow of refrigerant, which
results in low efficiency, inferior control performance and
a high wear on the compressor. The control problem is
significantly complicated by the fact that many of the
control inputs are restricted to discrete values, such as the

opening/closing of the inlet valves and the stepwise con-
trol of the compressor. Furthermore, the system features
switched dynamics turning the supermarket refrigeration
system into a hybrid system.

The intense focus on limiting energy consumption and the
global environmental awareness calls for energy efficient
solutions. By monitoring the performance of the refrig-
eration system the ”goodness” of the operation can be
measured and early warnings about undesired behaviors
can be given such that the control system can accommo-
date these and continuously optimize the system perfor-
mance. In this paper we will focus on the monitoring of
the synchronization phenomenon. By analyzing the system
behavior using bifurcation and chaos theory [Crawford
(1991), Devaney (2003)] it can be shown that the system
has a chaos-like behavior. Bifurcation and chaos theory
is most commonly applied to the mathematical study
of dynamical systems to investigate dramatic changes in
the qualitative or topological structure of a system. It
can be dated back to 1975 when the first mathematical
definition of ’chaos’ was given [Li and Yorke (1975)]. The
synchronization in the paper can be interpreted as a low
order limit cycle [Wisniewski and Larsen (2008)]. It will
be shown how the system jumps between low order and
high order limit cycles varying the hysteresis bounds of the
temperature controller. If the system converges towards a
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low order limit cycle it can be seen as an indication of a
risk that the system may synchronize. Therefore, it is a
good choice to de-synchronize the system by making the
system chaotic. The positive maximal Lyapunov exponent
is usually taken as an indication that the system is chaotic.
A huge number of references are available on calculation
of the Lyapunov exponents [Müller (1995); Benettin et al.
(1980); Wolf et al. (1985)]. We suggest using the maximal
Lyapunov exponent as a measure of performance for the
tendency of the system to synchronize.

2. SYSTEM DESCRIPTION

The overall task for a supermarket refrigeration system
is to maintain the quality of the stored foodstuff. The
goods are usually stored in open display cases in the sales
area of the supermarket. The working principle of the
supermarket system is a refrigeration cycle which utilizes
a refrigerant to transport heat from the display cases to
the outdoor surroundings.

A simplified supermarket refrigeration circuit is shown
in Fig. 1. The compressors and the display cases are in
the majority of supermarket refrigeration systems con-
nected in parallel. The compressors supply the flow by
compressing the low pressure refrigeration which is drained
from the suction manifold. The refrigerant then passes
through the condenser and into the liquid manifold. Each
display case has an expansion valve which is connected to
the liquid manifold where from the refrigerant then flows
through the expansion valve and into the evaporator of
the display case. In the evaporator the refrigerant absorbs
heat from the stored goods and thereby changes phase.
The vaporized refrigerant flows into the suction manifold,
thus closing the refrigerant cycle. The typical layout of a

Fig. 1. Simplified supermarket refrigeration layout

display case can be seen in Fig. 2. The refrigerant is fed
into the evaporator at the bottom of the display case and
as the air is passed over the surface of the evaporator heat
is absorbed which render a vaporization of the refrigerant.
The resulting air flow creates an air curtain of cold air over
the stored good. The air takes up the heat flow Q̇goods−air

from the stored goods and as a side effect the heat flow
Q̇load from the surroundings. The temperature of the air,
Tair, is measured by a sensor mounted in the inlet air
stream to the evaporator the goods to provide an indirect
measure for the temperature of the goods.

Fig. 2. Cross sectional view of a refrigerated display case.

2.1 Traditional Control

The typical controller structure for a supermarket refriger-
ation system is decentralized. Each of the display cases is
fitted with an air temperature controller and a superheat
controller, which ensures the desired filling of the evapo-
rator. The compressor rack controls the suction pressure
controller and the condenser fans control the condensing
pressure. The only controllers considered in this paper
is the suction pressure controller and the temperature
controllers in the display cases.

The temperature in the display cases is controlled by a
hysteresis controller that opens and closes the expansion
valve, i.e. the valve opens when Tair reaches a predefined
upper temperature limit and stay open until Tair decreases
to the lower temperature limit and the valve closes again.

The suction pressure is controlled by switching compres-
sors in the compressor rack on or off. A dead band around
the reference is introduced to avoid excessive switching of
the compressors. If the pressure exceeds the upper bound
of the dead band one or more compressors are switched on.
If the pressures drops below the lower bound of the dead
band a compressor is switched off. This control strategy
prevents moderate changes in the suction pressure from
initiating compressor switching.

In a common supermarket many of the display cases
will be alike and in addition be working under the same
conditions. Thus, the switching frequency , for each of the
expansion valves for the different display cases, will be
close to each other. The display cases have a tendency
to synchronize because there individual dynamics are
coupled through the suction pressure. Synchronization of
the display cases lead to periodic high and low amount
of vaporized refrigerant flow into the suction manifold.
Hence, large fluctuations in the suction pressure will be a
consequence which then leads to higher switch frequency
of the compressors and therefore excessive wear on the
compressors. The result from synchronizing display cases
can be seen in Fig. 3

3. MODEL OF THE REFRIGERATION SYSTEM

The model for the supermarket refrigeration system is
composed of a number of sub-models which each repre-
sent a component in the refrigeration system. That is,
individual models are made for the display cases, the
suction manifold, the compressor rack, and the condensing
unit. Because the emphasis of the paper is to examine
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Fig. 3. The effect of synchronization

the synchronization phenomenon the modeling will be
concentrated on the display cases and the suction manifold
such that only the dynamics relevant for the control of the
hysteresis control and the compressors are captured. The
dynamic of the compressors are usually much faster than
the dynamics of the rest of the refrigeration system. Thus,
the modeling of the compressors dynamic is neglected.

The mathematical model presented in this section is a
summary of the supermarket refrigeration model devel-
oped in [Larsen et al. (2007)]. The suction pressure Psuc,
comprises the common state for the combined models.
Each display case, i = 1, . . . , N where N is the number
of display cases in the system, is described by four states.
That is, the temperature of the goods Tgoods,i, the air
temperature Tair,i, the temperature of the evaporator wall
Twall,i, and the mass of the refrigerant in the evaporator
Mr,i. The input is the volumetric flow generated by the
compressors V̇comp, and the binary state of the ith inlet
valve δi (closed or opened, δi ∈ {0, 1}). The systems are
affected by the heat load from the surroundings of the
display case Q̇load.

dTgoods,i

dt
= − Q̇goods−air,i(·)
Mgoods,i Cp,goods,i

(1)

dTwall,i

dt
=
Q̇air−wall,i(·)− Q̇e,i(·)
Mwall,iCp,wall,i

(2)

dTair,i
dt

=
Q̇goods−air,i(·) + Q̇load,i(·)− Q̇air−wall,i(·)

MairCp,air,i

(3)

dMr,i

dt
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Mr,max,i −Mr,i

τfill,i
if δi = 1

− Q̇e,i(·)
Δhlg(Psuc)

if δi = 0 and Mr,i ≥ 0

0 if δi = 0 and Mr,i = 0
(4)

dPsuc

dt
=
ṁin−suc(·) + ṁr,const − V̇comp ρsuc(Psuc)

Vsuc ∇ρsuc(Psuc)
(5)

The enthalpy difference across the two-phase region of the
evaporator is denoted by Δhlg, the density of the refrig-
erant is denoted by ρsuc, and ∇ρsuc denotes the pressure
derivative of the refrigerant density. Te is the evaporation
temperature for the refrigerant. The subscripts for the
mass M and the heat capacity Cp denotes the media. The

heat flow is denoted by Q̇ where the subscript indicates the
media between which the thermal energy is exchanged. In
addition, the varies heat flows are defined by the following
functions:

Q̇goods−air,i(Tgoods,i, Tair,i) =
UAgoods−air,i · (Tgoods,i − Tair,i) (6)

Q̇air−wall,i(Tair,i, Twall,i) = UAair−wall,i · (Tair,i − Twall,i)
(7)

Q̇e,i(Mr,i, Twall,i, Psuc) =
UAwall−ref,i(Mr,i) · (Twall,i − Te(Psuc)) (8)

UAwall−ref,i(Mr,i) = UAwall−ref,max,i ·
Mr,i

Mr,max,i

(9)

The overall heat transfer coefficient is denoted by UA and
the subscript denotes the media from which the heat is
transferred. In addition the mass flow rate in the suction
manifold is given by:

ṁin−suc(Mr,i, Twall,i, Psuc) =
N∑

i=1

Q̇e,i(·)
Δhlg(Psuc)

(10)

The functions Δhlg, ρsuc, and Te are refrigerant specific.
Detailed description of these functions are given in [Larsen
et al. (2007)]. In (4) it can be seen that the system
have a hybrid nature due to the the discrete input which
represents the opening and closing of the expansion valves.

3.1 Simplified model

In order to obtain a model that is suitable for analyzing
the synchronization phenomenon the equation system (1)
through (5) are further simplified to a second order affine
switched system.

The simplification of the model is based on the following
assumptions:

• The heat capacity of the goods is large, thus the
temperature of the goods in a display case is constant
and equal Tg0.

• The heat capacity of the air is small.
• The evaporator is instantly filled (emptied) when the

inlet valve is opened (closed).
• The mass flow out of the display case when the valve

is open is constant and equal ṁ0.
• The evaporation temperature Te and the density ρsuc

of the refrigerant in the suction manifold are affine
functions of suction pressure Psuc,

Te = aTPsuc + bT and ρsuc = aρPsuc + bρ

• The gradient ∇ρsuc(Psuc) ≡ ∇ρsuc0(Psuc0) is con-
stant.

• The compressor delivers a constant volume flow
V̇comp.

• The heat load Q̇load on the display cases is constant.

Based on these assumptions the dynamic of the air tem-
perature Tair,i in the ith display case can be formulated as
follows:
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dTair,i
dt

=
Q̇goods−air,i + Q̇load,i − δiQ̇e,max,i(
1 + UAgoods−air,i

UAair−wall,i

)
Mwall,iCpwall,i

with

(11)

Twall,i =Tair,i −
Q̇goods−air,i + Q̇load,i

UAair−wall,i
, (12)

Q̇goods−air,i =UAgoods−air,i(Tg0,i − Tair,i), (13)

Q̇e,max,i =UAwall−ref,max,i(Twall,i − aTPsuc − bT ),
(14)

The suction manifold dynamics is governed by the expres-
sion

dPsuc

dt
=

N∑
i=1

δiṁ0,i + ṁr,const − V̇comp(aρPsuc + bρ)

Vsuc · ∇ρsuc0
.

(15)
Thus, the non-linear hybrid system has been reduced to a
two order (for each display case) affine system with discrete
inputs. For a refrigeration system with two display cases,
the system states of the simplified model are Tair,i(i = 1, 2)
and Psuc. The discrete inputs are δi ∈ {0, 1}, which
indicate if the valves are closed or open. The input δ is
controlled by a hysteresis controller which changes the
value of δ in the following way:

δi(k + 1) =

⎧⎪⎨⎪⎩
1 if Tair,i ≥ Tair,i
0 if Tair,i ≤ Tair,i
δi(k) if Tair,i < Tair,i < Tair,i,

(16)

where k denotes the time index, Tair,i is the upper bound
the air temperature and Tair,i is the lower bound .

4. DYNAMICAL ANALYSIS

In this section, we will analyze dynamics of the simplified
refrigeration model through bifurcation and chaos theory.
The theory is most commonly applied to the mathematical
study of dynamical systems. The aim of the theory is to
investigate dramatic changes in the qualitative or topolog-
ical structure of a system by changing smoothly a system
parameter. For the refrigeration system we will analyze the
system behavior by changing smoothly the lower bound
in one of the display cases. The resulting behavior will be
depicted in a so-called bifurcation diagram, from which the
synchronization phenomenon will be studied, thereafter
a measure will be developed to evaluate the tendency of
synchronization. All simulation results in the section are
based on the following parameter settings:

4.1 Phase plots w.r.t Tair,2

We shall study bifurcation, i.e. the influence of changes of
system parameters on the system behavior at large. There
are two system parameters, i.e. the upper bound and the
lower bound of the temperature in the air temperature
control of the display case. Here, we examine the lower
bound of the second display case Tair,2. This will provide
an example which will help understand how the system
behaves with the varying parameter.

Fig. 4 shows some typical phase plots of the system
states Tair,1 and Tair,2. When the parameter Tair,2 = 0,

Table 1. Parameters for a simplified supermar-
ket refrigeration system

Display cases

UAwall−ref,max 500 J
s·K Tg0 3.0 0C

UAgoods−air 300 J
s·K ṁ0 1.0 kg/s

UAair−wall 500 J
s·K Q̇load 3000 J/s

ṁr,const 0.2 kg
s

Mwall 260 kg

∇ρsuc0 4.6 kg
m3bar

Cp,wall 385 J
kg·K

The same parameters has been used for all disp.
Compressor

V̇comp 0.28 m3

s
Suction manifold

Vsuc 5.00 m3

Air temperature control

Tair,i 0.00 0C Tair,i 5.00 0C

i for the disp.

Coefficients

aT = 16.2072 bT = 41.9095 aρ = 4.6 bρ = 0.4

the limiting behavior of the system switches between the
two points (0, 0) and (5, 5) within an accepted tolerance
(1E − 6 in the paper). Here, we call it as a 2-periodic
limit cycle. The period of a limit cycle is defined by the
sum of a number of switching points on the boundary
∂� = ∂([Tair,1, Tair,1]×[Tair,2, Tair,2]). The phase plot of the
2-periodic limit cycle corresponds to the synchronization
phenomenon mentioned in the above section, where the
two states Tair,1 and Tair,2 agree all the time. When the
parameter Tair,2 increases slightly to the value of 0.15,
a 4-periodic limit cycle appears, which is similar to the
synchronization but with a bigger difference of the two
states; we will call it the quasi-synchronization. When
Tair,2 = 0.2, another topology of 4-periodic limit cycle
appears in the phase plot, which is totally different from
the state agreement in the synchronization. If we continue
increasing Tair,2 to the value of 0.3, we will find that the
system tends to a high-periodic limit cycle with many
switching points in the boundary of ∂�. It looks like
chaos, the common phenomenon in the nonlinear system
[Devaney (2003)]. It is far away from the synchronization.
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Fig. 4. Typical limiting behaviors with the various values
of the parameter Tair,2. (a) 2-periodic limit cycle
(synchronization, Tair,2 = 0), (b) 4-periodic limit
cycle (Tair,2 = 0.15), (c) another 4-periodic limit cycle
(Tair,2 = 0.2), (d) high-periodic limit cycle (Tair,2 =
0.3).
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Synchronization of the display cases leads to large fluctu-
ations in the suction pressure which then result in higher
switch frequency of the compressors. It reduces lifetime of
the compressors and enlarges energy consumption. Fig. 5
shows the comparison of the suction pressures between the
synchronization and the chaos-like situation. We can see
that in the chaos-like situation, the fluctuation range of
the suction pressure decreases occasionally; even for the
part with the same fluctuation amplitude as the synchro-
nization, the pressure jumps so fast that the traditional
PI controller in the compressor can fix it. Therefore, we
conclude that good control performance can be achieved
if the system behaves like chaos.
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Fig. 5. The suction pressure Psuc in the situations of (a)
synchronization and (b) chaos-like (Tair,2 = 0.3).

4.2 Bifurcation diagram w.r.t Tair,2

To show how the system behaves with the smooth change
of the parameter, we usually use the bifurcation diagram.
A bifurcation diagram exhibits the possible long-term
values (equilibria/fixed points or periodic orbits) of a
system as a function of parameters in the system. A
bifurcation occurs when a small smooth change made to
the values of the bifurcation parameter causes a sudden
’qualitative’ or topological change in its behavior. In this
paper, the lower bound of the second display case Tair,2
is considered as the bifurcation parameter. Fig. 6 shows
the limiting behavior of the state Tair,1 with respect to
the parameter Tair,2. The system exhibits very complicated
behaviors. When Tair,2 = 0, the system stabilizes at a 2-
periodic limit cycle with the phase plot shown in Fig. 4a.
As the parameter Tair,2 increases, the 2-periodic limit
cycle becomes unstable, and a stable 4-periodic limit cycle
appears (the phase plot is like Fig. 4b). The limit cycle
retains the similar shape until another stable 4-periodic
limit cycle occurs at Tair,2 = 0.186 (the phase plot is like
Fig. 4c). The shape keeps until Tair,2 = 0.234, a higher
order oscillation, like chaos, is generated (the phase plot
is like Fig. 4d). If the parameter continuously rise, we can
see that the system behavior becomes very complex and
keeps switching between order and chaos-like oscillations.

The bifurcation diagram demonstrates that the simple
refrigeration model is very sensitive to a change in the
parameter Tair,2. If we change the parameter slightly,
we obtain a totally different topology of the behavior.
Therefore, we may ask: is it possible to suppress the
synchronization phenomenon we found in the practice of
the supermarket refrigeration system by adjusting a little

0 0.2 0.4 0.6 0.8 1 1.2
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1

2

3

4

5

Lower bound of Tair,2

T ai
r,1

Fig. 6. Bifurcation diagrams of the system state Tair,1 w.r.t
the parameter Tair,2.

bit value of the bounds Tair or Tair? It is obvious for a
small ’toy’ system with only two display cases that by
changing the bound of the temperature, the system can be
de-synchronized by making it chaotic. However, for a real
plant with many different display cases, it is not obvious
how to select the bounds. Hence, we are seeking a method
to identify whether the bounds are selected such that the
system will synchronize or not. For this purpose we will
use the maximal Lyapunov exponent.

4.3 Description of Lyaponov exponent

The Lyapunov exponent characterizes the averaged rate
of separation of two close trajectories in the phase space
[Oseledec (1968)]. Quantitatively, two trajectories x1(t)
and x2(t) in phase space with initial separation δx(0)
diverge

|δx(t)| ≈ eλt |δx(0)| , (17)
where δx(t) = x1(t)− x2(t), λ is the Lyapunov exponent.
The negative Lyapunov exponent measures the exponen-
tial convergence of trajectories, and the positive measures
the exponential divergence of trajectories.

There are n Lyapunov exponents in the spectrum of an n-
dimensional dynamical system. It is common to just refer
to the largest one, i.e. the maximal Lyapunov exponent
(MLE), which is defined as follows:

λmax = lim
t→∞

1
t

ln
|δx(t)|
|δx(0)| . (18)

The positive MLE is usually taken as an indication that
the system is chaotic. It is used in this paper as a
measure of performance for the tendency of the system
to synchronize, that is, the higher value of the MLE the
lower risk for synchronization.

4.4 Algorithm for computation the MLE

Algorithms for computing the Lyapunov exponents of the
”smooth” dynamical system are well established [Benettin
et al. (1980),Wolf et al. (1985)]. Let us consider the system

ẋ = f(x(t)), (19)
where f ∈ C1 is a continuously differentiable vector
function with the initial condition x(t0) = x(0). The
algorithm is based on the integration of the linearized
equation (20) as follows:

δẋ = J(t)δx, (20)
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where

J(t) =
∂f(x)
∂xT

∣∣∣∣
x=x(t)

(21)

is the Jacobian matrix of f w.r.t the trajectory under
consideration. The MLE λmax is given as the average for
some different initial conditions δx(0) as Eq. (18).

For the ”non-smooth” dynamical system with discontinu-
ities like the refrigeration system in this paper, the above
algorithm cannot be directly applied. One way to calculate
the MLE is to supplement the transition conditions at
the instants of discontinuities into the linearized equations
[Müller (1995)]. This model-based method requires exact
system information and the calculation complexity greatly
increases with the number of the sub-systems. It is not
suitable for the refrigeration system especially with many
display cases in the supermarket. Besides, to apply this
method one needs to know the switching sequence of the
sub-systems in advance. It is also impossible in our case.
We prefer to take the practical view of calculating the MLE
from experimental data. Two well-known papers are [Wolf
et al. (1985), S. Sato and Sawada (1987)]. Basic computing
steps are given in the following:

(1) Based on the N−point time series x1, x2, ..., xN , re-
construct the phase space:
Yi = [xi, xi+τ , ..., xi+(m−1)τ ] ∈ Rn (i = 1, ...,M),

where M = N − (m − 1)τ , τ is the reconstruction
delay, m is the embedding dimension.

(2) Find the nearest neighbor, Yî, by searching for the
point that minimizes the distance to the particular
reference point Yi, that is, di(0) = min

Yî

‖Yi − Yî‖.
After j discrete-time steps, the distance di(0) goes
to di(j).

(3) Estimate the averaged rate of distance separation as
the MLE:

λmax =
1
j ·Δt ·

1
(M − j)

M−j∑
i=1

di(j)
di(0)

,

where Δt is the sampling period of the time series.

5. CONCLUSION

The main focus of this paper was on dynamic analysis of a
simple system with two display cases by using bifurcation
and chaos theory. Interpreting synchronization as a low
periodic limit cycle and by varying the hysteresis bounds
of the temperature controller it was shown that the system
exhibited a complex chaos-like behavior when it was not
synchronized, i.e. it switches between low and high peri-
odic limit cycles. Synchronization of the system has proven
to result in an inferior performance due to the resulting
large pressure variations. It was, however, indicated in this
paper that by de-synchronizing the system (by making
it chaotic) it is possible to significantly reduce the pres-
sure variations and hence improve the performance. The
positive maximal Lyapunov exponent, usually used as the
indication of chaos, was in this paper used as a measure
of performance for the tendency of the system to synchro-
nize. These findings for the small ”toy” system may seem
obvious, however they can easily be scaled to (realistic)
large scale systems, where it is harder to distinguish and
evaluate ”good” and ”bad” behavior.
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Abstract: In this paper we consider a hierarchical approach to solve an optimal control problem
for a hybrid chromatographic batch process. The plant consists of several chromatographic
columns which can be connected in an arbitrary way. The plant configuration can therefore be
considered as a discrete-valued control input. The dynamics of each chromatographic column
is described by two coupled nonlinear partial differential equations. Hence, we have a hybrid
optimisation problem with highly nonlinear dynamics.
To handle complexity, we propose a hierarchical two-level optimisation scheme: first, we solve
a number of continuous optimisation problems that correspond to fixed configurations. In a
subsequent step, on the basis of these solutions, we solve a discrete optimisation problem to
generate the optimal configuration or configuration signal.
Because of the imposed structure, we can of course not expect the overall solution to be optimal.
However, we demonstrate that, by using the plant configuration as an an additional control
input, performance may be considerably improved when compared to the constant configuration
scenario.

Keywords: Hierarchical optimisation, optimal control, hybrid systems, batch chromatography

1. INTRODUCTION

Column chromatography using solid and liquid phases is a
key technique for the isolation and purification of valuable
products, which has found a large number of successful
applications in petrochemical, food and pharmaceutical
industries during the last decades. Chromatographic sepa-
ration processes can be operated in continuous or batch
mode. Continuous separation is usually realised by the
well-known simulated moving bed (SMB) process and its
various modifications. This scheme has been proven to be
very efficient for large-scale separation tasks. A drawback
is, however, that the start-up procedure may take consid-
erable time. Hence, this technology may not be suitable for
the separation for relatively small amounts of mixtures. In
this case, batch chromatography is an attractive alterna-
tive. Currently, a considerable number of chromatographic
separations are operated in batch mode. Therefore the
efficient operation and control of these processes is an
important topic in order to exploit the economic potential
and reduce the production cost.

There are a number of papers devoted to the optimisation
and parameter identification of batch separation processes,
see, e.g., (Dünnebier et al., 2001; Gao and Engell, 2005;
Nagrath et al., 2003; Pia̧tkowski, 2006) for details and
references. These papers study the problem of optimisation
of the process w.r.t. different performance criteria (e.g.,
� Work has been done in the framework of the project “Methods
from Discrete Mathematics for the Synthesis and Control of Chemi-
cal Processes”, DFG-FG 468

productivity, or more specific criteria, like in (Felinger and
Guiochon, 1996, 1998)). These criteria describe the overall
(integral) performance of the system, but they are not very
suitable if there are additional operational restrictions such
as fixed batch volume, separation time and so on. Such re-
strictions naturally appear if the chromatographic system
is a part of a complex chemical plant whose operation must
follow a certain schedule. Moreover, in some applications
the configuration of the plant is an additional degree of
freedom, as the plant consists of a number of chromato-
graphic columns that can be arranged in different ways.
This degree of freedom has not been widely investigated
up to now. An exception is (Ziomek et al., 2006), where
the plant configuration is a design parameter, but constant
over time. Also, additional operational restrictions (e.g.,
fixed batch size etc.) are not considered there.

In this contribution, we aim to develop a general frame-
work to optimal (open loop) control of a chromatographic
batch process. It includes several practically important
problem statements and covers the scenario where the
plant configuration may change during the operation of
the plant. The latter introduces an additional, discrete-
valued, degree of freedom, which makes the overall control
problem an intrinsicly hybrid one. To deal with the inher-
ent complexity of this hybrid problem, we suggest a hier-
archical approach, where a lower control level determines
the continuous inputs and a higher control level solves the
remaining discrete optimisation problem.
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This paper is organised as follows: In Section 2, we define
the plant and a suitable PDE model. In Section 3, we
motivate different optimisation problems for this plant.
Section 4 suggests a hierarchical approach to solve these
problems, and Section 5 presents a numerical example.

2. PLANT DESCRIPTION

2.1 Mathematical model

The system consists of N identical chromatographic
columns, which can be arranged in N� ≤ N parallel lines.
Via valves connected to the columns, their configuration
can be changed within a very short time. The column
configuration can therefore be interpreted as a control
input. The number of columns in the i-th line is denoted
by N i

col(t), with the obvious restriction
∑N�(t)

i=1 N
i
col(t) =

N, ∀t.
Figure 1 shows a configuration with (at time t) N = 5,
N�(t) = 2, N1

col(t) = 3, and N2
col(t) = 2.

El
ue

nt
 (Q

)

Feed A+B (tin j, tcyc)

Feed A+B (tin j, tcyc)

Fig. 1. Example configuration.

The dynamics of a single column is described by two non-
linearly coupled second order PDEs (so called equilibrium-
dispersive model, (Guiochon et al., 2006)):

∂ck(t, x)
∂t

+ F
∂qk(t, x)
∂t

+ u
∂ck(t, x)
∂x

= Dap
∂2ck(t, x)
∂x2

,

k ∈ {A,B},
where ck and qk are the liquid phase and solid phase
concentrations, t, x are the temporal and spatial coordi-
nates, u is the velocity of the liquid phase in the column,
F = (1 − εt)/εt is the phase ratio, and εt is the column
total void fraction. Dap is the apparent axial dispersion
coefficient defined as a function of u: Dap = uf(u)/2,
where f(u) = (αD + βDu) represents the linearised van
Deemter equation, αD and βD are constant coefficients. In
the following, we shall often use the volumetric flowrate
Q = uπD2εt/4 instead of u, where D is the diameter of
the column.

The concentrations of the components in the solid and
liquid phases are related via the isotherm equation. To
describe adsorption, the competitive Langmuir model is
employed:

qk(cA, cB) =
Hkck

1 +KAcA +KBcB
, k ∈ {A,B},

where Hk and Kk are the Henry and the equilibrium
constants. Component A is assumed to be less retained
than component B, therefore, HA < HB.

The initial and boundary conditions are defined in a
standard way: the initial concentration of the components
in the columns is equal to zero. We employ the Danckwerts
boundary conditions for the inlet of the first and the outlet
of the last column in each line:[

uck(t, x) −Dap
∂ck(t, x)
∂x

]
x=0

= uck,in(t)

∂ck(t, x)
∂x

∣∣∣∣
x=L

= 0,

where k ∈ {A,B}, L is the column length. The “inter-
column” boundary conditions reflect the continuity of the
concentrations profiles.

The functioning of a single chromatographic column is
shown schematically in Fig.2. The solution containing a
binary mixture is injected at the inlet of the column during
the time interval tinj . Injections are repeated cyclically,
with the interval between two subsequent injections tcyc

(Fig.2a). The mixture is transported through the column
with velocity u. During transportation, separation occurs
because one of the components (in our example component
A) is less retained than the other one. Fig.2b shows a
snapshot of the concentration profiles within the column
at two time instants: at an “early” time instant, the
separation effect is weak, and the concentration profiles
for the two components are very close (dashed lines).
At a later time instant, the profiles have moved further
apart. Finally, component A is collected from the outlet
during the fractionation interval tfr. Fig.2c shows the
concentration signals cA,out(t) and cB,out(t) at the outlet
of the column. t1 denotes the time instant when the
concentration of the less retained component A exceeds
a given threshold cA,thr and t4 denotes the time when the
concentration cB becomes less than another threshold.

The following entities are used to characterise the sepa-
ration process within each line and during each injection
cycle. For component A, they are:

• The mass output

mA,out =
∫ t2

t1

cA,out(t)Qdt.

• The purity

PurA =

∫ t2
t1
cA,out(t)dt∫ t2

t1
cA,out(t)dt +

∫ t2
t1
cB,out(t)dt

.

• The yield
YA =

mA,out

VinjcA,in
,

where Vinj = Q tinj is the injection volume.
• The productivity

PrA =
mA,out

tcyc
=
VinjcA,inYA

tcyc
. (1)

For component B, they are defined in an analogous way.

There are also a number of technological constraints im-
posed on the system. Some of them are listed below (for
details see Ziomek et al. (2006)). For example, for each line
of columns, we have:

• Two restrictions on the volumetric flowrate. The first
one is caused by the the maximal pressure drop
ΔPmax, namely Q ≤ Qmax(ΔPmax). The maximal
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Fig. 2. a)input signal; b) concentration profiles within the column; c) concentration signals at the outlet.

pressure drop is calculated from the Darcy equation.
Furthermore, there is a restriction on the maximal
capacity of the pump Qp

max. Hence, the resulting
constraint is written as follows (Guiochon et al.,
2006):

Q ≤ min(Qmax(ΔPmax), Qp
max).

• Minimal fractionation time caused by technical limi-
tations: tfr ≥ tfr,min.

2.2 Decision parameters

There are a number of parameters that can be chosen to
optimise the process. We can divide them into two groups:
discrete parameters, which can take values in a finite set,
and continuous parameters, which can take values in a
dense subset of R. The continuous parameters are defined
for each line i ∈ {1, N�}:
(1) The velocity of the liquid phase, ui,
(2) The injection time, tiinj ,
(3) The cycle period, ticyc,
(4) The fractionation time, tifr.

The first parameter enters the PDEs directly whereas the
second and the third one enter the boundary conditions
of the first column within a line. The last parameter is
usually determined to satisfy purity requirements.

The discrete parameters are the number of lines, N�, and
the number of columns in the i-th line, N i

col. These param-
eters describe the configuration of the plant. Furthermore,
for a given configuration, the number of injections N i

inj in
line i is also a degree of freedom. In the following, we shall
consider two cases:

(1) The configuration is constant during the entire oper-
ation of the process.

(2) The configuration changes over time.

In the second case, the sequence

{(N�(j), N1
col(j), . . . , N

N�(j)
col (j), N1

inj(j), . . . , N
N�(j)
inj (j), τ(j))},
j = 0, Ns

can be interpreted as a control signal, with Ns the (a
priori fixed) number of configuration changes, τ(j) the
time interval during which the plant is operated in the
j-th configuration, N�(j) the number of lines for this
configuration, N i

col(j) the number of columns in the i-th

line in the j-th configuration, and N i
inj(j) the number of

injections for the i-th line in the j-th configuration.

In the remainder of this paper, we will use the following
assumptions:

A1 The continuous control parameters for all parallel
lines can be adjusted separately.

A2 The only component we are interested in is compo-
nent A (less retained). In the following, we shall omit
the subscript identifying the component if this is clear
from the context.

A3 The continuous control parameters do not change
within the interval of constant configuration τ(j).

A4 The cycle time is chosen to be equal to the duration
of the chromatogram: ticyc = ti4 − ti1, i ∈ {1, N�}.

A5 The inlet concentrations ck,in, k ∈ {A,B} are as-
sumed to be known and fixed ∀t.

3. OPTIMISATION PROBLEMS

We shall investigate the following overall optimisation
problems:

(1) Yield maximisation for fixed overall time span Tmax:
maximise YΣ
s.t. TΣ ≤ Tmax,

(2)

where overall yield YΣ is defined as

YΣ =

Ns∑
j=0

VΣ(j)YΣ(j)

Ns∑
j=0

VΣ(j)
. (3)

In (3), VΣ(j) and YΣ(j) are the processed volume and
the yield for the j-th configuration:

VΣ(j) =
N�(j)∑
i=1

N i
inj(j)V

i
inj(j),

YΣ(j) =

N�(j)∑
i=1

N i
inj(j)m

i
out(j)

cinVΣ(j)
.

Overall time TΣ is given by TΣ =
Ns∑
j=0

τ(j), where

τ(j) ≥ max
i=1,N�(j)

(N i
inj(j)t

i
cyc(j)).
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(2) Produce required yield Ymin in minimal time:
minimise TΣ

s.t. YΣ ≥ Ymin.
(4)

In both cases, we have additional constraints for overall
batch size (volume): VΣ = Vbatch, and for overall purity:

PurΣ =

Ns∑
j=0

VΣ(j)YΣ(j)

Ns∑
j=0

VΣ(j)YΣ(j)
PurΣ(j)

≥ Purmin,

where

PurΣ(j) =

N�(j)∑
i=1

N i
inj(j)m

i
out(j)

N�(j)∑
i=1

N i
inj(j)

mi
out(j)

Puri(j)

.

Note that mi
out and Puri are the mass output and the

purity in the i-th line for one cycle and depend on the
continuous decision parameters as well as on the number
of columns in line i, N i

col.

4. HIERARCHICAL APPROACH

The optimisation problems posed in Sec.3 are highly com-
plex tasks. In the variable configuration case, there is a
large number of discrete and continuous decision parame-
ters. In each iteration step during the optimisation proce-
dure, 2N� partial differential equations have to be solved.
Moreover, the values of the cost functions cannot be found
analytically and have to be calculated from the results of
numerical simulation. Since information about the deriva-
tives of the cost functions is not available, derivative-free
methods must be used, which substantially reduces the
efficiency of numerical optimisation. Therefore, standard
solvers normally fail to deliver a solution to these opti-
misation problems in reasonable time (if they provide a
solution at all).

Therefore, we propose to use a hierarchical optimisation
scheme to cope with complexity. In this scheme, opti-
misation of discrete and continuous decision variables is
decoupled.

4.1 Low-level (local) optimisation

On the low level, we define a set of continuous optimisation
problems for one line of columns over one cycle period.
The cost function for the low-level problem is productivity
(Eq.1). The set of low-level problems is parametrised by
the number of columns n (n=1, N) in a line and a (finite)
number of purity constraints Pur ≥ pm, m = 1,M :

maximise
(Q, tinj , tfr)

Pr

s.t. Ncol = n,
Pur ≥ pm.

(5)

For each low-level problem, the optimal solution (Q∗, V ∗
inj =

t∗injQ
∗, t∗fr) and the corresponding values (t∗cyc,m

∗
out) need

to be stored and will be used for the solution of a high-level

problem. This information can be conveniently collected in
the following table.

Pur

p1 . . . pM

1 · · ·
... · · ·

Ncol n · · Q∗, V ∗
inj , t∗fr ,

t∗cyc, m∗
out

.

.. · · ·

N · · ·

Table 1. Results of the local optimisation

4.2 High-level optimisation

a) Constant configuration case:

On the high level we maximise overall productivity

PrΣ =

N�∑
i=1

N i
injm

i
out

TΣ
(6)

s.t. PurΣ =

N�∑
i=1

N i
injm

i
out

N�∑
i=1

N i
inj

mi
out

Puri

≥ Purmin (7)

VΣ =
N�∑
i=1

N i
injV

i
inj = Vbatch (8)

and such that
TΣ = max

i=1,N�

(N i
injt

i
cyc), (9)

or such that

YΣ =

N�∑
i=1

N i
injm

i
out

cinVΣ

. (10)

Note that for fixed time TΣ and fixed batch volume VΣ, the
maximisation of overall productivity is equivalent to the
maximisation of overall yield. Conversely, for fixed batch
volume and fixed overall yield, the maximisation of pro-
ductivity is equivalent to the minimisation of the overall
processing time. Therefore, the optimisation problem (6-
8) and (9) or (10) can be seen as a general formulation
encompassing both our original optimisation problems de-
scribed in Sec. 3.

The decision variables for the high-level optimal problem
are N�, N i

inj , i = 1, N�, and pairs (ni,mi) representing
the entry in the ni-th row and mi-th column of Table

1. Naturally, the restriction
N�∑
i=1

ni = N has to hold. As

N i
inj , the number of injections in the i-th line, is always

bounded by the problem setup, the high-level problem has
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a finite search space. Note that to evaluate the overall cost
function, only the values of the decision variables and the
corresponding entries in Tab. 1 are needed. In particular,
no numerical simulations are required. In effect, this means
that we assemble an overall solution from the solutions of
the low-level optimisation problem.

While we cannot expect the resulting solution to be
globally optimal, it seems reasonable that we shall obtain
a decent approximation.

b) Variable configuration case:

In the variable configuration case, the overall cost function
(6) changes to

PrΣ = cin

Ns∑
i=0

VΣ(j)YΣ(j)

Ns∑
i=0

τ(j)
(11)

with the obvious corresponding changes in (7)-(10). The
only difference in terms of the optimisation procedure is
an increase of the cardinality of the search space.

From a practical point of view, the question whether
a significant improvement is possible when allowing a
variable configuration is of prior interest. Our example
in the next section indicates that switching configuration
may indeed improve performance.

5. NUMERICAL EXAMPLE

As an example of the proposed approach we consider a case
with 5 chromatographic columns, N = 5. The numerical
values of parameters and restrictions for a single column
are listed in Appendix A. We investigate the maximisation
of yield within a given time. The required minimal purity
is 95%. Time Tmax is equal to 20000s. Different overall
batch volumes are considered.

5.1 Low-level optimisation

First, we solved a set of low-level optimisation problems
of the form (5). Optimisation was performed for the fol-
lowing values of required purity: pm ∈ {0.9, 0.91, . . . , 0.99}
and for different numbers of columns in the line: Ncol ∈
{1, 2, 3, 4, 5}. The optimal values of the continuous deci-
sion variables (Q∗, V ∗

inj , t
∗
fr), as well as the corresponding

values (t∗cyc,m
∗
out) were stored as a table as indicated in

the previous section.

An improved derivative-free Nelder-Mead method (Nelder
and Mead, 1965; Kelley, 1999) was used to solve these
nonlinear constrained optimisation problems. In the pro-
posed variant, the initial simplex was generated randomly
and a multi-restart strategy was taken to increase the
probability of locating the global optimum. For each sub-
sequent restart, only the vertex with the best solution
found previously was retained and the other vertices were
replaced with new random points. Moreover, the algorithm
was capable of handling the nonlinear constraints by using
the penalty function technique. During the optimisation, a
numerical simulation procedure was used to generate the
outlet concentration signals for given values of decision
variables. From this, we evaluate the objective function

and check the constraints. This information was then used
by the optimiser to find a new direction in the continuous
search space to improve the cost.

The coupled PDE model of the considered process with
Ncol columns connected in series was discretised using the
method of orthogonal collocations on finite elements (Ma
and Guiochon, 1991; Kaczmarski et al., 1997). The result-
ing system of differential algebraic equations was solved by
ode15s, a variable step-size and variable order integrator
implemented in Matlab (Shampine and Reichelt, 1997).
Information about the Jacobian contained in the discre-
tised model equations was fully exploited by the solver,
thereby significantly accelerating the integration.

5.2 High-level optimisation

a) Constant configuration case:

Next, we solved the discrete optimisation problem (2) for
the constant configuration case, as described in Sec.4.2a.
The results of the optimisation procedure are presented in
Tab. 2.

Volume of
the batch,
Vbatch, ml

Optimal
confi-
guration

Optimal puri-
ties, Puri, %

Resulting
producti-
vity Pr,
g/s

Resulting
yield Y

23000 {3 2} 0.94 0.97 5.942 e-4 0.517

25000 {3 2} 0.95 0.95 6.2404 e-4 0.4992

27000 {3 2} 0.96 0.94 6.4118 e-4 0.475

28000 {2 2 1} 0.95 0.96 0.97 6.0756 e-4 0.424

29000 {2 2 1} 0.95 0.95 0.98 6.2808 e-4 0.421

31000 {2 2 1} 0.95 0.96 0.94 6.6047 e-4 0.3901

Table 2. Results of high-level optimisation for
constant configuration scenario

b) Variable configuration case:

It can be seen from Table 2 that the configuration {3
2} ensures high productivity for smaller batch volumes.
For higher volumes, this configuration cannot process the
required volume within the required time. Hence, from
the certain batch volume Vbatch, one has to use another
configuration, for example {2 2 1}. This configuration
ensures higher throughput at the cost of productivity.
Therefore, it is intuitive to consider configuration as a
time-variant degree of freedom, i.e., a control variable. In
this way one expects to combine the advantages of both
configurations.

We considered the case with one possible configuration
change, i.e., Ns = 1. Indeed, our optimisation results show
an increase of performance for the variable configuration
case. The results are shown in Table 3. It is worth noting
that the improvement could be much bigger if there
were bigger differences in the productivity and in the
throughput between the different configurations.
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Volume of
the batch,
Vbatch

Optimal confi-
guration

Time,
τ(j),
j = 0, 1

Volume,
VΣ(j)

Optimal puri-
ties, Puri(j)

Resulting
produc-
tivity,
PrΣ

Resulting
yield, YΣ

Improvement
compared
to constant
configuration
case

28000 {2 2 1} 10600 16100 0.95 0.95 0.96 6.4305 e-4 0.4603 +5.84%
{3 2} 9400 11900 0.95 0.95

29000 {2 2 1} 10800 16675 0.95 0.95 0.96 6.5115 e-4 0.4509 +3.7%
{3 2} 9200 12325 0.96 0.94

Table 3. Results of the high-level optimisation with the change of structure
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Appendix A. LIST OF PARAMETERS

Name Unit Description Value

Physical (geometric) parameters

L cm Column length 25

D cm Column diameter 2

εt - Column total void fraction 0.78

αD - Coefficient of the linearised van
Deemter equation

0.012

βD - Coefficient of the linearised van
Deemter equation

0.156

H1 - Henry constant 5.7

H2 - Henry constant 7.4

K1 ml/g Equilibrium constant 170

K2 ml/g Equilibrium constant 370

Operating parameters

Ci,in,
i=A, B

g/ml Feed concentrations 0.001

Ci,thr g/ml Threshold concentrations 0.001Ci,in

N - Number of columns 5

tmin
fr

s Minimal collecting (fractionating)
time

5

ΔPmax bar Maximal pressure drop 100

Qmax ml/s Volumetric flowrate corresponding to
the maximal pump capacity

8.33
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Abstract: Today, many supermarket refrigeration systems are operated by decentralized control
systems that often lead to excessive starting and stopping of the compressors which drive the
cooling cycle and, consequently, to a large wear of the process equipment. In our previous
work, a hierarchical model-predictive control scheme was proposed for supermarket refrigeration
systems that overcomes this drawback. In this scheme, simple low-level temperature controllers
are employed, and the high-level optimization task is the optimal adjustment of the parameters
of these controllers. While this approach yields a good control performance, it is computationally
too expensive for larger systems. In this paper, a more efficient approach is presented that is
based on an approximation of the system dynamics using simple models that are computed
from system sensitivities around simulated reference trajectories. The application of the new
approach to a large hybrid model proves the real-time capabilities of the new technique.

Keywords: Predictive control, process control, supermarket refrigeration systems, discretely
controlled continuous systems, hybrid systems.

1. INTRODUCTION

In supermarket refrigeration systems, a rack of compres-
sors feeds liquid refrigerant to several open display cases
that are used to cool edible goods. These systems exhibit
both, discrete and continuous dynamics, and are thus
hybrid systems: The control inputs (valves and compres-
sors) can only be switched discretely, and the nonlinear
continuous dynamics changes due to switching of the
discrete inputs. Today, supermarket refrigeration systems
are often controlled using decentralized schemes in which
each display case is equipped with independent simple
control loops (Larsen et al., 2005). Since this approach
often causes a severe reduction of the efficiency of the
process and of the lifespan of the equipment (see e.g.
Wisniewski and Larsen (2008)), the suitability of advanced
model-predictive schemes for the control of supermarket
refrigeration systems has been investigated in previous
work to overcome these problems.

In Larsen et al. (2005), the hybrid MPC approach from
Bemporad and Morari (1999) is applied to a piecewise
affine approximation of the nonlinear hybrid model of a
supermarket refrigeration system that is also considered
in this paper. Although this approach succeeds in keep-
ing most process variables within pre-specified bounds,
the frequency of the compressor switching is high due
� The authors gratefully acknowledge the financial support by the
EU-funded Network of Excellence HYCON, contract number FP6-
IST- 511368.

to the inaccuracy of the linear approximations of the
nonlinear dynamics. In Sarabia et al. (2009), a nonlinear
MPC scheme is proposed in which the cost function is
evaluated by simulation of a nonlinear model. This ap-
proach is capable of keeping all process variables within
the bounds, but the solution of complex NLP problems
with many decision variables in each iteration leads to
a large computational effort. In Sonntag et al. (2007,
2008), a hierarchical NMPC approach for supermarket
refrigeration systems is presented. Here, the switching of
the valves of the display cases is not optimized directly,
but simple low-level controllers are employed that regulate
the temperatures in the display cases with a high sam-
pling frequency. The parameters of these controllers are
adjusted by a high-level NMPC optimizer that operates
on a longer time horizon, thus leaving more computation
time for the NLP step in every NMPC iteration. Instead of
considering a (complex) MINLP problem in each iteration,
the discrete search is performed by solving a sequence
of continuous optimization problems with an increasing
number of switches, and the search is stopped as soon as a
policy is found that meets the specification. This reflects
the main control goal, the minimization of the number of
switches of the compressors.

While the NLP-based approaches that are described above
yield a good control performance, they cannot currently
be applied to larger systems in real time due to the
prohibitively large computational effort. To overcome this
problem, this paper presents a new and computationally
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more efficient hierarchical model-predictive control ap-
proach for supermarket refrigeration systems. As in Son-
ntag et al. (2007, 2008), the switching of the valves of the
display cases is not optimized directly, but simple low-level
controllers are employed that regulate the temperatures
in the display cases. The high-level approach presented
in this paper differs from the previous version in two
respects: the compressors are not switched by the high-
level controller anymore since the corresponding control
goal for the suction pressure is merely safety-related, and
it is not necessary to achieve optimality in this part of
the system. A simple discrete low-level controller is em-
ployed instead. Furthermore, the optimization approach
of the high-level controller is significantly different. It is
based on the observation that the considered supermar-
ket refrigeration system belongs to an important subclass
of hybrid systems, the Discretely Controlled Continuous
Systems (DCCS). These systems have been investigated
in academia for many years, see e.g. Matveev and Savkin
(2000); Dankowicz and Piiroinen (2002); Schild and Lunze
(2008). The property of DCCS that is exploited in this
paper is that simple yet accurate finite-dimensional models
of the system behavior (the so-called embedded maps of
the system) can be approximated linearly around simu-
lated reference trajectories based on the sensitivities of the
continuous subsystems. These low-dimensional embedded
maps are then used as linear constraints in the optimizing
high-level control system, and the complex dynamic opti-
mization problem can be recast as a sequence of algebraic
optimization problems. In combination with a decompo-
sition of the large-scale supermarket system into (virtu-
ally) independent subcomponents which are approximated
separately, this new approach allows for a very efficient
computation of optimal switching times which enables the
real-time control even of large-scale supermarket systems.

2. THE SUPERMARKET REFRIGERATION SYSTEM

Fig. 1 shows a schematic representation of a supermarket
refrigeration system. It consists of five major parts: a
liquid manifold, several display cases, a compressor rack,
a suction manifold, and a condenser. Liquid refrigerant
is supplied to the display cases from the liquid manifold
through inlet valves (see Fig. 2). Within each display
case, cold air circulates and forms an air curtain in
front of the edible goods. Thermal energy is transferred
from the goods to the air curtain (Q̇goods−air) and, since
the temperature of the surrounding air is larger than
that of the air curtain, the curtain also absorbs heat
from the surroundings (Q̇airload). The absorbed thermal
energy is transported to the evaporator (Q̇air−wall) in
which the refrigerant evaporates and thus takes on the
thermal energy (Q̇e). The vapor accumulates in the suction
manifold and is fed to the condenser via the compressors
which increase the pressure of the refrigerant vapor. Since
the evaporation temperature of the refrigerant increases
with the pressure, the energy from the display cases can
be removed in the condenser at room temperature. Finally,
the liquefied refrigerant is fed back to the display cases.

The hybrid model of the supermarket refrigeration system
used in this work was proposed in Larsen et al. (2007).
It may contain an arbitrary number of display cases ndc.

The state of each display case i ∈ {1, . . . , ndc} is de-
scribed by four differential state variables: the temperature
of the goods (Tg,i), the temperature of the evaporator
wall (Tw,i), the temperature of the air inside the case
(Tair,i), and the mass of liquid refrigerant within the
evaporator of the display case (mref,i). Thus, the vector
of continuous state variables of the i-th display case is
given by xdc,i = [Tg,i, Tw,i, Tair,i,mref,i]T . Since the dy-
namics of the condenser unit is not modeled, the overall
continuous state vector of the model can be written as
x = [xT

dc,1, . . . ,x
T
dc,ndc

, Psuc]T , where Psuc is the pressure
in the suction manifold. Each display case is equipped with
an expansion valve for the refrigerant, and the discrete
input vector is given by v = [v1, . . . , vndc

, vc]T . Here,
v1, . . . , vndc

∈ {1, 0} are binary variables representing the
state of the inlet valves (open/closed), and vc ∈ Ξc (given
in %) determines the relative capacity of the compressors
that are currently running within the compressor rack 1 .
The set Ξc contains all discrete capacity levels that can
be realized by switching the compressors on or off. In this
paper, a system with six compressors of equal capacity is
investigated. For this system, Ξc is defined as:

Ξc := {0%, 16.7%, 33.3%, 50%, 66.7%, 83.3%, 100%}. (1)

1 Thus, the values 0% (100%) always indicate that all compressors
are off (on), independently of the number of compressors.

Fig. 1. A simplified scheme of a supermarket refrigeration
system with two display cases.

Tg

. .

Tw

Te
Qe

.
.

mref

Tair

Fig. 2. Cross section of a display case.
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The continuous dynamics is modeled by a lumped-
parameter ODE system 2 under the assumption that all
display cases are of equal design. Each display case ex-
hibits two different continuous dynamics, depending on
the setting of the corresponding expansion valve, i.e.

dxdc,i

dt
=
{

fi,vo(xdc,i) if vi = 1, (a)
fi,vc(xdc,i) if vi = 0. (b) (2)

The vector functions fi,vo and fi,vc only differ in the
dynamic equation that determines the mass of refrigerant
in the evaporator of a display case mref,i according to

dmref,i

dt
=

⎧⎪⎪⎨⎪⎪⎩
mref,max −mref,i

τfill
if vi = 1, (a)

− Q̇e,i

Δhlg
if vi = 0. (b)

(3)

Here, the maximum mass of refrigerant each display case
can accommodate is represented by mref,max, Q̇e,i is
defined in Eq. 9, the specific enthaply of evaporation of
the remaining liquefied refrigerant in the evaporator is
given by Δhlg, and τfill is a time constant. The display
case is filled with refrigerant as long as the inlet valve is
open (Eq. 3.a), and after the inlet valve has been closed,
the remaining refrigerant evaporates according to Eq. 3.b.
The temperature dynamics within the i-th display case
does not change with the valve setting and is given by:

dTg,i

dt
= − Q̇goods−air,i

mgoods · cpgoods
, (4)

dTw,i

dt
=
Q̇air−wall,i − Q̇e,i

mwall · cpwall
, (5)

dTair,i

dt
=
Q̇goods−air,i + Q̇airload − Q̇air−wall,i

mair · cpair
, (6)

with

Q̇goods−air,i = UAgoods−air · (Tg,i − Tair,i) , (7)

Q̇air−wall,i = UAair−wall · (Tair,i − Tw,i) , (8)

Q̇e,i = UAwall−ref (mref,i) · (Tw,i − Te(Psuc)) , (9)

UAwall−ref (mref,i) = UAwall−refmax ·
mref,i

mref,max
. (10)

Here, mgoods, mwall, mair, cpgoods, cpwall, cpair, UAgoods−
air, UAair−wall, and UAwall−refmax are constant model
parameters, and Te is the evaporation temperature of the
refrigerant which is a nonlinear function of Psuc. The
dynamics of the suction pressure is given by

dPsuc

dt
=
ṁin−suc + ṁref−const − V̇c · ρsuc

Vsuc · dρsuc

dPsuc

, (11)

with

ṁin−suc =
ndc∑
i=1

Q̇e,i

Δhlg
, V̇c =

vc · ηvol · Vd

100
. (12)

Here, the total mass flow of refrigerant from all display
cases into the suction manifold is given by ṁin−suc,
and ṁref−const is a measurable external disturbance that
represents an additional flow of refrigerant from other
unmodeled cooling facilities into the suction manifold. V̇c

is the volume flow from the suction manifold, and ρsuc

and dρsuc

dPsuc
are nonlinear refrigerant-dependent functions

modeling the density of the vapor in the suction manifold
2 See also Larsen et al. (2007).

and the derivative of ρsuc w.r.t. the suction pressure, and
ηvol and Vd are constant model parameters.

The controlled variables of the system are the pressure
inside the suction manifold (Psuc) and the temperatures
of the air inside the display cases (Tair,i). As the system
never reaches a steady state since the different continuous
dynamics of the display cases have distinct equilibrium
points, the control goal is not to track setpoints, but to
maintain the controlled variables within specified bounds
T air,i ≤ Tair,i ≤ T air,i and P suc ≤ Psuc ≤ P suc.

3. THE CONTROL STRATEGY

A scheme of the hierarchical control strategy is shown in
Fig. 3. This strategy is very similar to the hierarchical
approach that was presented in Sonntag et al. (2008),
with one important difference: while in Sonntag et al.
(2008), the parameters of the low-level controllers as well
as the settings of the compressors are adapted by the high-
level optimizer, the controlled subsystems are separated
into two categories in the new approach: The first cate-
gory consists of subsystems for which the desired control
functionality is only safety-related, i.e. the control goal is
to keep a process variable within an admissible region,
and a quantitative measure of optimality is not necessary.
Among the subsystems of the supermarket refrigeration
system, the suction manifold and the compressor rack fall
into this category and are not considered in the high-
level predictive controller. The second category consists
of subsystems for which quantitative optimality measures
can be defined. In the supermarket system, the display
cases belong to this category since here the control goal,
the temporal desynchronization of the air temperatures,
can be formulated in a quantitative way that is amenable
to minimization. This temporal desynchronization ensures
that the variations in the suction pressure and, thus, the
necessity for compressor switching are minimized.

3.1 The Low-Level Control System

The switching strategy for the valves of display case i is
shown in Fig. 4. The valve of the corresponding display
case remains closed as long as the air temperature remains
below the switching threshold δs. After the refrigerant has
evaporated, the air temperature starts to rise. Once the
air temperature crosses δs from below, vi is opened for
a constant period of time tvi

, and the air temperature
will decrease again. The time period tvi

is a continuous
parameter that is assigned by the high-level controller for

Low-level process control

High-level Predictive Control

Plant

Fig. 3. Scheme of the control strategy.
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Fig. 4. Switching strategy for the expansion valves for an
exemplary evolution of the air temperature of display
case i.

each display case (tv1 , . . . , tvndc
∈ R≥0 in Fig. 3). The

value of δs was determined in simulation studies assuming
that Tair,i will always decrease shortly after the valve vi is
opened (which can be deduced from the continuous model
dynamics and parameters).

The low-level pressure controller switches off a compressor
if Psuc ≤ P suc, and it switches on an additional compressor
if Psuc ≥ P suc − 0.1 bar. To avoid excessive switching of
the compressors over a short time period, a compressor can
only be switched 10 seconds after the previous compressor
switch at the earliest. To compensate for fast changes of
the external disturbances, an additional controller is em-
ployed that monitors the stationary continuous compressor
capacity vcs that is needed to keep all process variables
within the admissible region over long time periods. From
the ODE system, vcs can be computed as:

vcs = 100 % ·
(
ṁin−suc + ṁref−const

ρsuc · ηvol · Vd

)
. (13)

If vcs changes by more than δc = 1
2 · 100 %

nc
(nc is the

number of compressors) over a time period of 30 seconds,
the controller switches the compressors to the discrete
capacity level that is closest to vcs.

3.2 Desynchronizing High-level Control

The high-level controller operates on a moving time hori-
zon. In every iteration, a fixed time interval of tp seconds
is available for the adaptation of the valve opening times
tv1 , . . . , tvndc

of the low-level temperature controllers. The
algorithm is based on the assumption that all display
cases can be regarded separately, i.e. that the interactions
between the display cases are negligible. To confirm this
assumption, a sensitivity analysis was performed for the
system in which the cross-correlations between the system
variables were computed by the solution of the matrix-
valued linear sensitivity equation

dS
dt

=
∂f
∂x

· S, S(t0) = I. (14)

Here, ∂f
∂x is the Jacobian of the dynamic vector equation

of the system. It was found that the effect of changes
of the state variables xdc,i of a display case i and the
variables xdc,j of other display cases with j �= i as well as
the effect of changes of the suction pressure Psuc on xdc,i

continuous evolution
‚

Fig. 5. On the linear approximation of the embedded map.

T
ai

r,
i [

°C
]

time [s]

				 t0,i

t0,i
*

ts,i*

				 s

tv,i Tair,i,min
*

				 Tair,i,min

				 ts,i

Fig. 6. Application of the approximation procedure to a
single display case.

are several orders of magnitude smaller than the effects
between the internal variables of the display case in all
operating regimes that are relevant for nominal process
operation. Thus, the display cases can be considered as
independent subsystems for control design purposes.

The desynchronization algorithm is based on the com-
putation of an abstract algebraic model (an embedded
map) for each display case which is locally valid around
a simulated reference trajectory. Such a model maps small
deviations δx0 of an initial continuous state x∗

0 to the
corresponding deviations δxs of a reference state x∗

s that
lies on a switching threshold which is defined by the zero-
level set of a switching function h (see Fig. 5). The linear
approximation is computed by (Parker and Chua, 1989):

δxs =

[
I − f(x∗

s) · ∂h
∂x (x∗

s)
∂h
∂x (x∗

s) · f(x∗
s)

]
︸ ︷︷ ︸

(1)

S (t∗s)︸ ︷︷ ︸
(2)

δx0 (15)

Here, f(x∗
s) is the evaluation of the dynamic equations at

x∗
s,

∂h
∂x (x∗

s) is the gradient of h evaluated at x∗
s, and S (t∗s)

is the solution of Eq. 14 at t∗s with S(t∗0) = I. Term (2)
of Eq. 15 maps the evolution of the initial deviation δx0

along the reference trajectory while the term (1) projects
the resulting state along f onto the zero-level set of h.

Fig. 6 depicts how this mapping is adapted for each display
case i. Under the assumption that the air temperature
Tair,i exhibits periodic behavior after the first period
for constant disturbances and for unchanged tv,i, the
remainder of the time evolution of Tair,i after t∗s,i can be
neglected for control purposes. The state and sensitivity
trajectories that are needed for the approximation of
the embedded maps are computed simultaneously by the
simulation of the hybrid model. Since the display cases are
assumed to be independent, the sensitivity equations are
evaluated separately for each display case which drastically
reduces the number of sensitivities that must be computed.
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The main idea is to formulate the resulting linear model
of the controlled system as an algebraic optimization
problem in which the finite-state embedded maps of the
display cases appear as linear constraints 3 . Depending on
the type of the cost function that is chosen, the overall
problem can then be stated as a linear, a quadratic, or
even a nonlinear programming problem. The control goal
for the supermarket system is to desynchronize the air
temperatures which corresponds to a uniform temporal
distribution of the ”time points of impact” t∗s,i of the air
temperatures on the switching threshold δs. Thus, we are
only interested in how a deviation δt0,i of the nominal valve
closing time t∗0,i changes the next ”time point of impact”
t∗s,i of the air temperature Tair,i on the switching threshold
δs. Hence, a mapping δts,i = H · δt0,i must be derived.

For simplicity, a new state vector xem,i = [xdc,i, t] is de-
fined for each display case that includes the time as an ad-
ditional state. Since the switching function hi = Tair,i− δs
represents a constant switching threshold for each display
case, its gradient is given by ∂hi/∂xem,i = [0, 0, 1, 0, 0].
Substituting this equation into Eq. 15, evaluating the
right-hand side (with f = fi,vc, see Eq. 3), and considering
only the last row of the resulting matrix yields

δ ts,i = − 1
dTair,i

dt (t∗s,i)
· s(t∗s,i) · δx0,i (16)

with

s(t∗s,i) =

⎡⎢⎢⎢⎣
sTair,i,Tg,i(t

∗
s,i)

sTair,i,Tw,i
(t∗s,i)

sTair,i,Tair,i
(t∗s,i)

sTair,i,mref,i
(t∗s,i)

−1

⎤⎥⎥⎥⎦
T

(17)

In this equation, sx1,x2(t
∗
s,i) corresponds to the solution

of the sensitivity equation at time t∗s,i that represents
the effect of a change of x2 on x1. The final step is
to express δx0,i in terms of δt0,i which is achieved by
linear interpolation: in addition to the simulation that
is performed to determine the reference trajectory, a
second simulation for the maximally allowed variation
δt0,i,max from t∗0,i yields the maximal deviation of the state
variables δx0,i,max. Here, δt0,i,max is a constant design
parameter that is determined a priori by simulation such
that the error of the linear approximation is negligible.
Now, δx0,i can be related linearly to δt0,i by δ x0,i =
δx0,i,max

δt0,i,max
· δ t0,i. To ensure that the air temperatures do

not violate the lower temperature bounds T air,i, additional
linear constraints are derived that represent the variation
δTair,i,min of the minimal air temperature Tair,i,min of the
reference trajectory with a variation of t∗0,i (see Fig. 6).

Since the embedded maps are only valid in a neighborhood
ε := [δt∗0,i−δt0,i,max, δt

∗
0,i +δt0,i,max] around the reference

trajectory, an algorithm is used that iterates between the
generation of reference trajectories and optimization until
convergence to the optimal solution is achieved. In each
iteration j, the following steps are performed:

3 Note that for the supermarket system, the optimal solution can
be computed analytically from the embedded maps, as is described
below. For other systems, however, optimization may be necessary.

(1) Determination of the impact order: A reference
trajectory and the order of the impact points t∗s,i
are determined by simulation with the optimal values
t∗0,j−1 from the previous iteration. This order remains
fixed in iteration j.

(2) Computation of optimal impact points: The air
temperature of the display case with the earliest im-
pact point t∗s,• is driven to the lower bound Tair,i,min

using the linear approximations. Considering the re-
sulting time trajectory over two periods yields lower
(impact time point after the first period) and upper
(impact time point after the second period) reference
values tmin and tmax for the impact time points of all
other air temperatures. The optimal impact points
t∗s,i for all other air temperatures are distributed
equidistantly in the range [tmin, tmax].

(3) Computation of optimal parameters: Since the
optimal impact points are known for all air temper-
atures, the corresponding valve closing times t∗0,i are
computed by inverting the embedded maps (δt∗0,i =
H−1 · δt∗s,i). If all t∗0,i are within ε, the algorithm ter-
minates since the optimal values have been found. If
one or more t∗0,i are outside ε, go to step (4).

(4) Recomputation of the reference trajectory: A
new reference trajectory is computed using values for
the valve opening times that are determined from the
results of step (3). Here, all values that are outside the
neighborhood ε are replaced by the upper (if they are
larger than the maximum value in ε) or the lower (if
they are smaller than the minimum value in ε) limits
of ε. Then, the algorithm returns to step (3).

4. APPLICATION RESULTS

The optimization algorithm was implemented in Matlab
and was tested with a large-scale supermarket refrigeration
system with 10 display cases and 6 compressors. Fig. 7
shows the optimization results for a day-night scenario.
From 0 to 7200 seconds, the system is in day-time op-
eration, and after 7200 seconds, a night-time operation
is assumed. During the day, the masses of the goods are
varied to model the removal by customers and the replen-
ishment by the supermarket staff, as shown in Fig. 7 (d).
Tab. 1 shows the parameter values that were used in the
simulation. The controller is capable of keeping all process
variables within the bounds and desynchronizes the air
temperatures very quickly, as is shown in the lower part
of 7 (a). Furthermore, the low-level compressor controller
detects the drastic change in the external disturbances at
7200 seconds and switches off four compressors to coun-
teract the sudden change in the stationary compressor
capacity. A comparison to previously obtained results for
smaller systems shows that the control scheme significantly
reduces the frequency of the compressor switching. As
expected, the very major contribution to the run-time of
the algorithm is the computational effort for the simulation
of the nonlinear model. During nominal operation with
only slowly varying disturbances, the algorithm only needs
to execute very few simulations since the valve opening
times are already close to the optimal values. Thus, an
MPC iteration only takes a few seconds in this case. In
the worst case, i.e. when the temperatures are completely
synchronized, the computation time to achieve a complete
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desynchronization was less than 100 seconds on a standard
PC. With some optimization of the prototype implementa-
tion, it seems realistic to achieve worst-case computation
times in the region of 20 seconds.

Table 1. Parameter values used in the simula-
tion studies.

ndc nc δs

10 6 4.6 °C ℃

tp T air,1 - T air,10 T air,1 - T air,10

100 s 2 °C 5 °C

t0,i,max P suc P suc (day/night)
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Fig. 7. Simulation results for a supermarket refrigeration
system with 10 display cases and 6 compressors.

5. CONCLUSIONS

In this paper, a new hierarchical approach for the real-time
capable control of large-scale supermarket refrigeration
systems with hybrid dynamics is presented. Simple low-
level temperature controllers are employed, and the high-
level control task is the optimal adjustment of the param-
eters of these controllers to achieve a desynchronization of
the air temperatures in the display cases which reduces the
wear of the process equipment. Efficient desynchronizing
control is achieved using a combination of model decom-
position and approximation of the system dynamics by
simple algebraic models. The main advantages of this ap-
proach over existing control techniques for supermarket re-
frigeration systems are that (a) the system is not linearized
a priori. Any nonlinear characteristics of the system that
are encoded in the reference trajectories are considered
implicitly in the high-level control scheme, and (b) the
computational performance is improved considerably since
the original mixed-integer nonlinear dynamic optimization
problem is replaced by a sequence of low-dimensional
analytic problems that can be solved efficiently. Future
work will concentrate on the extension of the developed
technique to more general hybrid systems.
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Abstract: Many process plants are nonlinear and together with this they include a combination of 
continuous valued and logical control inputs and subsystems. This paper attempts to explore the potential 
of hybrid model predictive control (MPC) to cope with both of these problems. It uses a laboratory scale 
plant that was designed for experiments with hybrid systems. This plant has both continuous and logical 
control inputs and it is considerably nonlinear. An approximate hybrid model of the plant in the form of a 
piecewise affine (PWA) system is developed and evaluated in the first part of the paper. After that a 
hybrid MPC based on PWA model is applied to the control of the plant. While designing hybrid MPC 
and evaluating its performance, there is a special focus on the following question. Logical and continuous 
control systems are usually designed separately. This may result in unforeseen interactions between 
logical and continuous control and in the deterioration of the control performance. However, hybrid MPC 
is based on hybrid model that captures both logical and continuous dynamics in one unified framework. 
Hence it can reasonably be expected that hybrid MPC can avoid undesirable interactions and possibly 
also make use of these interactions in a positive way (e.g. to speed up the control response using logical 
inputs). Control results obtained with hybrid MPC are indeed fairly good and they show clear 
improvement over the results achieved with separate design of logical and continuous control.  

Keywords: Hybrid systems, model predictive control, piecewise affine systems 

1. INTRODUCTION 

Model predictive control (MPC) of hybrid systems has 
recently attracted a considerable research attention. This 
attention is reflected in the growing number of publications 
on hybrid MPC. Monographs such as (Christophersen, 2007), 
(Borrelli, 2003) and survey paper (Morari & Baric, 2006) can 
be quoted as important examples representing a vast and 
constantly growing body of literature. The application area of 
hybrid MPC is twofold. First, many process plants comprise 
continuous-valued as well as logical/discrete-valued control 
inputs and components. Such plants are naturally modelled as 
hybrid systems and this requires the use of control 
approaches for hybrid systems. Second, non-linearities that 
are ubiquitous in the models of process plants can often be 
well approximated by a special class of hybrid systems called 
piecewise affine (PWA) systems. The result is again a plant 
model in the form of a hybrid system.  

This paper is focused on both of the above mentioned aspects 
of the hybrid MPC. It uses a case study of a laboratory scale 
plant. This plant exhibits hybrid phenomena that are found in 
many process control applications. The plant includes both 
continuous valued and logical control inputs and its dynamic 
behaviour abruptly changes at certain operating points. Most 
continuous components of the plant are nonlinear. This 
nonlinear behaviour must be approximated by a PWA model. 
This approximation is necessary for the design of hybrid 
MPC controller and it is a non-trivial task. PWA 
approximation, selection of individual affine models, their 

validity regions and comparison with the responses of the 
original nonlinear plant are described in detail. Finally a 
hybrid model is obtained whose hybrid features are both due 
to the hybrid nature of the plant itself and due to the PWA 
approximation of plant nonlinearities. Further, the attention is 
turned to MPC control of this plant. A special emphasis is 
laid on the ability of hybrid MPC to achieve an integrated 
design of logical and continuous control. 

Typically, logical control is responsible for safety related and 
limiting functions such as preventing the process variables 
from leaving safe operation limits, starting and shutdown of 
process equipment. Logical controllers are also used to 
manipulate logical control inputs such as on/off valves. On 
the other hand, the regulatory and supervisory control is 
performed by continuous controllers. Common design 
practice relies on separate design of logic and continuous 
control. As non-trivial and not easily predictable interactions 
often arise between continuous and logical parts of the 
control system, this practice may result in a poor control 
performance. On the other hand, hybrid model describes both 
continuous and logical (or more generally discrete-valued) 
parts of the whole system, including continuos/logical 
interactions, the hybrid controller designed on the basis of 
this model can be expected to control the whole plant in a co-
ordinated manner and avoid the deteriorating effects of 
interactions between separately designed logical and 
continuous control systems. However, it is well known that 
expectations though well founded in the theory and practical 
reality may be two different worlds. For this reason, this 
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paper in its final part attempts to make an experimental 
comparison of a separate design of logic and continuous 
control on the one hand and co-ordinated design based on 
hybrid model on the other hand. 

2. EXPERIMENTAL PLANT  

A detailed description of the experimental plant has recently 
been given by the author in (Hlava & Šulc, 2008). As the full 
text of this paper is available from the IFAC-PapersOnLine 
website, the description of this plant in the present paper can 
be short. Plant structure is shown in Fig. 1. Basic components 
are three water tanks. Tanks 2 and 3 have special shapes that 
introduce changes in dynamics. The tanks are thermally 
insulated to make the heat losses negligible. Water from the 
reservoir mounted under the plant is drawn by Pump 1 and 
Pump 3 to the respective tanks. The delivery rates can be 
continuously changed. The flow rates are measured using 
turbine flow-meters. To compensate for pump non-linearity, 
it is beneficial to use slave flow rate controllers.  

The flow from Pump 3 is fed directly to Tank 3. The flow 
from Pump 1 goes through heater and it is further controlled 
by solenoid valve S1. The power output of the heater can be 
changed continuously and ϑ01 can be made to follow a 
specified function of time. Another continuously controlled 
heater is mounted on the bottom of Tank 2. The temperatures 
are measured with Pt1000 sensors at the points shown in 
Fig. 1. In addition to the pumps, whose delivery flow rates 
can be changed continuously, the plant includes another way 
of manipulating the flow: solenoid valves. These discrete 
valued actuators control the flow from Tank 1 to Tank 2 
(valves S3, S4). The flow is changed in three steps: no valve 
open, one open, both valves open. Tank 1 can be bypassed by 
closing S1 and opening S2. The air-water heat exchanger 
with cooling fan at the output from Tank 2 keeps the water 

temperature in the reservoir roughly constant. Water levels 
are measured using pressure sensors.  

The plant is controlled from a PC using two data acquisition 
boards (11 analog inputs, 6 analog outputs, 6 digital outputs) 
and interface hardware (power amplifiers, solid state relays, 
signal conditioning devices). The basic software tool for 
identification and control experiments is the Real Time 
Toolbox. It allows an easy connection of Matlab/Simulink 
environment with the real world. Alternatively WinCon-8000 
industrial control system produced by ICP DAS can be used. 
This control system makes it possible to experiment with the 
implementation of advanced control algorithms using real 
industrial hardware. The changeover from PC to WinCon-
8000 and vice versa is simple: two connectors with analog 
and digital inputs/outputs have to be reconnected.  

3. CONTROL OBJECTIVE  

Many control scenarios can be defined with this plant. Some 
examples are given in (Hlava & Šulc, 2008). The scenario 
considered in this paper uses Tank 1 and 2. This scenario is 
inspired in part by (Slupphaug et al., 1997) and it can be 
formulated as follows. Tank 1 serves as a buffer that receives 
water from an upstream process. Water flow rate and 
temperature are disturbances. The main control objective is to 
deliver the water to a downstream process at a desired 
temperature (temperature ϑ2), while the flow demand of the 
downstream process is variable and hence it also acts as a 
disturbance. Power output of heater H2 is a continuous 
manipulated variable. Valves S3 and S4 are used as a discrete 
valued manipulated variable to control the flow from Tank 1 
to Tank 2 in three steps. Valve S1 is used to close water flow 
to Tank 1, if tank overflow is to be avoided. There is no valve 
at the output of Tank 2, but an effect equivalent to closing an 
output valve is achieved by switching off Pump 2. 

 
Fig. 1. Structure of the laboratory scale plant, FT, LT, TT are flow, level and temperature transmitters  FC – flow controller, S–
solenoid valve, M – motor, r1= 5.64 cm, r21= 5.8 cm, r22= 3 cm, r31= 6 cm, r32= 2.9 cm, tank height lmax=80 cm, l1= l2=40 cm 
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The main control objective necessarily includes several 
auxiliary objectives. Tank levels must be kept within 
specified limits, and overflow as well as emptying of the 
tanks must be avoided. It is also necessary to avoid the 
necessity to close valve S1 in order to prevent Tank 1 
overflow. In a real control situation, closing S1 would mean 
that water from the upstream process cannot flow to the 
buffer but must be re-routed to the environment. Similarly it 
is necessary to avoid the necessity to switch off Pump 2 in 
order to prevent Tank 2 from underflow. The standard way to 
satisfy these auxiliary objectives would be to use separately 
designed control logic.  

4. MATHEMATICAL MODEL OF THE PLANT 

Plant model is derived using mass and energy balances. The 
reader is referred to (Hlava & Šulc, 2008) for details. In this 
paper just the part of the plant model will be given that is 
relevant to the specified control objective (i.e. excluding 
Tank 3). Assuming liquid incompressibility and constant heat 
capacity c, negligible heat losses and ideal mixing, the 
following model is obtained  
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where 2
ii rA π= , discrete valued input σ0 assumes values 0,1 

(S1 closed, S1 open), σ1 assumes values 0,1,2 (no valve open, 
S3 open, S3 and S4 open), σ2 assumes values 0,1 (Pump 2 
off, Pump 2 running with flow rate q20 depending on the flow 
demand of the downstream process), H is power output of 
heater H2, kv is flow coefficient of valves S3 and S4.  

5. APPROXIMATE PLANT MODEL IN A PWA FORM  

Plant model (1)-(4) includes continuous and discrete valued 
inputs, dynamics switching depending on operating point in 
(2), (4) and non-linear elements. It must first be approximated 
by a PWA model. The general form of a discrete-time PWA 
system is given by  
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where each dynamics i=1,2..N� is active in a polyhedral 
partition � that is defined by guard lines described by  
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That means, the dynamics i represented by matrices and 
vectors [Mi, Ni, fi, Ci, Di, gi] is active in the region of state-

input space which satisfies constraints (6). Unlike some other 
approaches to hybrid MPC that use probabilistic Bayesian 
approach to combine weighted local linearized models (e.g. 
Nandola & Bhartiya, 2008), the approach considered in this 
paper is deterministic and local models are just switched 
depending on the region in state-input space.  

It has been noted already in the well known seminal paper on 
PWA systems (Sonntag, 1981) that nonlinear systems can be 
globally approximated arbitrarily close by PWA systems and 
this claim has often been repeated. This claim is certainly 
true. However, it is also true that although there are several 
methods of experimental identification of PWA models (see 
Paoletti et al., 2007 for an overview), there is no general 
systematic procedure to find a PWA approximation of a 
given non-linear system described by analytical state 
equations. The route to the PWA approximation is always 
closely connected with a particular system to be 
approximated. In this section, model described by (1)- (4) 
will be considered. Its approximation by a set of affine 
models of the form (5), (6) can proceed as follows.  

An obvious source of partial models is logical control inputs 
σ0, σ1, σ2. The best way to handle these inputs is to associate 
one partial model with each combination of their values. This 
results in 12 partial models. Equations (2) and (4) include 
dynamics switching at water level l1. That means the number 
of 12 must be doubled and 24 partial models are obtained as 
an absolute minimum for modeling this plant. These 24 
partial models must further be linearized. To achieve an 
acceptable precision, each model is approximated by a set of 
linearized models. The linearization is done in two steps.  

1. Obtain linearizations around general operating points 
characterized by a vector of input and state variables (σ0P, 
σ1P, σ2P, q0P, q20P, ϑ0P, Hp, h1P, h2P, ϑ1P, ϑ2P). If possible, 
steady state operating points should be preferred. 

2. Find a suitable set of operating points together with 
adequate partitioning of state-input space that will be well 
representative of the dynamics of the original system. 

This procedure can be most simply illustrated for (1). If S1 is 
open (σ0P=1) the respective steady state characteristics is  
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and (1) can be linearized around a steady state operating 
point (h1P, q0P, σ0P, σ1P). This linearization is given by 
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Substituting for q0P from (7), linearization can be modified to 
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It can be seen that (9) holds even if σ1P=0. What is less 
obvious is the case of σ0P=0. Equation (7) cannot be used and 
(1) is autonomous system that has just zero steady state. 
However, it can be linearized around a non-steady state  
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and this linearization has the same form as (9). Thus (9) is 
general linearized approximation of (1). As actual values of 
the variables and not deviations from operating point are 
used, (9) is affine and not linear. 

The next step is to find a suitable set of representative 
operating points. The simplest approach would be to divide 
the whole range of h1 into several intervals of identical length 
and to take midpoints of these intervals as selected nominal 
operating points. A better way is to modify (9) to the form 
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Dynamics of (11) can be characterised by time constant 

( )gkhA PvP 111 102 στ .=  (12) 

and the partitioning of the whole range of h1 can be done in 
such a way as to keep the ratio of maximum and minimum 
time constant within each interval the same. The nominal 
operating point in each interval is then again selected so that 
the nominal time constant would have the same ratio to the 
minimum and maximum value of time constant within this 
interval. If the whole range is divided into four intervals, this 
reasoning leads to the following 

maxmP

mmPmmPmminP

maxminmmaxminmmaxminm

hhh

hhh;hhh;hhh

hhh;hhh;hhh

13141

31213121112111111

4

3

1
4

1

131
4

2

1
4

2

121
4

1

1
4

3

111

=

===

===

 (13) 

where h1min and h1max are the minimum and maximum values 
of h1 respectively, h1m1, h1m2, h1m3 are limiting points of 
subintervals, h1P1, h1P2, h1P3, h1P4 are nominal operating points.  

Other parts in plant model can be approximated by PWA 
systems in a similar way. The dynamics of water level in 
Tank 2 as described by (2) depends mainly on h1, while h2 
just governs switching between two partial models. 
Linearization of (1) as described by (9) actually means that 
square root was replaced by the linear part of Taylor series. 
Using the same method for (2) results in 
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Steady state characteristics of (3) are unity gain for any 
nonzero h1. Its linearization is therefore also very simple as 
all terms that include the difference ϑ0P-ϑ1P equal zero.  

( )( ))()()( 1011101 tthAqt PP ϑϑϑ −=�  (15) 

Using (7) this equation can be modified to 
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This equation has time constant  
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Apart from multiplicative constant, this is the same 
expression as (12). Thus, the same partitioning of the range 
h1 is obtained.  

Equation (4) poses a more difficult problem. However, the 
effect of power output of the heater H(t) on the dynamics of 
ϑ2 is linear and the equation can be linearized around a point 
where H(t)=0. Then the steady state relation between ϑ2 and 
ϑ1 is again unity gain and the linearized equation is 
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Selection of nominal operating points is partly given by 
dynamics switch at level l1. To achieve good approximation 
subranges <h2min,l1> and  (l1, h2max> are further partitioned in 
a similar way as it was done with Tank 1. In this paper, the 
partitioning of both subranges into four intervals is used. 
Total number of partial models is then 384 (=2*3*2*4*8). 
The result is a continuous time PWA model with four states 
and seven inputs 
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Most elements of matrices in (19) are zeros. The expressions 
for the few nonzero elements can be written according to (9)-
(18). Partial models are valid in regions that are defined by 
specified values of logical inputs σ0, σ1, σ2 and minimum and 
maximum limits on state variables. These specifications are 
formulated in the form of guard lines (6). Due to the high 
dimensions and great number of variants the expressions for 

matrices c
i

u
i

x
i GGG ,,  cannot be given here. 

System (19) must finally be converted to discrete time. This 
is done by discretizing each partial model separately 
assuming zero order hold at the inputs. Control Systems 
Toolbox for Matlab has no routine for discretization of affine 
systems. However it can be easily derived that the formulae 
for Ni and fi in (5) have the same form 
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Hence the computation of discretized model is possible by 
using c2d command first with arguments (Ai, Bi, Ci, Di) to 
obtain Ni and then with arguments (Ai, oi, Ci, 0) to obtain fi.  
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The comparison of responses of the original model (1)–(4) 
and its PWA approximation is shown in Fig. 2. To evaluate 
the PWA model in a wide range of changes, the following 
step changes are used: q0 changes at t=1000 s from 1 to 
1.2 l/min, σ1 changes at t=2000 s from 1 to 0 and at t= 2100 s 
back to 1, q20 changes at t=2400 s from 1 to 1.4 l/min and at 
t=3000 s to 1.2 l/min, ϑ0 changes at t=3000 s from 40 to 
50°C, H changes at t=4500 s from 0 to 500 W. Initial 
conditions are: h10=0.6 m, h20=0.12 m, ϑ10=30°C, ϑ20=55°C, 
sampling period Ts=1 s. The responses of PWA system were 
simulated using the Simulink block included in Multi-
Parametric (MPT) Toolbox (Kvasnica et al., 2004). There is 
generally a good agreement between the responses of the 
original system and its PWA approximation. Any comparison 
using a specified set of input signals has naturally a limited 
value because the agreement depends also on how close is the 
actual response to the selected set of representative operating 
points. However, it can be said that in most cases the 
maximum peak error does not exceed 1 cm or 1°C and 
normally the difference is in the range of tenths of cm and °C 
most of the time. It is also possible to decrease the number of 
partial models. Figure 2 was obtained with 384 partial 
models. If the range of h2 is divided in just four sub-ranges, 
the number of models is reduced to 192 and the precision of 
PWA approximation remains good. However, any further 
reduction of the number of partial models results in a marked 
decrease of approximation precision.  

6. CONTROL DESIGN AND EXPERIMENTS 

Standard procedure to design a control system satisfying the 
objectives specified above is divided into two separate tasks: 
design of logical control and design of continuous control (in 
this paper the term continuous relates to control where the 
variables are continuous-valued regardless of whether the 
controller is designed in continuous or discrete time setting). 
Logic part of the control system is described by a set of 

simple rules. Normal and desirable state of the logical control 
inputs is σ0=1; σ1=1, σ2=1. That means, water from the 
upstream process flows to the buffer (Tank 1) and further to 
the supply (Tank 2) and the supply is able to meet the 
demand of the downstream process while water levels of both 
tanks remain within acceptable ranges w1min�h1�w1max, 
w2min�h2�w2max. If water levels deviate from these ranges, the 
following rules apply  

A. If h1< w1min, set σ1 to zero to avoid Tank 1 emptying  
B. If h1> w1max, set σ0 to zero to avoid Tank 1 overflow, if 
also h2< w1min, set σ1 to 2 to accelerate the recovery of 
both water levels to normal ranges 
C. If h2< w2min, set σ2 to zero to avoid Tank 2 emptying  
D. If h2> w2max, set σ1 to zero to avoid Tank 2 overflow 

Continuous control system is designed as SISO control loop, 
where H(t) is manipulated variable and temperature ϑ2 is a 
controlled variable. It can be seen from (4) that logical 
control inputs act as disturbances and they may have adverse 
effects on control performance. 

The situation changes when logical and continuous control is 
designed in a unified way. System described by (1)-(4) is 
treated as a hybrid system and model predictive controller 
can be designed based on its PWA approximation. Hybrid 
MPC controller is designed using MPT Toolbox. To compare 
performance of the systems using separate design and hybrid 
model predictive control, the following control experiment 
was performed. Starting from the state q0=q20=1 l/min, 
h1=0.5 m, h2=0.3 m, ϑ1=50°C, ϑ2=40°C, the setpoint was 
increased from 40°C to 60°C. Separate design used logic 
rules defined in the beginning of this section. The continuous 
control algorithm was MPC with linear performance function 
and control horizon 2. The unified design used MPC with the 
same performance function and control horizon, however this 
MPC algorithm could make use of the logical control inputs. 
The responses are shown in the following figures.  

 
Fig. 2 Comparison of responses of the original plant model and its PWA approximation (in all responses original plant 
models is plotted with solid line and PWA approximation with dotted line).  
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Fig. 3 Setpoint response Separate design 

 
Fig. 4 Setpoint response – Unified design  

 
Fig. 5 Logical manipulated variable σ1 

It can be seen that unified design achieves better results. The 
control time is much shorter. Fig. 5 shows that this 
improvement is due to the ability of the unified design to 
make use of logical manipulated variables. Unlike separate 
design, logical control inputs can be used not only to keep the 
water levels within specified limits but also to accelerate 
control responses. In the beginning σ1 is used to accelerate 
the setpoint response by increasing the inflow of warmer 
water to Tank 2. When controlled variable reaches setpoint, 
σ1 is used just to keep the water levels within specified range.  

7. CONCLUSION 

This paper was focused on the possibilities that hybrid model 
predictive control can offer for unified design of logical and 
continuous control. As the character of this paper is mainly 
experimental, its results are connected with the particular 
laboratory plant considered and they cannot be regarded as 
completely general. In spite of that, some conclusions can be 
made.  It could be seen that the application of hybrid MPC is 
not particularly easy. The development of the PWA model 
that is necessary for hybrid MPC takes up a substantial part 

of the paper. The complexity of the PWA model expressed by 
several hundreds of partial systems is also quite high even in 
the case of this laboratory scale plant that has still quite 
simple structure compared with real industrial process plants.  

On the other hand, it has been shown that hybrid MPC can 
make use of the information how the controlled variable is 
affected by logical control inputs to improve control 
responses. The setpoint response was improved by adding the 
effect of opening valve S4 to the effect of increasing heater 
power output. Thus, the control results achieved with hybrid 
MPC were better than the results obtained with separate 
design of logical and continuous control.  

Given paper length allowed to present one selected control 
experiment. Other control scenarios can be devised and tested 
with similar results and there is still a large open space for 
further experiments with this plant focused on exploring the 
possibilities offered by hybrid MPC for co-ordinated design 
of logical and continuous control. A particular attention will 
also be paid to the real time implementation of explicit MPC 
using industrial control system WinCon-8000 that can be 
used with this plant as an alternative to the academic 
experimental setting using Matlab/Simulink, Real Time 
Toolbox and PC data acquisition boards. 
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Abstract: This paper focuses on non linear control of non isothermal Continuous Stirred
Tank Reactors (CSTRs). The model of the CSTR is thermodynamically consistent in order
to apply the control strategy based on the concavity of the entropy function and the use of
thermodynamic availability as Lyapunov function. More precisely the stabilization problem of
continuous chemical reactors is addressed operated at an unstable open loop equilibrium point.
The chosen control variable is the jacket temperature. In this paper we propose a state feedback
strategy to insure asymptotic stability with physically admissible control variable solicitations.
Theoretical developments are illustrated on a first order chemical reaction.

Keywords: Lyapunov based control, Irreversible thermodynamics, Non isothermal CSTR,
Multiple steady states, Entropy.

1. INTRODUCTION

Continuous Stirred Tank Reactors (CSTR) have been
widely studied in the literature with respect to process con-
trol design (Luyben (1990); Alvarez (1999); Hua (2000);
Guo (2001); Hoang (2008)). Numerous strategies have
been developed to control such non linear systems. Let
us cite for example: feedback linearization (Viel (1997))
for control under constraints, nonlinear PI control (Al-
varez (1999)), classical Lyapunov based control (Antonel-
lia (2003)), nonlinear adaptive control (Guo (2001)) and
more recently thermodynamical Lyapunov based control
(Hoang (2008)).

Besides these control problems, observation/estimation
strategies have been developed in the case of under sen-
sored CSTRs (Gibon-Fargeot (2000); Dochain (2009)).
Usually, the reactor temperature is the only on-line avail-
able measurement. Then the purpose is to estimate the
missing state variables that are used in the control strat-
egy.

In this paper we focus on the control purposes only and
we assume that concentrations and temperature are mea-
sured. This control synthesis is based on thermodynamic
concepts defined in Callen (1985) and more recently in
(Ruszkowski (2005); Ydstie (1997)) and (Hoang (2008)).
More precisely, we propose a Lyapunov based approach for
the stabilization of CSTR about unstable steady state as
in (Hoang (2008)). This is done thanks to the Lyapunov
function issued from thermodynamics consideration: the
availability function A (Ruszkowski (2005)).

In Hoang (2008), we proposed feedback laws involving
inlet and jacket temperatures as well as inlet flows. These
feedback laws were obtained by imposing that the time

derivative of the availability A remains negative, insuring
consequently the global asymptotic stability. However, no
care was given on the amplitude of the controls. Moreover
the temperature of the reactor had to be inverted and the
feedback laws had in some case some oscillatory behaviors
about the critical point.

The main contribution of this paper with respect to previ-
ous work (Hoang (2008)) is the redesign of the exponential
asymptotic controller in order to prevent excessive control
demand and oscillation problems. In this way the obtained
controller is practically more efficient. The price to pay
is that global asymptotic stability is obtained on some
validity domain only.

This paper is organized as follows: in section 2, we remind
thermodynamical concepts and variables necessary to con-
struct thermodynamic availability. This latter function is
the Lyapunov candidate of the method. In section 3 the
dynamic model of the considered CSTR is presented and
analyzed. Section 4 is devoted to the design of the state
feedback insuring asymptotic stability. Simulation results
are given in section 5. It is shown that the resulting control
leads to admissible manipulated control variables.

2. THERMODYNAMIC BASIS FOR AN
AVAILABILITY FUNCTION

Irreversible thermodynamics concept will play a leading
role in the methodology used for the design of the Lya-
punov function (Ruszkowski (2005); Hoang (2008)). In
this section we review the main ideas concerning this
thermodynamical approach and the construction of the
candidate Lyapunov function: the availability function in
the case of an homogeneous phase.
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In equilibrium thermodynamics, the system variables are
divided into extensive and intensive variables, depending
on whether their values depend on the ”size” of the system
or not. The internal energy of a homogeneous system
is then expressed in terms of products of pairings of
energy conjugate variables such as pressure P/ volume V ,
temperature T/ entropy S and chemical potential μi/ mole
number ni for each species i of the mixture.

The fundamental relation of thermodynamics expresses
the entropy S of a given phase as a function of the so called
extensive variables Z = (U, V, ni) by the Gibbs equation:

dS =
1
T
dU +

P

T
dV +

nc∑
i=1

−μi

T
dni. (1)

It can also be written as:
dS = wT dZ (2)

with w = ( 1
T ,

P
T ,

−μi

T ).

Since the entropy S is an extensive variable, it is a
homogenous function of degree 1 of Z (Callen (1985)).
From Euler’s theorem we get:

S(Z) = wTZ (3)

Equation (2) can also be applied in irreversible thermody-
namics as soon as the local state equilibrium is assumed:
it postulates that the present state of the homogeneous
system in any evolution can be characterized by the same
variables as at equilibrium and is independent on the rate
of evolution. So (2) can also be applied at any time.

Moreover, it is well known that balance equations can be
established for Z= (U, V, ni) as well as for the entropy S
but this latter is not conservative: in irreversible thermo-
dynamics there is a source term σ which is always positive
from the the second law of thermodynamics. This term
represents the irreversible entropy production: the energy
Tσ associated to this term represents the energy lost from
material, space or thermal domains and that will never
more contribute to some physical works. As a consequence
of (2), the entropy balance can alternatively be written as:

dS

dt
= wT dZ

dt
(4)

Finally let us notice that for homogeneous thermodynam-
ical systems (one phase only), the entropy function S(Z)
is necessarily strictly concave (see Callen (1985)) as shown
in Fig. 1.

Fig. 1. Entropy and availability functions w. r. to Z.

From these observations, it can be shown (see Ydstie
(1997)) that the non negative function:

A(Z) = S2 + wT
2 (Z − Z2)− S(Z) ≥ 0 (5)

where Z2 is some fixed reference point (for example the
desired set point for control), is a measure of the dis-
tance between entropy S(Z) and its tangent plane passing
through Z2. It is geometrically presented in Fig. 1. The
slope of the tangent plane is related to intensive vector
w(Z) calculated at Z = Z2.

As soon as we consider homogeneous mixture, S remains
concave and then A remains also non negative. As a con-
sequence, A is a natural Lyapunov candidate. It remains
to build a feedback law to insure:

dA
dt

≤ 0. (6)

3. CASE STUDY: A NON ISOTHERMAL CSTR
MODEL

3.1 Assumptions of the model

We consider a jacketed homogeneous CSTR with the
following first-order chemical reaction: A → B. The
temperature of the jacket Tw is supposed to be uniform and
is used for the control purpose. The dynamics of the CSTR
is deduced from volume, material and energy balances.

The following assumptions are made:

• The fluid is incompressible and the reaction mixture
is supposed to be ideal.

• The two species are supposed to have the same partial
molar volume v.

• At the inlet of the reactor, the pure component A is
fed at temperature Te.

• The reaction volume V is supposed to be constant.
• The heat flow exchanged with the jacket is repre-

sented by Q̇ = λ(Tw − T ).
• The kinetics of the liquid phase reaction is modelled

thanks to the Arrhenius law. The reaction rate rv is
given by k0 exp(−k1

T )nA

V .

In Tables (1,2) are given the notations and numerical
values that will be used for modelling and simulation.
Finally let us notice that constant volume assumption

Notation unit
FAe mol/s Inlet molar flow rate of A
FA mol/s Outlet molar flow rate of A
FB mol/s Outlet molar flow rate of B
F mol/s Total outlet molar flow rate
hAe J/mol Inlet molar enthalpy of A
hi J/mol Molar enthalpy of species i (i = A, B)
H J Total enthalpy of the mixture
nA mol Mole number of species A
nB mol Mole number of species B
T K Temperature in the CSTR
nT mol Total mole number
rv mol/m3/s Reaction rate
U J Internal energy
xi = ni

nT
Molar fraction of species i, i = A, B

Table 1. Notation of the variables of the model.

implies that the total number of moles nT is constant
since the two species have the same partial molar volume.
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Numerical value
CpA 75.24 (J/K/mol) Heat capacity of species A
CpB 60 (J/K/mol) Heat capacity of species B
hAref 0 (J/mol) Reference enthalpy of A
hBref −4575 (J/mol) Reference enthalpy of B
k0 0.12 1010 (1/s) Kinetics constant
k1 8.7 103 (K) Parameter in Arrhenius law
P 105 (Pa) Pressure
Tref 300 (K) Reference temperature
v 0.0005 (m3/mol) Molar volume
V 0.001 (m3) Reaction volume
λ 0.05808 (W/K) Heat transfer coefficient
sAref 210.4 (J/K/mol) Reference entropy of A
sBref 180.2 (J/K/mol) Reference entropy of B

Table 2. Parameters of the CSTR.

Moreover the constant volume assumption constrains the
total outlet molar flow rate F .

3.2 CSTR modelling

The material balances are given by:⎧⎪⎨⎪⎩
dnA

dt
= FAe − FA − rvV

dnB

dt
= −FB + rvV

(7)

and the energy balance by:
dU

dt
= Q̇− P dV

dt
+ FAehAe − (FAhA + FBhB) (8)

Remark 1. Since we suppose ideality of the mixture, the
enthalpy of species Ai, i = A,B in the mixture can
be expressed as: hi(T ) = cpAi(T − Tref ) + hiref . Let
us furthermore note that, as the species are involved in
a chemical reaction, the reference molar enthalpies are
chosen with regard to the enthalpy of formation of species.

Finally the volume balance leads to:
dV

dt
= 0 (9)

Since molar volume of species are assumed to be equal, it
implies that F = FAe and FA = xA FAe and FB = xB FAe

The internal energy balance can be written in term of
temperature. This is done by using the expression of the
enthalpy of the system H =

∑
i=A,B nihi and by noticing

that under our assumptions dU
dt = dH

dt . We finally obtain:

Cp
dT

dt
=
(
−ΔH

)
rvV +FAeCpA(Te−T )+λ(Tw − T ) (10)

where ΔH = (hB−hA) is the enthalpy of the reaction and
Cp = CpAnA + CpBnB is the total heat capacity.

The dynamics of states variables (H,nA) ((8) and (7)) or
(T, nA) ((10) and (7)) give two equivalent representations
of the CSTR. These representations will be used for late
purpose.

3.3 Analysis of the steady states

For this purpose, manipulated variables are chosen as:
FAe = 0.0183 (mol/s), Te = 310 (K) Tw = 300 (K) (11)

Steady states are calculated by setting (7) and (10) equal
to zero.

By introducing the expression of the steady state mole
number of nA in the temperature equation, the steady
state temperatures are the values that satisfy Pe(T ) = 0
with:

Pe(T ) =
hA − hB

Cp
k0 exp(

−k1
T

)
FAe(

FAe

nT
+ k0 exp(−k1

T )
)

+
FAeCpA

Cp
(Te − T ) +

λ

Cp
(Tw − T )

(12)
These values are represented in Fig. 2(a). It shows that
the system has three steady state operating points: P1, P2

and P3.

Fig. 2. Steady states

The numerical values of these steady states and the
eigenvalues of the linearized system about these points are
given in Table 3.

Points Values Eigenvalues

P1: [nA T ] [1.6449 320.6704] [−0.0090 − 0.0024]
P2: [nA T ] [1.3583 330.1997] [−0.0090 0.0027]
P3: [nA T ] [0.1416 377.8795] [−0.0802 − 0.0100]

Table 3. Steady state points and eigenvalues

From Table 3, one can see that steady state operating
points P1 and P3 are stable, whereas the steady state
operating point P2 is not stable since one of its eigenvalues
is positive.

Control Problem: we are interested to operate the reactor
at T = 330.1997 corresponding to the unstable steady
state operating point P2 and at fixed FAe and Te. As a
consequence a control feedback law on Tw is necessary.

4. CONTROLLER SYNTHESIS

In this paper we propose a feedback law that is less
conservative than the one proposed in Hoang (2008) and
that still insures asymptotic stability in some admissible
domain. We first give some preliminary results necessary
for the controller synthesis.

Proposition 1 shows that nA belongs to an invariant
domain [0, nT ].
Proposition 1. If nA(0) ∈ [0, nT ] then nA(t) ∈ [0, nT ] ∀t

Proof. It is straightforward looking at (7) since dnA

dt

∣∣∣∣
nA=0

=

FAe > 0 and dnA

dt

∣∣∣∣
nA=nT

= −k0 exp(−k1
T )nT < 0 �
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Moreover we notice that the sign of dnA

dt is the same as
that of G(T ) = FAe

FAe
nT

+k0 exp(
−k1

T )
.

In order to stabilize the closed loop system about (na2 , T2),
we propose the following feedback law for Tw.
Proposition 2. At fixed Te and FAe, the system defined by
((7) and (8)) with the non linear feedback law (13) for Tw:

Tw =
1
λ

(
K1ṽ1 − FFAe +

f

−ṽ1
dnA

dt

)
+ T (13)

where:

ṽ1 =
[

1
T
− 1
T2

]
(14)

F(Te, T, nA, nB) =
(
hAe − (xAhA + xBhB)

)
(15)

and
f(T ) =

(
(CpA − CpB)Tref − (hAref − hBref )

)
ṽ1

+
(
CpA − CpB

)
ln
( T
T2

) (16)

is stable and asymptotically converges to the desired
operating point P2 = (T2, nA2) for any initial condition
(T0, nA0) contained in some validity domain for which the
constant K1 is chosen positive.

Proof. K1 insures the continuity of Tw at t = 0: Tw(0) =
T0 or, [

K1ṽ1 − FFAe +
f

−ṽ1
dnA

dt

]
t=0

= 0 (17)

The proof of the proposition 2 contains two parts:
1. Determination of the validity domain of initial condi-
tions: developing (17) and using the material balance (7)
and since nB = nT − nA, we have at t = 0:

K1ṽ1 = FAehAe − FAehB +
f

ṽ1
FAe − nAD(T ) (18)

withD(T ) =
[

FAe

nT
(hA−hB)+

(
FAe

nT
FAe+k0 exp(−k1

T )
)

f

ṽ1

]
.

For positiveK1, (18) is positive if ṽ1 > 0. So the right hand
side of the equality has the sign of ṽ1.

In a same way, we obtain :{
nA0 < F (T0) if T0 > T2
nA0 > F (T0) if T0 < T2

(19)

with F (T ) =
(hAe−hB+ f

ṽ1
)

1
nT

(hA−hB)+ 1
G(T )

f

ṽ1

.

The domain of validity is given in Fig. 3.

Fig. 3. Domain of validity of initial conditions

2. Stability and convergence to the desired point (T2, nA2):
Let us consider the function A (5). The time derivative of
such function can be written:

dA
dt

= −ṽ1
dU

dt
− ṽ2

dnA

dt
(20)

with ṽ2 = −(μA

T − μB

T

)
+
(

μA2
T2

− μB2
T2

)
. From the energy

balance (8), (20) can be written:

dA
dt

= −ṽ1
[
FAeF + λ(Tw − T )

]
− ṽ2

dnA

dt
(21)

where F is defined in (14). Furthermore, using the consti-
tutive equation

μA(T, P, xA) = μ0
A(T ) +RT ln(

nA

nA + nB
) (22)

where μ0
A(T ) = CpA(T −Tref )+hAref −T

(
CpAln( T

Tref
)+

sAref

)
one can write ṽ2 on the following form:

ṽ2 = f(T ) + g(nA) (23)

where f(T ) is defined in (16) and g(nA) = R ln
(

nA2
nA

nB

nB2

)
.

Then (21) becomes :
dA
dt

= −ṽ1
[
FAeF + λ(Tw − T )

]
− (f + g)

dnA

dt
(24)

We propose the following feedback law :

Tw =
1
λ

(
K1ṽ1 − FFAe +

f

−ṽ1
dnA

dt

)
+ T (25)

for systems with initial conditions (Tw(0) = T (0)) such
that K1 > 0. Using this feedback law, dA

dt becomes:
dA
dt

= −K1ṽ
2
1 − g

dnA

dt
(26)

The idea is to not constrain the system by imposing
dA
dt < 0 ∀t as in Hoang (2008).

We are now going to show that depending on the initial
conditions from the domain of validity (associated with
condition K1 > 0), −g dnA

dt is either negative ∀t or becomes
negative and converges to 0.

Fig. 4. Admissible initial conditions in the domain of
validity.
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Remark 2. A simple analysis permits to conclude that
g(nA) is positive as soon as nA ≤ nA2.

In all cases in using (19), lemma 1 and remark 2 we will
show the negativeness of −g dnA

dt .

With initial conditions such as shown in Fig. 4(a) and
using additionally the remarks 4.5 and 4.6 of appendix
A), we have:

dA
dt

= −K1ṽ
2
1 − g

dnA

dt
≤ 0, ∀t (27)

With initial conditions such as shown in Fig. 4(b), using
the remarks 4.3 and 4.4 we obtain the same inequality
(27).

The trajectory of (T, nA) issued from initial domain as
shown in Fig. 4(c) is trapped in the domain of Fig. 4(b).
This is obtained thanks to remarks 4.2 and 4.3 and 4.4.

Finally for initial conditions as shown in Fig. 4(d), there
are two possible scenarios : one is that the trajectory of
(T, nA) is trapped in the domain of figure 4(a) or 4(c) then
4(b). The result then follows from remarks 4.2 and 4.3 and
4.4. The other scenario is that the trajectory of (T, nA) is
not trapped in these domains and then A always decreases
and converges to 0.

Finally, from all the admissible initial conditions and after
some time, A plays the role of a Lyapunov function.
Remark 3. The feedback law Tw (13) is well defined for
T = T2 since limT→T2

f

ṽ1
=
(
(CpA −CpB)Tref − (hAref −

hBref )
)

+
(
CpA − CpB

)
(−T2).

5. SIMULATION

The purpose of this section is to illustrate the good
performances obtained from the aforementionned control
strategy and the admissibility of the resulting control
variables. The open and closed loop simulations are carried
out respect to four different initial conditions chosen in
the initial domain of validity of the control law. These
initial conditions correspond to the four different scenarios
depicted in Fig. 4 in view of studying the convergence
properties of the control law and the control variable
solicitation. The four initial conditions are:

(C1): (T (0) = 340, nA0 = 0.6) belongs to Fig. 4(a).
(C2): (T (0) = 325, nA0 = 1.8) belongs to Fig. 4(b).
(C3): (T (0) = 300, nA0 = 1.6) belongs to Fig. 4(c).
(C4): (T (0) = 300, nA0 = 0.6) belongs to Fig. 4(d).

5.1 Open loop simulation

First of all let us consider open loop simulations with
inputs defined by (11) and initial conditions (C1) to (C4).
Simulations are given in Figure (5).

Fig. 5. The representation of the open loop phase plan

5.2 Closed loop system

The open loop system is closed with the feedback law Tw

constructed with the state variables nA and T .

The trajectories issued from the initial points (C1) to
(C4) are given in Fig. 6. We notice that for all the initial
conditions the system converges to the desired operating
point P2.

Fig. 6. Closed loop trajectories in phase plane.

Fig. 7 shows the control variable Tw. Its values are admis-
sible and its evolution is slow enough.

Fig. 7. The feedback law Tw

Fig.8 shows the time trajectory of A for the different
initial conditions. For initial conditions (C1) and (C2),
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the availability A can be assimilated to Lyapunov function
from the beginning of the reaction. For initial conditions
(C3) and (C4), dA

dt is forced to be negative only after a
certain time from which A plays the role of Lyapunov
function, and converges to 0.

Fig. 8. The dynamics of dA
dt

6. CONCLUSION

In this paper, we have shown how to stabilize a CSTR
about the desired operating point by means of Lyapunov-
based method. The Lyapunov function is the availability
function A. A is derived from thermodynamic consider-
ations. The stabilization is ensured in some domain of
validity issued from the condition of positivity of the
design parameter K1 and the continuity of the feedback
law Tw.

The simulation results showed that convergence objective
is satisfied and that the state feedback law is physically
implementable since jacket temperature remains in some
physical domain with admissible rate of variation.

Nevertheless,in the proposed control strategy the closed
loop dynamic is imposed by the initial conditions (with
K1). This is the reason why we are now studying for
dynamic controllers with additional freedom degrees. It
remains also to compare our result with previous results
as given in Viel (1997) for example) in term of performance
and robustness.

REFERENCES

Alvarez-Ramirez, J. and Femat, R. (1999). Robust PI
stabilization of a class of chemical reactors. Systems
& Control Letters, 38(4-5), 219-225.

Antonellia, R., and Astolfi, A. (2003). Continuous stirred
tank reactors: easy to stabilise? Automatica, 39, 1817-
1827.

Callen, H.B. (1985). Thermodynamics and an introduction
to thermostatics. John Wiley & Sons Inc, New York, 2nd
edition.

Dochain, D., Couenne, F.,and Jallut, C. (2009) Enthalpy
Based Modelling and Design of Asymptotic Observers
for Chemical Reactors. accepted to International Jour-
nal of Control.

Gibon-Fargeot, A.M., Celle-Couenne, F. , and Hammouri,
H. (2000). Cascade estimation design for cstr models.
Computers & Chemical Engineering, 24(11), 2355-2366.

Guo, B., Jiang, A., Hua, X., and Jutan, A. (2001). Non-
linear adaptive control for multivariable chemical pro-
cesses. Chemical Engineering Science, 56, 67816791.

Hoang, H., Couenne, F.,Jallut, C., and Le Gorrec, Y.
(2008). Lyapunov based control for non isothermal
continuous stirred tank reactor. Proceedings of the 17th
World Congress of the IFAC, July 6-11, 2008, Seoul,
Korea.

Hua, X., and Jutan A. (2000). Nonlinear Inferential
Cascade Control of Exothermic Fixed-bed Reactors.
AICHE Journal, 46, 980-996, 2000.

Luyben, W.L. (1990). Process Modeling, Simulation,
and Control for Chemical Engineers. McGraw-Hill,
Singapore.

Ruszkowski, M., Garcia-Osorio, V., and Ydstie, B.E.
(2005) Passivity based control of transport reaction
systems. AIChE Journal, 51, 3147-3166.

Viel, F., Jadot, F., and Bastin, G. (1997). Global sta-
bilization of exothermic chemical reactors under input
constraints. Automatica, 33(8), 1437-1448.

Ydstie, B.E., and Alonso, A.A. (1997). Process systems
and passivity via the Clausius-Planck inequality. Sys-
tems Control Letters, 30(5), 253-264.

Appendix A

Lemma 1. The energy balance (8) with feedback law (13)
gives rise to:
1.

(
∑

i

niCpi)
dT

dt
= K1ṽ1 + L(T )

dnA

dt
(A.1)

with L(T ) =
(
− f

ṽ1
− (hA − hB)

)
.

2. With assumptions presented in section 3.1, we have:
L(T ) > 0 if T < T2 and limT→T2L(T ) = 0.
Remark 4. The following remarks hold:

(1) From Proposition 1, Cp is bounded and positive.
(2) Lemma 1 insures that if T < T2 and dnA

dt > 0 then
dT
dt > 0 since Cp

dT
dt = K1 ṽ1︸︷︷︸

>0

+L(T )
dnA

dt︸ ︷︷ ︸
>0

.

(3) When dnA

dt = 0 (nA reaches G(T )) and T < T2

then (
∑

i niCpi) dT
dt = K1

(
1
T
− 1
T2

)
︸ ︷︷ ︸

>0

and dT
dt remains

positive.
(4) When dnA

dt < 0 and T = T2, then Cp
dT
dt = 0 and T

stays equal to T2.
(5) When dnA

dt = 0 (nA reaches G(T )) and T > T2, then

(
∑

i niCpi) dT
dt = K1

(
1
T
− 1
T2

)
︸ ︷︷ ︸

<0

and T decreases.

(6) When dnA

dt > 0 and T = T2, then (
∑

i niCpi) dT
dt = 0

and T remains equal to T2.
(7) When dnA

dt = 0 and T = T2, the system reaches the
desired point and stays on.

372



Boundary geometric control of co-current heat
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Abstract: A control strategy is proposed to control the internal fluid temperature at the outlet of a co-
current heat exchanger by manipulating the inlet external fluid temperature. The dynamic model of the
heat exchanger is given by two partial differential equations. Based on nonlinear geometric control, a
state-feedback law that ensures a desired performance of a measured output defined as spatial average
temperature of the internal fluid is derived. Then, in order to control the outlet internal fluid temperature,
a control strategy is proposed where an external controller is introduced to provide the set point of the
considered measured output by taking as input the error between the outlet internal fluid temperature and
its desired set point. The validity of the proposed control design and strategy is examined in simulation
by considering the tracking and perturbation rejection problems. Copyright c©2009 IFAC.

Keywords: distributed parameter system, partial differential equation, geometric control, characteristic
index,PI controller, co-current heat exchanger.

1. INTRODUCTION

As a thermal device, heat exchangers are widely used in process
industries both for cooling and heating operations. The dynamic
behavior of the heat exchanger is modeled by a set of partial
differential equations (PDE) that describe the spatio-temporal
variation of the temperatures. Thus, the need to find the best
operating conditions for the heat exchangers and to improve
their effectiveness lead to take into account their distributed
nature. In this context, good performances can be attained using
more efficient control strategy based on the direct use of the
distributed parameter model rather than a reduced or a lumped
model (Ray, 1989; Christofides, 2001).

Heat exchangers can be classified into two major types accord-
ing to their flow arrangement: co-current and counter-current
heat exchangers. For the first one, the two fluids travel in the
same direction. By contrast, for the second one, the fluids move
in opposite directions.

In the control problem of tube heat exchangers, the variable
which is manipulated, theoretically, is the thermal power at
the inlet of the outer tube, i.e. grossly the product of a flow
rate and a difference of temperature. In practice, to control the
outlet temperature of a heat exchanger, two possible strategies
which are not equivalent exist. The first one is to use the
inlet temperature of the external fluid, while the second is to
manipulate its flow rate.

When the flow rate is considered as a manipulated variable,
if it becomes too low, the flow regime in the outer tube can
be laminar instead of turbulent, which affects the parameters
of the models, in particular the heat transfer coefficient (Xuan
and Roetzel, 1993). So the tuning of the controller should vary
with the flow rate, which is a difficult task (Abdelghani-Idrissi
� Corresponding author: corriou@ensic.inpl-nancy.fr

et al., 2001; Arbaoui et al., 2007). In addition, by manipulating
the flow rate, a minimum bound is to set on this input. With
the temperature as a manipulated input, it is possible to work
at a constant large flow rate and the hydrodynamic regime is
invariable. Physically, manipulating the temperature is almost
possible if this latter is the outlet of a process with fast dynamics
like plate heat exchangers. Potential flow rate variations will be
assumed as a disturbance that affects the system and needs to
be rejected by the designed controller.

Control of counter-current heat exchanger has attracted much
attention, and several strategies are proposed based either on
the PDE model or ODE model (see e.g. Maidi et al. (2008a) for
more references) compared to the co-current heat exchanger for
which few methods have been proposed in the literature. Derese
and Noldus (1980) addressed the problem of controlling of the
co-current heat exchanger using dynamical lumped parameter
controllers designed based on technical frequency domain spec-
ifications. Based on the conjugate gradient method (CGM) of
minimization, Huang and Yeh (2003) proposed an algorithm
for determining an optimal external distributed heat-flux of a
steady state co-current heat exchanger.

In this paper, a control strategy is proposed to control the outlet
internal fluid temperature of a co-current heat exchanger by
manipulating the inlet external fluid temperature. The designed
approach is based on the use of the PDE model that describes
the dynamic behavior. The idea is to design a state-feedback
control that allows controlling the average temperature of the
internal tube of the heat exchanger, assumed as the measured
output. As it will be demonstrated, the direct design of a control
law by considering the outlet temperature as the controlled
variable is a difficult task due to the fact that the process is
infinite-dimensional. Then, in order to control the outlet fluid
temperature, a control strategy is proposed where a PI con-
troller is introduced to provide the set point of the measured
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Fig. 1. co-current heat exchanger.
output (spatial average temperature). The design of the state-
feedback control law makes use of the concept of characteristic
index (Christofides and Daoutidis, 1996), which characterize
the spatiotemporal interactions between the controlled and ma-
nipulated variables.

The paper is organized as follows. In section 2, the studied
co-current heat exchanger is presented and its dynamic model
given as a system of two PDEs. Section 3 concerns the for-
mulation of the control problem and the design methodology.
Section 4 is dedicated to simulation results concerning tracking
and perturbation rejection problems. Finally, a conclusion ends
the article.

2. CO-CURRENT HEAT EXCHANGER DYNAMIC
MODEL

2.1 Description of the heat exchanger

The process studied in this work corresponds to a tubular co-
current heat exchanger (Fig. 1). A fluid of constant density ρi
and of heat capacity Cpi

flows through the internal tube of a
heat exchanger, of length L, with a constant velocity vi. This
fluid enters at temperature Ti0 and exchanges heat with the
an external fluid or non condensating vapor fluid, of constant
density ρe and of heat capacity Cpe

, which flows in the same
direction in the jacket with a velocity ve. This fluid enters at
temperature Te0 . At the outlet of the exchanger, the internal
fluid leaves at temperature TiL

. In the present study, the internal
and external cross sections Si and Se of the heat exchanger
are supposed to be uniform and the surface area used for the
heat transfer per unit length is A. Both temperatures Ti of the
internal fluid and Te of the external fluid depend on time and
spatial position along the tube.

The energy balance of the heat exchanger, after classical simpli-
fying hypotheses (Ray and Ogunnaike, 1994), gives the follow-
ing partial differential equation for the internal tube (internal
fluid)
∂Ti(z, t)
∂t

= −vi
∂Ti(z, t)
∂z

+ hi [Te(z, t)− Ti(z, t)] (1)

and the following partial differential equation for the jacket
(external fluid)
∂Te(z, t)
∂t

= −ve
∂Te(z, t)
∂z

+ he [Ti(z, t)− Te(z, t)] (2)

where hi =
UiA
ρi Si Cpi

, he =
UeA
ρe Se Cpe

.

Ti and Te are the temperatures of the internal and external
fluids, respectively, hi and he are the heat transfer coefficients,

vi and ve are the velocities, Ui and Ue are the overall heat
transfer coefficients, A is the surface area devoted to heat
transfer.

Each PDE requires an initial condition and a boundary con-
dition to be fully defined. The studied heat exchanger is of
co-current type. For Eq. (1) describing the temperature of the
internal fluid, the boundary condition is usually specified at
z = 0 as the temperature of the fluid entering the tube is in
general known and measurable. Thus, at z = 0, it gives

Ti(0, t) = Ti0(t) (3)

and most often the initial condition is some given temperature
profile at t = 0

Ti(z, 0) = T ∗
i (z) (4)

Similarly, for Eq. (2), describing the distribution of temperature
of the external fluid in the jacket, the boundary condition is
the temperature of the entering fluid Te0 , specified at z = 0,
consequently

Te(0, t) = Te0(t) (5)

while the initial condition is some given temperature profile at
t = 0

Te(z, 0) = T ∗
e (z) (6)

Eqs. (1)-(6) constitute the dynamic model of the co-current heat
exchanger.

3. CONTROL OF THE CO-CURRENT HEAT
EXCHANGER

3.1 Control problem formulation

As indicated above, to control the outlet internal temperature
TiL

, two manipulated variables are possible, either the inlet ex-
ternal fluid temperature Te0 or the flow rate represented by the
velocity ve. In this work, the temperature Te0 , corresponding to
the boundary condition (5), is taken as a manipulated variable to
easily control the outlet internal fluid temperature TiL

since the
hydrodynamic regime remains invariable. Now, due to Eq. (2),
it is noticeable that by manipulating the boundary condition of
the jacket, given by Eq. (5), a variation of the temperature of the
external fluid Te along the jacket results. Thus, by denoting as
u the control variable and y the controlled variable, the model
of the heat exchanger (1)-(6) takes the following form

∂Ti(z, t)
∂t

=−vi
∂Ti(z, t)
∂z

+ hi [Te(z, t)− Ti(z, t)] (7)

∂Te(z, t)
∂t

=−ve
∂Te(z, t)
∂z

+ he [Ti(z, t)− Te(z, t)] (8)

Ti(0, t) = Ti0(t) (9)

Te(0, t) = Te0(t) = u(t) (10)

Ti(z, 0) = T ∗
i (z) (11)

Te(z, 0) = T ∗
e (z) (12)

y(t) = C(Ti(z, t)
)

=

L∫
0

δ(z − L)Ti(z, t) dz (13)

where C( . ) is a bounded linear operator.
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3.2 Design approach

Recently the nonlinear geometric control has proved to be
very successful as a control approach of the linear and quasi-
linear DSP (Christofides and Daoutidis, 1996; Gundepudi and
Friedly, 1998; Christofides, 2001; Wu and Liou, 2001; Maidi
et al., 2008a,b). The most important advantage of geometric
control is that the control law can be designed using directly the
PDE model, which leads to distributed control that increases
the performances (Christofides, 2001). Thus, this theoretical
approach will be used to derive a boundary control law for the
co-current heat exchanger.

The manipulated variable u(t) appears as an inhomogeneous
part in the boundary condition (10), so in order to obtain the
expression of the control law, we propose to insert the manip-
ulated variable u(t) through the use of Dirac delta function in
the state equation (7) as follows

∂Te(z, t)
∂t

=−ve
∂Te(z, t)
∂z

+ he [Ti(z, t)− Te(z, t)]

+ve δ(z)u(t) (14)
so that the model will be affine with respect to the input u(t).

Under these conditions, the boundary condition (10) becomes
homogeneous,

Te(0, t) = 0 (15)

Now, as the open-loop system u(t)-y(t) is infinite dimensional,
the characteristic index σ does not exist. This can be easily ver-
ified by calculating the successive derivatives of the output (13)
with respect to time. To overcome this problem, we propose to
consider another measured output given as the average of the
external fluid temperature, i.e.

ym(t) = Cm

(
Ti(z, t)

)
=

L∫
0

cm(z)Ti(z, t) dz (16)

where Cm( . ) is a bounded linear operator and cm(z) is a
smooth positive function (cm(z) > 0).

In this case, the derivative of the measured output (16) with
respect to time yields

dym(t)
dt

=

L∫
0

cm(z)
∂Ti(z, t)
∂t

dz

=

L∫
0

cm(z)

(
− vi
∂Ti(z, t)
∂z

+ hi

[
Te(z, t)

− Ti(z, t)
])
dz (17)

the characteristic index is greater than one. Performing one
more differentiation, we obtain:

d2ym(t)
dt2

=

L∫
0

cm(z)

(
− vi

∂

∂t

(
∂Ti(z, t)
∂z

)

+hi

[
∂Te(z, t)
∂t

− ∂Ti(z, t)
∂t

])
dz (18)

By substituting the term
∂Te(z, t)
∂t

by its expression given by
(14) and after arrangement, equation (18) takes the form

d2ym(t)
dt2

= I1 + hi ve

[ L∫
0

cm(z)δ(z) dz

︸ ︷︷ ︸
I2

]
u(t) (19)

where I1 is the remaining term of the integral in equation (18).
According to equation (19), it is clear that the input appears
linearly.

Now, in order to have the control law u(t) well-defined, the
integral term I2 must be different from zero. This condition
ensures that the characteristic index of the measured output
ym(t) with respect to the manipulated input u(t) is equal to
2. The calculus of I2 gives

I2 =

L∫
0

cm(z) δ(z) dz = cm(z)|z=0 (20)

The condition on the characteristic index being equal to 2 is
related to the choice of the function cm(z), i.e. the value of
cm(z) should not be zero at z = 0

I2 = cm(0) �= 0 (21)

Thus, by choosing a function cm(z) ≥ 0 that satisfies the
condition (21), the characteristic index will be σ = 2. In
summary, the modification of equation (14) by introduction of
the manipulated input and the consideration of the new output
(16) have ensured the existence of the characteristic index.

As σ = 2, this suggests requesting the following input-output
response of the closed-loop system

τ2
d2ym(t)
dt2

+ τ1
dym(t)
dt

+ ym(t) = v(t) (22)

Substituting (19) into equation (22), we obtain the following
state-feedback control law

u(t) =
1

hi ve τ2 I2

[
v(t)− ym(t)− τ1 ẏm(t)− τ2 I1

]
(23)

where τ1, τ2 are adjustable controller parameters chosen to
guarantee the input-output stability and to enforce the desired
performance specifications for the output ym(t) (Christofides,
2001), and v(t) is an external input.

The control robustness dealing with problems of model and
parameter uncertainty and unmodeled dynamics, is provided
in (23) through application of the linear control theory to
the resulting linear [input v(t)-output ym(t)] linear system
to define the external input v(t) by a robust controller. In
this work, in order to ensure the robustness, i.e. to handle
uncertainties and unmodeled dynamics, the external input v(t)
is defined by means of a PI controller (Kravaris and Kantor,
1990) as follows

v(t) =Kcm

⎡⎣(ydm(t)− ym(t)
)

+
1
τIm

t∫
0

(ydm(ξ)− ym(ξ)) dξ

⎤⎦
(24)
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whereKcm
, τIm

are respectively the proportional gain, integral
time constant of the PI controller, respectively. ydm(t) is the set-
point of the measured variable ym(t).

Thus, the transfer function of the closed loop system is the
following
Ym(s)
Y d

m(s)
=

Kcm

(
τIm

+ 1
)

τIm
τ2 s3 + τIm

τ1 s2 +
(
τIm

+Kcm
τ1
)

+Kcm

(25)

The scalar parameters Kcm
, τIm

and τ are tuned in order
for the denominator to approach a polynomial minimizing an
ITAE criterion (Corriou, 2004) and it can be verified that the
following polynomial is Hurwitz (the poles have a negative real
part) to ensure the closed loop stability related to the roots of
the characteristic equation
τ2τIm

s3 + τ1τIm
s2 +

(
τIm

+ τ1Kcm

)
s+Kcm

= 0 (26)

At this point, it is clear that the control law (23) ensures the
desired performances of the introduced measured output ym(t)
rather the controlled output y(t). Actually, the output ym(t) is
introduced only in order to avoid the problem of non-existence
of the characteristic index. In order to solve the formulated
boundary control problem, i.e. controlling the output y(t), we
propose to keep the control law (23) derived for the measured
output (16) with c(z) satisfying the condition (21). Then, define
the set point of the measured output ym(t), denoted by ydm(t),
by means of a PI controller taking as input the error e(t) =
yd(t) − y(t), where yd(t) is the corresponding set point of the
controlled variable y(t). Note that another control technique
can be adopted to provide the set point ydm(t). The proposed
global control strategy is summarized in Fig. 2.

The control law (23) requires that the complete state Ti(z, t)
must be available especially to evaluate the integral term I1
and the measured output ym(t). From a practical point of view,
this is impossible since the state Ti(z, t) is infinite. Ray (1989)
discusses some way that can provide the complete state of
a distributed parameter system. The design of Kalman filter
that estimates the whole state variables vector in the case of a
counter-current heat exchanger has been studied by Maidi et al.
(2008a). In this work, it is considered that the vector of state
variables is fully available to clearly show the effectiveness and
the contribution of the proposed control strategy.

Note that the choice of the function cm(z) is not unique. Nev-
ertheless, the relation (21) shows that the function cm(z) is
involved in the evaluation of the integral term I1 and in cal-
culating the measured output ym(t) and its derivative ẏm(t),
so it is suggested to choose a simple function for example
cm(z) = L − z. From a practical point of view, these calcu-
lations can be provided simply by a computer by processing
the data measurements Ti(z, t) and Te(z, t).

4. SIMULATION RESULTS

In this section, the performance of the proposed control strategy
will be illustrated through application examples. For simula-
tion purpose of the closed-loop system, the method of lines
(Wouwer et al., 2004) is used by considering a number of
discretization points N = 100. The control is held constant
over the sampling period equal to 0.02 s in all simulation runs.
The integral term I1, the measured output ym(t) and its deriva-
tive ẏm(t) involved in the control law (23) are evaluated nu-
merically using the trapezoidal method. The terms involving

differentiation according to the space variable z are evaluated
by means of finite differences.

The heat exchanger parameters (Friedly, 1972) are ve =
2 m . s−1, vi = 1 m . s−1, he = 1 s−1, hi = 1 s−1 and L = 1 m.
For the internal PI controller, the tuning parameters obtained
following the tuning procedure described at the end of the
section 3.2 are Kcm

= 0.0240, τIm
= 0.0469 s. The tuning

parameters Kc and τI of the external PI controller that provide
the set point ydm(t) have been achieved by trial and error and
observation of the obtained performance, so that the retained
parameters are Kc = 0.02 and Ti = 0.3 s.

The initial conditions Ti(z, 0) and Te(z, 0) are the steady state
profiles (Fig. 3) defined by Ti0(t) = 25◦C and Te0(t) = 50◦C.
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Fig. 3. Profiles of the temperatures of the internal and external
fluids at steady state.

4.1 Tracking problem

In the first simulation run, the reference input tracking capa-
bilities of the controller are studied. Thus, two step set points
have been specified at times t = 1 s and t = 30 s corresponding
respectively to yd(t) = 60 ◦C and yd(t) = 30 ◦C. On Fig. 4,
it is clear that the output y(t) (Fig. 4b) follows perfectly the
imposed set point whereas the control moves of u(t) are phys-
ically acceptable (Fig. 4c). In addition, the spatial profiles of
temperature obtained at time t = 60 s is also realistic (Fig. 4d).

4.2 Disturbance rejection

The second performed test concerns the problem of disturbance
rejection. The performances of the control strategy are thus
evaluated with respect to changes of the internal fluid tempera-
ture at the inlet of the heat exchanger which is a disturbance for
the process. For that reason, a step of −10% of the temperature
of the entering internal fluid (at z = 0) is imposed as a distur-
bance at time t = 30 s, after having imposed a step set point
at time t = 1 s corresponding to yd(t) = 60 ◦C. From Fig. 5,
it is clear that the controller behaves adequately to reject the
disturbance effect and achieve perfectly the set point tracking
(Fig. 5b). The dynamic behavior of the manipulated variable
u(t) (Fig. 5c) remains also physically admissible. Again, the
profiles of temperatures at t = 60 s, after successively the step
set point and the step disturbance, are typical of the behavior of
a co-current heat exchanger (Fig. 5d).

5. CONCLUSION

In this paper, the geometric control of a co-current heat ex-
changer is investigated, and a control strategy is proposed to
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v(t)ydm(t)
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+

External
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Fig. 2. Global control strategy of a co-current heat exchanger (T (z, t) = [Te(z, t)Ti(z, t)]
T ).

control the outlet internal fluid temperature. The main idea con-
sists in inserting the manipulated variable, i.e. the inlet external
fluid temperature, in the state equations of the heat exchanger
by means of a Dirac function. Furthermore, the spatial average
temperature of the internal fluid has been introduced, as mea-
sured output, in order to ensure the existence of the characteris-
tic index. Then, to achieve a desired performance of the outlet
internal fluid temperature, a control strategy is proposed where
a PI external controller is introduced to provide the set point
of the introduced measured output by taking as input the error
between the outlet internal fluid temperature and its desired
set point. The effectiveness of the proposed design and con-
trol strategy is demonstrated through numerical experiments.
The simulation results show that the control strategy behaves
correctly and ensures a satisfactory tracking and disturbance
rejection.
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Abstract: This paper considers the problem of stabilizing the quadruple-tank process using an
approximate dissipative Hamiltonian realization. The proposed approach consists in canceling by
feedback the deviation of the system from a Hamiltonian system. First, we obtain a characteristic
one-form for the system by taking the interior product of a non vanishing two-form with respect
to the controlled vector field. We then construct a homotopy operator on a star-shaped region
centered at a desired equilibrium point. The dynamics of the system is then decomposed into an
exact part and an anti-exact one. The exact part is generated by a potential, hence stability of
this part is guaranteed using the generating potential as a Lyapunov function. The stabilizing
feedback controller is designed by canceling the anti-exact part of the characteristic one-form.
Application of the resulting controller is illustrated by numerical simulations.

Keywords: Feedback Regulation, Approximate Dissipative Hamiltonian Realization, Stability.

1. INTRODUCTION

Application of generalized Hamiltonian systems are an
important approach for stability studies and controller
design of nonlinear control systems (van der Schaft, 2000)
and several physical problems were studied using this
class of dynamical system representations. One exam-
ple in chemical engineering was given recently by Otero-
Muras et al. (2008) who studied the stability of a reaction
network using its dissipative Hamiltonian representation.
However, one limitation associated with the study of non-
mechanical nonlinear systems using dissipative Hamilto-
nian is to derive a suitable Hamiltonian function for the
problem. As discussed in (Johnsen and Allgöwer, 2007)
and (Ortega et al., 1999), applications of Interconnection
and Damping Assignment Passivity-Based Control (IDA-
PBC) techniques is difficult since the concept of “energy”
is usually ill-defined for process control applications, for
example when mass balances are considered. In (Cheng
et al., 2005), it was shown that a nonlinear system of the
form

ẋ = f(x) +G(x)u, (1)
where x ∈ Rn, u ∈ Rm, and G(x) full rank, is trans-
formable to a stable Port-Controlled Hamiltonian (PCH)
system

ẋ = F (x)∇H(x), F (x) = [J(x)−R(x)] (2)
if there exists a feedback β : Rn → Rm such that the
matching equation

f(x) +G(x)β(x) = F (x)∇H(x) (3)
holds. In particular, for a fixed structure matrix F (x) and
a free Hamiltonian function H(x), the problem leads to a

set of PDEs parameterized by the structure matrix and
the feedback controller β(x). Relaxing the need for exact
matching, a non-exact matching IDA-PBC approach was
recently developed and applied successfully to chemical
reactor process stabilization (Ramı́rez et al., 2009).

In this paper, we will address the problem of stabilizing
controllers design using approximate dissipative Hamilto-
nian realization. In (Cheng et al., 2000), conditions for
approximate Hamiltonian realizations were given in terms
of a normal form. Sufficient conditions and a constructive
algorithm for a generalized Hamiltonian realization for
time-invariant nonlinear systems were presented in (Wang
et al., 2003). In particular, the method proposed in (Wang
et al., 2003) proposed a vector field decomposition along
the gradient direction ∇H(x) and the tangential direction
of the energy surfaces of H(x), for a regular positive-
definite function H(x). Following the work in (Maschke
et al., 2000) which related port-controlled Hamiltonian
systems to the construction of Lyapunov functions, it was
shown in (Wang et al., 2007) how k-th degree approximate
dissipative Hamiltonian systems can be used to solve the
realization problem and how associated k-th degree ap-
proximate Lyapunov functions can be used to study the
stability of such systems.

In the following, we propose to use the tools of exterior
calculus to construct the Hamiltonian function and design
a stabilizing controller. It is shown that a stabilizing
controller can be developed by canceling the anti-exact
part of the dynamics (this dynamics acts tangentially to
the dynamics generated by the potential). More precisely,
assuming a controller structure, we obtain a characteristic
one-form for the system by taking the interior product of
a non vanishing two-form with respect to the vector field.
A homotopy operator centered at a desired equilibrium
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point for the system is used to obtain an exact one form,
generated by a Hamiltonian function, and an anti-exact
form that generates the tangential dynamics. We design
the controller in such a way that the anti-exact form
vanishes. The stability argument presented in (Hudon
et al., 2008) uses local equivalence between the exact part
of the dynamics and a pre-defined Hamiltonian dissipative
realization, viewed as a reference system to develop a local
change of coordinates to derive the desired local dissipative
potential for the system.

The paper is organized as follows. Section 2 presents the
four-tank system as a motivating example. In Section 3,
mathematical background is presented, recalling the ele-
ments required for the development of the radial homotopy
operator that is used in the sequel. The application of this
operator to discriminate the exact and anti-exact parts of
the dynamics and the development of the stabilizing con-
troller are presented in Section 4. Numerical applications
to the four-tank system are given in Section 5. Conclusions
and future areas of investigation are outlined in Section 6.

2. QUADRUPLE-TANK PROCESS EXAMPLE

To motivate the present paper, we use the four-tank sys-
tem studied in details in (Johansson, 2000). More recently,
Johnsen and Allgöwer (2007) developed an IDA-PBC
controller for the system by introducing error dynamics
and solving the matching equations assuming a perturbed
Hamiltonian function for the closed-loop dynamics.

                     

(1- γ1)u1                                                                                          (1- γ2)u2 

 

                       γ1u1                                                                                       γ2u2 

          u1                                                                                           u2 

 

V3 

 

V4 

 

V1 

 

V2 

Fig. 1. Four-Tank System

The dynamic model for the four-tank system is given as a
control affine nonlinear system of the form

ẋ = f(x) +G(x)u (4)
where x ∈ R4 are the levels in the respective tanks
and u ∈ R2 are the manipulated flows. Using the model

proposed in (Johnsen and Allgöwer, 2007), f(x) and G(x)
are given by

f(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a1
A1

√
2gx1 +

a3
A1

√
2gx3

−a2
A2

√
2gx2 +

a4
A2

√
2gx4

−a3
A3

√
2gx3

−a4
A4

√
2gx4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

G(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

γ1
A1

0

0
γ2
A2

0
1− γ2
A3

1− γ1
A4

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

The parameters Ai represent the cross sections of the
respective tanks i = 1, . . . , 4, such that the volumes are
given by Vi = Aixi. The parameters ai are the cross
section of the outlet holes. The gravitational acceleration
is denoted by g. The parameters γ1, γ2 ∈ [0, 1] are the
valve parameters that determined how much of the flows
ui are re-directed in bottom tanks i = 1, 2. If the levels
of tanks 1 and 2 are the only measured states, it was
shown in (Johansson, 2000) that the condition for stable
zero dynamics is that γ1 + γ2 �= 1.

To stabilize the system at a desired admissible steady-
state, (x∗, u∗), we propose a controller of the form

u1(t) = k11(x) · x1(t) + k12(x) · x2(t) (7)

u2(t) = k21(x) · x1(t) + k22(x) · x2(t). (8)
At this point, we assume that all tanks levels are measured.
In Section 5, we will discuss how this requirement can be
relaxed in the case where only x1 and x2 are measured.

3. EXTERIOR CALCULUS AND HOMOTOPY
OPERATOR

In this section, we show how to construct a homotopy
operator H, i.e., a linear operator on differential forms ω,
that satisfies the identity

ω = d(Hω) + Hdω. (9)
We first recall some notions of exterior calculus on Rn

(Edelen, 1985). We denote a smooth vector field X ∈
Γ∞(Rn) as a smooth map

X : Rn → TRn, X|x =
n∑

i=1

vi(x)∂xi |x. (10)

The cotangent (dual) space T ∗
x Rn is the set of all linear

functionals on TxRn,

T ∗
x Rn = {ω|x : TxRn → R} (11)

where each ω|x is linear, i.e.
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(aω1|x + bω2|x)(Xx) = aω1|x(X|x) + bω2|x(X|x). (12)

The standard basis of T ∗
x Rn is given by {dx1, . . . , dxn},

where dxi(∂xj
) = δij , δ

i
j being the Kronecker delta. An

element ω|x in the cotangent space T ∗
x Rn can be written

as

ω|x =
n∑

i=1

ωidxi, ωi ∈ R. (13)

In the sequel, differential one-forms will be used. We write

ω =
n∑

i=1

ωi(x)dxi, (14)

where ωi are smooth functions on Rn. The exterior (wedge)
product ∧ is defined on Ω1(Rn)× Ω1(Rn) by the require-
ments

dxi ∧ dxj =−dxj ∧ dxi

dxi ∧ f(x)dxj = f(x)dxi ∧ dxj

for all smooth functions f(x) and

α ∧ (β + γ) = α ∧ β + α ∧ γ, (15)

for all α, β, γ ∈ T ∗Rn. If α ∈ Λk(Rn), then we write
degα = k. Notice that Λ1(Rn) = T ∗Rn and Λ0(Rn) =
C∞(Rn).

The differential operator d is the unique operator on
Λ(Rn) =

⊕n
k=0 Λk(Rn) with the following properties:

d : Λk(Rn) → Λk+1(Rn), 0 ≤ k ≤ n− 1, (16)

1. d(α+ β) = dα+ dβ.
2. d(α ∧ β) = dα ∧ β + (−1)deg αα ∧ dβ.
3. df = ∂fi

∂xi
dxi, ∀f(x) ∈ Λ0(Rn).

4. d ◦ dα = 0.

A k-form α is said to be closed if dα = 0. It is said to be
exact if there exists a (k − 1)-form β such that dβ = α.

The interior product � is a map

� : Γ∞(Rn)× Λk(Rn) → Λk−1(Rn) (17)

with the following properties ∀X ∈ Γ∞(Rn) and ∀f ∈
Λ0(Rn):

1. X� f = 0.
2. X� ω = ω(X),∀ω ∈ Λ1(Rn).
3. X� (α + β) = X� α + X� β,∀α, β ∈ Λk(Rn), k =

1, . . . , n.
4. X� (α∧β) = (X� α)∧β+(−1)deg(α)α∧(X� β),∀α, β ∈

Λ(Rn).

The first step in the construction of a homotopy operator
is to define a star-shaped domain on Rn (Edelen, 1985;
Banaszuk and Hauser, 1996). An open subset S of Rn

is said to be star-shaped with respect to a point p0 =
(x01, . . . , x

0
n) ∈ S if the following conditions hold:

• S is contained in a coordinate neighborhood U of p0.
• The coordinate functions of U assign coordinates

(x01, . . . , x
0
n) to p0.

• If p is any point in S with coordinates (x1, . . . , xn)
assigned by functions of U , then the set of points
(x0 + λ(x− x0)) belongs to S, ∀λ ∈ [0, 1].

A star-shaped region S has a natural associated vector
field X, defined by

X(x) = [x0i + λ(xi − x0i )]∂xi
, ∀x ∈ S. (18)

In this paper, we will consider the case where the star-
shaped domain is centered at the desired equilibrium point
x∗i .

For a differential form ω of degree k on a star-shaped region
S centered at an equilibrium point, the homotopy operator
will be defined, in coordinates, as

(Hω)(x) =
∫ 1

0

X(x)� ω(λx)λk−1dλ, (19)

where ω(λx) denotes the differential form evaluated on the
star-shaped domain in the local coordinates defined above.

The properties of the homotopy operator are as follows
(Edelen, 1985):

H1. H maps Λk(S) into Λk−1(S) for k ≥ 1 and maps
Λ0(S) identically to zero.

H2. dH + Hd = identity for k ≥ 1 and (Hdf)(x) = f(x)−
f(x0) for k = 0.

H3. (HHω)(xi) = 0, (Hω)(x0i ) = 0.
H4. X�H = 0, HX� = 0.

The first part of the right hand side of (9), d(Hω), is
obviously a closed form, since d ◦ d(Hω) = 0. By property
(H1), for ω ∈ Λk(S), we have (Hω) ∈ Λk−1(S), d(Hω)
is also exact on S. We denote the exact part of ω by
ωe = d(Hω) and the anti-exact part by ωa = Hdω. It
is possible to show that ω vanishes on Rn if and only if ωe

and ωa vanish together (Edelen, 1985).

In the sequel, we will apply the homotopy operator on one-
forms. Since in our applications, ωe is an exact one-form,
(Hω) computed by homotopy is a dissipative potential.
A non dissipative potential is associated with the anti-
exact part, but on the star-shaped domain S, ωa does not
contribute to the dissipative part of the system. In other
words, ωa belongs to the kernel of H, which can be seen
by applying property (H3) from above to the definition of
ωa. In the next section, we will show how stabilization of
the desired equilibrium will be ensured by canceling the
dynamics associated with ωa using feedback.

4. FEEDBACK CONTROLLER DESIGN

4.1 Potential Computation

We now present the central element to the proposed
construction, namely using the homotopy operator to
discriminate the exact and the anti-exact parts associated
to a given autonomous system and then computing a
feedback controller to cancel the anti-exact part of the
dynamics.

Let the vector field X|x =
∑n

i=1 fi(x)∂xi
, i = 1, . . . , n be

known. We assume that X is of class Ck with k ≥ 2. It
is also assumed that X has an equilibrium point, in the
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present case, an admissible steady-state for the four-tank
process. First, we define a non vanishing closed two-form
Ω =

∑
1≤i<j≤n dxi ∧ dxj on Rn.

Taking the interior product of Ω with respect to the vector
field X, we compute a one-form ω as follows

ω =X� Ω (20)

=
∑

1≤i<j≤n

(fidxj − fjdxi) . (21)

Given a star-shaped region centered at the origin, with
associated vector field X(x) = xi∂xi , we have

(Hω)(x) =
∫ 1

0

(X�ω(λx)) dλ. (22)

Letting f̃i denote the values of the components of f after
integration with respect to λ, we have

(Hω)(x) =
∑

1≤i<j≤n

(
f̃i · xj − f̃j · xi

)
:= F̃ (x). (23)

Taking the exterior derivative, we have

ωe =
n∑

i=1

∂F̃

∂xi
dxi. (24)

The anti-exact form is then given by

ωa = ω − ωe

=
∑

1≤i<j≤n

(
fi − ∂F̃

∂xj

)
dxj −

(
fj +

∂F̃

∂xi

)
dxi. (25)

Remark 1. As a special case, if one defines Ω to be the
canonical symplectic two-form and if XH is the vector field
generated by a known Hamiltonian H, ω obtained by the
interior product XH� Ω is closed, and we can show that
ω = ωe = −dH.

For the quadruple-tank system, using our knowledge of the
coupling between the tanks, we define the non-vanishing
two-forms as

Ω = dx1 ∧ dx3 + dx2 ∧ dx4. (26)
The characteristic one-form for the system is thus given
by

ω = −f3dx1 − f4dx2 + f1dx3 + f2dx4. (27)
On a star-shaped region centered at the desired equilib-
rium point (x∗1, x

∗
2, x

∗
3, x

∗
4), we have

X = x∗i + λ(xi − x∗i ). (28)
A net result on our notation for the sequel is that on the
star-shaped domain, x denotes deviation variables from
the center x∗. In (Hudon et al., 2008), the exact part

ωe =
4∑

i=1

fe,i(x)dxi (29)

was used to compute a dissipative potential by equivalence
to a normal form of dissipative Hamiltonian realization.
In the present paper, we are interested in canceling the
anti-exact part ωa by feedback to ensure stability of the
closed-loop dynamics.

4.2 Anti-exact Dynamics Cancelation

As mentioned before, the anti-exact part does not influence
the value of the computed dissipative potential, at least
on the star-shaped domain where the homotopy operator
is defined. However, in order to prove stability, the anti-
exact part must also vanishes at the equilibrium point of
the system (and only there). In the considered example,
we will show that a desired equilibrium can be rendered
attractive provided that ωa(x∗) = 0.

The controlled vector field for the four-tank system is given
as in Johnsen and Allgöwer (2007) by Equations (4-6). We
fixed the controller to be

u1(t) = k11(x) · x1(t) + k12(x) · x2(t) (30)

u2(t) = k21(x) · x1(t) + k22(x) · x2(t). (31)

From Section 4.1, we are left we an anti-exact part of the
form:

ωa =
4∑

i=1

fa,i(x)dxi. (32)

It is desired to make this form closed by using the elements
ki,j(x) of the proposed controller. A one-form is closed if

∂fa,i

∂xj
=
∂fa,j

∂xi
. (33)

For the four-tank system, it leads us to 5 equations with
4 unknown:

k22
γ2 − 1
A3

− k11
γ1 − 1
A4

= 0 (34)

1
2
a3A1

√
2g

A3
√
x3

+
1
2
a1
√

2g√
x1

− γ1k11 = 0 (35)

−k21γ2
A2

= 0 (36)

−k12γ1
A1

= 0 (37)

1
2
a4A2

√
2g

A4
√
x4

+
1
2
a2
√

2g√
x2

− γ2k22 = 0. (38)

From Equations (36-37), we have that k12 = k21 = 0. From
Equations (35) and (38), we have that

k11(x) =−κ1
A3γ1

√
2x1x3

a3A1
√
gx1 + a1A3

√
gx3

(39)

k22(x) =−κ2
A4γ2

√
2x2x4

a4A2
√
gx2 + a2A4

√
gx4

(40)

where the gains κ1 and κ2 are used to guarantee the first
equality (34).

The stability argument for the closed loop system uses
the Barbashin-Krasovskĭı, hence the requirement that ωa

vanishes only at the desired equilibrium point. In fact,
the condition that ω = ωa + ωe be closed along with the
requirement that ω vanishes at the desired equilibrium is
essentially a convexity condition of a generating potential.
In that sense, decomposition of the dynamics using a char-
acteristic one-form is related to the stability requirements
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for IDA-PBC as presented in (Ortega et al., 1999) and
(Ortega et al., 2002). In the next section, we will illustrate
the application of the proposed stabilizing controller.

5. NUMERICAL SIMULATION RESULTS

We now present some numerical applications of the feed-
back controllers derived in the previous section. Simulation
parameters are taken from (Johnsen and Allgöwer, 2007)
and are presented in Table 1. We will look at 3 different
cases parameterized by the values of γ1 and γ2.

Table 1. System Parameters (Johnsen and
Allgöwer (2007))

Ai (cm2) ai (cm2)

i = 1, 2 50.3 0.233
i = 3, 4 28.3 0.127

First, we look at the case where ω1 = ω2 = 0.6. For these
values, an admissible steady-state x∗ is computed to be
approximately x∗ = [9, 9, 4.8, 4.8]T , and we initialize
the system at x = [4, 7, 6.8, 6.8]T . Figures 2 and 3
show that the controller (even with small gains) drives the
trajectory to the desired equilibrium and the controller to
the consistent steady-state value u∗. Hence by canceling
the anti-exact part, the center of the star-shaped domain
is attractive.

Fig. 2. Full state stabilization of case γ1 = 0.6, γ2 = 0.6

We now consider the case where γ1 = γ2 = 0.5. An ad-
missible steady-state x∗ is computed to be approximately
x∗ = [10.9, 10.9, 9.17, 9.17]T . Initializing the simulation
at x = [5.9, 9.9, 11.2, 11.2]T , the proposed controller
drives the system to the desired equilibrium (Figures Fig-
ures 4 and 5). This case is interesting since, as mentioned
in Section 2, if we had considered only output feedback,
the zero dynamics for the system are unstable at those
values.

To consider output feedback for the case γ1 = γ2 = 0.5,
we replace x3(t) and x4(t) in the controller expressions
(39-40) by their desired steady-state values x∗3 and x∗4. In
this particular case, since the zero dynamics is unstable,

Fig. 3. Control variables values for case γ1 = 0.6, γ2 = 0.6

Fig. 4. Full state feedback stabilization of case γ1 =
0.5, γ2 = 0.5

we use the design parameters κ1 and κ2 to make the
dynamics of the system associated with the anti-exact part
dominated by the gradient term. We seek to reach the same
equilibrium point as above x∗ = [10.9, 10.9, 9.17, 9.17]T
from two different initial states: [5.9, 9.9, 7.2, 7.2]T and
[15.9, 11.9, 11.2, 11.2]T . Results are presented in Figure
6. As argued in (Ramı́rez et al., 2009) for a related design
approach, the stabilization results present here still hold
locally since the proposed controller design procedure does
not involve inversion of the dynamics.

6. CONCLUSION

In this paper, a procedure to construct stabilizing con-
trollers using local dissipative Hamiltonian realization for
nonlinear dynamical systems was presented. The proposed
approach can be seen as an extension of the approximate
feedback linearization approach proposed by Banaszuk
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Fig. 5. Control variables values for case γ1 = 0.5, γ2 = 0.5

Fig. 6. Output feedback stabilization of case γ1 =
0.5, γ2 = 0.5

and Hauser (1996). Taking the interior product of a non
vanishing two-form with respect to the vector field defin-
ing the system, we first obtained a (possibly) non-closed
characteristic one-form for the system. Constructing a lo-
cally defined homotopy operator on a star-shaped domain
centered at the desired equilibrium point, we presented
how to decompose locally the obtained form into an exact
and an anti-exact one-forms. From (Hudon et al., 2008),
we know that the exact part is associated to a dissipa-
tive (stable) potential. The obtained anti-exact form is
associated to a non dissipative potential which generated
tangential dynamics that do not contribute to the value
of the dissipative potential on the star-shaped domain.
However, using a pre-defined feedback controller to make
this error one-form exact, it was shown, using the four-
tank system example, that the procedure enables us to
construct a stabilizing control. Future research will focus
on the limitations of the technique, especially cases where

the controller information does not appear in the expres-
sion of the anti-exact form, for example the nonisothermal
CSTR system presented in (Ramı́rez et al., 2009).
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N. Hudon, K. Höffner, and M. Guay. Equivalence to
dissipative Hamiltonian realization. In Proceedings of
the 47th IEEE Conference on Decision and Control,
pages 3163–3168, 2008.

K.H. Johansson. The quadruple-tank process: A multivari-
able laboratory process with an adjustable zero. IEEE
Transactions on Control Systems Technology, 8(3):456–
465, 2000.
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1. INTRODUCTION 

Linear model predictive control is a widely accepted control 
strategy in the chemical industry. Many theoretical studies 
and industrial applications of linear MPC have been reported 
elsewhere (Qin and Badgwell, 2003). On the other hand, the 
nonlinear behaviour of chemical processes has motivated 
researchers and practitioners to consider predictive control 
strategies based on nonlinear process models referred to as 
nonlinear model predictive controllers (NMPC) (Findeisen 
and Allgöwer, 2002). 

Some of the challenging requirements related to the industrial 
implementation of NMPC are: (1) a reliable nonlinear model 
of the process is needed that can be effectively used for real 
time control and (2) ensuring robustness to model error. 

Both first principles as well as empirical input-output models 
have been used in the past for nonlinear predictive control 
strategies. Although first principles models have the 
advantage of formally satisfying basic energy and mass 
balances of the process, they are often too complex for real 
time control and their structure is generally not amenable for 
formal robust analysis and design. NMPC strategies based on 
empirical models such as Hammerstein and Volterra series 
(Hérnandez and Arkun, 1993; Maner et al., 1996; Parker and 
Doyle III, 2001) have been reported but their robustness with 
respect to model error have not been thoroughly studied. 

The need to address robustness arises from the fact that the 
models used for predictive control are never exact. Although 
a good amount of research work has been conducted on 
robustness of linear predictive controllers, the robustness of 
nonlinear predictive controllers has not been extensively 
studied. The lack of robustness guarantees is currently 
perceived as one of the key obstacles for wide industrial 
acceptance of NMPC strategies (Nagy and Braatz, 2003a). 

The current work investigates the design of a robust NMPC 
algorithm based on an empirical Volterra series model. 
Volterra series models have been shown to efficiently 

describe general nonlinear systems (Schetzen, 1980). A key 
idea for this study is that based on the Volterra model it is 
possible to formulate the robust predictive control problem as 
a μ-Structured Singular Value test that can be used on-line to 
calculate optimal control actions. The μ (Structured Singular 
Value, Doyle, 1982) norm is used, at each sampling instant, 
to calculate a bound on the norm of a vector containing both 
output and input predictions along a predefined prediction 
time horizon in the presence of disturbances and uncertainty 
in the Volterra model coefficients. Then, the calculated 
bound is minimized with respect to the optimal control 
actions to be sent to the process. 

The paper is organized as follows. In section 2 the 
formulation of the μ test and the optimization problem based 
on the calculated bound is presented. In the same section 
terminal conditions to enforce stability as well as conditions 
to enforce manipulated variable constraints are also 
presented. Section 3 presents two case studies and 
conclusions are presented in Section 4. Mathematical details 
are presented in Appendix A. 

2. METHODOLOGY 

2.1  Model Predictive Control 

MPC minimizes a cost function that considers the future 
errors whit respect to the manipulated variables. For 
simplicity of notation a single input single output (SISO) case 
is shown but the formulation can be easily extended to the 
multivariable case. Considering that y pr is the predicted value 
of the controlled variable and y sp is the controlled variable set 
point, a vector of predictions can be written as follows: 
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where k0 is the initial sampling instant, p is the prediction 
horizon and d is a measured disturbance. The objective 
function of the controller proposed in this work minimizes 
the maximum absolute value of each element of the Y vector 
with respect to the manipulated variables u as follows: 

� � � � <�
Y

mkuku 00 ,,wrt
min


 (2) 

where m is the control horizon. In principle norms other than 
the infinity norm of the output may be considered in the 
formulation but are beyond the scope of the current study. It 
will be also shown in subsections 2.4 to 2.6 that the vector Y 
in (2) may be augmented by additional variables, other than 
predicted outputs, to enforce a terminal condition and 
manipulated variables constraints. The following subsection 
discusses the Volterra models used to calculate the prediction 
Y. 

2.2  Volterra series 

The general structure of a Volterra series model is given as 
follows: 
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where u is the manipulated variable, y is the controlled 
variable and hi are the coefficients of the Volterra series. For 
practical purposes the series is truncated and the resulting 
expression is 
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without loss of generality it can be consider that h0=0. For 
example, for N=2, the value of the controlled variable is 
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where M is the memory of the system. The linear hn
L, and 

nonlinear hi,j
NL, Volterra series coefficients can be obtained 

by least squares regression using process input-output data by 
imposing an appropriate input sequence. For a system with 
polynomial degree N, it has been shown that is necessary to 
use a N+1 level pseudorandom multilevel sequence (Nowak 
and Van Veen, 1994). Confidence intervals for the 
coefficients, to be used in the calculations as uncertainty 
bounds associated to these coefficients, can be obtained using 
least squares regression. 

2.3  Calculation of the worst predicted output 

The worst predicted output calculation can be performed by a 
Structured Singular Value (SSV) test (Nagy and Braatz, 

2003b). The main motivation to use the SSV test is that it 
allows finding the worst �Y�� when uncertainty in the 
Volterra coefficients is considered. Accordingly, (5) can be 
modified to include parameter uncertainty as follows where 
hn

L and hi,j
NL

 are the nominal value of the coefficients and 
@hn

L and @hi,j
NL

 are the uncertainty associated to the 
coefficients: 
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w is a feedback term that considers the current difference 
between the actual process output and the predicted output: 

� � � � � �11 000 ���
 kykykw prreal  (7) 

By selecting an appropriate interconnection matrix M and 
uncertainty block structure �, the worst value of a variable in 
the presence of model error can be calculated by the 
following SSV test (Braatz et al., 1994; Nagy and Braatz, 
2003b) 
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Thus, a bound on the worst deviation of �Y��, i.e. the norm 
of the prediction vector can be obtained by the following 
skew 5 problem: 
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A key idea in (9) is that the feedback term in (7) is also 
treated as an uncertainty and the maximization in (9) is 
carried out with respect to both this feedback error and the 
uncertainties in coefficients. Accordingly, the uncertainty 
block � is as follows: 

� �321 ,,diag ���� 
  (10) 

where �3 is a complex scalar square matrix of dimensions 
p×p related to performance and �1 and �2 are real scalar 
square matrices related to the uncertainty in feedback and 
Volterra series coefficients respectively with the following 
dimensions: 
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The problem stated in (8) and (9) can be used within the 
predictive control problem defined in (2) as follows: 
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The vector Y can be modified, as mentioned in section 2.1 to 
include additional terms as follows: (1) a penalty term to 
prevent an excessive movement of the manipulated variables, 
(2) manipulated variables to enforce constraints and (3) a 
terminal condition to ensure convergence. These terms are 
explained in the following subsections. 

2.4  Manipulated variables movements penalization 

Define: 
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Redefining: Y=[ y pr y �u ]T it is ensured by (9) that the 
elements of y �u  satisfy max(yi

�u)� kssv for i=1,…,m. Thus, 
the maximum weighted manipulated variable movement is 
bounded at each sampling instant by kssv. 

2.5  Manipulated variables constraints 

Define: 
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Redefining: Y=[ y pr y �u y uc ]T it is ensured by (9): that the 
elements of y uc  satisfy max(kssvu(i)/umax(i)) � kssv for 
i=k0,…,k0+m which can be simplified to: max(u(i)) � umax(i) 
for i=k0,…,k0+m. Thus, the manipulated variables are 
bounded at each sampling instant by umax(i) for i=k0,…,k0+m. 

2.6  MPC terminal condition 

A terminal condition is used to ensure that at steady state the 
predicted output stays within a neighborhood 1 near the 
origin (Chen and Allgöwer, 1998). Although not shown here 
for brevity, it can be shown that the use of the terminal 
condition together with the manipulated variables constraints 
ensures stability providing that the terminal condition is 
feasible with respect to constraints. Define: 
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� can be selected by the user but a smaller value results in 
more conservative control. Redefining: Y=[y 

pr y�u y 
uc y 

tc] T 
it is ensured by (9) that 
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which can be simplified to: 
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Details on the construction of M for a Volterra series model 
NMPC strategy considering the additional terms of 
subsections 2.4, 2.5 and 2.6 can be found on Appendix A at 
the end of this paper.  

3. CASE STUDIES 

Different case studies are presented to show the more 
important features of the proposed algorithm. For simplicity a 
SISO case is presented where an approximated Volterra 
model describing the effect of coolant temperature on reactor 
concentration for a CSTR is as follows (Gao, 2004): 
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h1
L = 0.2835,  h2

L = 0.1445,  h3
L = 0.0594, h1,1

NL = – 0.0072, 
h1,2

NL = – 0.049,     h1,3
NL = – 0.0281,    h2,2

NL = – 0.0379, 
h2,3

NL = – 0.017,  h3,3
NL = – 0.0081. The MPC prediction and 

control horizons are p=3 and m=2. 

The first study is intended to illustrate the possibility of 
tuning the proposed algorithm through the value of W1

�u, i.e. 
the weight used to penalize manipulated variables from 
sampling instant (k0–1) to sampling instant (k0). The response 
of the process to a pulse disturbance is studied and the set 
point is equal to zero. The disturbance is as follows: from 
0<k0�20 d=5, then from 20<k0�40 d=0. For this case it is 
considered that there is no uncertainty in the Volterra model 
coefficients. 

Figures 1 and 2 show that the weight imposed on the 
movement on the manipulated variables can be effectively 
used to tune the closed loop response. To illustrate the 
significance of the nonlinear terms, a simulation is carried on 
with a controller based solely on the linear part of the 
Volterra model. The results (dotted line in Figures 1 and 2) 
illustrate that the nonlinear model based controller provides 
as expected, a better and more consistent performance than 
the linear model based one. 

To illustrate the constraint handling capabilities of the 
algorithm, the response to a pulse disturbance is studied. The 
disturbance is: for 0<k0�5 d=5, for 5<k0�10 d=50 and for 
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10<k0�15 d=5. The value of the manipulated variable is 
restricted to |u(k0)| � 5.5 and W1

�u=2. For this case it was 
considered that the Volterra series coefficients are known 
accurately, i.e. there is no model uncertainty. It can be seen 
from Figure 3 that the controller keeps the value of the 
manipulated variable within the allowed limits. 
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Fig. 1. Manipulated variable profile for case study 1. 
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Fig. 2. Controlled variable profile for case study 1. 

A key feature of the proposed MPC is that it allows 
considering that the Volterra series coefficients are not 
exactly known. To illustrate this feature of the algorithm it is 
assumed  that certain coefficients are uncertain as follows: 
h1

L = 0.2551J0.0383, h2,2
NL = –0.0360J0.0072 and h3,3

NL = –
0.0089J0.0018. In this case the Volterra series coefficients of 
the plant are the same as those used for case study 1 and 2. 
Furthermore, the disturbance affecting the process is the same 
as that of case study 1. Figures 4 and 5 show the manipulated 
and controlled variable profile when W1

�u=2. The response 
obtained with the uncertain model MPC is more oscillatory 
but still acceptable. The figures show that the control variable 
converges to a value very close to zero and the manipulated 
variables are kept within limits. The small offset observed in 
the manipulated variable with respect to u=0 arises from the 

requirement of the terminal condition in the presence of 
model uncertainty. 
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Fig. 3. Manipulated variable profile for case study 2. 
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Fig. 4. Manipulated variable profile for case study 3. 
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Fig. 5. Controlled variable profile for case study 3. 
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4. CONCLUSIONS 

A novel robust NMPC controller based on a Volterra model 
was presented. The methodology uses μ analysis to calculate, 
for an uncertain plant model, the worst possible norm of a 
vector of inputs and outputs. The interconnection matrix can 
include terms to account for manipulated variables movement 
weighting, manipulated variables constraints and robust 
stability properties enforced through a terminal condition. 
The application of this technique to MIMO problems is 
currently being investigated. 
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Appendix A. CONSTRUCTION OF THE MATRIX M 

The use of an appropriate interconnection matrix M allows 
quantifying the effect that an input has on the system’s output 
in the presence of uncertainty through a linear fractional 
transformation (LFT). If M is built according to the following 
structure 
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the effect that the input has on the output in the presence of 
uncertainty is: 
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where w(k) = [w(k), K, w(k)]T
p. The interconnection matrix 

M that considers manipulated variables movement 
penalization, manipulated variables constraints and terminal 
condition has the following structure: 

'
'
'
'

(

)

*
*
*
*

+

,
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34333231

24232221

14131211
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M  (24) 

In (24) M11, M12, M13, M21, M22, M23, M31, M33, M34 and 
M44 are matrices of appropriate dimensions that have all its 
elements equal to zero. M14, M24, M32, M41, M42 and M43 are 
defined as: 

� �ADM diag14 
  (25) 
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'
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� �CIM pdiag41 
  (28) 
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 (29) 

� �CPacNLacLac
VVVM 
43  (30) 

The rest of the matrices are defined as follows: 

� �131211 ,,diag AAAA 
  (31) 

� �pkdkssv �
 011A  (32) 
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In order to obtain the matrix E it is necessary to build a 
column vector that contains the Volterra series coefficients 
according to the following structure: 

� �T
11 �
 pVEVEVE   (58) 

The matrix VE has the following dimensions: 
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The rule to construct VE is as follows: 
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Finally the matrix E is constructed according to the following 
program: 
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The elements of the matrix E are zero except the following: 
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(e-mail: {ASchaum,JMorenoP,JDiazS}@ii.unam.mx).

∗∗ Departamento de Procesos e Hidraulica, Universidad Autónoma
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Abstract: The problem of controlling a (possibly open-loop unstable) continuous exothermic
reactor with temperature measurements and manipulation of reactant feed and heat exchange
rates is addressed within a passivity-dissipativity framework. The combination of a nonlinear
passive state-feedback (SF) controller with a dissipative observer yields the dissipative output-
feedback (OF) controller closed-loop stability conditions with: (i) the identification of the
underlying gain-behavior interplay, and (ii) simple tuning guidelines. The approach is tested
through numerical simulations, with a representative worst-case example: an exothermic reactor
with Langmuir-Hinshelwood nonmonotonic kinetics, which must be regulated about an open-
loop unstable steady-state which is not observable.

Keywords: Chemical Reactor Models, Output-Feedback Control, Dissipativity, Observability.

1. INTRODUCTION

Continuous exothermic chemical reactors are complex non-
linear dynamical systems with nonlinear behavior, asym-
metric MIMO coupling, parametric sensitivity, multiplic-
ity, hysteresis, bifurcation, and limit cycling. Most of the
industrial reactors are controlled by combining conven-
tional (ratio, and cascade) feedforward and (P, PI and
PID) feedback linear control component with supervisory
or advisory material-energy balance and optimizing con-
trollers (Shinskey [1988], Gonzalez and Alvarez [2005]).
The process design or redesign to meet tighter safety,
productivity, quality and environmental requirements mo-
tivates the development of more capable and systematic
reactor control designs. Advanced nonlinear control stud-
ies have been performed in the chemical process systems
engineering field, the related state of the art can be seen
elsewhere, and here it suffices to mention that: (i) with
a few exceptions (Alvarez et al. [1991], Viel and Jadot
[1997], Antonelli and Astolfi [2003]) most of the studies
lack rigorous stability and performance assessments, and
(ii) only the optimality-based MPC (which stems from
industrial control developments) has reached the stage
of acceptance for plant scale testing or implementation
(Eaton and Rawlings [1990]). Recently, in the context
of polymer reactor (Gonzalez and Alvarez [2005], Diaz-
Salgado et al. [2007]) and distillation column output-
feedback control studies (Castellanos-Sahagun and Al-
varez [2006]) with constructive nonlinear control, connec-
tions between PI, inventory and MP control designs have
been identified, and the closed-loop stability assessment
and tuning aspects have been handled either with con-
ceptual arguments or with the small gain theorem. The
dissipativity notion offers a unifying framework to handle

design-oriented tools in constructive control (Sepulchre
et al. [1997]) according to fundamental connections be-
tween optimality, passivity, robustness and dissipativity,
with emphasis on interlaced observer-control designs and
rigorous stability assessments. The dissipativity ideas (i)
were originally developed in the context of state-feedback
(SF) control problems (Willems [1972]), (ii) have been
extended to design of nonlinear observers (Moreno [2005]),
and observer-control separation (Moreno [2006]), and (iii)
enable the tackling of the difficult problem of estimating
and controlling reactors with non-monotonic kinetics, and
lack of observability at maximum reaction rate (Schaum
et al. [2008]).

The preceding considerations motivate the present reactor
output-feedback (OF) control study, where the problem
of controlling a continuous exothermic (possibly open-loop
unstable) reactor with either monotonic or non-monotonic
kinetics, temperature measurements, and manipulation of
reactant and heat exchange rates is addresed within a
combined passivity-dissipativity approach, including (i)
the derivation of rigorous closed-loop stability conditions
coupled with easy-to-apply tuning guidelines, and (ii) the
identification of the underlying interplay between regula-
tion speed, robustness, and observer-control gains. The
proposed approach is tested, through numerical simula-
tions, with an exothermic reactor with nonmonotonic ki-
netics, open-loop instability, and lack of observability.

In our previous study (Schaum et al. [2008]) the reactor
problem was adressed by ad hoc combining a passive con-
troller with a dissipative observer, and drawing closed-loop
stability conditions with the small gain theorem. How-
ever, the passivity (controller) and dissipativity (observer)
approaches were methodologically disconnected, and the
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stability characterization was not reflected in a practical
tuning. In the present work: (i) the controller-observer de-
sign and the closed-loop stability assessment are performed
with a united framework, and (ii) a simple tuning scheme
that is clearly related with closed-loop functioning features
is obtained .

2. CONTROL PROBLEM

Consider a continuous chemical reactor where a reactant
is converted into product via an exothermic reaction,
heat being removed through a diathermal wall with a
cooling jacket. Assuming the volume (V ) and the jacket
temperature (Tc) are controlled with fast (conventional,
linear decentralized) feedback loops which manipulate the
exit and coolant flowrates (Shinskey [1988]) the reactor
model is given by the dynamic mass-energy balance:
ċ = −r(c, T, π) + θ(ce − c), c(0) = c0
Ṫ = βr(c, T, π) + θ(Te − T )− η(T − Tc), T (0) = T0

(1)

where ((̄·) is the steady-state (SS) value of (·))
c = C/C0, θ = q/V, β = (−ΔH)C0/(V ρmcp)
η = (UAU )/(V ρcp), p = (p′a, π

′)′, pa = (ce, β, η)′

r(c̄, T̄ ) + θ(c̄e − c̄) = 0,
βr(c̄, T̄ , π) + θ(T̄e − T̄ )− η(T̄ − T̄c) = 0

The reactant dimensionless concentration c, and the re-
actor temperature T are the states, the dilution rate q
and the jacket temperature Tc are control inputs, r is
the nonlinear reaction rate function, π is its parameter
vector, θ is the inverse residence time, η is the heat transfer
coefficient-to-capacity quotient, β is the adiabatic tem-
perature rise, the feed concentration ce and temperature
Te are the exogenous inputs, C (or C0) is the reactant
(or pure reactant) concentration, q is the feed flowrate,
−ΔH is the heat of reaction, ρm (or cp) is the reacting
mixture density (or specific heat capacity), U (or AU ) is
the heat transfer coefficient (or area), and p is the model
parameter. The temperatures (T and Tc) are measured,
and the concentrations (ce and c) are not. In compact
vector notation the reactor model (1) is given by
ẋ = f [x, d(t), u, p] , x(0) = x0, y = Cx, z = x (2)
x = [c, T ]′ ∈ X = [0, 1]× (T−, T+) ⊂ R2, p = (p′a, π

′)′

f [x̄, d̄, ū, p] = 0, d = [ce, Te]′, Te = ye − ỹe, C = [0, 1],
u = (θ, Tc), T− = min(Te, Tc), T+ = max(Te, Tc) + β
x is the state, u (or d) is the control (or exogenous, possibly
time-varying) input, and y (or z) is the measured (or
regulated) output. X is an invariant set, meaning that all
state motions born in X stay in X (Alvarez et al. [1991]).
Since the reactor model (1) contains constant (p̃) and
time-varying reactor (or feed) temperature measurement
ỹ (or ỹe), and dilution rate (θ̃ (or coolant temperature
(T̃c)) actuator bounded errors, the actual reactor system
dynamics are given by
ẋ = f [x, d+ d̃(t), u + ũ(t), p+ p̃],
x(0) = x0, y = Cx + ỹ(t), z = x (3)

p̃ = (p̃a, π̃), d̃(t) = [c̃e(t), ỹe(t)]′, ũ(t) = [θ̃(t), T̃c(t)]′,
ỹ(t) = y − T |p̃| ≤ δp, ||d̃(t)|| ≤ δd, ||ũ(t)|| ≤ δu,
||ỹ(t)|| ≤ δy, ||(.)(t)|| = sup

t∈[0,∞)

|(.)(t)|,

where δp, δd, δu and δy are the error sizes, and |(·)| is
the Euclidian norm of the vector (·). Our control problem

consists in designing, on the basis of the reactor model (1)
(with parameter approximation p) and flow and tempera-
ture measurement, an observer-based dynamical output-
feedback (OF) controller to regulate the concentration-
temperature pair z, about a (possibly opn-loop unstable
and unobservable) SS by manipulating the dilution rate-
cooling temperature pair u.

3. OUTPUT-FEEDBACK (OF) CONTROLLER

The reactor dynamics represent mass and energy accu-
mulation due to advective, reaction and heat exchange
input/output mechanisms. From the abstract energy per-
spective associated with the dissipativity control (Willems
[1972], Sepulchre et al. [1997]) and estimation (Moreno
[2005]) framework, our OF control problem amounts to
designing the observer-control pair in such a way that
the dissipation rate is negative, and robust, and implies
nonwasteful control action.

In deviation form referred to the SS regime, the reactor
system (1) is written as follows

ė = fe[e, ũe(t)], e(0) = e0, e = x− x̄,
ũe = (p̃′, d̃′, ũ′)′, fe(0, 0) = 0. (4)

According to the definition of nonlocal input-to-state sta-
bility (ISS) (Freeman and Kokotovic [1996]), the SS e =
0 is said to be practically uniformly (P) stable if an
admissible disturbance size (δu) produces an admissible
state deviation size (εx): given (δu, εx) there is a KL-
class (increasing-decreasing) function β and a K-class (in-
creasing) γ so that the state responses of system (4) are
bounded as follows

|e0| ≤ δ0, |ũe(t)| ≤ δu, (5)
⇒|e(t)| ≤ τ(|e0|, t) + α(||ũe(t)||) ≤ τ(δ0, 0) + α(δu) = εx

where τ (or α) bounds the transient (or asymptotic) re-
sponse. The (necessary and sufficient) Lyapunov charac-
terization of the ISS property is given by
α1(|e|) ≤ V (e) ≤ α2(|e|), V̇ = −α3(|e|) + α4(|ũe|) (6)

where V is a positive definite radially unbounded function
and α1, · · · , α4 are K-class functions.

3.1 Passive state-feedback (SF) controller

The notion of passivity plays a key role in the design of
robust nonlinear SF controllers (Khalil [2002]), with: (i)
fundamental connections between optimality, robustness
and passivity, and (ii) means to analytically construct
optimal controllers via inverse optimality. An optimal SF
controller is passive and underlien by a minimum phase
(MP) system (with relative degree less or equal than one).
A nonlinear system is passive if it is dissipative (Willems
[1972]) with storage function-supply rate pair and MP.

The reactor (1) is feedback-passive (after input coordinate
change) with respect to the input-output pair (u, z) and
the storage function V = eT e if and only if the reactor
relative degree equal to one condition is met, i.e. (Schaum
et al. [2008]):

rd(u, z) = (1, 1), z = x ⇔ ce �= c , η �= 0 (7)
Thus, the state-input coordinate change e = x − x̄, v =
f(x, d, u) takes the reactor into the passive normal form
(8)
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ė = v, e(0) = e0, ψ = e;V = eT e, V̇ = 2ψT v, (8)
with storage function V and input-output pair (v, ψ). The
SF controller (9) yields the closed-loop (decoupled, stable,
and dissipative) dynamics (10),
v=f(e, d, u)=−Ke,K=diag(kc, kT ) ⇒ u=μ(x, d, u) (9)

ė=−Ke, e(0)=e0, ψ=e;V= eTe, V̇=−2eTKe < 0. (10)
In original coordinates, the nonlinear passive SF controller
(9) is given by:
θ = [r(c, T )− kc(c− c̄)]/(ce − c),
Tc = T − [βr(c, T ) + θ(Te − T ) + kT (T − T̄ )]/η (11)

This controller with state, parameter, and measurement-
actuator errors (ε, d̃, p̃), yields the closed-loop dynamics
(13) with dissipation (14)

u = μ(x+ ε, d+ d̃, p+ p̃) := [μθ, μTc ]
T (12)

ė = −Ke+f̃
[
e; ε, d̃(t), p̃

]
, e(0)=e0,K= diag(kc, kT ) (13)

V̇ ≤ −2 min{kc, kT }V + e′f̃
[
e; ε, d̃(t), p̃

]
(14)

f̃
(
e; ε, d̃, p̃

)
= f

[
x̄+ e, d̄+ d̃, μ

(
x+ ε, d̄+ d̃, p+ p̃

)
, p
]

e = (ec, eT )′ = x− x̄, f̃ (e; 0, 0, 0) = 0.
Since the reactor has trivially stable nominal zero-
dynamics e = 0, the errorless closed-loop is asymptoti-
cally stable. From the Lipschitz continuity of (f, μ) the
system P-stability follows (Khalil [2002]), with a suitable
tradeoff between the initial state (δ0), parameter (δp),
input (δd and δx̃) and state excursion (εx) sizes, depending
on the choice of the control gain pair (kc, kT ). The P-
stable closed-loop reactor dynamics (13) represents: (i) the
behavior attainable with any robust controller, and (ii)
the recovery target for the OF control design. The related
solvability conditions (7) are generically met by the reactor
class (1) because: (i) c < ce, and (ii) η > 0.

3.2 Dissipative observer

The nonlinear global detectability property of any reactor
motion (Schaum et al. [2008]) suggests the consideration
of a dissipative observer, because (i) its functioning does
not require complete observability (Moreno [2005]), and
(ii) the structure-oriented approach offers a means to
perform the control-estimator design (Section 4). The
reactor dissipative observer is given by (Schaum et al.
[2008])

˙̂c =−r[ĉ−κr(T̂ − y), y, π] + θ(ce − ĉ)−κc(T̂ − y),·
T̂ = βr[ĉ − κr(T̂ − y), y, π] + θ(Te − T̂ )−

−η(T̂ − Tc)− κT (T̂ − y),
ĉ(0) = ĉ0, T̂ (0) = T̂0,

(15)

where κc (or κT ) is the usual concentration (or temper-
ature) gain, and κr is the gain of an injection in the
concentration argument of the reaction rate. The estima-
tion error dynamics are given by the two-subsystem inter-
connection in Lur’e- Popov form (Khalil [2002], Willems
[1972], Schaum et al. [2008])[
ε̇c(T )
ε̇T (t)

]
=
[
−θ(t) −κc

0 −λT

] [
εc(T )
εT (t)

]
+
[

1
−β

]
ν

ψ = ζ � εc − κrεT , , λT � θ(t) + η + κT

(16)

ν = −ρ (c, y; ζ) , (17)

with (i) a linear-dynamic advective subsystem (16) with
input ν and output ζ, and (ii) a nonlinear-static kinetic
subsystem (17) with the reaction rate error. Since the
rate r is continuously differentiable, there is a continuous
secant function ϕ so that the estimated minus the actual
rate is conically bounded (18) with the nonlinearity ρ is
encompassed in the conic sector (19)
ρ(c, T ; ζ) � r (c+ ζ, T )− r(c, T ) = ϕ (c, T ; ζ) ζ, (18)

ζ � εc − κrεT , −k1 (T ) ≤ ϕ (c, T ; ζ) ≤ k2 (T )
− k1 (T ) = min

0≤c≤1
rc(c, T, π) , k2 (T ) = max

0≤c≤1
rc(c, T, π),

(k2ζ − ρ(c, T ; ζ)) (ρ(c, T ; ζ) + k1ζ) ≥ 0 (19)
(Khalil [2002]). Consequently, the static system (17) is
[−1, 1/2(k2 − k1),−k1k2]-dissipative Moreno [2005], and
its dissipation is characterized by the reaction rate slopes:
the slope k1 is positive (or negative) if the reaction
rate is monotonic (or non-monotonic). The observer is
designed in such a way that: (i) the open-loop estimation
error dynamics consist of the feedback interconnection
of two adequatly dissipative (passive) subsystems, and
(ii) the estimator and control dissipativity properties are
structurally compatible. The observer gains κc, κT , κr are
chosen so that the system interconnection (16) - (17) is
dissipative with respect to the estimation storage function

V̂ =
1
2
εT ε. (20)

The gain pair (κc, κT ) shapes the dissipation of the linear
dynamical subsystem, and the gain κr determines the
interconnection form by setting the output of the linear
system. Convergence conditions for the dissipative open-
loop observer (15) are given in (Schaum et al. [2008]).

3.3 OF controller

The combination of the SF (9) passive nonlinear controller
with the dissipative observer (15) yields the dynamic OF
controller

˙̂c =−r[ĉ−κr(T̂ − y), y, πr] + θ(ce −ĉ)−κc(T̂ − y) ,
·
T̂ = βr[ĉ− κr(T̂ − y), y, πr] + θ(Te − T̂ )−

−η(T̂ − Tc)− κT (T̂ − y),
θ = [r(ĉ, T )− kc(ĉ− c̄)]/(ce − ĉ),
Tc = T̂ − [βr(ĉ, T ) + θ(Te + T̂ ) + kT (T̂ − T̄ )]/η

(21)

with five adjustable gains: kc and kT for the passive-
dissipative controller, and κc, κT and κr for the observer.

4. CLOSED-LOOP STABILITY AND TUNING

In this section, the closed-loop dynamics are characterized,
yielding: (i) stability conditions, (ii) tuning guidelines,
and (iii) a functioning assessment. The main difficulty
resides in an inherent limitation: the unmeasured output
concentration (c) must be regulated about a steady-state
wich is open-loop unstable and not locally observable.

The application of the OF controller (21) to the actual
reactor (3) yields the closed loop dynamics

ė = −Ke+ ψ(e)ε+ φ
(
e, ε; d̃(t), p̃

)
,

ε̇ =M(t)ε+ g̃
(
e, ε; d̃(t), p̃

)
,

(22)

M(t) =
[−θ(t)− ϕ(t) −κc

βϕ(t) −λT

]
, φ (e; 0) = 0
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where e (or ε) is the regulation (or estimation) error, φ
results from the replacement of εT by ỹ in the reaction
rate term of the error function f̃ (13) associated with
the Lyapunov closed-loop stability characterization with
SF control. From the continuity of φ, f̃ , g̃ and the
compactness of their domains their Lipschitz continuity
and boundedness follow.

Given that the separation principle holds for linear but not
for nonlinear systems, the nominal closed-loop stability
(i.e. system (22) with (g̃, φ) = (0, 0)) can be established
as follows: since the regulation error dynamics are indi-
vidually P-stable and the estimation error dynamics are
individually convergent, the reactor(1)-OF controller(21)
interconnection is uniformly asymptotically stable (An-
geli et al. [2004], Moreno [2006]). Motivated by the need
of a more constructive stability criterion in the sense
of practical applicability for gain tuning and behavior
assessment purposes, in the next propositionclosed-loop
stability conditions are given in terms of the five-gain set
(kc, kT , κc, κT , κr) of the proposed OF controller (21).
Proposition 4.1. (Sketch of proof in Appendix A)
The closed-loop reactor (1) with the proposed passive-
dissipative OF controller (22) is P-stable if the con-
troller five-gain set (kc, kT , κc, κT , κr) and the regulation-
estimation error set meet the conditions

(i) θ = μθ(kc) > −k1, (ii) kc > ιc(kc)
(iii) kT > ιT (kc, κc, κr), (iv) κT > ιτ (kc, kT , κT , κc, κr),

with μθ givn in (12) and ιc, ιT , ιτ in Appendix A.

As it can be seen in Appendix A, the combined passivity-
dissipativity approach enables the derivation of the above
stability conditions in a rather straighforward way, by
using the passive control (V ) (13) and dissipative observer
(V̂ ) (20) storage functions and applying Lyapunovs direct
method. In the absence of modeling error the closed-loop
stability becomes asymptotic. Condition (i) is a closed-
loop detectability requirement, Condition (ii) ensures the
stability of the regulation-estimation concentration dy-
namics and imposes lower and upper limits (k−c ≈ 1, k+c ≈
3) on the composition control gain kc (Gonzalez and
Alvarez [2005]), and Conditions (iii) and (iv) ensure the
stability of the regulation-estimation temperature dynam-
ics and of the entire interconnection. Thus, for κr ≈
1/β, kc ≈ 3θ̄, the preceding inequality conditions can be
met by choosing: (i) kT sufficiently large to dominate
ιT (kc, κc, κr), and (ii) κT sufficiently large to dominate
ιτ (kc, kT , κc, κr).

From the preceding P-stability conditions the conventional-
like tuning guidelines follow: (i) set the gains conserva-
tively at (kc, kT ) ≈ (1, 3), κr ≈ 1β, κc ≈ kc, κT ≈ 10κc,
(ii) increase the T -estimation gain κT until oscillatory
response is obtained at κ+T , back off and set κT = κ+T /2-to-
3, (iii) in the same way set kT = k+T /2-to-3, (iv) carefully
increase kc (sufficiently below k+c ≈ 4θ̄) until there is no
improvement, and adjust κr. If necessary, repeat steps (ii)
to (iv).

The solvability of the robust OF reactor control problem
is a consequence of: (i) the solvabilities of the OF control
(7) and dissipative closed-loop observer (condition (i) in

Proposition 4.1) problems, and (ii) the adequate choice of
gains according to Proposition 4.1.

5. APPLICATION EXAMPLE

To subject the proposed OF controller to a severe test, let
us consider an extreme case of an industrial situation: the
operation of the continuous reactor (3) with the Langmuir-
Hinshelwood (LH) kinetics model

r(c, T, π) =
cke−( γ

T )

(1 + σc)2
, rc = (c∗, T, π) = 0, c∗ = 1/σ

adapted from a previous (partial open-loop or asymptotic
and full measurement injection) estimation study with
EKF and experimental data for the catalyzed carbon
monoxide oxidation reaction (Baratti et al. [1993]). With
the nominal parameters and inputs
d̄′ = (c̄e, T̄e) = (1, 1), ū′ = (θ̄, T̄c) = (1, 370), p = (p′a, π

′)′,
pa = (c̄e, T̄e, η)′ = (1, 370, 1), π′ = (k, γ, σ) = (e25, 10000, 3)
the reactor has three steady-states (Diaz-Salgado et al.
[2007]: two stable (extinction and ignition), and one unsta-
ble at maximum concentration rate r∗ = 0.6614 with c∗ =
1/3. The application of the tuning guidelines associated
with Proposition 4.1 yielded: κc = 0.62, κT = 30, κr =
1
50 , kc = 2, kT = 3., and the initial reactor and esti-
mator conditions were set at x0 = [430, 0.28]′, x̂0 =
[425, 0.35]′, about the unstable steady-state with maxi-
mum rate. The relative degree (7) and global detectability
(Schaum et al. [2008]) conditions are well met, because:
ce − c̄ = 2/3 > 0, η = 1 > 0, θ̄ = 1, 1/3 = θ− ≤ θ ≤
θ+ = 3/2. In the spirit of the nonlocal P-stability frame-
work, the closed-loop reactor with nominal SF, nominal
and perturbed OF will be subjected to initial state, and
persistent parameter and exogenous input disturbances.

5.1 Nominal behavior with SF control

The closed-loop reactor behavior with exact model-based
nonlinear passive SF controller (9) is shown in Figure 1.
As expected, the concentration (or temperature) response
is about one half (or quarter) settling residence time
(4/θ = 4), with smooth-coordinated dilution rate-coolant
temperature control action, safely away from saturation.
This agrees with the optimality-based non-wasteful feature
of passive SF controllers (Sepulchre et al. [1997]).

5.2 Nominal behavior with OF control

Initially, the reactor was in the above stated deviated
initial state, and subjected to known constant feed concen-
tration ce = 1 and temperature Te = 370K. The behavior
with exact model-based OF control (21) is shown in Figure
2: (i) the state responses are quite similar to the ones
of the nonlinear SF controller (Figure 1), in spite of a
sluggish concentration estimate response (about 3/4th of
the natural settling time), and (ii) as expected from the
FF component of the OF controller, the control inputs
practically annihilate the effect of the known oscillatory
input, and (iii) the control actions are smooth and efficient,
reasonably away from saturation. Thus, the nominal OF
controller recovers rather well the behavior of its exact
model-based nonlinear SF counterpart. This test verifies
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Fig. 1. Closed-loop nominal behavior with nonlinear SF
controller: input and response (—) , estimate (−−),
and set point (· · · ).

the closed-loop P-stability property with OF dynamic
control, with asymptotic convergence to the prescribed SS.
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Fig. 2. Closed-loop nominal behavior with nonlinear OF
controller: input and response (—) , estimate (−−),
and set point (· · · ).

5.3 Robust behavior with OF control

To test the robustness of the OF controller, the reactor and
the estimator initial states were deviated from the nominal
open-loop unstable and maximum reaction rate steady-
state, and subjected to the oscillatory feed concentration
and temperature inputs

ce =0.99 + 0.01 cos(4πt), Te = 370 + 2 sin(4πt)

The constant errors in the estimation model correspond
to: (i) ĉe(t) = 0.991, (ii) measured feed and reactor tem-
peratures with considerable periodic error T̂e(t)− Te(t) =
y (t) − T (t) = 2 cos(40πt) (four degrees amplitude band
and frequency close to natural resonance mechanism),
and (iii) −1.5, −10, and +3 % errors in the activation
energy (γ), heat transfer coefficient (η), and adiabatic
temperature rise (β), respectively. These errors represents
a worst-case situation to subject the OF controller to a
severe robustness test. The resulting closed-loop behavior
is presented in Figure 3: (i) the reactor is adequately P-
stable with a transient response trend that basically coin-
cides with the one of the errorless model case (see Figure
2), (ii) as expected from the severe modelling errors, the
unmeasured concentration exhibits a significant (≈ −30%)
asymptotic offset, some reaction rate offset (≈ −20%)
and the temperature estimate generated by the linear-
dynamical advective (that is mass-energy balance based)
estimation component yields an offset-less trend response,
and (iii) given the flatness feature of the reaction kinetics
in the isotonic branch of the reaction rate function, in spite
of the −30% concentration trend offset, the reaction rate
trend is only a −20% of its maximum set point value.
Should it be necessary, the optimal rate offset can be
reduced by online kinetic parameter model calibration on
the basis of the occasional or periodic concentration mea-
surements that are usually taken for quality monitoring
purposes.
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Fig. 3. Closed-loop robust behavior with nonlinear OF
controller: input and response (—) , estimate (−−),
and set point (· · · ).

5.4 Concluding Remarks

In agreement with the theoretically drawn methodology,
the proposed passive-dissipative OF controller: (i) recovers
rather well the behavior of its exact model-based nonlinear
SF counterpart, with optimality-based robustness and con-
trol non-wastefulness, and (ii) exhibits P-(robust and non
local) stability with respect to model, and measurement
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errors. The closed-loop behavior assessment through sim-
ulations made quantitative the P-stability features (like
transient response speed, overshoot, high frequencies os-
cillatory components, and asymptotic response offsets),
and verified the effectiveness of the gain tuning scheme
obtained from the P-stability characterization.

6. CONCLUSIONS

A robust OF control design methodology for continuous
reactors with temperature measurements has been pre-
sented. Structural (relative degree and global detectabil-
ity) solvability conditions were identified and exploited to
design a nonlinear dynamic dissipative-passive OF con-
troller. The interlaced estimator-control design led to a
robust OF control scheme with: (i) a systematic construc-
tion procedure, and (ii) a rigorous closed-loop (nonlinear-
nonlocal) P-stability criterion, (iii) simple tuning guide-
lines, and (iv) behavior recovery, up to estimator conver-
gence, of the exact model-based FF-SF nonlinear control.
A Langmuir Hinshelwood kinetics (carbon monoxide oxi-
dation) in an open-loop unstable reactor at maximum re-
action rate was considered as a representative case example
with numerical simulations.
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Appendix A. PROOF OF PROPOSITION 4.1

Recall the control (V ) (13) and observer (V̂ ) (20) storages,
set the composed storage W , and write the corresponding
dissipation (Ẇ ) along the closed-loop reactor motion:

W = V + V̂ , Ẇ = −zTQz, z = [ec, εc, eT , εT ],

Q =

⎡⎢⎣ kc −ιc(θr + ϕ) 0 κrϕ(ce − c)/[2(ce − ĉ)]
� θr + ϕ (βϕ)/2 [κc − (κr + β)ϕ]/2
� � kT 2ι1 + ιr
� � � κT + ιr

⎤⎥⎦
ιc(kc) =

(θ∗ − [kc − ϕ](ce − c))2
4(ce − ĉ)(θr + ϕ)

, ιr(κr) = μ+ η + κrβϕ

ιT (kc) =
kcβ

2ϕ2

4(θr + ϕ)(kc − ιc(kc))
, ι1 =

(kT − κrβϕ)2

4kT
− ιr

ι2 =
�(kc, κc, κr

(θr + ϕ)
− ιr, ιτ = max{ι1, ι2},

and � is a class-K function of its arguments. The en-
forcement of the positive defintness property in each of
the four leading principal minors (M1, . . . ,M4), yields
the conditions stated in Proposition 4.1, or equivalently
the positive definitness of Q implying the closed-loop P-
stability property. QED

396



Modeling and Simulation
Oral Session



Non-linear model order reduction using
input to state Hammerstein structures

O. Naeem, ∗ A.E.M. Huesman, ∗∗ O.H. Bosgra. ∗∗∗

∗ Delft Center for Systems & Control (DCSC), Technische Universiteit
Delft, 2628 CD, Delft, the Netherlands (e-mail: O.Naeem@tudelft.nl)

∗∗ (e-mail: a.e.m.huesman@tudelft.nl)
∗∗∗ (e-mail: o.h.bosgra@tudelft.nl)

Abstract: In this paper, the focus will be on approximating original model of process systems
using block-structured models. The context of model reduction is to improve the computational
efficiency (simulation time). The reduced order models are important for online applications.
Hammerstein structures have been used to approximate a mathematical non-linear model of a
process. Input-Output Hammerstein structure can be defined as classical Hammerstein model
but the technique is extended here to Input-State Hammerstein structure. It is shown that Input-
State Hammerstein structure can be derived from Taylor series. Approximation accuracy has
been improved by approximation for second term. The approximated Input-state Hammerstein
block structure model gives good approximation of the original non-linear system. Over an
operating domain of a process, the Input-State Hammerstein structure provides opportunities for
reducing the computational load by order reduction of states and Jacobians. The methodology
has been applied to a high purity distillation benchmark and satisfactory results are obtained
as far as approximation is concerned. Reduction in states and Jacobian size by 70% is attained.

Keywords: Nonlinear model order reduction, Hammerstein, Taylor series, high purity
distillation column

1. INTRODUCTION

First order principle models (rigorous models) are stiff
and large, thus are computationally inefficient. Since the
(rigorous) NL models are not always exact match of real
processes and there is mismatch at some point between the
two, reduced models can be very useful if they match the
rigorous NL model over a certain operation window. Ad-
vantage of reduced mathematical models for NL processes
include low computational effort, better approximation of
process within the operating window and beneficial for
the real-time applications (e.g; control and optimization
purposes).

The rigorous models available for large industrial processes
can be characterized as a set of differential and algebraic
equations (DAE). DAE class of models is capable to
express the majority of processes. Thus the methodology
to achieve a reduced model should be capable of handling
DAE models. The transformation from DAE to ordinary
differential equation (ODE) format is regarded as a major
model reduction step; but it is not possible generally. A
methodology which involves this step is advantageous for
the process models of DAE class.

There is not much literature available on model reductions
when it comes to model reduction in context of computa-
tional load. Balasubramhanya and Doyle (2000) developed
a reduced order model of batch distillation column using
travelling waves. The closed loop simulation of this re-
duced model was six times faster than original model in
closed loop. Aling et al. (1997) used POD to get reduced

model for rapid thermal processing system. Reduction of
computational load by a factor ten was reported. Hahn and
Edgar (2000) elaborated on model reduction by balancing
empirical Gramians and showed model order reduction but
reduction in computational effort and time was limited.
Perregaard (1993) simplified and reduced chemical pro-
cesses models for simulation and optimization purposes.
He achieved the reduction by simplifying the calculation of
algebraic equations, which resulted in computational effort
reduction. Gani et al. (1990) replaced the true (symbolic)
Jacobian by approximated Jacobian (from local models).
They reported the reduction of computational times by
factor of 20 ∼ 60. Empirical modelling has been one of the
major approaches for achieving low computational com-
plexity (which allows fast simulations). Ling and Rivera
(1998) used a Hammerstein structure for model reduction,
but did not report reduction in computational load (on
polymerization benchmark). Berg (2005) reported that if
computational load has to be reduced, not only model
order reduction is to be targeted but the complexity (and
stiffness) of reduced model has to be lower; as Gani (Gani
et al. (1990)) achieved the computational load reduction
by reducing the complexity (discussed above). Block struc-
ture models have been used for the identification pur-
poses (see Eskinat et al. (1991); Billings and Fakhouri
(1977), Norquay et al. (1999), Harnischmacher and Mar-
quardt (2007) etc.). Though block structure models have
been used for the identification purposes, but the block
structure models have not been used for the model reduc-
tion purposes.
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As the literature review shows, there is no reduction tech-
nique available directly related to reduction of computa-
tional load. Each model reduction technique has its specific
purposes which is completely understandable. Not every
model reduction methodology works for every process,
but it is desired to have a model reduction methodology
which is generic and applicable to wide class of processes
(represented by DAE class of models). Moreover the lit-
erature review indicates that there is not much research
material available on model reduction subject; whatever is
available, mostly addresses the model order reduction and
it does not focuses the reduction in complexity of reduced
model (which is major component for computational load).
Not many model reduction methodologies have addressed
the problem of simplification of reduced model. The field
is open for research to achieve reduced models, which are
simple and reduced order to achieve computational load
reduction.

Block structure models have an advantage over other
model approximation methodologies; the structure of ap-
proximation model gives insight to the complexity of the
process and breaks down the complexity of the NL process.
This give handles to feel for the complexity and reduce
it. Use of block structure enhances the chances to get a
reduced model, which is uncomplicated and is computa-
tionally efficient.

In this paper, a block structure (Hammerstein) has been
used to achieve reduced model for nonlinear chemical
process. In the subsequent section, Hammerstein struc-
ture is discussed. In section 3, reduction methodology is
discussed. In section 4, implementation on high purity
distillation column and its results are considered. The last
section 5 concludes the paper with key points and future
work.

2. HAMMERSTEIN STRUCTURE

There are different block structures which are known for
model reduction (and empirical modeling); Wiener, Ham-
merstein etc. Chen (1995) has introduced and discussed a
wide variety of such block structures. Wiener and Ham-
merstein block structure models are most widely used
structures in literature for the representation of nonlin-
ear physical processes and will be shortly discussed here.
Wiener models have limitations (specifically for chemical
processes) which give edge to Hammerstein structure for
identification purposes ( Harnischmacher and Marquardt
(2007)). Wiener models not only limit the nonlinearity
measure to be approximated, but they also increase the
complexity involved in identifying or approximating the
process. Harnischmacher (2007) investigated that Wiener
models restrict the dynamic NL behavior that can be ap-
proximated and identified in comparison to Hammerstein
structure.

Hammerstein structure is used for the approximation of
NL processes in this study. The methodology is extended
further to I/S Hammerstein structure to improve the
approximation.

2.1 Classical (Input-Output I/O) Hammerstein structure

Classical Hammerstein model can be seen as nonlinear
static gain, followed by linear dynamics.

Nonlinear
Static
N(u)

Linear
Dynamic (L)

u yvNonlinear
Static
N(u)

Linear
Dynamic (L)
Linear
Dynamic (L)

u yv

Fig. 1. Classical Hammerstein structure (input-output)

The classical I/O Hammerstein structure shown in figure 1
represents the continuous system/process. A procedure to
get Hammerstein structure approximation for a process
is to represent the nonlinear static block by interpolation
table (lookup table), neural network or spline scheduling
(the steady states) and represent linear dynamic block
by linear time invariant (LTI) model. The intermediate
variable v is a low dimensional vector. Mathematically,
classical Hammerstein structure is given as;

ẋ = A x+ g(u) (1)
y = C x

where, A is the state matrix, C is the output matrix which
can be identified from process data or can be obtained
by linearizing the nonlinear system at ’nominal operating
point’. Nominal operating point is an operating point
within the operating domain, chosen by the input design
(discussed in later section 3.1.

The input-output (I/O) Hammerstein model shown can be
modified to Input-state (I/S) Hammerstein model under
few assumptions (Naeem et al. (2008)). I/S Hammerstein
model can be derived from expansion of Taylor series
(shown in section 2.3)

2.2 Taylor Series

The Taylor expansion of a function f(x) that is differen-
tiable in the neighborhood of real or complex number ’a’
is mathematically given as:

f(x) = f(a) +
1
1!
∂f

∂x

∣∣∣∣
a

(x− a) +
1
2!
∂f2

∂2x

∣∣∣∣
a

(x− a)2 + . . .

(2)

Typically process models are of DAE format and transfor-
mation from DAE to ODE is a model reduction step (for
a large scale process). The ODE can be approximated by
I/S Hammerstein structure.

Given an ODE ẋ = f(x, y), which is modeled in an
environment (gPROMS, MATLAB, SIMULINK), the first
order Taylor expansion around point (x∗, u∗) is given
mathematically as:

ẋ = f(x, u) = f(x∗, u∗) + Jx|x∗,u∗ (x−x∗) + Ju|x∗,u∗ (u−u∗)+. . .
(3)

Equation 3 evaluates the function f(x, u) given lineariza-
tion at f(x∗, u∗). Figure 2 shows the equation 3 in block
diagram.
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Fig. 2. Block structure for Taylor series of ẋ = f(x, u)

2.3 Taylor Series expansion

Taylor series illustrated in preceding section can be ex-
tended to I/S Hammerstein structure (at steady-state
point (x∗, u∗)) under following assumptions:

a. It is assumed, within the operating domain that
every u∗ leads the system finally to steady-state ’xss’
which means a stable process is considered. Moreover,
it is assumed that steady-state is calculated by u.
Mathematically, xss = g(u). Setting x∗ = xss results
in output of the (constant) block (f) zero (the system
is being evaluated at steady-state x∗).

b. Input u is chosen freely, but is chosen such that it is
equal to the input at steady-state, mathematically;
u = u∗; this implies that gradient input to block
(J(u)) becomes zero; (since u− u∗ = 0).

Under above assumptions, adding g(u), removing blocks
f and Ju and rearranging the block structure in figure 2,
we get the block structure shown in figure 3. Observing
this structure it can be considered an I/S Hammerstein
structure; it has two blocks, a NL steady-state mapping
block, followed by linear dynamic block.
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+
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-
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J ∫
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Fig. 3. Taylor series extension to I/S Hammerstein struc-
ture

For a linear system, state-space model can be mathemat-
ically given as below:

ẋ = A x+B u (4)
y = C x

For the state-space linear model (in equation 4), I/S
Hammerstein structure can be shown as figure 4.

The block structure shown in figure 4 can be extended
for NL processes, shown in figure 5. I/S Hammerstein
structure shown in figure 5 is similar to the structure
derived by Taylor series expansion (shown in figure 3).

The block structure shown in figure 3 and figure 5 is I/S
Hammerstein block structure, with separated NL stat-
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Fig. 4. Input-state Hammerstein structure for linear sys-
tem
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Fig. 5. Input-state Hammerstein structure for non-linear
system

ics(where NL static mapping takes place), followed by
linear dynamic block. The dynamic linear block is driven
by difference between the steady state ’xss’ and current
state ’x’.

Mathematically, for NL case, I/S Hammerstein structure
can be given as:

ẋ = J (x− xss) + g(u) (5)
y = C x

where, J = Jacobian; C = output state matrix ; y =
output ; xss= g(u) is steady-state, scheduling (implemented
by lookup table).

The I/S Hammerstein block structure shown in figures 3
and 5 is used for the approximation of NL processes. The
accuracy of approximation of I/S Hammerstein structure
is improved by estimating Jacobian online. Jacobian is
estimated (and updated) based on information of Jacobian
basis Jb, reduced state z and input u. Jacobian basis Jb

are calculated by SVD analysis of Jacobian data. Jacobian
data is collected by taking snapshots of Jacobians over
the operating domain (’input design’) by exciting the
NL system with inputs to acquire most information in
operating envelope. Similarly the reduced order states z
is calculated by transformation matrix (U1), obtained by
SVD analysis of steady-state and dynamic state (snapshot)
data, taken over the operating domain.

First order I/S Hammerstein approximation structure
(with updated Jacobian), is shown in figure 6. As figure
shows,the Jacobian estimation is based on (reduced) cur-
rent state information (z).
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Fig. 6. First order I/S Hammerstein approximation struc-
ture

In the figure 6, J = Jacobian ; U1 = transformation
matrix to transform full state x to reduced state z ; Jb =
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Jacobian basis obtained by SVD analysis of snapshots of
Jacobians (within operating domain) ; N0, N1, N2 = the
parameters relating Jacobian with reduced-state z, input u
and constant.

It is to be noted, I/S Hammerstein can be derived by
extending Taylor expansion as proved above. This is not
possible for Wiener structure.

2.4 Accuracy improvement by higher order approximation

First order approximation of NL system by expansion
of Taylor series to I/S Hammerstein structure is shown
in above section. The approximation accuracy can be
improved with higher order terms.

The Taylor series is extended to second order. Taylor series
around (steady-state) point (x∗, u∗) is given as:

f(x, u) = f(x∗, u∗) +
∂f

∂x

∣∣∣∣
x∗,u∗

(x−x∗) +
1
2!
∂f2

∂2x

∣∣∣∣
x∗,u∗

(x−x∗)2

(6)

Similarly, Taylor series expansion around any point (x, u)
is given as below:

f(x∗, u∗) = f(x, u) +
∂f

∂x

∣∣∣∣
x,u

(x∗−x) +
1
2!
∂f2

∂2x

∣∣∣∣
x,u

(x∗−x)2

(7)

Equation 6 and equation 7 are the Taylor series expansions
at two points (x∗ and x), given by Taylor series extension
to second order. Rearranging equation 7, we get;

f(x, u) = f(x∗, u∗) +
∂f

∂x

∣∣∣∣
x,u

(x∗−x) +
1
2!
∂f2

∂2x

∣∣∣∣
x,u

(x∗−x)2

(8)

Adding equation 6 and equation 8 (while higher order
terms are canceled, assuming 1

2!
∂f2

∂2x

∣∣∣
x,u

= 1
2!

∂f2

∂2x

∣∣∣
x∗,u∗

),

we get;

f(x, u) = f(x∗, u∗) +
1
2

[
∂f

∂x

∣∣∣∣
x∗,u∗

+
∂f

∂x

∣∣∣∣
x,u

]
(x− x∗)

(9)

Equation 9 is the approximation of f(x, u) using higher
order terms. There are two Jacobian evaluations involved
in this approach, an approximation using knowledge at
steady-state (x∗) and approximation using current state
(x) knowledge. The block structure representation of this
approximation is shown in figure 7.

3. REDUCED ORDER HAMMERSTEIN STRUCTURE

Approximation block structure shown in figure 7 is full
state model. Since it is a prerequisite for the approxima-
tion block structure, to be valid within certain operating
domain.
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Fig. 7. Approximation model (I/S Hammerstein); Higher
order approximation)

3.1 Operating domain/Input Design

Within defined domain, inputs are designed with the
purpose to define an input trajectory that travels through
complete domain. The process is known as ’input design’.
As the name indicates, it is the process of designing
inputs based on constraints on input or output (depending
upon a process). In summary, the operating domain is
a region, where the approximated model is supposed to
be valid, once identified (based on data from the physical
process) and input design is the procedure, which defines
the boundaries of this operating domain.

The steady-state and dynamic state data is obtained by
taking snapshots over the operating domain. Similarly,
Jacobian data is collected by taking the snapshots of
Jacobians over the operating domain. Jacobian basis Jb

are computed by SVD analysis of Jacobian data.

The I/S Hammerstein block structure gives scope to get
the reduced order structure by;

i. Reduction in state size.
ii. Reduction in Jacobian size.

i. Reduction in state size.
The singular value analysis on data of states indicates
that there is a low dimensional space, such that low
order state (z) can represent the whole operating do-
main. The state reduction is performed by transforma-
tion matrix. The transformation matrix U1 (to obtain
reduced state ’z’) is obtained by SVD analysis of data
over the operating domain. Reduced states are back-
transformed to full state by back transformation matrix
Û1. The block structure of the reduced approximation
model is shown in figure 8. The Jacobian reduction takes
place online (in the block U1 ∗ J ∗ UT

1 ).

ii. Reduction in Jacobian size.
The scheme in figure 7 shows that Jacobian estimation
takes place using Jacobian basis Jb, state z and input u
information. The estimated Jacobian Jest is full order
Jacobian. There is possibility to obtain reduced size
Jacobian, by using reduced order Jacobian basis (Jbred

)
and reduced state (z). With reduced basis Jbred

and
reduced states z, estimated Jacobians are also reduced
sized and the block structure is a reduced order I/S
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Hammersteins approximation model. The block struc-
ture is shown in figure 9.
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Fig. 8. Reduced order approximation model (I/S Hammer-
stein); Higher order approximation
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4. APPLICATION TO HIGH PURITY DISTILLATION
COLUMN

The approximation block structure and reduced block
structure model has been applied to the benchmark. A
benchmark is high purity distillation column, and its
properties will be discussed in subsequent sections. But
before the methodology is implemented on benchmark, a
prerequisite for the methodology is to define the operating
domain, within which the approximation/reduced model
is valid. Input design, discussed in section 3.1 is designed
for distillation column; the operating domain has been
finalized by constraint in output purity. A set of input
variables (reflux (L) and vapour boilup (V)) is chosen,
for which output variables are observed. The product
purity for output variables sets the boundary for operating
domain.

High purity distillation column

A high purity distillation column is used as test case, on
which the approximated and reduced model estimation is
applied. The distillation column has following properties;
The column has 72 trays, a total condenser and partial
reboiler. It is a nonlinear system. The thermodynamics of
the column are governed by constant relative volatility.
The relative volatility for this specific system is 1.33.
Pressure is assumed to be constant. Vapour holdups are
considered negligible and liquid holdups are considered
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Fig. 10. Figure of operating domain ’input design’

to be constant. Moreover, the column is assumed to be
working with equimolal flow (which results in eliminating
energy balances). The distillation benchmark model has
been explained in detail by Lévine and Rouchon (1991).

The benchmark is modelled in gPROMS while the approx-
imation model is modelled in MATLAB and SIMULINK.
The approximation technique is implemented on the
benchmark. The operating domain is finalized (input de-
sign) shown in figure 10. The static part consists of lookup
table which interpolates the steady-states. The steady-
states are fed into the dynamic part. The difference be-
tween current state and steady-state is fed to Jacobian
block, which is estimated based on state and steady-state
data. This represents the linear block as bilinear system.

Two types of changes

There are two types of input signals tested for the valida-
tion of approximated (and reduced) model.

a) ’Separation index’ (SI) is change in distillation, when
both the input variables (reflux rate (L) and vapour
boilup (V)) are given same steps at the same time, or
the rate of flow of distillate D and bottom B does not
change.

b) ’Effective Cut Point’ (ECP) is change in distillation,
when one input variable (reflux rate (L) or vapour boilup
(V)) is kept constant and step change is given to the
other input variable. This change is known to be highly
non-linear for high purity distillation column (in process
industry).

Figure 11 show the step in both inputs at the same time
(separation index). The approximation model structure (in
full state) and reduced order model structure approximate
the behavior very well. The mismatch between the approx-
imations and original is cause by offset form lookup table
(NL block of approximated model).

Figure 12 show the result comparison of original, full
order approximated model and reduced order model, when
step in vapour boilup (V) input (effective cut point) is
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Fig. 11. Results for comparison of SI change between
original, approximation ’full ’ and ’reduced ’ model

applied. The approximation model structure (in full state)
and reduced order structure approximates the behavior
satisfactorily. There is a very small mismatch in dynamics
between the approximation model and original. The offset
is acceptable (and sufficiently accurate) for this applica-
tion.
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5. CONCLUSIONS & FUTURE WORK

In this paper, it is shown that Input-State Hammerstein
structure can be derived from a Taylor expansion. The
approximation model’s accuracy can be improved by in-
cluding higher order terms. The approximation results
were shown for a high purity distillation benchmark are
acceptable for the kind of application. Order reduction of
70% is possible using the methodology with satisfactory
results (high accuracy).

Work on the following tasks is done presently or is to be
considered in future:

i) The computational load reduction for the benchmark
example (high purity distillation column) is to be inves-
tigated. The computational load and simulation time
reduction has to be compared with original NL model.

ii) It is planned to extend the methodology to industrial
case. The industrial models make use of dynamic link li-
brary (dll) files (as foreign process) to compute different
task (such as thermodynamic properties). Such foreign

processes buildup overhead costs,resulting in increased
computational load. It is anticipated, that transforma-
tion of large DAE model to ODE structure will reduce
the computational effort (and simulation time), since the
algebraic computations are vanished in ODE structure,
replaced by NL mapping.
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Abstract: The dynamic behaviour of a coal slurry gasifier in an Integrated Gasification Combined Cycle 
is modelled by means of mass, energy and momentum conservation equations as well as reaction kinetics 
descriptions. The main phenomena taken into consideration are (i) slurry drying and devolatilisation, (ii) 
char and volatile gas combustion, char gasification and water-gas shift reaction, and (iii) syngas cooling. 
The proposed 0-dimensional description is sufficient to capture process dynamics and it is a useful 
starting point for control design and verification. In particular, basic control strategies are discussed. Both 
model and control implementation is carried out in the Matlab-Simulink environment. Simulation results 
are shown to support model reliability and control effectiveness. 

Keywords: Process modelling, Process automation, Process control, Process simulators, Power 
generation, Coal gasification. 
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1. INTRODUCTION 

As it is well known, nowadays the scenario in electric energy 
production is characterised by a constant increase in demand, 
a decrease in fossil fuel reserves, more and more demanding 
restrictions on pollutant levels. Feasible solutions can be 
increasing efficiency and reducing pollutant emissions in 
thermoelectric power plants, and contributing to the 
development of the so called “green energy”. Coal can play a 
major role, especially because of the important amount of its 
proven reserves worldwide; a main challenge for research is 
then to develop high-efficiency coal-based energy production 
systems with near zero emissions. In this paper, reference is 
made to a 70 MWe coal-fed Integrated Gasification 
Combined Cycle (IGCC) pilot plant (Fantini et al., 2007), 
allowing flexible production of electric energy and hydrogen. 
For the design, work is in progress to build up a simulator of 
the whole process, in order to obtain reliable predictions of its 
dynamic behaviour in different operating conditions and to 
study the operating manoeuvres. Dynamical models of the 
shift reactor and of the Pressure Swing Adsorption (PSA) 
unit have already been studied ((Bittanti et al., 2008), 
(Canevese et al., 2007)). Here, we focus on the gasifier, 
working out a first-principle model useful for control design.  

In Section 2 of this paper, the gasification process is 
analysed, and its main phases are represented by a dynamical 
model, based on a thermo-fluid-dynamical and a kinetic-
chemical description; such model has been developed in full 
detail starting from the basic conservation equations and the 
constitutive equations (including the kinetic equation of char 
gasification); here, of course, we will present only a partial 
outline of this model. Section 3 deals with control problems. 
Section 4 reports some simulation results highlighting control 

effectiveness. Finally, Section 5 reports some conclusions 
and hints to future work. 

2. PROCESS ANALYSIS 

The gasifier under study is an entrained-flow gasifier 
working at about 65 bar and 1650-1700 K. It is formed 
essentially by two coaxial cylinders: in the inner one, the 
gasification process occurs, while the outer one is employed 
for a first syngas cooling. As illustrated in Fig. 1, the reactor 
is fed with slurry (pulverized coal mixed with water which 
can be handled like a liquid fuel) and highly pure oxygen and 
it produces a gaseous mixture whose main components are 
CO, CO2, H2, N2, H2O, and pollutants (COS, H2S, and dusts). 
We sketch the overall process of gasification and cooling as 
composed of the following phases (Smoot and Smith, 1985): 

� drying and devolatilisation: 

slurry can be described as coal powder where each particle is 
coated with a water film; when it is pumped into the inner 
cylinder, the high temperature that it meets makes water 
evaporate, thus yielding dry char, and then makes volatile 
gases (such as N2, H2S, H2O and several kinds of 
hydrocarbons, among which CH4) leave char; 

� oxidation and gasification: 

oxygen burns both the volatile gases and the char, according 
to the reactions 

  4 2 2 22 2 ( )CH O CO H O volatile combustion+ � + , (1) 

     
( ) ( ) ( )2 21 2 1 1 2 1 ,

1 2 ( )

C O CO CO

char combustion


 
 





+ � � + �

� �
     (2) 
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(the mechanism factor N indicating whether CO or CO2 is 
transported from the particle surface is calculated according 
to (Wen and Dutta, 1979), (van der Looij, 1988)). The related 
temperature increase sustains the drying and volatile emission 
process and the endothermic reactions 

            2 2 ( )C H O CO H gasification+ � + ,             (3) 

       2 22 ( )C CO CO char CO reduction+ � � ,         (4) 

      2 2 2 ( )CO H O CO H water gas shift+ + �� ;     (5) 

� cooling: 

the thus obtained hot syngas (its temperature is around 1760 
K) is sent to the bottom of the reactor, where contact with 
relatively cold liquid water causes a thermal shock which 
decreases the gas temperature abruptly and stops all reactions 
still going on; besides, unburned char residuals and char 
ashes solidify, fall down and are extracted as slag. After 
bubbling into water, the syngas is pushed by pressure 
difference (65 bar Vs 62 bar in the considered case) to the 
outer cylinder, where it is further cooled by a counter-current 
water spray. Spray temperature and flow rate can be used to 
control the outlet fluid mixture temperature and humidity.    � 

Actually, the first two phases occur in the same region 
(gasification region). A detailed 3-D description of the 
phenomena taking place here is suggested, e.g., in (Chen, et 
al., 2000). Simpler models can be worked out by assuming 
that both temperature and pressure are uniform in the whole 
region (0-D assumption). This assumption, motivated by the 
intense recirculation of gases and adopted also in (Schoen, 
1993) for a different type of gasifier, is adopted herein. The 
proposed model is able to capture the process fundamental 
dynamics with a low complexity degree, thus ensuring both 
clear physical insight and short simulation times, in view of 
the study of control strategies. 

 

 

 

 

 

 

 

 

Fig. 1. The GE-Texaco gasifier: schematic view. 

The following subsections report the conservation equations 
employed to model each phase and a reaction kinetic 
description for the second phase. Table 1 collects the main 
symbols employed. 

 

Table 1.  Nomenclature 

Symbol Description Unit 
c Specific heat kJ/(kg�K) 
e Relative energy kJ/kg 
f Mass fraction - 
h Relative enthalpy kJ/kg 
( )r
kj  Component k stoichiometric 

coefficient in reaction r=1,..,5 
- 

p Pressure bar 
w Mass flow rate kg/s 
w�  Molar flow rate kmol/s 
x Molar fraction - 
A Area m2 
L Length m 
M Mass kg 

PMk Component k molecular weight kg/kmol 
Q Thermal power W 
Sch Char active surface m2 
T Temperature K 
V Volume m3 
� Mass exchange coefficient kg/(N�s) 
2  Convective energy exchange 

coefficient 
W/(K�m2) 

� Density kg/m3 
� Equivalent perimeter m 

 

Subscripts 
c Cooling region 

ch Char 
d/u Volume under/above the cooling liquid surface 

ev/vol Resulting from evaporation/devolatilisation 
g/l Gas/liquid phase 
g-l Exchange between gas and liquid phases 

in/out At the inlet/outlet of the region under study 
int/ext Internal/external chamber 

sat Saturation 
sh Shift reaction 
sl Slurry 

surf Char surface 
 

2.1  Drying and Devolatilisation 

The coal slurry injected into the gasifier forms a jet of length 
Lev where the water evaporates heated by the hot gases. Then, 
after water evaporation, the volatile release takes place, due 
to further heating of the mass of dried coal.  

The mass conservation equations for the liquid water and the 
dry char are respectively 

                    
2 2 2 ,H O H O ev sl H O in evA L w f w� = �� ,                    (6) 

          2 ,
( )

(1 )

,

dry dry ev
dry sl H O in

dry j ev dry dry ev

d A L
M w f

dt
M u L A L

�

�

� = � +

� +

�

�
           (7) 

where 
2H OA  is the evaporation average equivalent area for 

water and dryA  is the equivalent area for char, 

 slag 

 syngas

 syngas 

spray H2O  

H2O 

 slurry 

O2 

 slurry 

O2 

405



 
 

     

 

               
2 ,( ( ) )ev g l ev ev sat ev H O gw L p T p� �= � � ,                (8) 

LevOev is the average evaporation surface and uj is the particle 
average velocity in the drying region. 

As to energy conservation, a unique average temperature Tev 
can be adopted for the overall particle (water and char), so 

       2 2 2

2,

( )[( )

] ( ( ) ( )),

H O H O H O dry dry dry ev sl ev

ev ev ev ev g sat ev H O sl

A c A c T T L

L T Q w h T h T

� �+ � +

+ = � � �

�

�
       (9) 

                    ( )ev g l ev ev g evQ L T T� �= � � � .                     (10) 

Volatile emission is assumed to occur almost instantaneously 
after drying, since its dynamics are of the order of few tens of 
ms ((Thambimuthu and Whaley, 1987), (Kobayashi et al., 
1977)); therefore, such dynamics, together with the related 
heating process, are neglected here. Evaporation is very fast 
as well, with dynamics of the order of a second at most 
(Thambimuthu and Whaley, 1987), so it is neglected in the 
simulations reported in Section 4.   

2.2  Oxidation and Gasification 

The mass conservation equation for the k-th gaseous 
component in the gasification volume can be written as 

     

4

( ) ( )
, , ,

2,3,4

(5) (1)
, ,

r r
k k in g out k out kch k

r

sh k CH vol kk k

M w w f w PM j

w PM j w PM j

=
= � + +

+ +

�� �

� �
     (11) 

where the component inlet flow rate is 

     

2 2

2

, 2 2

,
2

, , 2

for ,

, for ,

0, for ,

, for 

ev

k vol

k in

N vol air N air

k H Ow
w k CO H S

w
k CO H

w w f k N

=���� =���= �� =��� +� =��

      (12) 

and wg,out fk,out its outlet flow rate. O2 can be assumed to be 
completely consumed, and with extremely fast dynamics, by 
the combustion reactions (1) and (2) (Cotone, 2003); 
therefore, it is not necessary to write a mass conservation 
equation for it. For char, which is in the solid phase, we write  

   , ( ) ( )

2,3,4

g out ch r r
ch dry g chch ch

g g r

w M
M w w PM j

V


� =
= � + �� � ,    (13) 

where Pg�<<1 is a shape factor (De Marco, et al., 1991) which 
accounts for the reaction spatial development and which can 
be identified from experimental results, 

2 2

( )
3 4

int
, 3, 4, ,r r ch r

H O COch
K M M

w r M M M M
V

= = = =� , (14) 

                                   
2

(2)
Ochw w
=� � .                                  (15) 

2Ow�  is the difference between the O2 inlet molar flow rate 
and the O2 molar flow rate consumed by reaction (1). We 
remark that (14) is taken from the unreacted-core-shrinking 
model described in (Wen and Chaung, 1979); Kr accounts 
both for reaction kinetics, by means of an Arrhenius-type 
term, and for component diffusion between the gaseous bulk 

and the char reacting surface. The reversible shift reaction (5) 
kinetics is assumed to be at equilibrium on the char surface, 
so that the gaseous components surface diffusion is the 
limiting phenomenon, except for H2, whose diffusion 
coefficient can be assumed as ideally infinite. 

The energy conservation equations, for the gaseous mixture 
in the gasification volume and for solid char, read as 

,g g g g in sh sh vol vol ch g evM c T Q w H w H Q Q�= � � + � + �� � , 
                                                                                            (16) 
   (2) (3) (4)

,ch ch ch ch in ch gM c T Q Q Q Q Q �= � + � � �� ,   (17) 

where 

 
2 2 2,

, ,

( ( ) ( )) ( ( )

( )) ( ( ) ( ))

( ( ) ( )),

g in ev H O ev g g O O ev

g g ev ev ev g g dry out vol

ch ev g g

Q w h T h T w h T

h T w h T h T w

e T h T

= � � + � +

� + � � + �

� �

 (18) 

                    ( ),ch g ch g ch ch gQ S T T�� �= � �                     (19) 

   
2

2 2

, , , ( ( ) ( ))

( ( ) ( )) ( ( ) ( ))

( ( ) ( )),

ch in dry out vol ch ch ch ev O

ch ch O ev ev ch ch H O ev

vol ch ch vol ev

Q w e T e T w

e T h T w e T h T

w e T h T

= � + �

� � + � +

+ � �

   (20) 

                 ( ) ( ) ( ), 2, 3, 4r r r
chchQ w PM H r= � =�                  (21) 

and �H(2) is a function of N, since CO and CO2 have different 
heating values. 

Finally, as to pressure, the perfect gas law yields 

 2 2 2 2 2, , , , , , .g k
g

g kk

RT Mp k H O H CO CO N H S
V PM

= =�   (22) 

2.3  Cooling 

The cooling volume is composed of two regions, separated 
by the liquid water surface: a lower “pool” region, where gas 
bubbles into water, and an upper spray region, where water 
droplets further cool humid gas leaving the pool region. Mass 
and energy conservation equations will be written separately 
for the gas mixture and for liquid water in each region. 

As to the overall gas and to its water part under the surface, 
first of all, one can write mass conservation as 

                        gd b bout g lM w w w �= � �� ,                       (23) 

          
2 2 2, , ,H O gd b H O in bout H O out g lM w f w f w �= � �� ,         (24) 

where wb is the gasification outlet flow rate, wbout the flow 
rate leaving the liquid surface and wg-l the exchanged (usually 
condensating, anyway) water flow rate inside the gas phase. 

Adopting a steady-state model for the gas phase under the 
free liquid surface, from (23) and (24) we can write  

           ( ) ( )
2 2, , ,1 1bout g out H O in H O outw w f f= � �            (25) 

        ( ) ( )
2 2 2, , ,1g l b H O out H O in H O outw w f f f� = � � ,        (26) 

and, adopting an equilibrium model, 
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( )[ ] ( )
2

2

2

,
H O sat ld

H O out
gd c sat ld H O sat ld

PM p T
f

PM p p T PM p T
=

� +
,  (27) 

where gdPM  is the average molecular weight of the “dry” 
gas, i.e. without considering its water contents.  

As to energy conservation, we have 

        ,

, ,

( ( , , )

( , , )),

g g gd g ex gl b g in gd

c gd out gd out

M c T Q Q w h p T f

h p T f

= � � +

�

�
        (28) 

                 , ,( ( ) ( ))g ex g l g sat ld g gdQ w h T h T�= � ,                (29) 

                       ( )gl g l g l gd ldQ S T T� � �= � .                       (30) 

In (28), the last product term in the right-hand member 
describes the heat lost to decrease the inlet gas temperature; 
pc is the upper cooling region pressure.  

As to the liquid water mass Mld under the surface, one has 

                
2 _ ,ld H O down g l ld outM w w w�= + �� ,                 (31) 

where the three terms on the right-hand member are due to 
water falling down from the cooling upper region into the 
pool because of gravity, to the condensating water and to the 
outlet water respectively. In particular,  

                     
2 _ _H O down w spr downw M �= ,                      (32) 

where the average delay factor �down (Lydersen, 1983) models 
the residence time (typically of the order of a few seconds) of 
spray water (whose mass is Mw_spr) in the spray region. wld,out 
is a control variable which can be employed for level 
regulation, by means of a suitable valve. 

For the liquid water temperature Tld under the surface, one 
can write 

              
2 _ ,l l ld H O down l ex glM cT Q Q Q= � + +� ,               (33) 

     
2 2 2 2_ _ ( ( ) ( ))H O down H O down H O lu H O ldQ w h T h T= � ,      (34) 

                  , ,( ( ) ( ))l ex g l g sat ld l ldQ w h T h T�= � .                 (35) 

For gas mass conservation above the free surface, one has 

                   ,gu bout gas mix cndM w w w= � �� ,                    (36) 

where wgas,mix is the overall gasifier outlet syngas flow rate, 
which is assumed, for simplicity, to be regulated by a critical 
valve, and 

2

_,6
2

lu w sprlu g l u steam gu
cnd sat

lu drop H O spr

T TM M RT
w p

d PM V
�

�
� � �+� ��� ��= � � ��� � ��� ��� �  �  

 

                                                                                            (37) 
is due to humid gas condensation. Tw_spr is the spray inlet 
temperature, ddrop the average spray drop diameter (water 
drops are assumed as spherical), Vspr the spray region volume. 
Msteam can be derived from the conservation equation 

 
2 , ,steam bout H O out cnd gas mix steam guM w f w w M M= � �� . (38) 

For gas energy conservation above the free surface, one has  

, ( ( , ) ( , )),g g gu g sc exch bout gd c gu cM c T Q Q w h T p h T p= � � + ��  
                                                                                            (39) 

                 , ,( ( ) ( ))g sc cnd g sat lu guQ w H T h T= � ,                 (40) 

                   , , ( )exch g l u g l u gu luQ S T T� � �= � .                    (41) 

For the liquid water mass Mlu and temperature Tlu above the 
surface, respectively, one can write 

                 
2 ,lu H O down cnd sprM w w w= � + +� ,                  (42) 

   , _( ( ) ( ))l l lu l sc exch spr w spr luM cT Q Q w h T h T= + + �� ,   (43) 

where sprw  is the inlet spray water flow rate and 

                 , ,( ( ) ( ))l sc cnd g sat lu l luQ w H T h T= � .                  (44) 

Again, pressure in the cooling chamber can be derived from 
the ideal gas law: 

                     ( )c gu gu spr gup RT M V PM= .                     (45) 

2.4 Model Verification 

As for the coal composition and steady-state nominal 
conditions, we have made reference to the data published in 
(Cotone, 2003). The main model parameters, especially for 
the correlations, have been drawn from the literature as well. 
In particular, the Kr’s in (14) have been taken from (Wen and 
Chaung, 1979). This way, our model has been fully specified. 
For its verification, the molar fractions supplied by the model 
have been compared with the molar fractions in the literature. 
In Table 2 such comparison is carried out by referring to the 
situation occurring after the thermal shock at T=1077 K. 

Table 2.  Comparison between literature data (Cotone, 
2003) and simulation results at nominal steady state 

 
 

Reference 
data 

Simulation 
results 

Relative 
Error 

COx  34% 38% 12% 

2H Ox  14.9% 13% 13% 

2COx  16% 15.9% 1% 

2Hx  33% 30.6% 7% 

2Nx  1.8% 2% 11% 
 

3. CONTROL ISSUES FOR THE GASIFICATION PLANT 

In this work, attention is focused on problems related to 
fulfilling the electrical network’s needs, such as supplying the 
requested power variations, in normal operation (load 
following) or in emergency conditions, taking part in primary 
frequency control, or even contributing to secondary 
frequency control. In particular, the problem of coordinate 
control is dealt with here: the gasifier load and the global 
plant operating conditions are mastered so as to satisfy power 
requests from the electrical network, while preserving plant 
integrity and correct operation, of course. A simplified plant 
scheme is shown in Fig. 2. It is composed of three main parts: 
(i) the gasification island; (ii) a lower pressure system for the 
syngas treatment, together with thermal energy recovery; (iii) 
a conventional gas turbine, with its own fuel feed system 
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controlled by valve v3. A valve, v2 (or an expansor for power 
recovery), connects part (i) and part (ii). The symbol � is 
adopted for actuator command signals. 

We now focus on the problem of supplying fast and relatively 
large power variations, in order to fulfil the network’s 
requests. For this purpose, the control scheme of Fig. 3 can 
be considered. Fast power variations are obtained by acting 
on valve v3, regulating the turbine inlet flow rate (as in 
conventional power plants). By means of two feed-forward 
actions (FFW in Fig. 3), such variation results in 
corresponding changes in command signals �1 and �2. Signal 
�1 controls the slurry flow rate as well as the oxygen flow 
rate. �2 determines the flow rate of the outlet syngas. The two 
feed-forward actions have to be designed so as to keep 
constant pressure p1, at the gasifier outlet, pressure p2, at the 
turbine inlet, and temperature Tg inside the gasifier. To this 
purpose, in Fig. 3 a decentralized control scheme is proposed, 
where control signals �1 and �2 are adopted for the regulation 
of p1 and p2 (dashed rectangle of Fig. 3). Alternatively, one 
can resort to a centralized controller, here omitted for reasons 
of conciseness. As for Tg, the control action is manually 
operated and indicated in Fig. 3 by a dash-dotted rectangle.   

Note that, for the overall control system, variations of �3 can 
be seen as main (measurable) disturbances. 

We now conclude with some observations about the 
regulation problems. 

Variable �1 acts simultaneously on the slurry and O2 flow 
rates. Here the main objective is to keep constant the ratio 
between the two flow rates. However, these cannot be varied 
simultaneously, in order to avoid excessive over- or under-
elongations in the gasification temperature. More precisely, 
when there is a load variation, the corresponding variation of 
the O2 flow rate must take place with some delay after the 
variation of the slurry flow rate. The reason is that the oxygen 
reacts extremely fast, so that the temperature variation occurs 
abruptly. Such delay is represented in Fig. 3 as well (lag). 

Let us finally consider the 2x2 MIMO system where �1 and 
�2 are the input signals, and p1 and p2 the output signals. 

Conventional power plant operating experience would 
suggest regulating independently p1 by the gasifier load and 
p2 by valve v2, as shown at the top of Fig. 3. However, the 
variables under study are rather interacting with each other: 
for instance, increasing the gasifier inlet load implies an 
increase in pressure p1, which makes valve v2 flow rate 
increase and therefore pressure p2 increase as well. The 
degree of coupling is quantitatively captured by the relative 
gain matrix RGA, whose elements are not far from 0.5. 
Therefore, a centralized control solution, carried out by a 
forward decoupling technique, has been also analysed. The 
open-loop SISO transfer functions employed for controllers 
tuning have been identified from the system step responses 
around the chosen steady-state nominal point (see Section 
2.4). Summing up, both centralized and decentralized 
controllers have been designed and simulated. Simulation 
results are reported in the subsequent section. 

 

Fig. 2. The controlled simplified plant scheme. 

 

Fig. 3. A controller structure for the plant. 

4.  SIMULATION RESULTS 

The simplified plant depicted in Fig. 2 has been simulated in 
the Matlab-Simulink environment, with the gasifier model, in 
particular, implemented by means of an S-function written in 
the C++ language. Simulations have been carried out both in 
open loop and in closed loop by considering both the 
centralized and the decentralized schemes. Integration has 
been executed in the continuous-time domain, by resorting to 
the standard Matlab algorithms. 

Some of the results of a dynamical simulation with the 
centralized controller are now reported. Starting from the 
steady-state nominal conditions, a positive 10% step on the 
turbine valve position is given, at time t = 1500 s; this 
simulates a variation of power request from the network, so 
that the turbogas control system requires more inlet fuel flow 
rate. The top of Fig. 4 shows the responses of pressure p1 and 
temperature Tg: as expected, their steady-state values are 
unaffected by the disturbance, and elongations around such 
values are very small. In Fig. 4 - bottom the control variables 
slurry and oxygen flow rates are depicted: they both increase 
in a rather slow manner, so as to preserve the integrity of the 
gasifier itself and of the other devices (with their dynamic 
operating constraints). Finally, it turns out that also the 
opening of valve v2 exhibits a smooth behaviour. 

Slurry

Gasifier 

�2 

p1 

 �3 

p2 

   Air 

TurbineGas 
treatment 

�1 

v2 v3 

O2 

(i) 

(ii) 
(iii) 

�2 

PIPI

  p2,ref p2 +p1   p1,ref + _ 

�3 

Lag PI 
+

Tg,ref 

Tg wO2 

+ 

PI 

1

+

+ +

+

Master �1 

_ 
wsl 


O2valve pump rpm 

PI

e1 e2 

FFW FFW 

FFW 

+ 

+ +

_ 

_ 
_ 

408



 
 

     

 

1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400
61.65

61.75

61.85

61.95

62.05

62.15
Pr

es
su

re
 p

1 (b
ar

)

Time (s)

 

 

1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400
1671

1672

1673

1674

1675

1676

Te
m

pe
ra

tu
re

 T
g (K

)

Pressure
Temperature

1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400115

117

119

121

123

125

S
lu

rry
 fl

ow
 ra

te
 (k

g/
s)

Time (s)

 

 

1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 240065

67

69

71

73

75

O
xy

ge
n 

flo
w

 ra
te

 (k
g/

s)

Slurry
Oxygen

 

Fig. 4. Simulation results with centralized control. 

5. CONCLUSIONS 

A control-oriented first-principle dynamical model for a coal 
slurry gasifier has been proposed. Model parameters have 
been identified from literature data. Classical control schemes 
have been proposed for the 2x2 problem of controlling 
gasifier pressure and turbine inlet pressure by the gasifier 
inlet slurry and O2 flow rates and by the gasifier outlet syngas 
flow rate. Simulations have shown satisfactory performance 
for disturbance rejection. Also the set-point tracking (not 
presented in this paper, for brevity) leads to good results. 
Future activities include model validation in transient 
conditions and integration of this model and models of other 
plant devices (see Section 1) into an overall IGCC plant 
simulator. Then, control strategies will be studied concerning 
the interaction between the gasifier and the other devices, in 
normal operating conditions and during startups/shutdowns; 
such strategies will be implemented both by standard 
techniques, based on SISO PID controllers, and by more 
involved MIMO techniques. 

ACKNOWLEDGEMENTS 

We are grateful to P. D’Adamo and P. De Francesco, 
formerly students at Politecnico di Milano, for their 
collaboration in the phase of parameter tuning. 

This work has been financed by the Research Fund for the 
Italian Electrical system under the Contract Agreement 
between CESI RICERCA and the Ministry of Economic 
Development - General Directorate for Energy and Mining 
Resources stipulated on June 21, 2007 in compliance with the 
Decree n. 73 of June 18, 2007. Research has also been 
supported by the Italian National Research Project “New 
Techniques of Identification and Adaptive Control for 
Industrial Systems” and partially by CNR-IEIIT. 

REFERENCES 

Bittanti, S., Canevese, S., De Marco, A., Prandoni, V., and 
Serrau, D. (2008). Towards clean-coal control 
technologies: modelling conversion of carbon oxide into 
hydrogen by a shift reactor, 17th IFAC World Congress, 
Seoul, South Korea. 

Canevese, S., De Marco, A., Murrai, D., and Prandoni, V. 
(2007). Modelling and control of a PSA reactor for 
hydrogen purification, ICPS’07 (1st IFAC Workshop on 
Convergence of Information Technologies and Control 
Methods with Power Plants and Power Systems), Cluj-
Napoca, Romania.  

Chen, C., Horio, M., and Kojima, T. (2000). Numerical 
simulation of entrained flow coal gasifiers. Part I: 
modeling of coal gasification in an entrained flow 
gasifier. Chemical Engineering Science, 55 (18), 3861-
3874. 

Cotone, P. (2003). Section D - Basic information for each 
alternative. In Domenichini, R., IEA GHG Gasification 
power generation study, Final Report, Rev. 1. 

De Marco, A., De Michele, G., Miccio, M., Prandoni, W., 
and Traniello Gradassi, A. (1991). A model for the 
dynamic simulation of a pilot fluidized bed combustor: 
Predictions and first validation, Proceedings of the 11th 
International Conference on Fluidized Bed Combustion, 
vol. 1, 433–438. ASME, New York, NY. 

Fantini, V., Mazzocchi, L., Moia, F., Prandoni, V., and 
Savoldelli, P. (2007). Pre-feasibility study of a flexible 
hydrogen-electricity co-production IGCC coal-fed plant 
with CO2 capture and sequestration, Third International 
Conference on Clean Coal Technologies for our Future 
(CCT 2007), Cagliari, Italy. 

Kobayashi, H., Howard, J.B., and Sarofim, A.F. (1977). Coal 
devolatilization at high temperatures, 15th Symposium 
(International) on Combustion, 16 (1), 411-425. 

Lydersen, A.L. (1983). Mass transfer in engineering 
practice. John Wiley & Sons. 

Schoen, P. (1993). Dynamic modeling and control of 
integrated coal gasification combined cycle units. PhD 
thesis, Delft University of Technology, Delft, The 
Netherlands.  

Smoot, L.D. and Smith, P.J. (1985). Coal combustion and 
gasification. Plenum Press, New York, NY. 

Thambimuthu, K.V. and Whaley, H. (1987). The combustion 
of coal-liquid mixtures. In C.J. Lawn (ed.), Principles of 
combustion engineering for boilers, Chapter 4, 402-408. 
Academic Press, London. 

van der Looij, J.M.P. (1988). Dynamic modeling and control 
of coal fired fluidized bed boilers. PhD thesis, Delft 
University of Technology, Delft, The Netherlands. 

Wen, C.Y. and Chaung, T.Z. (1979). Entrainment coal 
gasification modeling. Industrial & Engineering 
Chemistry Process Design and Development, 18 (4), 
684-695. 

Wen, C.Y. and Dutta, S. (1979). Rate of coal pyrolysis and 
gasification reactions. In C. Wen, Lee (ed’s), Coal 
conversion technology, 57-170. Addison-Wesley 
Publishing Co., Reading, MA. 

409



Identification of Reaction Mechanisms with
a Dynamic PFR Model �
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Abstract: In this work, a dynamic model of a catalytic fixed bed reactor (FBR) based on
partial differential equations (PDE) is introduced and used for the identification of reaction
mechanisms which take place during the oxidation of sulfur dioxide over a vanadium pentoxid
catalyst. The measured data is collected from a pilot plant, which uses commercial sized catalyst
particles. In order to reduce the experimental effort, a developed framework based on the
methods of nonlinear optimal experimental design is applied using a steady state FBR model.
The systematic procedure is improved using a dynamic reactor model. This makes the time
dependent measurement data valuable for the identification procedure.

Keywords: Catalytic fixed bed reactor (FBR), reaction mechanisms, partial differential
equations (PDE), parameter identification, optimal experimental design.

1. INTRODUCTION

Catalytic gas phase reactions have a high relevance in
chemical engineering. The majority of chemical processes
will not be profitable and in some cases not even viable
without the usage of catalysts. An important application
represents the utilization of FBR for waste gas treatment
processes. In this work, the oxidation of sulfur dioxide
to sulfur trioxide is considered, which is converted with
water to sulphuric acid. It should be noted that huge
effort is made in the development of new catalysts with a
higher activity. Commonly, new catalysts are designed and
tested at micro scale, i.e. a pulverized catalyst. However,
the catalyst used in industrial plants are much larger and
the previously identified mechanisms and kinetic parame-
ters can not be transferred without further investigations
in a scale up procedure w.r.t. the reactor layout. Thus,
measurements with commercial catalyst particles are in-
evitable implying a high experimental effort. The sized
particles require a larger reactor diameter, and thus, high
gas flow rates are necessary in order to hold the operation
conditions close to the industrial scale reactor. Moreover,
corresponding requirements for process automation and
safety engineering have to be met. Consequently, in order
to reduce the experimental effort while reaching a desired
model quality, methods of nonlinear optimal experimental
design can be applied. In addition, due to the fact that
a good deal of data enhances the mechanism and param-
eter identification, the proposed framework can still be
improved when using a model, which describes the pilot
plant dynamic behavior. In this work, a homogeneous and
a two-phase FBR model are presented. The latter can
be used for dynamic simulations. Both are compared to
each other based on a set of measured data taken from an
identification campaign. The experiments were performed
� This work is supported by the Max-Buchner-Forschungsstiftung.

Fig. 1. Pilot plant set-up: (1) Quality measurement, (2)
Heating section, (3) Reactor, (4) Tube bundle cooler,
(5) Quality measurement, (6) Bubble column.

in a pilot plant (Fig. 1) using a commercially available
vanadium pentoxid catalyst.

2. PILOT PLANT DESCRIPTION

The core of the pilot plant is the tubular reactor which
has a diameter of DR = 0.1 m and a length of LR = 1 m.
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Fig. 2. Control structure: (FCR) Flow control and mea-
surement, (TCR) Temperature control and measure-
ment, (PCR) Pressure control and measurement,
(TIR) Temperature measurement, (QIR) Quality
measurement.

The diameter results from the size of the catalyst particle,
which is about DP = 0.005 m for the examined catalyst.
It represents the minimum diameter required in order to
get a uniform particle distribution. The reactor consists
of five beds of catalyst packing, where each is HB = 0.1
m high. The additional length is used to reduce in and
outlet effects. The reactor is operated nearly adiabatic
using an electric heated isolation. The majority of the
available space is occupied by the secondary units such as
the heating, cooling and gas scrubbing. The last two steps
are combined in a bubble column. Fig. 1 gives an idea of
the pilot plant set-up. The pilot plant is automated using
ABB Freelance. Beside the implemented safety engineering
procedures, the reactor inlet variables are controlled using
the structure given in Fig. 2. The gas flow rate V̇ can be
varied between 200 and 400 norm liter per minute at inlet
temperatures up to Tin = 500oC.

3. REACTOR MODELS

Two reactor models are presented, which describe the FBR
behavior, namely the homogeneous model and the two-
phase model. The chemical reaction is modeled with six
different reaction mechanisms for which several steps of
parameter identification and model discrimination are per-
formed in order to find the best suitable mechanism. Be-
sides the kinetic parameters in the reaction rate equations,
the reactor models contain several parameters. Some of
them can be obtained from the particles geometry e.g. the
packing porosity ε, the relative particle diameter DP , the
specific surface area a, and the catalyst density ρC , other
parameters are derived from property functions such as the
component heat capacities cP,i and cV,i, the heat of reac-
tion ΔhR, and the thermodynamic equilibrium constant,
KP . The heat loss can be determined from experimental
runs without reactions and is then calculated with the
estimated heat transfer coefficient, kW , and the measured
wall temperature, TW . Four components are considered in
the model with the indices as given in Tab. 1.

Table 1. Component indices

Index 1 2 3 4
Component SO2 O2 SO3 N2

3.1 Homogeneous Model

The model equations composed of mass balances, (1),
energy balance, (2), and momentum balance, (3), imply
the assumption of a plug flow profile in the reactor and
an instant heat and mass transfer between the gas and
the solid phase. This means that the temperature of
the catalyst particle is the same as the gas phase bulk
temperature. Due to this issue the model can not be used
for the description of the dynamic behavior, since the
heat capacities of gas and solid differ a lot. A detailed
description and derivation of the homogeneous model can
be found in Arellano-Garcia et al. (2007).

dFi

dz
= νiṙ · ρC(1− ε)π

4
D2

R (1)

dT

dz
=
−ṙΔhR(T )ρC(1 − ε)π

4D
2
R − kWπ DR (T − TW )∑
FicP,i

(2)

dP

dz
= −

∑
FiMi

ρπ
4D

2
RDP

(
1− ε
ε3

)
·
[
150(1− ε)η
DP

+ 1.75
∑
FiMi

π
4D

2
R

] (3)

In the model equations, Fi denotes the component flow
rates, νi the stoichiometric coefficient, and Mi, the molar
mass. T stands for the gas and the catalyst temperature,
P for the gas phase pressure. The viscosity η is calculated
assuming an ideal mixing.

Following the simulation results based on this model, the
pressure drop can be neglected for the given reactor set-up
and is not considered anymore in the two-phase model.

3.2 Two-Phase Model

The key idea of developing a two-phase model is to
perform dynamic simulations of the reactor behavior in
order to include time variant measurement data in the
parameter estimation procedure. Due to the varieties in
the resulting time constants in the energy balances, which
are mainly influenced by the heat capacity and density
in its corresponding phase, a split modeling of the gas
and solid phase becomes inevitable. The resulting equation
system comprises mass and energy balances for the two
phases,(4)- (7), which are coupled via mass and heat
transfer correlations,(8)-(10). Instead of the component
flow rates (see (1)), the concentrations in the gas phase cG,i

and the solid phase cC,i are used here as state variables.

dcG,i

dt
= Daxi

∂2cG,i

∂z2
− V̇

επ4D
2
R

∂cG,i

∂z

−a1− ε
ε
β(cG,i − cC,i)

(4)

dcC,i

dt
= νiṙρk + a β(cG,i − cC,i) (5)

4∑
i=1

cG,icVi

dTG

dt
= a

1− ε
ε
α(TC − TG)− V̇

επ4D
2
R

·
4∑

i=1

cG,icPi

∂TG

∂z
− kW 4

ε DR
(TG − TW )

(6)

dTC

dt
=

aα

ρCcP,C
(TG − TC)− ΔhRṙ

cP,C
(7)
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Fig. 3. Control volume of the two-phase model.

The control volume and the considered state variables
of the two phases are shown in Fig. 3. The transfer
coefficients (α, β, Dax) are calculated with dimensionless
numbers (Nusselt number Nu, Sherwood number Sh,
axial Peclet number Peax) and correlations taken from
literature, see e.g. Fogler (2006). Here, Dab,i stands for the
diffusion coefficient of the component i in nitrogen and λ̄
for the mixtures heat conductivity.

Dax =
V̇ DP

Peaxε
π
4D

2
R

(8)

βi =
Shε,i Dabi

DP
(9)

α =
λ̄Nu

DP
(10)

On the one hand, a dynamic simulation becomes possible
with the inclusion of the solid phase, but on the other
hand, new unknown or not well-known parameters are in-
troduced. Three parameters are used in the transport cor-
relations, one for each equation. In addition, two parame-
ters depend on the catalyst particle properties, namely, the
catalyst heat capacity, cP,C , and the specific surface area,
a. These additional parameters are to be determined from
the measurement data, but they are strong correlated with
the reaction rate, and thus, with the kinetic parameters of
the reaction mechanisms. This problem can be overcome
by running experiments without a reaction, i.e. with pure
nitrogen or air. By this means the parameter in the heat
transfer correlation, and the catalyst properties can be
determined independently.

3.3 Reaction Mechanisms

In the open literature, plenty of different reaction mech-
anisms have been published for the oxidation of sulfur
dioxide over vanadium pentoxid, we refer to Mezaki and
Kadlec (1972) for an overview. In this work, the five of
the most promising rate laws are selected. Additionally,
a generic power law mechanism is also considered. All
the rate equations describe the reaction stated in equa-
tion (11). They are functions of the components partial
pressures, Pi, and the temperature, T , which affects the
calculation of the velocity constant k, and the equilibrium
constants KP , and K.

SO2 +
1
2

O2 ⇀↽ SO3 (11)

Power Law: In the rate equation for the power law
mechanism (12), the component exponents a, b, and c are
treated as model parameters and have to be determined
from the measurements. The temperature dependent ve-
locity constant k is calculated with equation (13), in which
the kinetic parameters p1 and p2 have to be identified.

Rate 1:

ṙ = k

(
P a

SO2
P b

O2
P c

SO3
− P

(a−2)
SO2

P
(b−1)
O2

P
(c+2)
SO3

KP

)
(12)

k = exp
(p1
T

+ 0.5 ln(T ) + p2
)

(13)

Mechanistic Rate Equations: The rate equations (14)
to (18) can be derived assuming a liquid metal phase on
the catalyst particle formed by vanadium, in which the
supplied oxygen is dissolved. This is a widely accepted
assumption for the oxidation over vanadium pentoxid.
The differences in the reaction rates result from different
mechanisms of the catalyst activation with oxygen.

Rate 2:

ṙ =
kKPSO2P

1/2
O2[

P
1/2
SO3

+ (KPSO2)
1/2
]2
(

1− PSO3

KPPSO2P
1/2
O2

)
(14)

Rate 3:

ṙ =
kKPSO2PO2[

P
1/2
SO3

+ (KPSO2)
1/2
]2 (1− P 2

SO3

K2
PP

2
SO2
PO2

)
(15)

Rate 4:

ṙ =
kKPSO2P

1/2
O2[

P
1/2
SO3

+ (KPSO2)
1/2
]
P

1/2
SO3

(
1− PSO3

KPPSO2P
1/2
O2

)
(16)

Rate 5:

ṙ =
k (KPSO2)

1/2
PO2[

P
1/2
SO3

+ (KPSO2)
1/2
] (1− P 2

SO3

K2
PP

2
SO2
PO2

)
(17)

Rate 6:

ṙ =
kKPSO2PO2[

P
1/2
SO3

+ (KPSO2)
1/2
]
P

1/2
SO3

(
1− P 2

SO3

K2
PP

2
SO2
PO2

)
(18)

All these rate equations utilize the same approach for the
velocity constant k, and the equilibrium of the vacant sites
K, which are given in the equations (19) and (20).

k = exp
(
p1 − p2

T

)
(19)

K = exp
(
p3 − p4

T

)
(20)

3.4 Numerical Solution

In order to keep the computational effort low, both reactor
models were discretized using the orthogonal collocation
(OC), see Schöneberger et al. (2009). In the case of the
homogeneous model this leads to an algebraic equation
system (AE) and in the case of the two-phase model to
a system of ordinary differential equations (ODE). The
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Fig. 4. Model identification framework.

AE is solved with a Newton-Raphson step and the ODE is
integrated with an OC based Runge-Kutta algorithm. The
use of the numerical solution in an optimization framework
requires a very robust solution algorithm, in particular,
when the free variables are positioned in exponential terms
such as in the case of kinetic parameter estimation. There-
fore, specialized initial value generation algorithms and
step size control algorithms are required, see Schöneberger
et al. (2007). Anyhow, the solution of the homogeneous
model is more robust. Consequently, the first parameter
estimation is performed with this model in order to get
good initial parameter values for the two-phase model.

4. MECHANISM IDENTIFICATION FRAMEWORK

The proposed framework in Fig. 4 is based on the meth-
ods of nonlinear experimental design. It is similar to the
model building framework proposed by Franceschini and
Macchietto (2008), but with some improvements regard-
ing the specific problem. There is only one experiment
designed for model discrimination, and this is performed
in the beginning of the identification procedure. Further
experiments are exclusively designed in order to improve
the parameter accuracy until the parameter spreading is
in an acceptable region. Please note that all six reaction
rates are considered in the steps ’Parameter estimation’
and ’Model discrimination’ of the loop in Fig. 4, but the
’Nonlinear optimal experimental design’ is only performed
for the actually best rate model.

4.1 Parameter Estimation Problem

The objective of the parameter estimation procedure is to
find the parameter values which set the numerical solution
of the model equations (e.g. (1), (2), and (3) for the
homogeneous model) as close as possible to the measured
data. For this purpose, the problem (21), here stated for
the homogeneous model, has to be solved. In this work,
a weighted least square functional is used as objective
function and it’s final value is named LSQ. High values
are related to a high lack of fit.

min
p1,p2,a,b,c

LSQ =
NM∑
j=1

(Tns,j − Tmd,j)
2

σ2
Tj ,Tj

(21)
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Fig. 5. Initial experiment.

In equation (21) the subscripts ns and md denote nu-
merical solution and measured data, respectively, NM is
the number of measured data points, and σ2

Tj ,Tj
is the

standard deviation of the measured quantity (here the
temperature T ) at the measured point j. The calculated
temperature profiles for the different rate laws after the
parameter estimation are compared to the measured tem-
perature data in Fig. 5. In Tab. 2, the LSQ values for
the different rate models are given. All models are able to
describe the measured data. This is not surprising, because
4 parameters (5 for rate 1) are fitted to only 5 measured
points. Anyhow, the structure of the rate equations does
not allow the same good fit for all rates. The best fit is
reached with rate 5.
The parameter estimation problem becomes more difficult
when more data points are available. The model equations
have to be solved separately for each new experiment,
making the parameter estimation the most expensive step
regarding the computational effort.

Table 2. LSQ values for different rate models.

Rate 1 2 3 4 5 6
LSQ 0.488 0.688 0.821 0.916 0.461 1.901

4.2 Model Discrimination Problem

It is difficult to choose the best suitable rate model from
Fig. 5. The discrimination step normally is performed
taking the model with the lowest LSQ value. But, after
only one experiment the models LSQ values are still
close together, see Tab. 2. Thus, in a second step an
experiment is designed that drift apart from the calculated
temperature profiles for the estimated set of parameters.
To do this, the optimization problem given in equation (22)
is solved. By this means, the obtained inlet conditions are
optimal for the discrimination step. Due to the fact that
only one measured variable is considered, here a simpler
formulation is chosen as proposed by Akaike (1974) and
other authors.

min
V̇ ,cSO2,in,cO2,in,Tin

ΦDisc. , with

ΦDisc. =
6∑

m=2

6∑
i=m

5∑
j=1

(Tns,Mod=m,j − Tns,Mod=i,j)
2

(22)

The temperature profiles calculated with the solution of
(22) are plotted in Fig. 6. After the experiment is per-
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Fig. 6. Model discrimination experiment.

formed and the new parameters for each model are found,
the profiles are not separated anymore. However, the ex-
periment forces the rate models parameter values to move,
and thus, the models flexibility and arbitrariness is reduced
considerably.
Only one experiment is designed for a better model dis-
crimination. After the discrimination experiment the rates
1, 2, and 3 are the most promising candidates. The other
rates are still considered in the calculations but not plotted
anymore in this paper. Further designs for discrimination
are not performed because the focus on the parameter
accuracy forces also an increasing difference in the models
LSQ values. This means that after the convergence of the
loop in Fig. 4 a good distinguishability between the rates
is reached in addition.

4.3 Nonlinear Optimal Experimental Design Problem

In this work, the A-Criterion is used in order to increase
the parameter accuracy, leading to the objective function
given in equation (23). A detailed description of the
nonlinear optimal experimental design and the different
criteria so as a reason for the selection of the A-Criterion
can be found in Schöneberger et al. (2008).

min
V̇ ,cSO2,in,cO2,in,Tin

ΦA, with

ΦA =
trace (C)
dim (C)

(23)

The covariance matrix of the model parameters C is
approximated with the inverse of the Fisher information
matrix F which can be calculated with equation (24), see
Bard (1974). The rate model parameters are summarized
in the parameter vector P.

C ≥ F−1 =

⎡⎣NM∑
j=1

((
∂Tns,j

∂p

)
1

σ2
Tj ,Tj

(
∂Tns,j

∂p

)T
)⎤⎦−1

(24)

The parameter’s standard deviations σpn,pn =
√

C(n, n))
can be calculated with the diagonal elements of the covari-
ance matrix. The framework is stopped, when a maximal
standard deviation of σpn,pn,max ≤ 0.02 is reached. This
was accomplished after 8 experiments. The development
of the A-Criterion and the maximal parameter standard
deviation w.r.t. the experiments is shown in Fig. 7. The de-
velopment of the LSQ values for the first three rate models
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are depicted in Fig. 8. The experiments 1 and 2 and so 3
and 4 are repeated experiments used for the determination
of the measured variables standard deviation σTj ,Tj .

5. RESULTS

In this section, the measured dynamic reactor behavior
and the results obtained with the two-phase model are
presented.

5.1 Catalyst Properties and Heat Transfer

The specific heat capacity of the catalyst phase cP,k is
a model specific property, which has to be determined
from experimental data. It should be noted that it is not
equal to the heat capacity of the catalysts bulk material
since the modeled catalyst phase contains also the particle
pores. It can be estimated together with the parameter
in the heat transfer correlation from experiments without
reaction. This saves reactant gases and reduces the exper-
imental effort because no off-gas treatment is necessary.
The transient temperature profiles during the reactor heat
up procedure can be used for this issue. They allow the
independent estimation of the two parameters because
they contain also the initial steady state, when the reactor
inlet temperature is reached. These steady state profiles
are independent of the catalyst phase heat capacity, but
a function of the heat transfer coefficient. In Fig. 9 the
numerical solution (surface) is fitted to the measured
temperature data (black lines) based on the procedure
described in section 4.1.
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Fig. 9. Time-space surface without reaction.
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Fig. 10. Steady state comparison of the reactor models.

5.2 Parameter Transfer

Under the assumption of an instantaneous heat and mass
transfer and a neglecting of axial dispersion, the model
equations of the two-phase model can be rearranged to the
form of the homogeneous model in the case of steady state.
To show this, the profiles of a solution with the homoge-
neous model are compared to the steady state solution of
the two-phase model in Fig. 10. The differences arise from
the stated assumptions, which are not completely fulfilled.
However, a steady state examination of a catalyst would
not justify the use of the more complex two-phase model.

5.3 Dynamic Reactor Behavior

In Fig. 11, the transient temperature data is plotted. The
temperatures after the first and the second bed show
a strong overshooting. This behavior can be explained
with the two-phase model. The coupled balances for gas
and solid phase lead to a PT2 behavior when linearized.
This second order element has the potential to produce
a swinging solution. The effect is reduced in relation to
the distance from the reactor inlet. The last two profiles
show inflexion points instead. This can be explained with
the increasing reactor wall temperature, which is also
disturbing the system as well.

6. CONCLUSIONS

First calculation results show that the two-phase model
is able to describe the dynamic reactor behavior. It has
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Fig. 11. Transient temperature data with reaction.

been demonstrated that for steady state experiments with
a FBR the more complex two-phase model is not required.
However, the information content of the transient profiles
is much higher than the one from the steady state profiles.
The effect on the parameter accuracy still has to be
examined, in particular, because of the inclusion of the
additional parameters. The knowledge of the dynamic
reactor behavior enables the design of optimal transient
experiments and their implementation in the proposed
identification framework.
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Abstract: In this work the modelling and simulation of nanoparticle formation according to the 
technique of nanoprecipitation was done. In this method, the particle is formed due to the further 
diffusion of solvent into the water, resulting in the aggregation of the associated polymer chains. In order 
to predict the characteristics of the nanoparticle and also to improve the process, it was developed a 
mathematical model that considers: (a) the type of polymer; (b) interaction between solvent and polymer; 
and, (c) dynamics of solvent diffusion. The diffusivity between polymer-solvent was modelled by means 
of the Vrentas & Duda Free Volume Theory, including the Sanchez-Lacombe equation-of-state. The 
model was written in terms of Partial Differential Equation, and solved with MAPLE for a given initial 
size distribution. Additionally, it is a moving boundary problem because the diffusion of the solvent out 
of the droplet leads to its size reduction. Based on a given initial droplet size distribution, the transient 
behaviour and the final droplet size distribution can be evaluated. The dynamic simulation shows both 
the evolution of the solvent inside the droplet and the variation of size in time. Additionally, the 
comparison between experimental and simulated results showed a very good agreement. 

Keywords: nanoprecipitation, modeling, simulation, diffusion, moving boundary, droplet size distribution.
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1. INTRODUCTION 
Polymeric nanoparticles are of especial interest from the 
pharmaceutical point of view. First, they are more stable in 
the gastrointestinal tract than other colloidal carriers and can 
protect encapsulated drugs from gastrointestinal environment. 
Second, the use of various polymeric materials enable the 
modulation of physicochemical characteristics (e.g. 
hydrophobicity, zeta potential), drug release properties, and 
biological behavior (e.g. targeting, bioadhesion, improved 
cellular uptake) of nanoparticles. Finally, their submicron 
size and large specific surface area favor their absorption 
compared to larger carriers (Des Rieux et al., 2006). For 
instance, nanoparticles encapsulating proteins and vaccines 
(Des Rieux et al., 2006) and chemotherapeutic agents (Jabr-
Milane et al., 2008) have been investigated in the last years.  
One of the methods applied to produce nanoparticles is the 
so-called Nanoprecipitation. This method, first presented in 
1989 (Fessi et al., 1989), was largely applied by other authors 
in the subsequent years (Guterres et al., 1995, Thioune et al.,
1997, Govender et al., 1999, Chorny et al., 2002, Galindo-
Rodriguez et al., 2004, Bilati et al., 2005, Galindo-Rodriguez 
et al., 2005). It consists of a simple procedure for the 
preparation of nanocapsules (NC) by interfacial deposition of 
a preformed, well-defined, and biodegradable polymer 
following displacement of a semi-polar solvent miscible with 
water from a lipophilic solution. The method of preparation 
yielded spherical vesicular nanocapsules, which consisted of 
an oily cavity – where the drug is dissolved - surrounded by a 
thin wall formed by interfacial deposition of the polymer. 
When organic and aqueous phases are in contact, it is 
assumed that solvent diffuses from the organic phase into the 
water and carries with it some polymer chains, which are still 

in solution. Then, as the solvent diffuses further into the 
water, the associated polymer chains aggregate forming NC. 
Therefore, this method involves the equilibrium among a 
polymer, its solvent and a non-solvent.  
In order to predict the characteristics of the nanoparticle and 
also to improve the process, it was developed a mathematical 
model that takes in account: (a) the type of polymer; (b) 
interaction between solvent and polymer; and, (c) solvent 
diffusion process. After the description of the nanocapsules 
preparation, the mathematical model is explained. Then, the 
numerical simulation and its results are discussed. Finally, in 
the appendix the Free Volume model, applied to calculate the 
diffusivity polymer/solvent, is explained. 

2. NANOCAPSULES PREPARATION 
As mentioned in the previous section, the nanocapsules are 
prepared according to the method of nanoprecipitation. This 
method is based on the spontaneous emulsification of the 
organic internal phase, in which the polymer is dissolved, 
into the external aqueous phase. In this work nanocapsules of 
poly(1-caprolactone) (PCL) containing 3-benzophenon (solar 
protection factor) were prepared according to the following 
procedure (Fessi et al., 1989): 100 mg of PCL, 76.6 mg of 
sorbitan monostearate, 333 mg of Mygliol 810 
(caprylic/capric triglyceride) and 30mg of Benzophenon-3 
are first dissolved in acetone (27 ml). The resulting organic 
solution is poured in 53 ml of water containing 76.6 mg of 
polysorbate 80. The aqueous phase immediately turns milky 
with bluish opalescence as a result of the formation of 
nanocapsules, the wall of which is mainly constituted by 
PCL, and the oily core by the benzophenon-mygliol solution. 
The size of the nanoparticles is then analyzed by Dynamic 
Light Scattering (Zetasizer Nano, Malvern). 
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3. MATHEMATICAL MODELLING 
It was considered that the nanoprecipitation produces perfect 
spherical particles and also that each nanoparticle is 
originated from one droplet formed immediately after the 
mixing of organic phase and aqueous phases. The major 
model assumptions are: (a) there is a negligible relative 
velocity between the droplet and the water; therefore, the 
external mass transfer is approximated by diffusion. This 
assumption can be done based on the order of the Stokes 
number, which is related to the particle velocity and is 
defined as (Crowe, 2005, Rielly and Marquis, 2001): 

L
Vd

St pp

F

v

5
�

�
�

18

2


Q
1 (1) 

For small Stokes numbers, the particles follow the fluid 
motion; but for large St, the particles follow different 
trajectories from the fluid elements. The Stokes number 
(Figure 1) was calculated for fluid velocities between 1x10-3

and 1 m.s-1 (based on CFD simulations for a stirred tank that 
are not showed here), and particle diameters from 100 to 
4000 nm. As the Stoke number is in all cases less than 10-5,
the assumption of negligible relative velocity between the 
droplets and the external phase can be considered valid. 
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Fig. 1. Stokes Number. 
(b) the diffusion is one-dimensional along the radial 
direction; and, (c) the diffusivity varies with time and 
concentration only. 
Based on these assumptions, the mass balance equation for 
the solvent, written in spherical coordinates is: 
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This is a moving boundary problem, since the size of the 
droplet reduces because of the diffusion.  
As the dimensions of dependent and independent variables 
are not the same, a variable normalization was be done 
including new variables �, rh, and c1h defined as, 
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After the normalization, (2) is then rewritten as: 

                                                          
1 �F - characteristic time of the flow field; �v - particle relaxation time; dp - 
particle diameter; �p - particle density; V - fluid velocity, 5 - fluid viscosity; 
L - characteristic dimension of the obstacle. 
2 c1 - concentration of solvent; r - particle radius; D - diffusivity; t - time. 
3 r0 - initial droplet radius; D - diffusivity; �� - solvent density.
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3.1 Initial and Boundary Conditions 
It is assumed that the solution is well mixed and therefore, 
the concentration inside the droplet is uniform. Thus the 
initial condition is, 

00)0,( 011 rrhcrhc hh ��
 . (6) 

Where c1h0 is evaluated according to the experimental 
conditions. 
The boundary condition at the center of the droplet (rh=0) 
arises from the symmetry, 
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drh
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Additionally, the boundary condition at the interface was 
calculated based on the mass balance and can be written as  
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3.2 Boundary Movement 
The boundary movement is calculated based on the 
assumption that both the mass of polymer, oil and drug 
remain constant during the diffusion process. The volume of 
the droplet is considered to be 
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Per definition the volume of polymer and solvent inside the 
droplet are 
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Substituting (10) in (9) and isolating for R, then the radius 
can be calculated as 
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3.3 Model Parameters 
The two main parameters of this model are the diffusivity 
solvent/polymer and the diffusivity solvent/water.  
The experimental data presented by Wild (2003) was 
adjusted as a polynomial curve to describe the diffusivity of 
acetone in water. 
DS-W = -4.737wS + 15.92 wS – 14.71 wS + 4.738 (12) 

where ws is the molar fraction of water in the external phase.  
The diffusivity between polymer and solvent was modelled 
according to the Free Volume Theory (Vrentas and Duda, 
1976, Vrentas and Duda, 1977a, Vrentas and Duda, 1977b, 
Vrentas and Duda, 1979). Those authors applied the Flory–
Huggins thermodynamic model in their free volume diffusion 
theory to describe the polymer solvent enthalpic and entropic 

                                                          
4 R - actual radius of the droplet; DS-W - diffusivity of the solvent in the 
external phase; c1h(R) - concentration of solvent at the interface; c1h(<) - bulk 
concentration.
5 VD - volume of the droplet; V1 , V2, Voil , Vdrug - volume of solvent, polymer, 
oil, and drug, respectively.
6 m2 - mass of polymer; �2 - polymer density.
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interactions. For the estimation of solvent diffusion 
coefficient in polymer solution systems, free-volume 
parameters for the both polymer and solvent must be 
available. The free volume (FV) diffusion model developed 
by Vrentas & Duda describes the solvent self-diffusion 
coefficient (D1) and the polymer/solvent binary mutual 
diffusion coefficient (D) as given by (13) and (14), 
respectively.
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 DD  (14) 
In (13) the first exponential term can be considered as the 
energy factor, and the second exponential term is the free-
volume factor. Eq. (14) contains the following implicit 
assumptions (Zielinski and Duda, 1992): (a) the mutual-
diffusion coefficient is related theoretically to the solvent and 
polymer self-diffusion coefficients through an expression 
developed by Bearman (1961); (b) the contribution of the 
polymer self-diffusion coefficient to the mutual-diffusion is 
negligible; and, (c) the Flory-Huggins (Flory, 1970) model 
accurately describes the polymer activity. In addition, the 
specific free volumes of the polymer and solvent are 
presumed to be additive (without a volume change on 
mixing), and thermal expansion coefficients are 
approximated by average values over the temperature 
intervals of interest (Frick et al., 1990, Lodge et al., 1990). 
There are 13 independent parameters to be evaluated in (14). 
Some of them can be grouped reducing this number to the 
following variables: 2/11K ,

121 gTK � , 2/12K ,
222 gTK � , *

1̂V ,
*

2̂V , D0, E, , , and R, that must be determined to estimate 
mutual diffusivities. All of these parameters have physical 
significance, and therefore one must be able to evaluate every 
parameter from sources other than diffusion studies. The 
guidelines to calculate them, clarified by Zielinski and Duda 
(1992), were used in this work. Additionally the modification 
proposed by Wang et al. (2007), according to the Sanchez-
Lacombe equation-of-state (SL EOS), was also taken in 
account and is explained in Appendix A. The process was 
considered to be isotermic and isobaric (T=298K, P=1bar and 
E=0). All the parameters are listed in Table 1 and more 
details can be found in Appendix A. 

Table 1: Model Parameters. 

*
1̂V 0.9695 cm3/mol (K11/2) 0.983 x 10-3

*
2̂V 0.8181 cm3/mol �* 1.1427 g/cm3

@1 18.29 J1/2/cm3/2 T* 668 K 
@2 20.85 J1/2/cm3/2 P* 4035 bar 

D0 x 104 14.3 cm2/s Tg2 213 K 
K21-Tg1 -12.12  

The numerical values of number- and volume-average (size 
and standard deviation) – measured with ZetaSizer Nano® 
from samples all prepared according to the same 
methodology – are described in Table 2. 

4. NUMERICAL SIMULATION 
Experimentally the mean diameter is measured by Dynamic 
Light Scattering (ZetaSizer Nano® – Malvern). Typical 

number and volume density distributions, measured, can be 
seen in Fig. 2. 
According to Table 2 and Fig. 2, it is observed that: (a) The 
number-average size is always smaller than the volume-
average, as the contribution of a spherical particle grows 
proportionally with D3; (b) The standard deviation is about 32 
– 41% of the averaged value; and, (c) The size distribution 
does not follow a normal distribution.  

Table 2: Number and Volume average sizes. 

Number-average 
particle diameter 

Volume-average 
particle diameter 

Sample 1 222.12 J 71.25 303.76 J 103.68 
Sample 2 199.23 J 67.83 285.13 J 103.97 
Sample 3 200.81 J 73.60 300.90 J 117.73 
Sample 4 200.57 J 72.48 303.66 J 126.88 

Fig. 2: Measured Number and Volume density distribution. 

If it is assumed that the number of droplets/particles remains 
constant during all the process, the initial distribution can be 
calculated through the mass balance and based on the 
experimentally volume density distribution at final time, as 
explained by Fig. 3.  

Fig. 3: Measured number and volume size distribution. 
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Fig. 4: Calculated Initial Size Distribution. 
The calculated number density at final time was compared to 
the measured one, as can be seen in Fig. 5. The good 
agreement between both assures that the methodology used in 
this work is correctly applied.  
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Fig. 5: Comparison between the Experimental and Calculated 
Number Density Size Distribution. 

As the initial size distribution is now available, the diffusion 
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model can be simulated. It was done in Maple, which is 
capable of finding solutions for higher order PDE or PDE 
systems. 
Based on the initial size distribution, (5) is solved for each 
class of particle size. After that, the new radius can be thus 
calculated. If the relative difference (�Diam) between the 
new and old radius is less than 1x10-5, the process ends; if 
not, the iteration process goes on as illustrated in Fig. 6. 

Initial Size 
Distribution

For each class of particle size (m j):
1. Calculation of D (Eq. 14);

2. Integration of Eq. (5);
3. Evaluation of new radius (Eq. 11);

4. Calculation of DS-W (Eq. 12).

For [ti:ti+1]:

Is
�Diam<1x10-5?

NO

YES

End

Fig. 6: Scheme of solution implemented in MAPLE. 
5. RESULTS AND DISCUSSION 

The model predicts that in about 12 ms all the particles reach 
the final diameter. This result is in qualitative agreement with 
what is observed experimentally, that is, as the organic phase 
is mixed in the aqueous phase, the suspension becomes 
immediately (at least for the human eyes) opaque, as a result 
of the nanoparticle formation. 
Throughout the diffusion process, gradients of oil, acetone 
and polymer arise into the droplet leading to the reduction in 
size and the formation of the nanoparticle, as can be seen in 
Fig. 7. Each line represents one class of particle that forms 
the distribution.  
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Fig. 7: Evolution of Particle Size in time. 
For the smallest particles, it is observed that the diameter 
reduction is very fast, which is a consequence of the fast 
diffusion of acetone to the external medium, as can be seen in 
Fig. 8. 
The order of magnitude of the diffusion time is in agreement 
with that found by Moinard-Chécot et al. (2008). They tried 
to measure the duration of the solvent diffusion step with a 
stopped-flow apparatus. In this experiment, only the signal 
corresponding to the final state could be observed, i.e., the 
diffusion step is less than 20 ms (the acquisition time of the 

apparatus).  
Meanwhile the biggest particles presented a slower diffusion 
profile. Because of their initial big size, it takes longer for the 
solvent to reach the interface and consequently, to be 
transferred to the external medium. As more solvent diffuses 
out of the droplet, the concentration of polymer inside the 
droplet increases and consequently, the diffusivity 
polymer/solvent also grows up. At intermediate steps, the 
slow reduction in size showed by the largest particles leads 
almost to a bimodal volume and mass density distribution, as 
can be seen in Fig. 9. 
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Fig. 8: Acetone concentration at the interface. 
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Fig. 9: Volume and Mass Distribution at the initial and final 
time, and 2 instants of time in-between. 
The comparison between the experimental and calculated 
final volume density distribution (Fig. 10) shows a very good 
agreement, confirming that the assumptions done in sections 
2 and 3 are suitable for modelling the system. 
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Fig. 10: Comparison between the experimental and simulated 
volume density distribution. 

In order to generalize the model, a probability density 
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distribution can be employed to describe the initial size of the 
droplets. Applying the gamma distribution it is possible then 
to compare the experimental and simulation results, as show 
in Fig. 11. Analyzing both results and considering the 
standard deviation of the measurement, it is possible to 
confirm that the model and the methodology presented in this 
work are suitable to simulate the nanoprecipitation.  
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Fig. 11: Results obtained when using a gamma distribution to 
describe the droplets initial size. (a) Initial size distribution, 
(b) Final size distribution. 

6. CONCLUSIONS 
This work shows that it is possible to obtain satisfactory 
results using a simplified PDE model for the 
nanoprecipitation. The adopted approach considers several 
variables that have influence on diffusion, like type of 
polymer, solvent and non-solvent; affinity among them; and, 
polymer solubility. As a result, it is then possible to evaluate 
the particle size distribution during the nanoprecipitation. The 
comparison between the simulated and measured sizes 
showed a quite good agreement, suggesting that the 
employed methodology can describe correctly the 
nanoprecipitation.  

The proposed model can be combined with CFD simulator in 
order to improve the predictions. From the simulation, one 
could try to evaluate more accurately the initial droplet 
distribution. This methodology could thus be applied to study 
the influence of several kinds and sizes of reactors and 
mixers in the final properties of the nanoparticles. 
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Appendix A. FREE VOLUME THEORY PARAMETERS 
*

1̂V  and *
2̂V  – The two critical volumes were approximated as 

the specific volumes of solvent and polymer at absolute zero 
temperature. The molar volumes at 0K were estimated using 
a group contribution method (Sugden, 1927). 
R – The interaction parameter in terms of solubility 
parameters can be calculated through the following equation 
(Van Dijk and Wakker, 1997): 

� �221 @@R �

RT
Vm  (15) 

where Vm is the molar volume, R is the ideal gas constant and 
@1 and @2 are the solvent and polymer solubility parameters 
respectively.
A widely used solubility parameter approach for predicting 

polymer solubility is proposed by Hansen (2000). The basis 
of the so-called Hansen Solubility Parameters (HSP) is that 
the total energy of vaporization of a liquid consists of several 
individual parts. These arise from (atomic) dispersion forces 
(ED), (molecular) permanent dipole-permanent dipole forces 
(EP) and (molecular) hydrogen bonding (electron exchange) 
(EH). The basic equation which governs the assignment of 
Hansen parameters is that the total cohesion energy, E, must 
be the sum of the individual energies which make it up 

HPD EEEE ��
  (16) 
Dividing each one by the molar volume gives the square of 
the total solubility parameter. 

2222

////

HPD

HPD VEVEVEVE
@@@@ ��


��
  (17) 

The solubility parameter components were predicted from 
group contribution method, using the following equations 
(Van Krevelen, 1990).  

VFdid �
@ VFpip �
 2@     VEhih �
@  (18) 

D0, K21-Tg1, (K11/2) – These are solvent parameters (acetone) 
and the values previously collected by Zielinski and Duda 
(1992) were used here.
(K12/2)(K22-Tg2+T)(Wang et al., 2007) – According to the 
Vrentas-Duda model (Zielinski and Duda, 1992), the hole 
free volume of a polymer 2

ˆ
FHV  in its rubbery state can be 

expressed as 
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Assuming that the hole free volume is equal to the volume 
defined by the WLF (Williams, Landel and Ferry) theory, at 
the atmospheric pressure, (19) becomes 
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where V(=1/�) is the volume of polymer per gram at 
temperature T, which can be estimated by the SL EOS 
according to the equation, 

� �� ���� ~~/~~exp1~ 2 ����
 TP  (21) 
with the definition 

** PPPTTT /~,/~,/~ * 


 ���  (22) 

where �*, T* and P* are characteristics parameters of mass 
density, temperature and pressure, respectively. These 
parameters are listed by Rodgers (1993) and those for PCL 
used in this work are listed in Table 1. This method 
eliminates the need to use polymer viscoelastic data for 
determining the polymer free volume parameters. 
Additionally, its scope is also extended to include not only 
temperature and concentration but also pressure influence on 
solvent diffusivities. The only new parameters introduced by 
this model (�*, T* and P*) are three parameters of the SL 
EOS (Wang et al., 2007).  
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Abstract: Granulation is a multivariable process characterized by several physical attributes that are 
essential for product performance, such as granule size and size distribution. An optimally operated 
granulation process will yield, in a reproducible manner, product with tightly controlled performance 
attributes. In this paper predictive models of the dynamics of these key variables are developed using a 
dynamic partial least squares approach. The method, demonstrated here on process simulation as well as 
on an industrial mixer-granulator process, result in accurate predictions. These models motivate the 
development of model predictive controllers for these processes. 
Keywords: Granulation, Process control, Dynamic modeling, Partial least squares 

�
�

1. INTRODUCTION 

Granulation is a complex process in which many input 
variables influence many product properties. As Iveson et al. 
describe in a review paper (2001), the understanding of the 
fundamental processes that control granulation behavior and 
product properties have increased in recent years. This 
knowledge can be used during process design, in choosing 
the right formulation and operating conditions, and it can also 
be used to improve process control. Although many variables 
are set constant during process design, variations during 
production in input variables occur due to the variable nature 
of the powder feed. Even if all granule properties, except for 
size, are ignored for process control, a one dimensional 
granule size distribution can be constructed by multiple 
discrete output variables, in order to represent the shape of 
the distribution (these can be mean sizes (with coefficients of 
variation), percentile sizes, moments or size bins). Model 
Predictive Control (MPC) is an effective method to control 
such multiple input, multiple output processes (García, et al., 
1989). The majority of MPC applications in the chemical 
process industries utilize empirical models that are 
constructed from plant data. In this work, we explore the use 
of dynamic partial least squares to construct these empirical 
models. 

2. METHODS 

2.1  Partial Least Squares 

Partial Least Squares (PLS) methods have been demonstrated 
as a useful tool for analysis of data and modeling of the 
systems from which the data are collected (Kaspar and Ray, 
1993). Unlike related methods, such as Principal Component 

Analysis (PCA), which finds factors that capture the greatest 
amount of variance in the predictor (X) only, the PLS method 
attempts to find factors which both capture variance and 
achieve correlation. PLS handles this by projecting the 
information in high dimensional spaces (X,Y) down to low 
dimensional spaces defined by a small number of latent 
vectors (t1,t2…ta). These new latent vectors summarize all the 
important information contained in the original data sets, by 
representing the scaled and mean-centered values of  X and Y 
matrices as: 
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where the ti are latent (score) vectors calculated sequentially 
for each dimension i=1,2,…a. 

In the PLS method, the covariance between the linear 
combinations of X and the output measurement matrix Y is 
maximized at each iteration, using the vectors pi and qi which 
are the loading vectors whose elements express the 
contribution of each variable in X and Y toward defining the 
new latent vectors ti and ui. E and F are residual matrices for 
X and Y blocks, respectively. The optimal number of latent 
vectors retained in the model is often determined by cross-
validation (Dayal et al. 1994).  

In an industrial environment, it is more often the case that 
many of the predictor variables (X) are highly correlated with 
one another and their covariance matrix is nearly singular, 
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which renders classical regression methods intractable. 
Reduced space methods such as PLS and PCA can overcome 
this problem (MacGregor and Kourti, 1995). PLS is also 
robust to measurement noise in the data and can be used in 
cases where there are random missing data and when the 
number of input variables is greater than the number of 
observations (Dayal et al. 1994). Various examples of the 
implementation of PLS analysis to industrial process 
modeling and control can be found in the literature (for 
example, Dayal et al., 1994, MacGregor and Kourti, 1995, 
and others). 

Process dynamics can be incorporated into the PLS model by 
including columns of lagged outputs and/or inputs into the 
predictor block (X) (Dayal et al., 1994, Kaspar and Ray, 
1993, Juricek et al. 2001). The resulting PLS model is 
actually an ARX type input-output model of the form: 
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where y denotes the output variable (e.g., median particle 
size, d50), and u denotes the manipulated variable (e.g., binder 
flow). The terms A and B contain the autoregressive and 
exogenous terms of the model, respectively. The 
autoregressive term captures dynamics through lagged terms 
of the output, and the exogenous term captures dynamics 
through lagged terms in the input. 

Once the models have been calculated from the plant data, it 
is useful to evaluate their properties using several key 
statistical measures. Some of the useful statistics that are 
associated with reduced space models (Wise et al. 2006) are 
outlined below: 

Q residual – is simply the sum of squares of each row of E 
(from eq. 1), i.e. for the ith sample in X, xi: 

T
iii eeQ 
   (5) 

where ei is the ith row of E. The Q statistics is a measure of 
the difference between a sample and its projection into the a 
principal components retained in the model. 

Hotelling T2 is a measure of the variation in each sample 
within the model. Its value is the sum of normalized squared 
scores, defined by: 

T
iii ttT 12 �
 >   (6) 

where ti are the score vectors (eq. 1) and � is a diagonal 
matrix containing the eigenvalues corresponding to a 
eigenvectors (principal components) retained in the model. 

Together, the T2 and Q residual statistics are useful in 
evaluating the fitness of a PLS model to specific data. It is 
possible to calculate statistically meaningful confidence 
limits for both cases. 

2.2  Simulation studies 

In our previous work, a nonlinear one dimensional population 
balance model (1D-PBM) was successfully used to model a 
laboratory continuous drum granulation process with fine 
particle recycle (Glaser et al., 2008). The same model is used 
here as a base for a process simulation (Figure 1) for a 
preliminary evaluation and sensitivity test of the applicability 
of the dynamic PLS modeling technique for granulation. 

 

Fig. 1. Simulator structure: five inputs are included in the 
simulator: binder spray rate, fine powder feed-rate, drum 
rotation-rate and the drum inclination angle. The model is 
divided into three well mixed drum compartments, each 
described by an individual set of ODEs, a retention time 
model and a set of global parameters that influence the 
model behavior (taken from Glaser 2008). 

Both particle median size (d50) and, separately, particle size 
distribution width (d84/d16) were used as output variables for 
this study. The predictor (X) was constructed from 4 
manipulated variables (solid feed flow rate, binder feed flow 
rate, drum rotation speed, recycle rate) and the computed 
recycle flow as an additional input variable. Process 
dynamics were incorporated into the X block by including 
columns of lagged output variables. The lag time was 
estimated using an autocorrelation function. Delay times of 
each of the input variables were estimated using cross 
correlation function, and the predictor matrix was adjusted 
according to the obtained delay vector. During the 
simulation, the 4 manipulated variables were randomly 
perturbed around their nominal values at steady state 
sequentially, i.e. input variables were perturbed one after the 
other in fixed time gaps. The resulting PLS-based ARX 
model’s short horizon predictive ability was tested by cross 
validation with a set of separately calculated simulation 
sequences with different excitation regimes. For each of these 
cross validation sequences, the root mean square error of the 
model based prediction (RMSEP), relative to the simulated 
plant measurements was calculated for a given short horizon 
period. In order to make a more representative quantification 
of the predicting ability of the model, the short horizon start 
point was moved along the time axis of the data one time step 
after another thus creating a set of RMSEP measures out of 
which an average and maximum RMSEP could be calculated. 
All variables were mean centered and scaled to unit variance 
prior to processing. 

Model Parameters

Drum

� �1 1S x � �2 2S x � �3 3S x

( , )x f x u

�� � �

�

offu

onu

Retention Time Model

PSD

Solidmu �
1

Powdermu �
3

rpmu 
4

4
5u

Bindermu �
2

423



 
 

     

 

Based on this technique a sensitivity test was performed in 
order to estimate the required size of the data set needed for 
reliable process modeling. Figure 2 shows the convergence of 
RMSEP related to the length of data set used for the PLS 
model training. This plot is based on averaging 100 multiple 
simulations and modeling runs for each training length. 
Sample rate was set to 2 minutes and the simulated process 
step response time (�) was set to 4.5 minutes. The prediction 
horizon was set to 8 samples (i.e., 16 minutes). From this 
figure one can note that most of the dynamic features are 
captured by the model in the first 200 minutes of training 
data, as the mean RMSEP converges to low values. However 
using training data of up to 600 minutes would improve the 
model predictions. Notice that these results are not so 
sensitive to the excitations rate used in the modeling data set 
(i.e., time between two successive input variable 
perturbations), as long as this time is in the order of 
magnitude of the expected variations in process variables. 
Figure 3 depicts the response of the process model obtained 
with 520 minutes of training data to the process simulation 
for a step response in one of the input variables.  
 
All of these models use one lagged output variable (granules 
median size) in the predictor block and 2 latent variables in 
the PLS model, which are linear combinations of the time-
lagged values of the output variable and the delayed values of 
the five process variables. Figure 4 shows the prediction 
abilities of three PLS models obtained using different lengths 
of data sets for training (120, 220 and 520 minutes long) from 
a single simulation data, with input variable excitation every 
15 minutes. In this example, the predictions of these models 
are cross-validated using data from a separate simulation run 
with randomly timed excitations of the inputs. Considering 
that PLS models captures covariance in X and Y, it is 
possible to calculated the percentage of variance captured by 
each of their latent variables by dividing the variance 
predicted by the latent variables to the total variance in the 
original data. The percentage of variance captured by the 
abovementioned 3 PLS models (from the training data) is 
detailed in Table 1. It is noticeable that the longer the training 
set used, more fine details of the process dynamics are 
captured by the models, confirming Figure 2 results.  Notice 
that high values of explained variance do not guarantee good 
prediction of validation data by these models. The robustness 
of the PLS based models to measurement noise is 
demonstrated in Figure 5 and Table 2, where the simulated 
process was subject to 5% white noise on the output and 
input variable measurements. 
 
 
 

 
Fig. 2. Root Mean Square Error of Prediction (in validation 
simulation) versus length of training data set (based on 
modeling simulation), at different excitation rates. 

 
Fig. 3. Step response to a 1.2% step change in Binder feed 
flow  - PLS model based on 520 minutes training data vs. 
process simulation. 

 

 

 
Fig. 4. PLS based dynamic model validation for different 
training set length. Circles represents simulation results, 
lines represent 8 point horizon prediction. 
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Table 1: Percent variance captured by PLS models based on 
different lengths of training data sets. 

Training 
set length 

LVs X Block Y Block 
This Total This Total 

120min 1 76.04 76.04 82.44 82.44 
2 7.66 83.7 11.42 93.85 

220min 1 59.45 59.45 93.05 93.05 
2 14.21 73.66 2.8 95.85 

520min 1 41.35 41.35 97.88 97.88 
2 17.29 58.64 1.04 98.92 

 

 
Fig. 5. PLS based dynamic model validation, simulated 
process with 5% white measurement noise. Circles 
represents simulation results, lines represent 8 point 
horizon prediction. 

Table 2: Percent variance captured by PLS model, simulated 
process with 5% white measurements noise. 

Training 
set length 

LVs X Block Y Block 
This Total This Total 

520 min 1 33.93 33.93 82.75 82.75 
2 33.10 67.03 1.61 84.37 

 

3. DYNAMIC PLS MODELLING OF AN INDUSTRIAL 
PROCESS PLANT 

3.1 Process plant description  

In this section, we report on some preliminary studies on 
granulation model identification for a Procter & Gamble 
(P&G) industrial granulation process using normalized 
process data. 
 
A complex industrial granulation process, such as the 
flowsheet shown in Fig. 6, was subjected to a series of 
(designed) random perturbations in a number of input 
parameters. This plant is equipped with an on-line granule 
size measurement system that measures particle size based on 
image analysis of 2-D camera images.  The analysis 
constructed size distributions on the basis of the measured 
cross sectional area of the 2-D images. Granule size data 
along with all other plant variables were then sent to the 
UCSB team for modeling.  
 
There are notable distinctions between the P&G study and the 
one reported in Section 2.2.  The P&G process study is not 
meant to be used as a direct comparison (or validation) for 
the process simulation studies in Section 2.2. Rather, we 
present both as separate case studies to demonstrate the 

feasibility of using PLS methodology as an empirical 
modeling tool for granulation process control. 
 
The low-shear drum-granulation pilot plant that was used to 
design the simulator in Section 2.2 produced particles with 
d50’s of several mm; on the other hand, the medium-high 
shear mixer-granulation process shown in Fig 6 typically 
produced particles with d50’s less than 1 mm.   While the 
underlying physical mechanisms of growth and consolidation 
may be similar, the flow and shear fields are very different 
for the two processes (the drum granulator is relatively low 
shear, compared to the medium-high shear mixer-granulation 
process), the process layouts and control handles are 
different, as are the material properties.  As such, the choices 
of process variables (manipulated and measured) are unique 
for each process. 
.  

 

Figure 6.  Representative P&G process flow diagram for 
mixer-granulator (Mort et al. 2001). For simplicity, this 
diagram omits the usual operations for classification and 
recycle. 

3.2 PLS modeling of real plant data- Case I  

Figure 7 describe the dynamic PLS model fitting obtained for 
the granules median size. The data set obtained from the plant 
originally contained 147 sampling points, each consist of 81 
process variables, together with granules size measurements. 
Sampling time was 0.4 times the process characteristic time 
�. During this time period 4 manipulating variables were 
subjected to random perturbations around their nominal 
values at steady states (Fig. 8) in a similar way to the 
simulation work described earlier (adjusted to the process �), 
while other adjustments were continuously made to other 
plant variables (i.e. normal plant operations). Granules 
median size (d50) was selected as the output variable. Nine 
out of the 81 process variables were chosen as predictor 
variables for the PLS model, based on engineering judgment, 
GA based variable selection (PLS Toolbox 5.0 by 
Eigenvector research incorporated), and trial and error. The 
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output lag time and process variables delay times were 
evaluated using the auto and cross correlation functions, 
respectively, as described in section 2.2.  The process model 
uses two latent variables, which are linear combinations of 
the time-lagged values of the output variable and the delayed 
values of the nine process measurements. For an independent 
cross validation of the model, the above data was divided to 
two sections – the first half was used to train the PLS model, 
and the second used to test model predictions, yielding 
RMSEP value of 0.26. These results, as shown in Fig. 9. and 
Table 3, are very similar to the fitting obtained for the 
simulation data of the same training length to � ratio (Fig. 2 
and Fig 4. upper plot). 

 

Fig. 7. Dynamic PLS model fitting to plant d50 data. 

Table 3: Percent variance captured by PLS model, 
plants’ d50 data. 

Training 
set length 

LVs X Block Y Block
LVi  Total LVi Total

60� 1 24.97 24.97 79.34 79.34 
2 25.09 50.06 9.04 88.38 

36� 1 39.46 39.46 72.13 72.13 
2 23.31 62.77 16.8 88.92 

 

Fig. 8. Values of the 9 predictor variables used in Case I 
PLS model – 4 manipulated variables (top) and 5 
additional process variables (bottom) 

 

Fig. 9. Cross validation of the dynamic PLS model for 
plant d50 data. Circles represents measurements, lines 
represent 8 point horizon prediction. 

3.3 PLS modeling of real plant data- Case II 

In a separate test, the granules distribution width as a function 
of selected process variables was modeled.  This analysis was 
performed on two limited sets of data, each from a different 
operating day. A series of step tests were performed on one 
of the manipulating variables. As in the previous case, other 
adjustments were continuously made to other plant variables 
to maintain normal plant operation. The standard deviation of 
the granules measured area was used as the output variable to 
be modeled. A dynamic PLS model was built using 3 input 
variables and one lagged output variable, based on the first 
data set, and then validated using the second data set, 
resulting in an excellent fit (Figure 10). In this case, as well, 
the process model uses two latent variables.  

 
Fig. 10. Actual process data (granules area standard 
deviation): Cross validation of model based on first data 
set, tested on second data set 

On the scores plot (Figure 11) it is clear, however, that these 
two sets represent different and distinct operating conditions. 
If one further examines the contribution of each variable for 
these two sets (Figures 12) we can see that the main 
difference is that on the validation set, much lower values of 
variable 2 were used, compared to the modeling set. It is also 
interesting to note that the only outlier of the modeling set 
also exhibits the same low value on variable 2. 

0 5 10 15 20 25 30 35 40

0.6

0.8

1

1.2

1.4

1.6

Time [�]

d 50
 (n

or
m

al
iz

ed
)

measurements
infinite horizon prediction
model cross validation

-2

-1

0

1

2

3

Time

sc
al

ed
 u

ni
ts

var 1 var 2 var 3 var 4

-4

-2

0

2

4

6

8

Time

sc
al

ed
 u

ni
ts

var 5 var 6 var 7 var 8 var 9

0 2 4 6 8 10 12 14
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time [�]

d 50
 (n

or
m

al
iz

ed
)

0 2 4 6 8 10 12 14 16 18
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time [�]

P
S

D
 (n

or
m

al
iz

ed
)

measurements
infinite horizon prediction
model cross validation

426



 
 

     

 

 
Fig. 11. Score Plots for the PSD width model. Circles are 
samples from the modeling set; Triangles are samples from 
the validation set. The ellipse marks the 95% confidence 
limit for the model. 

 
Figure 12: Values of input variables used in the modeling 
set (left) and in the validation set (right). 

Although these results looks promising with respect to the 
ability to analyze and predict the granulation process 
variables, a quick look at the high values of Q residuals and 
Hotelling T2 (Figure 13) indicates that this model is far from 
describing the whole complexity of the process, and many 
more measurements should be done in order to characterize 
the different operating regimes of this process. 

 

 

 
Figure 13: Q Residuals and Hotelling T2 Values for the PSD 

width model 
  

 

 

4. CONCLUSIONS 

Dynamic PLS modeling was proven to be an effective tool in 
modeling key process variables in an industrial granulation 
process. Our future work will explore methods to capture the 
additional dynamics that remain in the plant data. We are also 
planning longer plant runs with larger input variable 
excitation to improve the model identification. Longer term 
goals are to develop a model-based controller for plant 
testing. 

 

Funding for this work from IFPRI (International Fine Particle 
Research Institute) is gratefully acknowledged. 
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Abstract: The problem of designing the estimation structure to perform a specific (entire profile, 
single/two-effluent, and so son) concentration estimation task in a binary distillation column with two 
temperature measurements is addressed within a geometric estimation (GE) framework. The structure 
design involves the choices of: (i) the measurement locations, (i) the complete or truncated estimation 
model, and (iii) the innovated-noninnovated state partition of the model. First, a structural analysis is 
performed on the basis of detectability measures in the light of the column characteristics, yielding 
candidate structures for a specific estimation task. Then, the behavior of the structures is assessed with 
estimator functioning and dimension considerations, yielding conclusive structural results. The proposed 
methodology is applied to a representative case example with experimental data.  
Keywords: Nonlinear estimator, geometric estimator, nonlinear system realization, distillation column 
estimation. 

 

1. INTRODUCTION 

The study of the concentration estimation problem for 
distillation columns is motivated by the development of 
advanced monitoring and control schemes. The estimator 
design involves decisions on: (i) the structure (sensor number 
and locations), and (ii) the kind of (EKF, Luenberger, 
Geometric, etc) algorithm. In the distillation column 
estimation field: (i) the EKF has been, by far, the most 
widely employed and accepted algorithm, (ii) the sensor 
structure has been decided with heuristics (Oisiovici and 
Cruz, 2000) or observability measures (van der Berg et al. 
2000; Singh and Hahn, 2005), (ii) only in a few studies 
(Alonso et al, 2004; Bian and Henson 2006; Venkateswarlu 
and Kumar, 2006; Kadu et al, 2008) the measure-based 
sensor location results have been tested with estimator 
functioning and is not clear to what extent the results depend 
on tuning. In principle, the resolution of this drawback 
requires a unified framework to address the algorithm, sensor 
location, and tuning aspects. 

Recently (Alvarez and Fernandez, 2009), the general-purpose 
nonlinear geometric estimator (GE) (Alvarez and Lopez, 
1999; Alvarez 2000) has been redesigned with: (i) an 
implementation in terms of model Jacobian matrices (and not 
of the cumbersome or intractable Lie derivation-based gain of 
the nonlinear Luenberger observer), (ii) the structure 
(sensors, complete/truncated model, innovation scheme) as a 
key design degree of freedom, and (iii) a simple tuning 
procedure based on a robust convergence criterion, regardless 
of the structure, and (iv) testing with an experimental binary 
distillation column. This adjustable-structure GE 
methodology and the associated nonlinear detectability 
measures (Lopez and Alvarez, 2004) constitute the 
methodological points of departure for the present study. 

In this work, the problem of designing the best estimation 
structure (in terms of reconstruction speed, robustness, and 
algorithm simplicity) to perform a specific (entire profile or 
two-effluent) concentration estimation task in a binary 
distillation column with two temperature measurements is 
addressed, with structure meaning the choices of: (i) the 
measurement locations, (i) the (complete or truncated) 
estimation model, and (iii) the innovated-noninnovated model 
state partition. The proposed methodology is applied to a 
representative case example with experimental data. 

2. ESTIMATION PROBLEM 

2.1 Column system and model 

Consider an N-stage binary distillation column, with molar 
feed flow F in tray nf at (light-component) mole fraction cF, 
and bottoms (or distillate) flow B (or D) at composition cB (or 
cD), and a total condenser. Under standard (constant pressure, 
stage equilibrium, fast holdup dynamics with perfect mixing, 
evaporator level control, constant molar flow, saturated feed, 
and adiabatic system) assumptions the N-composition column 
model is given by (Luyben, 1990) 
 

c. 1 = {(R + F)(c2 - c1) - V[�(c1) - c1]}/M1 := f1,       cB =c1 

c. i = {(R + F)(ci+1 - ci) - V[�(ci) - �(ci-1)]}/�
-1(R + F) := fi, 

         1 � i � nf -1,                         �(M) = a�(M - Mo)b
�  

c. nf = {(R + F)(cnf+1 - cnf) - V[�(cnf) - �(cnf-1)]  
        + F(cF - cnf)}/�

-1(R + F) := fnf 

c. i = {R(ci+1 -ci) - V[�(ci) - �(ci-1)]}/�
-1(R) := fi,   nf +1 � i �  n-1 

c.N = {R[�(cN) - cN] - V[�(cN) - �(cN-1)]}/�
-1(R):= fN, cD =�(cN) 

y1 = T1 = �(cl1),        y2 = T2 = �(cl2)   
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ci is the i-th stage mol fraction of light component, V (or R) is 
the vapor (or reflux) flow, Mi is the i-th stage molar holdup, 
and Ti is the temperature measurement at the l1-th stage, �, �, 
and � are the liquid-vapor, bubble point, and (Francis weir 
equation) hydraulics functions, respectively. Assuming the 
feed composition is fixed at cae, the preceding N-composition 
column model is written by  

c.  = fc(c, u),    c(0) = co,   y = h(c) := [�(cl1), �(cl2)]              (1) 
c = (c1,…, cN)',   u = (F, R, V)',   dim (c, y, u) = (N, m, 3, 1) 
 
In virtue of the afore stated modeling assumptions, the actual 
column dynamics are given by 
 
c.  = fc(c, u) + f̃c(c, 	, d), c(to) = co,  y = h(c) + h̃c(c, 	) + ey (2a) 
	
.
 = f	(c, 	, d, d

.
),        	(to) = 	o,  d = (u, eu, de), dim 	 = n	 (2b) 

 
with concentration (or unmodeled) state x (or 	), actuator 
error eu, and unmodeled exogenous input de. The unmodeled 
dynamics (2b) have slow and fast components due to the 
modeling-measurement errors, including holdup and enthalpy 
QSS assumptions. Thus, the N-composition model (1) is the 
actual system (2) with the modeling assumption (f̃c, h̃c, ey) = 
0. 

2.2 Adjustable-structure estimation model 

Following a previous binary distillation column GE (Alvarez 
and Fernandez, 2009) study with the estimation model 
regarded as design degree of freedom, rewrite the actual 
column dynamics (1) in terms of n 
 N modeled 
compositions (x): 
 
x.  = f(x,u) + f̃(x, �, d, u), x(to) =xo, y = h(x) + h̃(x, �) + ey  (3a) 
�
.  = f�(x, �, d, d

.
), �(to) = �o,  (x, x

�
) = Icc,  � = (x

�
, 	)       (3b) 

 
where x

�
 are the unmodeled concentrations and � is the 

augmented unmodeled state. The vector f depends only on 
the modeled concentrations x, due to a key modeling 
assumption made for estimator decentralization purposes 
(Alvarez and Fernandez, 2009): (i) f is the part of fc that 
describes x, and is calculated with the unmodeled state at an 
average constant value (x-

�
), as the related error can be 

effectively compensated by the GE integral action when the 
estimation structure is adequately chosen. In terms of 1 (or 
2) innovated sates x1 (or x2) and (n - ) noninnovated states 
(x�), the actual dynamics (2) are given by 
 
x. 1 = f1(x1, u) + f̃1(x, �, d, u), y1 = h1(x1) + h̃1(x, �) + e1      (4a) 
x. 2 = f2(x2, u) + f̃2(x, �, d, u), y2 = h2(x2) + h̃2(x, �) + e2      (4b) 
x. � = f�(x�, x1, x2, u) + f̃�(x, �, d, u),    x�(to) = x�o                (4c) 
�
.  = f̃�(x, �, d, d

.
),  �(to) = �o,  x1(to) = x1o,   x2(to) = x2o      (4d) 

 
where (x1, x2, x�, x�

) = Icc,       dim (x1, x2, x�) = (1, 2, �) 
1 + 2 = �,  1 + 2 + � = n 
  N,  (x1, x2) = x�, dim (x�) = � 
 

f1 (or f2) corresponds to x1 (or x2), and is calculated with some 
(average) constant value [x-1(or x-2), x- �]. From the 
specialization of the general-purpose definition of model 
structure [Alvarez and Fernandez, 2009] to the binary column 
case, the definition of column model structure follows 
 
� = (, x�-x�),   = (1, 2),   1 + 2 = � 
 n,  x� = (x1', x2')'  (5) 
 
where  is the estimation order vector, x�-x� is the innovated-
noninnovated state partition, and x1 (x2) are 1 (or 2) 
adjacent concentrations associated with the measurement y1 
(or y2). Thus, from the enforcement of the modeling 
assumption 
 
(f̃1, f̃2, f̃�) = 0, (h̃1, h̃2) = 0, (e1, e2) = 0                   (6) 
 
upon the actual subsystem (4a-c), the estimation model, with 
estimation structure � (5), follows: 
 
x. 1 = f1(x1, u),              x1(to) = x1o,        y1 = h1(x1)              (7a) 
x. 2 = f2(x2, u) ,             x2(to) = x2o,        y2 = h2(x2)              (7b) 
x. � = f�(x�, x1, x2, u),    x�(to) = x�o                                        (7c) 
 

2.3 Adjustable-structure geometric estimator (GE) 

In virtue of the �-detectability property of the N-composition 
staged model (7), the (possibly truncated) model state (x) can 
be on-line robustly estimated by the geometric estimator 
(GE) with structure �:  
 

x̂
.

1 = f1(x̂1, u) + O1
-1(x̂1, u){�1�̂1 + k1(�1, �1)[y1 – h1(x̂1)]}, 

x̂1(to) = x̂1o;       �̂b1 = �1
1+1[y1 – h1(x̂1)]},     �̂1(0) = �̂1o       (8a) 

x̂
.

2 = f2(x̂2, u) + O2
-1(x̂2, u){�2�̂2 + k2(�2, �2)[y2 – h2(x̂2)]}, 

x̂2(to) = x̂2o;       �̂b2 = �2
2+1[y2 – h2(x̂2)],     �̂2(0) = �̂2o       (8b) 

x
.

� = f� (x̂�, x̂1, x̂2, u) x̂� (to) = x̂�o                     (8c) 
 
where:           ki(�i, �i) = [a1

i(�i)�i, … , a

i
i(�i)� i

i]'       (9c) 
Oi'(xi, u) = [�’(cli)]ei[I, Ai(xi, u),…,� i

i+1(xi, u)],  i =  1, 2   (9a)  
Ai(x, u) = �xf (xi, u),  �i = (0, …, 0, 1)',   dim �i = i          (9b) 
|�’(cl1)| � ��,     |�’(cl2)| � ��                                           (10a-b) 
 

�i (or �i) is the damping factor (or characteristic frequency) 
of the prescribed linear, noninteractive, pole assignable 
(LNPA) output error dynamics 
 
ỹi

(i+1)
+ a1

i(�i) �iỹi
(i)+… + a1

i(�i) �iỹi
(1) + � i

i+1ỹi = 0,  i = 1, 2   (11) 
 
with coefficient sets {a1,…, a1}i determined by pole 
placement (Lopez and Alvarez, 1999). The invertibility of O1 
and O2 is ensured by the tridiagonal state dependency of fc 
and the sensor location condition (10) which amounts placing 
each sensor at a tray with temperature gradient larger than a 
minimum value (say, two degrees). For any model structure � 
(5) (Alvarez and Fernandez, 2009): (i) the afore stated 
nonlocal robustness convergence feature holds with respect to 
the N-composition model (1) with decentralization, 
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truncation, and actuator-measurement errors, and (ii) the 
rather simple GE tuning scheme applies to any structure. 
Thus, the adjustable structure-algorithm GE methodological 
framework offers the means to fairly compare the behavior of 
different structures, in the sense that the behavior differences 
are due to the structures itself and not to the tuning.  

2.4 Estimation structure design problem 

In view of the preceding adjustable-structure column GE 
approach, our present problem consists in, given a specific 
estimation objective, determining the two-measurement 
structure, which yields the best estimator behavior in terms of 
reconstruction speed, robustness and dimensionality. 
Technically speaking, the problem amounts to choosing the 
(complete or truncated) estimation model (7) and its �-
detectability structure (5), or equivalently: (i) the location l1 
(or l2) of the temperature measurement y1 (or y2), (ii) the 
corresponding innovated concentrations x1 (or x2), and (iii) 
the noninnovated state (x�). 

2.5 Structure search methodology 

From the perspective of a general-purpose mixed-integer 
optimization approach, in our 12-stage distillation column 
example, the N-composition model offers 527, 345 structural 
possibilities with 4,095 observable (or passive) ones 
structures, and the number of possibilities grows even more 
when model truncation is considered. Leaving aside the 
implementation complexity and difficulties of an 
optimization-based search method, in the spirit of the 
constructive control (Sepulchre, 1997) and GE (Alvarez and 
Fernandez, 2009) approaches, here the structural search will 
performed by exploiting the column staged feature in the 
light of the easy to compute version (Alvarez and Fernandez, 
2009) of the GE detectability measures (Lopez and Alvarez, 
2004), in two steps: (i) first, detectability measures will be 
used to draw candidate structures for a given estimation 
objective, and (ii) then, conclusive structural results will be 
obtained in terms of GE functioning.  

2.6 Experimental case example 

The proposed methodology will be illustrated and tested with 
experimental case example employed before to illustrate and 
test the theoretically drawn features and capabilities of the 
general-purpose GE approach (Alvarez and Fernandez, 
2009): a methanol-water mixture feed F = 40 ml/min, at light 
component composition ce = 0.2 and temperature 57oC. 
Initially, the column was at a steady-state with low reflux 
ratio (R/D = 0.2) and poor separation (cB � 0.0, cD � 0.57). 
Then, at time t = 0, a feed concentration step increase (ce: 0.2 
� 0.4) was introduced, yielding: (i) an overall composition 
response that settled (� 40 min) at an intermediate separation 
steady-state (cB � 0.01, cD � 0.79), and (ii) a distillate (or 
bottoms) composition settling time of � 15 (or 40) min. 
Finally, at t = 40 min, a reflux step increase (R/D: 0.2 � 1.5) 
was introduced, yielding: (i) an overall response that settled 
(� 60 min.) at a high-separation steady-state (cB � 0.15, cD � 
0.98), and (ii) a distillate (or bottoms) composition settling 
time of � 20 (or 50) min. The experimental data can be seen 
in (Alvarez and Fernandez, 2007 and 2009). 

3. STRUCTURAL ANALYSIS 

In this section, the dependency of the GE detectability 
measures (Lopez and Alvarez, 2004; Alvarez and Fernandez, 
2007) over sensor location and innovated state dimension are 
analyzed to draw candidate structures for complete profile 
and two-effluent estimation purposes. 

3.1 Detectability measures 

To account for the effect of the decentralization-truncation 
performed in the passage from the complete N-composition 
(1) to the truncated-decentralized n-composition estimation 
model (7) with structure � (5), the detectability measures (12) 
for the next N-composition model (13) with innovated-
noninnovated state partition will be employed (Alvarez and 
Fernandez, 2009): 
 
s� = 1/msv(O),   c� = cn(O)                  (12a-b) 
s� = msv(F),      c� = cn(F);      �� = � lev(F + F') < 0   (12c-d) 
x. � = f�(x�, x�, u),    x(0) = x�o,  y = h(x�),  dim (x�) = N       (13a) 
x. � = f�(x�, x�, u),   x�(to) = x�o,                 dim (x�) = N-n  (13b)  
 
where    O(x, u) = bd (E1', E2')'(x, u),       Ai(xi, u) = �x�

f�(x, u)  
F(x, u) = [�x�

f� + �x�
f�O-1D](x, u),           A�(x, u) = �x�

f�(x, u) 
Ei'(x, u) = �’(cli)ei(I, Ai,…, � i

i-1)(x, u),     i = 1, 2 
D'(x, u) = �’(cli)ei(I, A�,…, ��

i-1)(x, u),    (x1', x2')' = x� 

 
s� (or s�) is the singularity measure equal to the inverse of the 
minimum singular value (msv) of the matrix O (or F), c� (or 
c�) is the illconditioning measure equal to condition number 
(cn) of the matrix O (or F), and �� is the dominant frequency 
of the noninnovated dynamics, or equivalently, the negative 
of the smallest eigenvalue (lev) of the matrix (F + F')/2, O is 
the estimation matrix of the �-structure model (13), and F is 
the Jacobian matrix of the noninnovated dynamics (13b). The 
illconditioning value c� (or c�) measures the overshoot 
response of the innovated (or noninnovated) state estimation 
error to an initial estimate error, and the singularity value s� 
(or s�) measures the asymptotic offset of the innovated (or 
noninnovated) state error due to persistent modeling errors, 
and the number �� measures the convergence rate of the 
noninnovated state error dynamics. In general, these 
measures can be taken over a column motion x(t) (Lopez and 
Alvarez, 2004). In our column case, the detectability 
measures will be computed at the intermidiate steady state 
(reached after � 40 min).   

3.2 Measurement locations 

In Figure 1 are presented the singularity (s�) and ill 
conditioning (c�) measures (12) of the estimation matrix O 
(9a) as function of the sensor location pair (l1, l2), for a 
completely observable structure � (5) with estimation order 
pair  = (1, 2) = (6, 6) and � = 1 + 2 = 12 = n = N (i.e., 
complete model with observable structure), showing that: (i) 
the largest singularity and illconditioning values are obtained 
with the sensor stage location pair (l1, l2) � (1 to 2, 12), (ii) 
the smallest singularity and illconditioning values are 
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obtained with the sensor location (l1, l2) � (1, 2) [ or (11, 12)] 
with two adjacent sensors in the bottom (or top) of the 
column, followed by the sensor location (l1, l2) � (5, 6) with 
two adjacent sensors above or below the feed tray (5). These 
consideration lead to the following conclusions: (i) the two 
sensors should not be in the same section, and (ii) the best 
location pair for complete profile estimation is given by 
 
 (l1, l2) = (2, 12) := (ls, le)                                                    (14) 
 
meaning one sensor in stage ls = 2 (tray one) [or le = 12 tray 
10] of the stripping (or enriching section), precisely in the 
stage with the largest temperature and concentration stage-to-
stage gradient. 

a)  

b)  

Fig. 1: Dependency of the singularity s
�
 and ill conditioning c

�
 of the 

estimation matrix O on the sensor location pair (l1, l2), for comple 
observable structure � (5) estimation order pair  = (1, 2) and 1 + 
2 = 12. 
 
These location results are in agreement with location criteria 
employed in: (i) two-point temperature PI control of 
distillation columns (Tolliver, 1980; Castellanos-Sahagun et 
al., 2005), and (ii) previous distillation column studies with 
EKF (Baratti et al., 1995; Oisiovici and Cruz, 2000). 

3.3 Innovated state dimension pair 

Next, the sensor pair location (14) determined in the last 
section for the complete model (1), with observable structure 
 (5), is kept fixed, and the dependency of the illconditioning 
c� (12a) and the speed parameter �� (12c) of the noninnovated 
dynamics upon the innovated state dimension (or 

equivalently, estimation order) pair  = (s, e) is examined, 
with s (or e) being the number of adjacent innovated states 
xs (or xe) associated with the measurement ys (or ye) of the 
stripping (or enriching) section. The resulting measure c� (or 
��) is presented in Figure 2a (or 2b), showing that the 
illconditioning measure c� remains within a reasonable bound 
(1 
 c� 
 100) for all the estimation order pairs with at most 
three innovated states per measurement [(s, e) 
 (3, 3)]. As 
expected (Lopez and Alvarez, 2004): (i) the passive structure 
(s, e) = (1, 1) yields the smallest possible value c� = 1, and 
(ii) the speed parameter ��  of the noninnovated dynamics is 
minimum (��  = 0) when the structure is observable with (s, 
e) = (6, 6). These results are consistent with the general-
purpose GE approach (Alvarez y Fernandez, 2009): (i) as the 
number of innovated states grows, the reconstruction speed 
grows and the robustness decreases, and (ii) the maximum 
robustness is obtained with the passive structure (s, e) = (1, 
1), and (iii) the maximum reconstruction speed is obtained 
with the observable structures (s, e) = (6, 6). 

3.4 Candidate structures 

From the preceding structural analysis the next results follow. 
For complete profile estimation, the candidate models are 
decentralized versions of the N-concentration model (1) with 
structure � (5): 
 

c. s = fs(cs, u),          c. e = fe(ce, u),    y = h(c)                       (15a) 
(s, e) 
 (3, 3),    (ls, le) = (2, 12)                                     (15b) 
 
For two-effluent estimation, the candidate model is the 
truncated-decentralized model with passive structure � (5): 
 

c. 1 = {(R + F)(c2 - c1) - V[�(c1) - c1]}/M1,                         (16a) 

c. 2 = {(R + F)(c-3 - c2) - V[�(c2) - �(c1)]}/�
-1(R + F), ys = �(c2)  

c. 12 = {R[�(c12) - c12] - V[�(c12) - �(c-11)]}/�
-1(R),      ye = �(c12) 

(s, e) = (1, 1),          (ls, le) = (2, 12)                   (16b) 
 

4. STRUCTURAL RESULTS 

Having as point of departure the suggestive structural results 
(15, 16) of the last section, in the present section conclusive 
results are obtained by assessing the candidate structures in 
terms of reconstruction speed and robustness. 

4.1 Estimator tuning and convergence 

 The column (or holdup) dominant (or fastest) frequency �c 
(or ��) was determined from the experimental data and the 
detailed model (1), the estimator frequency � is written as n� 
times �n, and the adjustable constants (20) are listed next: 
 
(�c, ��) � (1/15, 1) min-1; �s, �e, �s = �e = �   = n� �c     (17-18) 
 
Thus: (i) there are three adjustable gains (�s, �e, n�), and (ii) 
the limit upper �

+ is related to ��. From the specialization to 
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the column case of Lemma and Proposition 1 in (Alvarez and 
Fernandez, 2009): (i) the GE error dynamics is robustly 
stable if the stabilizing term �s dominates the potentially 
destabilizing one �d (�s and �d defined in Alvarez and 
Fernandez, 2009), according to inequality (19), or 
equivalently, if:  (i) the related threshold equation (20) has 
two strictly positive and sufficiently separated roots (�

- and 
�

+) for �, and (ii) the gain frequency � (18) of the prescribed 
LNPA output error dynamics (11) is chosen so that the low-
high gain conditions (21) are met: 
 
�s(�, �, �) - �d(�, �, �) := �(�, �, �) >  0,  � = (�s, �e)      (19) 
�(�, �, �) = 0     �     �     � = �

-(�, �),      �
+(�, �)         (20) 

0  <  �
-(�, �)  <  �   <  �

+(�, �)                                           (21) 

a)  

b)  

Fig. 2: Dependency of the singularity (or noninnovated-dynamics 
speed parameter) s

�
 (or c

�
) of the estimation matrix O (or Jacobian 

matrix F) on the dimension  = (s, e) of the innovated state pair xs-
xe, for the sensor location (ls, le) = (2, 12) 
 
The meaning of these conditions and their dependency on � 
(= 1, 2, 3 with 1 < 2 < 3) are depicted in the Figure 1b 
of Alvarez and Fernandez (2009): (i) the fulfilment (� = 1) 
or violation (� = 2, 3) of the conditions, and (ii) as the 
estimation order � grows, the convergence gain (�

+, �
-) 

decreases, and eventually vanishes. In our column problem, 
we shall be interested in the interplay between structure, 
behavior, and tuning (�s, �e, �,  �

-, �
+, ��). 

4.2 Entire profile estimation 

First, the GE estimator (8) was run with the candidate 
structures (s, e) = (1, 1), … (6, 6), finding that the best 
behavior was attained with (s, e) = (3, 3), followed by (2, 
2). In Figure 3 are presented the results for (s, e) = (1, 1), 
(3, 3), and (6, 6), and the corresponding gain tuning limit 
results are listed in Table 1. The structure with three 
innovated states per measurement yields the best speed 
versus robustness behavior, with a reasonable gain interval 
(�

+, �
-). In agreement with the convergence-tuning 

theoretical derivations (Alvarez and Fernandez, 2009): (i) the 
passive (or observable) structure yields the slowest (or 
fastest) reconstruction rate with the largest (smallest) 
robustness, or equivalently, the largest (or smallest) gain 
interval ��, and (iii) to avoid oscillatory response, the 
damping factor �s/e = 21/2 (or 1.5) is used for observable (or 
passive) innovation (Alvarez and Lopez, 1999). 

4.3 Two-effluent estimation 

In this case, the three-state model with two decoupled 
subsystems and passive innovation candidate structure (15) 
was implemented as well as several other neighbouring 
structures, finding that, the candidate structure yielded the 
best behavior with the least number of states, followed 
closely by some neighboring structures. The corresponding 
tuning and behavior are listed in Table 2 and Figure 4, 
respectively. As it can be seen in the Figure 4, for effluent 
estimation purposes, the truncated model outperforms the 
complete one, and this verifies the effectiveness of setting the 
model dimension as design degree of freedom. Comparing 
with the complete model-based estimation cases, the 
truncated model with single-stage innovation per 
measurement yields faster and more robust effluent estimates. 
 

Table 1. Tuning for entire profile estimation. 

y  	 �
- � �

+ �� n
�
 

T2, T12 6, 6 21/2 1/15 2/5 8/15 7/15 6 
T2, T12 3, 3 1 1/15 2/3 4/5 11/15 10 
T2, T12 1, 1 3/2 1/15 4/5 14/15 13/15 12 

 

Table 2. Tuning for two-effluent estimation. 

n  	 �
- � �

+ �� n
�
 

12 1, 1 3/2 1/15 4/5 14/15 13/15 12 
3 1, 1 3/2 1/15 14/15 1 14/15 14 

5. CONCLUSIONS 

The problem of drawing the structure for best estimator 
behavior with respect to a specific concentration estimation 
task has been resolved for a binary distillation column with 
two temperature measurements and experimental data. It was 
found that: (i) the (12-concentration) profile must be 
estimated with the complete model, six innovated 
concentrations (three per measurement), and a 6-
concentration open-loop observer module, and (ii) the two-
effluent concentration must be estimated with a three-stage 
truncated model, two innovated concentrations, (one per 
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measurement), and one noninnovated module. In the 
complete (or two-effluent) estimation case, the GE consists of 
5 (or 14) ODE’s, which are considerably less than the 72 
ODEs required by an EKF implementation. 

The proposed approach: (i) resolves the structure-algorithm 
estimation design problem in a way that is more effective and 
simpler than the ones of previous studies, and (ii) is a point of 
departure to address the multi-component case. 

 
Fig. 3. Profile estimation with two sensors (ls = 2, le = 12) and 
complete model. 
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Distributed Optimization for Predictive Control of a
Distillation Column with Output and Control-Input

Constraints �
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Abstract: A distributed predictive control framework based on a state-space model with constraints on
the output and control-input is proposed. By a benchmark process, the performance of this framework
is analyzed and compared with centralized control strategies in a regulation problem of a distillation
column.

Keywords: Model predictive control, distributed optimization, distillation column, convex optimization,
interior-point method.

1. INTRODUCTION

Advanced techniques for multivariable control like model pre-
dictive control (MPC) have become widespread in the indus-
try, but they are still complex, time-consuming to set-up, and
consequently expensive. Further, the centralized approach may
not be suitable to the operation of large dynamic networks,
either by the communication difficulty between sensors and the
central unit, or by the computational limitation to solve opti-
mization problems. Some petrochemical plants are examples of
large systems composed by distributed, however coupled sub-
systems.

An alternative is distributed predictive control (Camponogara
et al., 2002), which breaks the static optimization problem
into smaller sub-problems to be solved by a network of con-
trol/optimization agents. It aims to solve the sub-problems in
the most simple form while the final performance is preserved
or even improved.

Many studies about distributed formulations are being devel-
oped. Mercangöz and Doyle III (2007) propose a distributed
formulation that ensures self-sufficient state estimation in each
node. Motee and Jadbabaie (2006) present a study of receding
horizon control applied to physically decoupled systems with
input and state constraints, where the couplings appear through
the finite horizon cost function. Li et al. (2005) and Giovanini
and Balderud (2006) propose MPC strategies based on Nash
optimality to decoupled sub-systems.

Besides this, many algorithms to ensure convergence of dis-
tributed problems are being proposed. Dunbar (2007) presents
distributed algorithms for dynamically coupled nonlinear sys-
tems subject to decoupled input constraints. An iterative pro-
cedure based on cooperation that ensures convergence to the
global optimum for linear systems with constraints on the local
controls is presented by Venkat et al. (2008). Camponogara

� This research has been funded in part by Agência Nacional do Petróleo,
Gás Natural e Biocombustı́veis (ANP) under grant PRH-34/aciPG/ANP and
by Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq)
under grant 473841/2007-0.

and Talukdar (2007) present synchronous and asynchronous
solutions of optimization problems, proposing a high level
optimization framework and safety margins for meeting con-
straints. Recently, distributed predictive control was specialized
to linear dynamic networks and applied to traffic light control,
in which the dynamics of the sub-systems are coupled and
the constraints are on the local controls (Camponogara and
de Oliveira, 2009).

This paper proposes a problem decomposition and distributed
algorithm for predictive control of linear networks with dy-
namic couplings and restrictions on output and control-input
signals. Further, it reports on a comparison with existing ap-
proaches for the control of a distillation column.

The end result of this research is a distributed predictive con-
trol technique for programming control agents which can be
deployed to perform regulatory control of linear dynamic net-
works. Each agent would be responsible for solving a problem
of control action, exchanging its local sensor data and control
actions with the other agents. The resulting control action is
obtained after resolving conflicts with neighboring agents.

Because the algorithms embedded in the agents are much sim-
pler than the centralized one, the distributed approach makes it
simpler to modify and reconfigure the plant. Instead of modify-
ing the complex centralized algorithm, it would suffice to add
new agents and update only the nearby agents with whom the
new agents would have relation. Further, maintenance would be
facilitated since the distributed agents are much simpler.

2. DYNAMIC MODEL AND CONTROL PROBLEM

A linear dynamic network is obtained by interconnecting de-
coupled sub-systems that have local dynamics and controls.
The couplings arise from the dynamic interconnections and the
constraints on the network’s output equations. M = {1, . . . ,M}
denotes the set of sub-systems. Each sub-system m is governed
by the following discrete-time linear dynamic equation:

xm(k + 1) = Amxm(k)+ Bmum(k) (1)
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where xm ∈ Rnm is the state, um ∈ Rpm is the control input, and
Am and Bm are matrices of appropriate dimensions. The output
from sub-system m depends on the state of the sub-systems in
set I(m)⊆M such that m ∈ I(m):

ym(k) = ∑
i∈I(m)

Cm,ixi(k) (2)

and is subject to the output constraints:

ymin
m ≤ ym(k)≤ ymax

m (3)
with Cm,i being matrices of suitable dimensions.

The regulation problem for the overall system subject to output
and control-input constraints is:

min
1
2

M

∑
m=1

∞

∑
k=0

[
ym(k + 1)′Qmym(k + 1)+ um(k)′Rmum(k)

]
(4a)

S.to : For m = 1, . . . ,M, k = 0, . . . ,∞ :
xm(k + 1) = Amxm(k)+ Bmum(k) (4b)

ym(k + 1) = ∑
i∈I(m)

Cm,ixi(k + 1) (4c)

umin
m ≤ um(k)≤ umax

m (4d)

ymin
m ≤ ym(k + 1)≤ ymax

m (4e)
where Qm are symmetric positive semi-definite and Rm are
symmetric positive definite matrices.

Model predictive control solves an optimization problem that
approximates the regulation problem for a finite-time horizon.
Given the state x(k) = (x1, . . . ,xM)(k) of the system at time k,
the MPC regulation problem is defined as:

P : min f =
1
2

M

∑
m=1

T−1

∑
j=0

[
ŷm(k + j + 1|k)′Qmŷm(k + j + 1|k)

+ûm(k + j|k)′Rmûm(k + j|k)] (5a)

S.to : For m = 1, . . . ,M, j = 0, . . . ,T −1 :
x̂m(k + j + 1|k) = Amx̂m(k + j|k)+ Bmûm(k + j|k)

(5b)

ŷm(k + j + 1|k) = ∑
i∈I(m)

Cm,ix̂i(k + j + 1|k) (5c)

umin
m ≤ ûm(k + j|k)≤ umax

m (5d)

ymin
m ≤ ŷm(k + j + 1|k)≤ ymax

m (5e)
x̂m(k|k) = xm(k) (5f)

where ûm(k + j|k) is the prediction for the control input to sub-
system m at time (k + j) as predicted at time k, and similarly
ŷm and x̂m are output and state predictions respectively. The
variable T is the length of the prediction and control horizons,
that have the same length to make the developments simpler.

The term “|k” is dropped from all variables for the sake of sim-
plification. Before continuing with the MPC formulation, some
terminology will be introduced to simplify the representation.
First, it is possible to obtain the state of sub-system m at time
(k + t) by using the initial state and the past controls. The future
states and outputs are represented as:

x̂m (k + t) = At
mxm (k)+

t

∑
j=1

A j−1
m Bmûm (k + t− j)

ŷm (k + t) = ∑
i∈I(m)

Cm,i

(
At

ixi (k)+
t

∑
j=1

A j−1
i Biûi (k + t− j)

)

By defining the vectors x̂m, ûm, and ŷm to represent the predic-
tions over the entire horizon of the states, controls, and outputs,
respectively, and the matrices CAm,i and CBm,i for the dynamics:

x̂m =

⎡⎢⎣ x̂m (k + 1)
...

x̂m (k + T )

⎤⎥⎦ , ûm =

⎡⎢⎣ ûm (k)
...

ûm (k + T −1)

⎤⎥⎦

ŷm =

⎡⎢⎣ ŷm (k + 1)
...

ŷm (k + T)

⎤⎥⎦ , CAm,i =

⎡⎢⎢⎢⎣
Cm,iAi

Cm,iA
2
i

...
Cm,iA

T
i

⎤⎥⎥⎥⎦

CBm,i =

⎡⎢⎢⎣
Cm,iBi 0 · · · 0

Cm,iAiBi Cm,iBi · · · 0
...

...
. . . 0

Cm,iA
T−1
i Bi Cm,iA

T−2
i Bi · · · Cm,iBi

⎤⎥⎥⎦
the prediction of the outputs over the entire horizon is written
in a compact form as:

ŷm = ∑
i∈I(m)

(
CAm,ixi (k)+CBm,iûi

)
(6)

Defining the matrices Q̄m and R̄m with proper dimensions:

Q̄m =

⎡⎢⎢⎣
Qm 0 · · · 0
0 Qm · · · 0
...

...
. . . 0

0 0 0 Qm

⎤⎥⎥⎦ , R̄m =

⎡⎢⎢⎣
Rm 0 · · · 0
0 Rm · · · 0
...

...
. . . 0

0 0 0 Rm

⎤⎥⎥⎦
and the vectors ûmin

m , ûmax
m , ŷmin

m , and ŷmax
m :

ûmin
m =

⎡⎢⎣ umin
m
...

umin
m

⎤⎥⎦ , ûmax
m =

⎡⎢⎣ umax
m
...

umax
m

⎤⎥⎦

ŷmin
m =

⎡⎢⎣ ymin
m
...

ymin
m

⎤⎥⎦ , ŷmax
m =

⎡⎢⎣ ymax
m
...

ymax
m

⎤⎥⎦
problem P is expressed as:

P : min
1
2

M

∑
m=1

(
ŷ′mQ̄mŷm + û′mR̄mûm

)
(7a)

S.to : For m = 1, . . . ,M :

ŷm = ∑
i∈I(m)

(
CAm,ixi (k)+CBm,iûi

)
(7b)

ûmin
m ≤ ûm ≤ ûmax

m (7c)

ŷmin
m ≤ ŷm ≤ ŷmax

m (7d)

The next step is to represent problem P using only the current
state and the control predictions. First, let us define fm as the
portion of problem P for a specific m and replace (6) in the
objective function:
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fm =
1
2

(
∑

i∈I(m)
(CAm,ixi(k)+CBm,iûi)

)′
Q̄m

·
(

∑
i∈I(m)

(
CAm,ixi(k)+CBm,iûi

))
+

1
2

û′mR̄mûm

=
1
2

(
∑

i∈I(m)
CAm,ixi (k)

)′
Q̄m

(
∑

i∈I(m)
CAm,ixi (k)

)

+

(
∑

i∈I(m)
CAm,ixi (k)

)′
Q̄m

(
∑

i∈I(m)
CBm,iûi

)

+
1
2

(
∑

i∈I(m)
CBm,iûi

)′
Q̄m

(
∑

i∈I(m)
CBm,iûi

)

+
1
2

û′mR̄mûm

(8)

Defining vectors gm,i, j, matrices Hm,i, j, and a constant cm to
represent the terms of fm:

gm,i, j = CB
′
m,iQ̄mCAm, jx j (k) for i, j ∈ I (m) (9a)

Hm,m,m = CB
′
m,mQ̄mCBm,m + R̄m (9b)

Hm,i, j = CB
′
m,iQ̄mCBm, j (9c)

for i, j ∈ I (m) , i �= m or j �= m

cm =
1
2 ∑

i∈I(m)
∑

j∈I(m)
xi (k)′CA

′
m,iQ̄mCAm, jx j (k) (9d)

it is possible to redefine problem P as:

P : min
1
2

M

∑
m=1

∑
i∈I(m)

∑
j∈I(m)

[
û′iHm,i, jû j + g′m,i, jûi

]
+

M

∑
m=1

cm

(10a)

S.to : For m = 1, . . . ,M :

ûmin
m ≤ ûm ≤ ûmax

m (10b)

ŷmin
m ≤ ∑

i∈I(m)

(
CAm,ixi (k)+CBm,iûi

)≤ ŷmax
m (10c)

This quadratic programming formulation will be used to solve
the problem of control calculation in the centralized approach.

2.1 Logarithmic Barrier Method

The logarithmic barrier method is an interior-point method
for solving convex optimization problems with inequality con-
straints (Boyd and Vandenberghe, 2004),

minimize f (x) (11a)
subject to Ax≤ b, (11b)

It is assumed that the problem is solvable, i.e., an optimal
solution x� exists, and the constraints delimit a closed set. A
barrier function is any function B(x) : ℜn →ℜ that satisfies

• B(x)≥ 0 for all x that satisfy Ax< b, and
• B(x)→ ∞ as x approaches the boundary of {x|Ax≤ b}

Being a′i the i-th row of A, the idea of the method is to treat the
constraints using a logarithmic barrier function as follows:

φ (x) =−
m

∑
i=1

log
(
bi−a′ix

)
(12)

where the domain of φ is dom φ = {x|Ax< b}.

With (12), problem (11) can be approximated by:
P(ε) : min g(x) = f (x)+ εφ(x) (13)

where ε > 0 is a parameter that sets the accuracy of the approx-
imation. As ε decreases, more accurate the approximation P(ε)
becomes, whose optimal solution is x(ε). The optimal solution
is reached by solving (13) for a decreasing sequence of ε → 0+,
i.e., limε→0+ x(ε) = x�. The pseudo-code of the barrier method
for solving problem (11) appears in Algorithm 1.

Newton’s method can be used to compute the optimal solution
to P(ε) using the gradient and the Hessian of φ (x) and f (x).
Algorithm 2 shows how to use Newton’s method with a back-
tracking line search to choose the step size of each iteration. The
gradient and the Hessian of the logarithmic barrier function φ
are given by:

∇φ (x) =
M

∑
i=1

1
(bi−a′ix)

ai, ∇2φ (x) =
M

∑
i=1

1

(bi−a′ix)2 aia′i

Algorithm 1: Barrier method

given: strictly feasible x, ε := ε0, 0< μ < 1, tolerance e> 0
repeat

compute x(ε) by minimizing g(x), starting at x;
update x := x(ε) ; ε := με;

until ε ≤ e ;

Algorithm 2: Newton’s method
given: a starting point x ∈ dom g, tolerance e> 0
repeat

compute the Newton step: Δxnt :=−∇2g(x)−1 ∇g(x) ;
choose step size

given: a descent direction Δxnt , α ∈ (0,0.5), β ∈ (0,1)
t := 1;
while g(x + tΔxnt)> g(x)+ αt∇g(x)′Δxnt do

t := β t;

end
update: x := x + tΔxnt;
compute the decrement: λ 2 := ∇g(x)′∇2g(x)−1∇g(x);

until λ 2/2≤ e ;

By approximating problem P given in (10) to the equivalent
unconstrained form P(ε), where the constraints on outputs and
controls are put together in φ (û), unconstrained minimization
algorithms like those described in this section can be used to
solve the problem.

3. DISTRIBUTED OPTIMIZATION AND CONTROL

This paper focuses now on the distributed solution of P, dis-
cussing how to perform a decomposition of the problem into
a network of coupled sub-problems Pm that will be solved by
a network of distributed agents (Camponogara and Talukdar,
2005, 2007), and the use of a distributed iterative algorithm to
solve these sub-problems.

Each agent will compute a control vector ûm. So, for a perfect
decomposition, each agent m must have all the information on
problem P that depends on ûm. Before giving the decomposi-
tion, let us define some special sets:

• O(m) = {i : m ∈ I (i) , i �= m} to represent the set of output
neighbors of m;
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• C (m) = {(i, j) ∈ I (m)× I (m) : i = m or j = m} for the
sub-system pairs of quadratic terms in the cost function
of sub-system m that depend on ûm;

• O(m,k) = {(i, j) ∈ I (k)× I (k) : i = m or j = m} for the
pairs of quadratic terms in the cost function of sub-system
k, k ∈ O(m), that depend on ûm;

• N(m) = (I(m)∪O(m)∪{i : (i, j) ∈O(m,k),k ∈O(m)})−
{m}, which defines the neighborhood of agent m, includ-
ing input and output neighbors;

• ω̂m = (ûi : i ∈ N(m)), for the set of control signals of the
neighbors of agent m;

• ẑm = (ûi : i ∈M −N(m)∪{m}), for the set of all control
signals that are not in ω̂m and ûm.

The problem P from the view of agent m is defined as:

Pm : min
1
2 ∑

(i, j)∈C(m)
û′iHmi jû j + ∑

i∈I(m)
gmmiûm + cm

+
1
2 ∑

k∈O(m)
∑

(i, j)∈O(m,k)
û′iHki jû j (14a)

+ ∑
k∈O(m)

∑
(m, j)∈O(m,k)

gkm jûm

S.to :

ûmin
m ≤ ûm ≤ ûmax

m (14b)

ŷmin
i ≤ ∑

j∈I(i)

(
CAi, jx j (k)+CBi, jû j

)≤ ŷmax
i , (14c)

for all i ∈O(m)∪{m}

It is possible to simplify the representation of problem Pm by
grouping some terms as follows:

Hm = Hmmm + ∑
k∈O(m)

Hkmm (15a)

gm =
1
2 ∑

(i,m)∈C(m):i�=m

(
H ′

mim + Hmmi
)

ûi + ∑
i∈I(m)

gmmi

+
1
2 ∑

k∈O(m)
∑

(i,m)∈O(m,k):i�=m

(
H ′

kim + Hkmi
)

ûi (15b)

+ ∑
k∈O(m)

∑
(m, j)∈O(m,k)

gkm jûm

Using the terms defined above, problem Pm is represented as:

Pm (ω̂m) : min fm (ûm) =
1
2

û′mHmûm + g′mûm + cm (16a)

S.to :

ûmin
m ≤ ûm ≤ ûmax

m (16b)

ŷmin
i ≤ ∑

j∈I(i)

(
CAi, jx j (k)+CBi, jû j

)≤ ŷmax
i , (16c)

for all i ∈O(m)∪{m}

This quadratic form will be used by each agent m to compute
the control signal ûm in the distributed approach.

Some properties about the decomposition are:

• Pm(ω̂m) consists of problem P with all the objective terms
and constraints that depend on ûm;

• each sub-problem Pm(ω̂m) is convex.

3.1 Distributed Algorithm

This section describes briefly the distributed algorithm for the
agent network to reach a solution. Let Pm(ε) be the centering
problem for Pm(ω̂m) with a given ε:

Pm(ε) : min fm (ûm)+ εφm (ûm) (17)

where φm (ûm) is the logarithmic barrier function of the con-
straints given in (16). It is important to note that the problem
to be solved by each agent is much simpler than the one used
in the centralized formulation. So, the distributed solution must
encompass a sequence of steps before the optimal control se-
quence is reached (de Oliveira and Camponogara, 2008).

First, define the vector ûk =
(
ûk

1, . . . , û
k
M

)
with the set of all

control variables of P at iteration k. For a given ε , all agents
have to negotiate to find a solution for each Pm (ε) in the
network. And this process is repeated for a decreasing sequence
of ε → 0+. The convergence to a stationary solution is ensured
by respecting two assumptions:

(1) Synchronous Work: if agent m revises its decisions at
iteration k, then:
(a) agent m uses ω̂k

m to produce an approximate solution
of Pm (ε);

(b) all the neighbors of agent m keep their decisions at
iteration k: ûk+1

i = ûk
i for all i ∈ N (m).

(2) Continuous Work: if ûk is not a stationary point for prob-
lems Pi (ε) , i∈M , then at least one agent m for which ûk

m
is not a stationary point for Pm (ε) produces a new iterate
ûk+1

m .

Condition (a) of Assumption 1 and Assumption 2 hold by
arranging the agents to iterate repeatedly in a sequence
〈S1, . . . ,Sr〉, where Si ⊆M , ∪r

i=1Si = M , and all distinct pairs
m,n ∈ Si are non-neighbors for all i. The pseudo-code of the
distributed barrier method for solving the problem network
{Pm(ε)} is given in Algorithm 3.

Algorithm 3: Distributed barrier method

given: strictly feasible û0 = (û0
1, . . . , û

0
M), ε = ε0 > 0,

0< μ < 1, tolerance e> 0, and a sequence 〈S1, . . . ,Sr〉
repeat

Define the initial group of decoupled agents, i := 1;
Define a flag for the stationary test, δ := f alse;
repeat

each agent m ∈ Si receives ω̂k
m and computes ûk+1

m by
solving Pm(ε) starting at ûk

m;
each agent j computes ûk+1

j = ûk
j for j /∈ Si;

ûk+1 := (ûk+1
1 , . . . , ûk+1

M );
if ûk+1 is a stationary point for Pi(ε), ∀i ∈M then

δ := true;
else

k := k + 1;
i := (i mod r)+ 1;

until δ = true ;
ε := με;

until ε < e ;
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4. COMPUTATIONAL ANALYSIS

4.1 Distillation Column

This section presents the application of model predictive con-
trol to a benchmark problem, comparing the performance of the
centralized and distributed approaches. The model of the heavy
oil fractionator utilized is referred in the literature as the Shell
Oil’s heavy oil fractionator (Prett and Morari, 1987; Camacho
and Bordons, 2004). It relates the controlled variables y1, y2,
and y3 that correspond to the top endpoint composition, side
end composition, and bottom reflux temperature, respectively,
with the manipulated variables u1, u2, and u3, corresponding
to top draw, side draw, and bottom reflux duties. The discrete
model is obtained with a sampling time of 4 minutes, and it is
possible to obtain a state space representation in the form:⎡⎢⎢⎢⎢⎢⎢⎣

x11 (k + 1)
x21 (k + 1)
x31 (k + 1)
x12 (k + 1)

...
x33 (k + 1)

⎤⎥⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎣
A11

A21 Ø

Ø
. . .

A33

⎤⎥⎥⎦
⎡⎢⎢⎣

x11 (k)
x21 (k)

...
x33 (k)

⎤⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B11 0 0

B21
...

...
B31 0
0 B12 0
...

...
...

0 0 B33

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[

u1 (k)
u2 (k)
u3 (k)

]

[
y1 (k + 1)
y2 (k + 1)
y3 (k + 1)

]
=

⎡⎢⎣C11 0 0 C12 · · · 0

0 C21 0 0
. . .

...
0 0 C31 0 · · · C33

⎤⎥⎦
⎡⎢⎢⎣

x11 (k)
x21 (k)

...
x33 (k)

⎤⎥⎥⎦
where each group xi j, Ai j, Bi j, and Ci j represents the couplings
among the outputs and controls of the transfer function located
in line i and column j of the transfer function matrix (Camacho
and Bordons, 2004).

This formulation makes the distillation column a special case of
the theory developed in the previous sections. For this special
case, because the column is fully coupled, the set I (m) is equal
to {1,2,3} for any m, and the neighborhood is equal to the
output for each agent m. Other sets are given in Table 1.

Table 1. Sets used in the problem decomposition

m O(m) C(m) O(m,k)
1 {2,3} {(1,1),(1,2),(2,1),(1,3),(3,1)} O(1,2) = O(1,3) = C(1)
2 {1,3} {(1,2),(2,1),(2,2),(2,3),(3,2)} O(2,1) = O(2,3) = C(2)
3 {1,2} {(1,3),(3,1),(2,3),(3,2),(3,3)} O(3,1) = O(3,2) = C(3)

Three different algorithms were used to solve the problem for
the purpose of comparison:

• Centralized Quadratic Programming (centQP): the solu-
tion of P is obtained using a specific solver in Matlab R©
for problems in the quadratic form with constraints;

• Centralized Barrier (centBr): the solution of P is reached
using the logarithmic barrier method and the centralized
formulation;

Table 2. Numerical results

distBr centBr centQP

T time objective time objective time objective
1 0.0332 5.6188 0.0133 5.6188 0.0099 5.6188
2 0.0386 11.5680 0.0200 11.5680 0.0096 11.5680
5 0.0553 40.5596 0.0243 40.5596 0.0096 40.5596
10 0.0857 73.1869 0.0423 73.1868 0.0109 73.1868
15 0.1417 85.9801 0.0670 85.9797 0.0157 85.9797
20 0.2527 91.2292 0.1211 91.2284 0.0197 91.2284
25 0.3880 93.7129 0.2004 93.7115 0.0361 93.7115
30 0.6258 95.0680 0.2657 95.0660 0.0302 95.0660

• Distributed Barrier (distBr): each problem Pm is solved by
a different agent and the constraints are treated with the
logarithmic barrier method.

The criteria of convergence in Newton’s method, which is used
in centBr and distBr to solve centering problems, is λ 2/2 ≤
10−5. The convergence criterion for the logarithmic barrier
method is ε ≤ 10−4, while the stationary test is satisfied with
e ≤ 10−4. The weights on control action and output deviation
were set equal because their adjustment is not the focus of this
work, but it is clear that the choice of weights affects directly
the compromise between performance and robustness.

Ten different feasible start points were chosen at random in the
experiments and the initial ε was defined as 103. The previous
solution was not used as an initial approximation for reop-
timization to induce worst-case scenarios. The analyses con-
sidered each type of algorithm, different lengths of prediction
horizon (T ), and rate of decrease μ ∈ {0.05, 0.1, 0.3, 0.5} for
the interior-point methods.

4.2 Numerical Results

The objective function given in (7) is used for comparison as the
cost of the computational experiments. Table 2 has the results of
the accumulated cost obtained with the ten start points and the
four different values for μ . The cost difference between distBr
and the centralized approach is less than 3×10−3, proving that
solving the set of distributed problems, {Pm}, and solving the
centralized problem, P, is equivalent. The gap in cost is due to
the acceptance range of the convergence criteria.

Table 2 also contains the results about the time spent in the
experiments, comparing centQP, centBr and distBr. A computer
with an AMD TurionTM 64x2 1.60 GHz processor and 2048
MB of memory was used to perform the experiments. Time is
given in seconds and represents the mean time spent to compute
the control actions of forty different experiments with each
algorithm. As expected, the greater the value of T , more time
is necessary to reach the solution, but the time used was always
less than one second, which is a very good result, considering
real applications.

The iterations between agents to exchange information were
also counted. Fig. 1 depicts the average number of iterations for
the experiments with varying prediction horizon and decrease
rate of the barrier method.

The convergence criterion can be relaxed to minimize the num-
ber of iterations between agents. In this case, due to the strong
couplings among the variables, the information exchange is
considerable. More scattered models will be used in future ex-
periments, which are more suitable for a distributed approach.
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Fig. 1. Algorithm iterations varying T and μ , respectively.

Ending the analyses, it can be said that a network of distributed
agents can solve the set of sub-problems {Pm}, rather than
having a single agent solve P in centralized MPC, without
incurring great loss of performance. Other adjustments can be
made in the algorithm, such as the limit on the number of
iterations, to guarantee the fulfillment of the deadlines, but all
modifications have a compromise between speed and quality.

5. CONCLUSION

This work presented a distributed MPC framework with con-
straints on output and control-input signals. The methodology
of problem decomposition was outlined and the barrier method
was used to deal with the constraints, replacing the constrained
minimization problem by a sequence of unconstrained mini-
mization problems. Centralized MPC algorithms and the dis-
tributed MPC algorithm were applied to solve a regulation
problem in a distillation column model.

The performance of distributed MPC in the distillation column
scenario was comparable to the performance obtained with
centralized MPC. The computational cost necessary to solve
each agent problem was less than the centralized case. This
advantage might allow the use of the distributed algorithm in
machines with less computational resources.

It is worth emphasizing that distributed predictive control is
more appropriate for multivariable problems where the cou-
plings are scattered, which does not happen with the model of
the distillation column.

Future works will focus on the implementation of reference
tracking and state observers. As well as the whole study of
how to introduce these extensions in a distributed algorithm.
Another goal is to look into other scenarios that can be more
appropriate for the application of distributed algorithms.
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Abstract: In this paper we present a high-gain observer implemented in its discrete and
continuous-discrete versions in order to compare the performance of both algorithms. The
comparison is made considering the sampling time used to perform the observer’s correction
stage in order to establish that the continuous-discrete observer is the best option when a
low sampling time is used. Under this condition the continuous discrete observer can process
data performing a reliable on-line estimation of the system (a slow dynamics of the process
is required). We apply both algorithms to a distillation column that uses the Ethanol-Water
binary mixture.

Keywords: High-gain observer, discrete, continuous-discrete, distillation columns.

1. INTRODUCTION
The knowledge of state variables is often required in order
to apply the advanced concepts of control and fault diagno-
sis to practical applications, specially in the chemical pro-
cess industry. A method to obtain such variables, consists
of combining a priori knowledge about physical systems
with experimental data to provide an on-line estimator
(observer).

The main control problems of distillation columns are
caused due to tight interactions between the process va-
riables, nonlinearities of the process, process and measure-
ment delays and the large number of variables involved
(see Murray-Gunther (2003)). For these reasons, a signi-
ficant amount of effort has been devoted to develop algo-
rithms that provide accurate parameter identification and
state estimation (state observers) to reconstruct the pro-
duct composition dynamics by secondary measurements
(e.g., temperatures and flows) (see Quintero-Mármol et al.
(1991), Deza et al. (1991)), and most recently in Bahar
et al. (2006)Jana et al. (2006). The proposed observers are
used to estimate unmeasured state variables from on-line
and/or off-line measurements, see e.g. Bakir et al. (2005),
Hammouri et al. (2006), Yildiz et al. (2005), Astorga et al.
(2002) and Nadri et al. (2004).

Estimators are generally dynamic systems obtained from
a nominal model by adding a correction term which is
proportional to some output deviation. In other words,
given a nominal model:{

ẋ(t) = f(x(t),u(t))
y(t) = h(x(t)) (1)

The state x(t) belongs to an open subset V of Rn, the
input u(t) belongs to a Borelian subset U of Rm and the
output y(t) ∈ Rp. An observer for the system represented
by Eq. (1) is generally a dynamic system of the form:

⎧⎨⎩
˙̂x(t) = f(x̂(t),u(t)) + k(t)[h(x̂(t))− y(t)]
ṙ = F(r(t),u(t),y(t), x̂(t))
k(t) = ϕ(r(t))

(2)

r(t) and k(t) are called indifferently the gain of the ob-
server (see Hammouri et al. (2002)). An interesting class
of nonlinear systems consists of those systems which are
observable for every input, called uniformly observable
systems. For this class of nonlinear systems, we can design
an observer whose gain does not depend on the inputs
(see Bornard and Hammouri (1991) and Gauthier et al.
(1992)). For such systems a canonical (called triangular)
form is designed in order to develop an observer. To en-
sure mathematical convergence, a particular high-gain is
required (see Hammouri et al. (2002)).

However, using a high-gain observer may generate the so-
called peak phenomena (overshoot problem); moreover,
the estimator becomes noise sensitive. Due to nonlinearity
of the system, the choice of the gain which gives the best
compromise between fast convergence, the noise rejection
and the attenuation of the peak phenomena becomes a
difficult task, and only simulations allow to determine
a possible gain. This paper aims to present a high-gain
observer status in its discrete and continuous-discrete
versions. We apply this algorithms to a binary distillation
column that uses the binary mixture Ethanol-Water.
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2. THE BINARY DISTILLATION COLUMN MODEL

The binary distillation column model is derived from the
binary distillation column scheme shown in Fig. 1. There
are three principal stages considered for a distillation
column (condenser, tray and boiler); for every stage, the
balances of energy and material should be formulated as
well as the equilibrium conditions of the mixture.

Fig. 1. Distillation column

2.1 General Aspects

The scheme of a typical distillation column is shown in
Fig. 1. The binary feeding mixture (molar flow rate F ) is
introduced toward the middle of the column (the feeding
tray). The distilled product (molar flow rate D), which
mainly contains the light component, is removed from
the top of the column. The bottom product (molar flow
rate B), which contains the heavy component in greater
concentration, is removed from the bottom of the column.
Part of the overhead product is returned into the column
to improve purity. Column stages are labeled with an
ascendent numeration from the condenser to the boiler:
i = 1, ..., N . The sections of the column are: the condenser,
tray i = 1; the rectifying section, trays i = 2, ..., f − 1;
the feeding tray, tray i = f ; the stripping section, trays
i = f + 1, ..., N − 1; the boiler, tray i = N .

2.2 Physic Behaviour

Due to its physical structure, a distillation column can
be modeled as a set of interconnected stages using the
mass balance and vapor-liquid equilibrium relation at
every stage. The algebraic and differential equations of
the model are formulated to calculate the light component
composition of the mixture. The liquid phase and the
vapor phase of the light component are designated by x
and y, respectively.

Assumptions: The following assumptions, taken from
Luyben (1992) and Halvorsen and Skogestad (2000)
are considered in the model formulation:(A1) Constant
pressure; (A2) Ideal Liquid-Vapor Equilibrium; (A3)
Liquid-properties behave as a non-ideal mixture; (A4)
Negligible molar vapor holdup compared to the molar
liquid holdup; (A5) Boiler as a theoretical tray; (A6) Total
condenser; (A7) Constant liquid volumetric hold up.

Vapor-liquid equilibrium: If a vapor and a liquid are in
intimate contact for a long period of time, equilibrium is
attained between the two phases. This concept of vapor-
liquid equilibrium is fundamental to model distillation

columns. If the vapor-liquid equilibrium exists, then the
vapor composition yi and the liquid composition xi can be
computed by means of correlating equations of the form
(yeq

i , x
eq
i ) = Ki(Ti, PT ), where Ti is the temperature, PT

is the total pressure, yeq
i and xeq

i are the vapor and liquid
composition at the equilibrium phase respectively. The
equilibrium constant Ki depends on the thermodynamical
properties of the mixture.

The non-ideality of a binary mixture is due to different
causes, the most frequent is the non-ideality of the liquid
phase. In consequence, specially designed models are used
to represent these non-idealities. For low pressure systems,
the equation that represents the vapor composition is:

yi,jPT = P sat
i,j xi,jγi,j (3)

where j = 1 if the component is ethanol and j = 2
if the component is water; γi,j is the activity coefficient
for every stage, it is a correction factor highly dependent
on the concentration. In this work the vapor composition
is calculated as a function of the light component. One
method to determine this coefficient in every component of
the mixture uses the Van Laar equation (see Perry (1999)).

Mass transfer effects: In order to deal with the mass
transfer effects, the Murphree’s efficiencies are introduced.
The Murphree stage efficiency Ei is the ratio between the
current change in vapor composition between two stages
and the change that will occur if the vapor is in equilibrium
with the liquid leaving the stage (see Murray-Gunther
(2003)).

The molar flow rates: In the rectifying section the vapor
molar flow VR and the liquid molar flow LR are :{

VR = VS + (1− qF )F, i = 1, ..., f
LR = (1−R)VR, i = 1, ..., f − 1 (4)

where

qF = 1 +
Cp(Tb − TF )

λ
(5)

qF describes the feeding condition. Cpj
is the specific heat,

Tb is the boiling temperature, TF is the feeding tempera-
ture and λ is the vaporization enthalpy for ethanol and
water respectively.

F is the molar flow of the feeding stream:

F = FV [ρ1w1 + ρ2(1− w1)]
(
xf

MW1

+
1− xf

MW2

)
(6)

where FV is the volumetric flow of the feeding stream, ρj
is the density of the component j, MWj

is the molecular
weight, w1 is the weight fraction of the light component
given by:

w1 =
xfρ1

xfρ1 + (1− xf )ρ2
(7)

and xf is the molar composition of the feeding stream
given by:
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xf =
(

V1ρ1/MW1

V1ρ1/MW1 + V2ρ2/MW2

)
(8)

where Vj is the initial volume of the component j on the
feeding container.

The distilled product flow rate,D = 0 if the three-way ON-
OFF reflux valve shown in 1) is totally closed (rv = 0) and
D = VR if this valve is totally open (rv = 1)

In the stripping section (subindex [·]S is used), the vapor
molar flow VS and the liquid molar flow LS are, respec-
tively

VS =
Qb

ΔHvap
1 x1,N + ΔHvap

2 (1 − x1,N ),
i = f + 1, ..., N

LS = LR + qF F, i = f, ..., N

(9)

where Qb is the heating power on the boiler. Finally, the
molar flow rate of the bottom product is:

B = (LS − VS)bv
bv is a binary variable representing the bottom-valve
opening, i.e.: bv = 0 if a batch distillation is performed
and bv = 1 if the bottom product is totally withdrawn
from the boiler.

Molar hold-up: The molar hold-up for every stage must
be determined from the distillation plant features and
properties of the mixture. This quantity can be approxi-
mated as:

Mi = vi
1

x1MW1

ρ1
+

(1− x2)MW2

ρ2

(10)

2.3 The dynamic model

Tray and distilled product compositions are estimated by
using the dynamic model based on material, component
and energy balances. Taking into account the assumptions
(A1) to (A7), a set of differential equations can be derived
for the light component material balance as follows:⎧⎪⎨⎪⎩

dM1

dt
= V2 − L1 − D

dMi

dt
= Vi+1 − Li − Vi + Li−1 + δ(i)F

dMN

dt
= LN−1 − VN − B

(11)

for i = 2, 3, ..., N −1.Mi is the molar holdup of the boiler.
The component balances for every stage are given by:⎧⎪⎨⎪⎩

d(M1x1)

dt
= V2y2 − L1x1 − Dx1

d(Mixi)

dt
= Vi+1yi+1 − Lixi − Viyi + Li−1xi−1 + δ(i)FxF

d(MN xN )

dt
= LN−1xN−1 − VN yN − BxN

(12)

where δ(i) = 1 if i = f and δ(i) = 0 if i �= f

The enthalpies of the process are considered constants,
therefore the energy balance is not taken into account
to develop this model. The state model presented in the
following section is based on this dynamic model for the
distillation column.

2.4 The state model

The distillation column is a process that belongs to a class
of multi-variable nonlinear systems. The process inputs are
the heating power applied on the boiler, and the opening
period of the reflux valve, this is u(t) = [Qb(t) rv(t)]T .
F y xF are considered perturbations in the system, this
is d = [F, xF , bv]. A state representation can be obtained
from Eqs. (11) and (12). Additionally, the nonlinear model
has the following triangular form:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ζ̇1 = f1(ζ1, ζ2,u)
ζ̇i = fi(ζ1, ..., ζi, ζi+1,u); (i = 2, ..., f − 2)
ζ̇f−1 = ff−1(ζ1, ..., ζf−1, ζf ,u)
ζ̇f = ff (ζf−1, ..., ζN ,u,d)
ζ̇i = fi(ζi−1, ..., ζN ,u,d); (i = f + 1, ..., N − 1)
ζ̇N = fN (ζN−1, ζN ,u,d)

(13)

where, ζ represent the states of the process (the liquid
compositions of the light component). Subindex f repre-
sents the feeding tray number in Eqs. (11) and (12). The
model allows to calculate the flows B,D, Vi, Li and Ti, xi

from inputs Qb, rv, bv, FV , xF .

3. OBSERVER DESIGN FOR A CLASS OF
NONLINEAR TRIANGULAR SYSTEMS

A special class of nonlinear systems consists of those
which are observable for every input, called uniformly
observable systems (see Hammouri et al. (2002)). For
this class of nonlinear systems, an observer whose gain
does not depend on the inputs can be designed. For
such systems a canonical (triangular) form is used in
order to design an observer. Due to the nonlinearity
of the system, it is important to select the gain which
gives the best compromise between fast convergence and
accuracy. Consider the follow triangular system that can
be rewritten in a compact form:⎧⎨⎩ ζ̇

1 = f1(ζ(t),u(t))
ζ̇2 = f2(ζ(t),u(t),d(t), ε(t))
�(t) = (�1(t), �2(t))T = (Cn1ζ

1(t),Cn2ζ
2(t))T

(14)

where the states ζ(t) =
[
ζ1(t), ζ2(t)

]T ∈ Rn and n = n1 +

n2; ζj =
[
ζj1 , ζ

j
2 , . . . , ζ

j
nj

]T

∈ Rnj for j = 1, 2; yj =

Cnj
ζj = ζj1 the first component of ζj ; Cnj

= [1, 0, . . . , 0];
the input u ∈ Rm, and ε(t) is an unknown and bounded
function. The following assumptions are considered in
order to design the observer:

• (A8) f j is globally Lipschitz w.r.t. ζ.
• (A9) The state variables ζ(t) are bounded

Considering the following notations:

i) Cnj = [1, . . . , 0] ∈ Rnj where nj is the size for every
state vector ζj .
ii)

Anj
(t) =

⎡⎢⎢⎢⎣
0 a1(t) 0 0

.

.

. a2(t) 0

0
. . . anj−1(t)

0 . . . 0 0

⎤⎥⎥⎥⎦ ,
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where ak(t), k = 1, . . . , nj−1 are bounded and unknown
functions satisfying the following assumption:

• (A10) There are two finite real numbers α, β with
α > 0, β > 0 such that α ≤ ak(t) ≤ β.

Lemma 1 Under assumptions (A8) and (A10) exist a
symmetric positive definite (S.P.D.) matrix Snj

and a
constant μ > 0 s.t.:

∀t,SnjAnj (t) + AT
nj

(t)Snj ≤ −μId (15)

where Id is the identity matrix.

Then,

Snj
=

⎡⎢⎢⎢⎢⎢⎢⎣

s11 s12 0 0

s12 s22

. . .
.
.
.

0
. . .

. . . 0

.

.

.
. . . s(nj−1)nj

0 . . . 0 s(nj−1)nj
snjnj

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Assume that the system given in Eq. (14) satisfies hypo-
thesis (A8) to (A10). Then the observer:{ ˙̂

ζ1 = f1(ζ̂,u)− r1Δθδ1S−1
n1

CT
n1

(Cn1 ζ̂
1 − �1)

˙̂
ζ2 = f2(ζ̂,u,d)− r2Δθδ2S−1

n2
CT

n2
(Cn2 ζ̂

2 − �2)
(16)

is an estimator for the system given in Eq. (14), where
r1 > 0, r2 > 0; θ > 0; Δθδj = diag(θδj , θ2δj , ..., θnjδj );
δ1 > 0, δ2 > 0; Sn1 is given by Lemma 1.

The following theorem is given:

Theorem 1: Denote by ε the upper bound of |ε(t)| i.e.
ε = supt≥0|ε(t)|, then for r1 > 0, r2 > 0, θ > 0 sufficiently
large and ∀δ1 > 0, δ2 > 0 s.t.

2n1 − 1
2n2 + 1

δ1 < δ2 <
2n1 + 1
2n2 − 1

δ1; (17)

|ζ̂(t)− ζ(t)‖ ≤ λe−μt + λ′ε; (18)

for some constants λ > 0, μ > 0 and λ′ > 0. Moreover,
μ→ +∞ as θ → 0.

Remark 1. If ε = 0, the system given in Eq. (16) becomes
an exponential observer for the system given in Eq. (14).
A proof of this result is given in Hammouri et al. (2002).

3.1 Application of the designed observer to a distillation
column

In the previous sections Eqs. (14) to (16) describe the high-
gain observer designed for a distillation column, as well as
the appropriate model in which this observed is based. In
this section, an observer synthesis to the following class of
nonlinear systems is developed, which contains the model
of binary distillation columns, considering the following
notations:⎧⎨⎩

ζi = ζ1i ; 1 ≤ i ≤ f − 1
ζN−i+1 = ζ2i ; 1 ≤ i ≤ N − f + 1
ζF = ζ2N−f+2

(19)

then, the system given in Eq. (13) can be represented in
the following compact form:⎧⎨⎩ ζ̇

1(t) = f1(ζ(t),u(t), D(t))
ζ̇2(t) = f2(ζ(t),u(t),d(t), ε(t), B(t))
�(t) = (ζ11 , ζ

2
1 )T = (ζ1, ζN )T

(20)

where ε(t) is a bounded and unknown function s.t. ζ̇F =
ε(t). The liquid flow rates in the stripping section and
vapor flow rates in the rectifying section are not known
variables. The holdup in the condenser, the boiler and
trays (where it is assumed to be constant) is calculated
. The weighted error between the estimated and the
measured compositions is feed back to the model equation
in order to correct the liquid flow rates in the stripping
section and the vapor flow rates in the rectifying section
(see Halvorsen and Skogestad (2000)).

The hypothesis (A9) and (A10) must be verified:

• (A9) is fulfilled since the flow rates are physically
bounded.

• (A10) is satisfied because the liquid compositions
xi ∈ [0, 1]

Applying Theorem 1, the high-gain observer for the
distillation column is:{ ˙̂

ζ1 = f1(ζ̂,u, D(t))−Q1θ(Cn1 ζ̂
1 − �1)

˙̂
ζ2 = f2(ζ̂,u, B(t),d, ε(t))−Q2θ(Cn2 ζ̂

2 − �2)
(21)

where Qjθ = rjΔθδj S−1
nj

CT
nj

, for j = 1, 2. The constant
parameters are the same described in Eq. (16).

4. EXTENSION OF THE HIGH-GAIN OBSERVER TO
THE CONTINUO-DISCRETE CASE

There are processes where the measurement of their varia-
bles are performed using long sampling times due to their
slow dynamics. In Bahar et al. (2006) it is demonstrated
that certain restrictions in the dimension of the sampling
period used by a purely discrete observer exist. An alter-
native of solution for this problem is the use of continuous-
discrete observers (see Hammouri et al. (2002)).

Consider a non-linear uniformly observable systems of the
form: {

ẋ(t) = f(x(t),u(t))
y(t) = h(x(t)) (22)

where x(t) ∈ Rn, u = (u1, ..., un) ∈ Rm, are measurable
inputs and y ∈ R is a measurable output. Using the model
of the system with u(t), y(t) as known measurements it
is possible to estimate the state line in x(t) of the system
represented by Ec. 22, this task is performed by a recursive
algorithm with the following structure:

i. A prediction period in the time interval t ∈ [tk, tk+1]:
˙̂xk(t) = f(x̂(t),u(t)) (23)

ii. A correction period in the time t = tk+1:
˙̂xk+1(t) = x̂k+1(−)− rΔθS

−1
θ C

T (Cx̂k+1(−)− yk+1)
(24)
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To make the extension of the high-gain observer to
continuous-discrete case, it is assumed that the observa-
tions are made at the time k�t, where �t is the time
between measurements and k is the instant in which the
sample is taken. In this case, it is not considered a coordi-
nates change because the triangular structure of the model
studied in section 3 is used.

As the observer gain is constant, it is true that:
∀t > 0, A

T
k (t)Sk + SkAk(t) − ρC

T
k Ck ≤≤ −μIk (25)

where Sk is a symmetric positive definite matrix with the
following structure:

Sk =

⎡⎢⎢⎢⎢⎢⎣
s11 s12 0 0

s12 s22

. . .
.
.
.

0
. . .

. . . 0

.

.

.
. . . s(k−1)k

0 . . . 0 s(k−1)k skk

⎤⎥⎥⎥⎥⎥⎦ ,

Ck is denoted as a vector of k elements:
Cnj

= [1, . . . , 0] (26)

and Ak is given by:

Ak(t) =

⎡⎢⎢⎣
0 a1(t) 0 0

.

.

. a2(t) 0

0
. . . ak−1(t)

0 . . . 0 0

⎤⎥⎥⎦ ,

where the terms ak may be unknown and satisfy the
hypothesis A9.

5. EXPERIMENTAL VALIDATION OF THE
OBSERVER

The distillation pilot plant, located at the Process Con-
trol Laboratory of the National Center of Technological
Research and Development (CENIDET) in Cuernavaca,
Morelos, México, was used to carry out the required ex-
periments. It has twelve trays, where temperature mea-
surements are available through 8 RTD’s Pt-100 located
at trays 1, 2, 4, 6, 7, 9, 11 and 12. Using these mea-
surements and considering the equilibrium relation (see
Section 2.2.2), the respective liquid compositions can be
obtained.

The mixture used in these experiments was Ethanol(EtOH)-
Water(H2O) which is considered as a non-ideal mixture.
The experimental validation of the observers is done con-
sidering: EtOH volume of 2000 ml, H2O volume of 2000
ml and process total pressure of 105.86 kPa. The specifi-
cations of every component of the mixture can be found
in Perry (1999). The experiment lasts 82 minutes, once it
has reached the stable state. In minute 27 the system goes
from total reflux to partial reflux. In minute 54, a change
in the input Qb is applied.

In the discrete observer the sampling time is used to esti-
mate and correct. In the continuous-discrete observer the
prediction and correction times can be different in order
to use less data, therefore less processing time, performing
a reliable online estimation. The observer estimates the
liquid composition of the light component (EtOH) for

every stage by having the temperature measurements on
stage 1 (condenser) and stage 12 (boiler) only.

The high-gain observer is obtained by fixing r1 = r2 =
25; θ = 0.09 and satisfying (16) with δ1 = 1.2, δ2 =
1
2

[
1 +

(
2n1+1
2n2−1

)2
]
δ1 = 0.0983(where n1 = f − 1 = 6, n2 =

n− f + 2 = 6). Finally Lemma 1 gives:

Sn1 = Sn2 =

⎡⎢⎢⎣
1 −1 0 0 0 0

−1 2 −1.5 0 0 0

0 −1.5 4 −2 0 0

0 0 −2 8 −3 0

0 0 0 −3 10.5 −4

0 0 0 0 −4 15.5

⎤⎥⎥⎦
Fig. 2 shows a comparison between the experimental dat
and the estimation performed by the discrete observer
in plate 12 (boiler) using a sampling time of 3s. If the
sampling time is slightly increased to 5.4s the discrete
observer can not perform an adequate estimation, as can
be seen in Fig. 3.

Fig. 2. Composition estimation of tray 12 by the discrete
observer using a sampling time of 3 sec

Fig. 3. Composition estimation of tray 12 by the discrete
observer using a sampling time of 5.4 sec

In the continuous-discrete observer, a fixed prediction time
of 3s is used, but different correction times are used
in order to validate its performance. Figs. 4 to 6 show
the experimental and estimated data when the correction
time is 15 seconds, 30 seconds and 1 minute, respectively.
In these figures it can be seen the good tracking and
quickly convergence of the observer to the experimental
data. The observer estimates the compositions of the plant
adequately, under different conditions of correction time,
having a maximum error of 0.03 and a minimum error
0.0001 between the estimated and the experimental data
(the Euclidiean norm was used to estimate the error).

6. CONCLUSIONS

In order to validate the performance of the high-gain ob-
server versions: discrete and continuous-discrete, some ex-
periments were conducted under similar conditions. First,
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Fig. 4. Composition estimation of tray 12 by the
continuous-discrete observer using a correction time
of 15 sec

Fig. 5. Composition estimation of tray 12 by the
continuous-discrete observer using a correction time
of 30 sec

Fig. 6. Composition estimation of tray 12 by the
continuous-discrete observer using a correction time
of 60 sec

the purely discrete observer was validated, in order to per-
form, later, an adequate comparison with the continuous-
discrete observer and analyze their response. Both vali-
dation use the same component specifications and same
experimental inputs.

As can be seen in the presented figures the continuous-
discrete observer presents a good tracking and quickly
convergence to the experimental data, in spite of the
sampling time used in the correction stage unlike the
purely discrete observer, where the sampling time affects
considerably its performance. Therefore, it can be assumed
that the continuous-discrete observer is a suitable option
to estimate the desired variables when the measurements
of the system are performed using a long sampling time
due to the slow dynamics of the process, which is the
case of a distillation column where the compositions of the
light component in a binary mixture of Ethanol-Water are
estimated accurately.
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Abstract: The problem of jointly designing the estimation structure and algorithm to infer
all or some composition in a six-component distillation column with temperature measure-
ments is addressed. The structure design involves the choices of: (i) modeled and unmodeled
compositions, (ii) the number of measurements and their location, and (iii) the innovated-
noninnovated state partition. The algorithm is the dynamic data processor that performs the
estimation task. The application of the geometric estimation approach (GE), in the light of
the column characteristics, yields a tractable procedure to draw the solution of the estimation
structure-algorithm design problem, with an estimation scheme that is considerably simpler
than previous ones with extended Kalman Filter (EKF). The proposed methodology is applied
to a representative six-component case example through simulations, finding that the estimation
task can be performed with a three-component reduced model.

Keywords: Distillation column, nonlinear, estimators, geometric estimators, multicomponent.

1. INTRODUCTION

Distillation is an important energy-intensive industrial op-
eration where many substances are separated and purified.
The development of estimation schemes with temperature
measurements for multicomponent distillation columns
is motivated by: (i) the need of developing monitoring
systems and (supervisory, advisory, and feedback) con-
trollers with applicability-oriented requirements on reli-
ability, tractability and maintenance cost, and (ii) the
availability of reasonable and reliable multicomponent dis-
tillation models, including commercial packages.

The extended Kalman Filter (EKF) (Jazwinsky (1970))
has been by far the most widely used estimation technique
in chemical process systems engineering in general, and
in multicomponent distillation columns in particular, with
successful simulations and experimental implementations
for continuous and batch column operations, mostly for
binary (Baratti et al. (1995); Yang and Lee (1997)) and
ternary systems (Baratti et al. (1998)), and up to four-
component systems (Venkateswarlu and Kumar (2006)).
Even though adequate multicomponent column models are
available, the related EKF construction and implemen-
tation for multicomponent systems still rises reliability,
complexity, and development-maintenance cost concerns
among industrial practitioners, because: (i) the dimension-
ality of the EKF grows rapidly with the number of stages
and components (n(n+1)

2 +n), (ii) the tuning of the covari-
ance gains of the Riccati equation is a rather complex task,
and (iii) due to the lack of formal connections between

estimator tuning and functioning, the implementation of
the EKF requires extensive testing.

Recently, the geometric estimation (GE) approach (Al-
varez (2000)), which does not require the on-line inte-
gration of Riccati equations, has been redesigned with
the following features (Alvarez and Fernandez (2008)):
(i) the obstacle of high order Lie derivations has been
removed and replaced by Jacobian model-based gain com-
putations, enabling the consideration of staged systems,
(ii) the equivalence between the GE and the EKF has
been identified, (iii) the estimation model, its (innovation-
noninnovation) detectability structure, and the sensor lo-
cations are regarded as structural design degrees of free-
dom, and (iv) a simple tuning scheme is coupled with
a robust convergence criterion. The general-purpose GE
approach has been successfully tested with experimental
binary columns with complete (Tronci et al. (2005); Fer-
nandez and Alvarez (2007)) or reduced models (Alvarez
and Fernandez (2008)), and ternary columns (Pulis et al.
(2006)), yielding estimation schemes which are consider-
ably simpler than the EKF-based ones. These consider-
ations motivate the present study on the six-component
distillation column problem.

In this work, the problem of simultaneously designing the
estimation structure and algorithm to infer all or some
composition in a six-component distillation column with
temperature measurements is addressed. By structure de-
sign we mean the choices of: (i) modeled and unmodeled
compositions, (ii) the number of measurements and their
locations, and (iii) the innovated-noninnovated composi-
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tion state partition which, in conjunction with the model-
sensor choice, determines the data assimilation versus
error propagation mechanism. By algorithm it is meant
the dynamic data processor that performs the estimation
task, according to the estimation structure and a suitable
gain tuning scheme. The application of afore discussed
GE approach, in the light of the six-component column
characteristics, yields a tractable procedure to solve the
structure-algorithm problem, with an estimation scheme
that is considerably simpler than previous EKF-based
ones. The proposed methodology is applied to a represen-
tative six-component case example through simulations,
finding that the estimation task can be performed with a
three-component reduced model, a single-stage innovation
with passive structure, and without the need of online
integrating Riccati equations. The study can be seen as
an inductive step towards the consideration of columns
with more than six components.

2. ESTIMATION PROBLEM

2.1 Six-component distillation column

Consider a continuous multicomponent column with N
stages and C components. Under standard assumptions
(energy balance neglected on each tray, constant vapor
and liquid flows, holdup dynamics neglected, tight reboiler
and condenser level control, and stage liquid-vapor equilib-
rium), the column dynamics are described by the following
set of nonlinear differential equations (Skogestad (1997);
Baratti et al. (1998)):

Reboiler (i = 1, j = 1, . . . , C − 1)

ċj1 =
(R+ F )cj2 − V εj(c1, P1)−Bcj1

M1
= f j

1 (c1, c
j
2) (1a)

Stripping section (2 ≤ i ≤ NF − 1, j = 1, . . . , C − 1)

ċji =
(R+ F )(cji+1 − cji )− V (εj(ci, Pi)− εj(ci−1, Pi−1))

Mi
(1b)

= f j
i (ci−1, ci, c

j
i+1)

Feed tray (i = NF , j = 1, . . . , C − 1)

ċjNF
=
R(cjNF +1 − cjNF

) + F (cjF − cjNF
)

MNF

(1c)

− V (εj(cNF
, PNF

)− εj(cNF −1, PNF −1))
MNF

= f j
NF

(cNF −1, cNF
, cjNF +1, cF )

Enriching section (NF + 1 ≤ i ≤ N − 1, j = 1, . . . , C − 1)

ċji =
R(cji+1 − cji )− V (εj(ci, Pi)− εj(ci−1, Pi−1))

Mi
(1d)

= f j
i (ci−1, ci, c

j
i+1)

Condenser (i = N , j = 1, . . . , C − 1)

ċjN =
V εj(cN−1, PN−1)−RcjN −DcjN

MN
= f j

N (cN−1, c
j
N )

(1e)

Temperature measurements (i = 1, . . . ,m)

Tsi
= β(csi

, Psi
) (1f)

where m is the number of sensors along the column and si
is the location of the i-th sensor, cji is the composition of
the component j at i-th stage, ci = [c1i . . . c

C−1
i ]

T
is the

composition vector at i-th stage, Tsi and Psi are respec-
tively the temperature and the pressure at si-th stage, F is
the feed flow rate with composition cF = [c1F . . . c

C−1
F ]

T
,

D, B, R, and V are respectively the distillate, bottom,
reflux and vapor flow rate (V is proportional to reboiler
duty Q through the heat of vaporization λ), Mi is the
holdup at i-th stage, εj is the liquid-vapor equilibrium
function that determines the vapor composition of the
component j, and β is the bubble-point implicit function
that sets the temperature. The components cCi are deter-
mined by the (mass conservation) condition

∑C
j=1 c

j
i = 1,

where i = 1, . . . , N . Henceforth, column system (1), will be
referred to as the complete six-component column system,
which in compact vector notation is written as follows:

ẋP = fP (xP , uP , dP ) yP = hP (xP ) (2)

where xP = [c1T . . . cN
T ]T , ci = [cC2

i c
C3
i c

IC4
i cNC4

i cIC5
i ]T ,

uP = [RV ]T , dP = [F cF T ]T , and yP = [Ts1 . . . Tsm
]T

are respectively the states, the inputs, the disturbances,
and the outputs. The disturbances dP are assumed to be
constant and known.

2.2 Estimation problem

The estimation problem consists in jointly designing the
estimation structure (i.e. estimator model, sensor location,
innovated states and data assimilation mechanism), and
the estimation algorithm (i.e., the dynamic data proces-
sor), to infer some of or all the effluent compositions of
the six-component distillation column (2) on the basis of
a reduced model (to be designed) in conjunction with tem-
perature measurements, according to a specific estimation
objective. In virtue of the general-purpose GE approach
(Alvarez and Fernandez (2008)) and its applications to
binary (Fernandez and Alvarez (2007); Alvarez and Fer-
nandez (2008)) and ternary columns (Pulis et al. (2006)),
in the present six-component column estimation study, the
emphasis will be placed on: (i) the design of a reduced-
component model for estimation, (ii) the employment of
a robustness-oriented single-stage innovation scheme with
passive structure (Pulis (2007)), (iii) the corresponding
decision on the innovated components, meaning the com-
ponents of the measurement stage with information and
error injection, and (iv) the estimation of the effluent (dis-
tillate and bottom) impurity compositions as estimation
objective.

2.3 Case example

As a representative industrial case example, consider the
T110 distillation column located at SARAS refinery (Sar-
roch, Italy) with N = 37 stages and C = 6 compo-
nents: a C3-C4 (propane-butane) splitter fed with propane
(C3), iso-butane (IC4), and n-butane (NC4), as well as
ethane (C2), iso-pentane (IC5), and n-pentane (NC5) as
secondary components (with compositions less than 1%).
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The column has a kettle reboiler (1-st stage), a total
condenser (37-th stage), 35 nutter float valve trays, the
feed is introduced at 19-th stage, the tray spacing is 61
cm, the column diameter is 2 m, and the pressure changes
linearly along the column, with the top and bottom pres-
sure being 16.3 Kg·cm−2 and 16.6 Kg·cm−2, respectively.
This case example represents a sufficiently important class
of industrial columns, where two or three main components
to be split are present, together with other secondary
components in a much smaller amount.

The behavior of the “actual” six-component system (2)
was numerically simulated with MATLAB, in the un-
derstanding that the same task can be performed with
commercial packages (say ASPEN). The thermodynamics
was simulated with ideal equilibrium (Reid et al. (1998)).
The feed flow and compositions, as well as the reflux flow,
and reboiler duty are given in Table 1. In all simulations,
the initial conditions for the complete column system cor-
respond to the steady-state determined by the data listed
in Table 1.

Table 1. Input values for feed flow and compo-
sitions, reflux flow and reboiler duty

F (m3·h−1) 82.9 C2 molar fraction 0.0036
R (m3·h−1) 69.7 C3 molar fraction 0.281
Q (BTU) 19819000 IC4 molar fraction 0.236

NC4 molar fraction 0.4746
IC5 molar fraction 0.004
NC5 molar fraction 0.0008

3. STRUCTURAL ANALYSIS

Motivated by the GE detectability measure-based sensor
location criterion employed in previous binary (Tronci
et al. (2005); Fernandez and Alvarez (2007); Alvarez
and Fernandez (2008)) and ternary columns (Pulis et al.
(2006)) as well as by their interpretation in terms of ther-
modynamic diagrams (Pulis et al. (2006)), in this section
the sensor location and innovated composition structure
is analyzed on the basis of stage-to-stage temperature
gradients and their component-wise contributions.

3.1 Model reduction

The stage-to-stage temperature gradient about a certain
operation condition is approximated as follows:

ΔTi = Ti+1 − Ti ≈
C∑

j=1

∂Ti

∂cji

∣∣∣∣
ci

Δcji =
C∑

j=1

ΔTcj
i

(3)

where Δcji = cji+1 − cji , ΔTi is the temperature gradient
at the i-th stage, and ΔTcj

i
is the contribution of the

i-th gradient due to the component j. The idea which
underlies the model reduction criterion is to set a data
assimilation scheme with a favorable compromise between
data assimilation and error propagation: (i) the stages with
large temperature gradients are candidates for robustness-
oriented single-stage (i.e. passive) innovation, and (ii)
the compositions with large contributions to the overall
gradient are candidates for being both modeled states and
innovated states.

Table 2. Feed compositions for the reduced
model

C3 molar fraction 0.2838
IC4 molar fraction 0.2388
NC4 molar fraction 0.4774

On the basis of the steady-state solution of the com-
plete system (2) in conjunction with the total and per-
component temperature gradient formula (3), the diagram
presented in Figure 1 was obtained, showing that: (i) with
respect to stage-to-stage temperature change, the most
sensitive zone is the enriching section around the 32-nd
stage, (ii) in general, the temperature gradients are due
to C3, IC4 and NC4 composition changes, (iii) the IC5,
and NC5 components have a rather small contribution
to the temperature gradient, and (iv) at the top of the
column (around the condenser stage) the C2 has a rather
important influence on temperature.

Fig. 1. Complete model-based temperature gradient and
its per-component contributions

From the examination of the stage-to-stage temperature
gradient and the per-component contributions to such
gradient, the following structural conclusions are reached:
the reduced model is obtained by retaining the C3, IC4,
and NC4 components with appreciable manifestation in
the temperature gradient, and discarding the three other
ones (C2, IC5, and NC5) with comparatively small man-
ifestation. Thus the reduced model is given by (1) with
C = 3. In vector notation, the reduced model is written as
follows:

ẋ = f(x, u, d) y = h(x) (4)

where x = [cC3
1 c

IC4
1 . . . cC3

N c
IC4
N ]T , u = [RV ]T , d =

[FcC3
F c

IC4
F ]T , and y = [Ts1 . . . Tsm ]T are respectively the

states, the inputs, the disturbances, and the outputs. The
reduced model (4) was set with the feed compositions
presented in Table 2.

The behaviors of the reduced three-component model (4)
and complete six-component system (2) are presented in
Figure 2, showing that the model reduction error has an
appreciable (or negligible) manifestation in the distillate
(or bottoms) concentrations, and the same is true for
the enriching (or stripping) section. This signifies that:
(i) the bottom composition can be adequately estimated,
without measurement injection, by means of a reduced
model-based open-loop observer, and (ii) the distillate
compositions can be estimated with a reduced model-
based estimator with one temperature measurement, as
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the temperature measurement before the top of the column
basically reflects C3 and IC4 changes.

Fig. 2. C3 and IC4 composition and temperature profiles
along the column with (six-component) complete and
(three-component) reduced models

3.2 Sensor location and innovated states

On the basis of the steady-state solution of the reduced
model (4) in conjunction with the total and per-component
temperature gradient formula (3), the diagram presented
in Figure 3 was obtained, showing that: (i) in the stripping
(or enriching) section, the largest temperature gradient,
or equivalently, the richest-in-information zone, is located
below the feed (or top) tray, and (ii) in the stripping (or
enriching) section, the smallest temperature gradient, or
equivalently, the poorest-in-information zone, is located
above the reboiler (or feed) tray.

From the preceding comments and the findings of Subsec-
tion 3.1, the next conclusions on sensor location follow:
(i) one temperature measurement should be placed in
the stripping section, located at the richest-in-information
region (between 29-th and 33-rd stages) with the largest
temperature gradient, and (ii) no temperature measure-
ment is needed in the stripping section, as the bottom
compositions can be adequately estimated using just the
reduced model (without measurements). According to Fig-
ure 3, the C3 component has the largest contribution
to the temperature gradient in the richest-in-information
zone, meaning that the C3 component is an innovated
state candidate for a robustness-oriented GE with passive
structure (Pulis et al. (2006)).

Fig. 3. Reduced model-based temperature gradient and its
per-component contributions

3.3 Candidate estimation structures

According to the preceding developments, the two-effluent
composition estimation task for the six-component system
(2) can be performed using the reduced three-component
model with one temperature sensor located between 25-
th and 33-rd stages, with the C3 component as innovated
state in a robustness-oriented GE with passive structure
(Pulis et al. (2006)). To preclude unduly bottom-to-top
model and measurement error propagation, no measure-
ment in the stripping section is placed. To have a fa-
vorable balance between data assimilation and model-
measurement error propagation from the measurement to
distillate effluent composition estimate, a measurement
should be located in the tray interval between stages 29
and 33, and not in any of the two top trays (stages 35 and
36) as shown in Figure 1. Thus, the preceding considera-
tions lead to the following candidate estimation structure:
(i) no sensor in the stripping section, (ii) one sensor in the
enriching section between 29-th and 33-rd trays, and (iii)
the C3 composition as innovated state. These structural
conclusions are suggestive in the sense that: (i) candidate
sensor location and innovated C3 compositions around
the afore concluded candidates must be examined, and
(ii) the conclusive structural assessment will be performed
in the next section, on the basis of GE functioning. In
order to verify the estimator performance, some different
choices for the set of innovated states have been selected by
following the considerations above: these innovated state
sets will be illustrated and compared in Section 4.

4. STRUCTURE ASSESSMENT WITH ESTIMATOR
FUNCTIONING

Having as point of departure the candidate structures
identified in the preceding section, in this section the
estimation structure for effluent composition estimation
aims is assessed on the basis of the structure behavior with
a robustness-oriented GE with passive structure (Pulis
et al. (2006)). The role of the actual process will be played
by the six-component system (2), and the GE will be
implemented with the reduced three-component model (4).

4.1 Geometric estimator with passive innovation

Let us recall the adjustable-structure proportional-integral
(PI) GE with passive structure (Alvarez and López (1999);
Alvarez and Fernandez (2008)):

ˆ̇xI = fI(x̂, û) + Φ−1
xI
P (KP (yP − ŷ) + z)

ˆ̇xII = fII(x̂, û) ż = KI(yP − ŷ) ŷ = h(x̂)
(5)

where x̂, û, and ŷ are the estimates of x, u, and y,
xI ∈ RnI is the set of the innovated states, xII ∈
Rn−nI is the set of the non-innovated states, KP and
KI are respectively the proportional and integral gain
matrices. For this kind of estimator structures, if xI =

[cl
1
1

s1 . . . c
l
n1
1

s1 . . . c
l1m
sm . . . c

lnm
m

sm ]
T

, then KP , KI , ΦxI
, and P

assume the following form:

KP =

⎡⎢⎣KP,s1

. . .
KP,sm

⎤⎥⎦ KI =

⎡⎢⎣KI,s1

. . .
KI,sm

⎤⎥⎦
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ΦxI
=
[
∂T̂s1

∂ĉ
l11
s1

∣∣∣∣
ĉs1

. . .
∂T̂s1

∂ĉ
l
n1
1

s1

∣∣∣∣
ĉs1

. . .
∂T̂sm

∂ĉ
l1m
sm

∣∣∣∣
ĉsm

. . .
∂T̂sm

∂ĉl
nm
m

sm

∣∣∣∣
ĉsm

]

·

⎡⎢⎣ 1
. . .

1

⎤⎥⎦ P =

⎡⎢⎣ 1 . . . 1
. . .

1 . . . 1

⎤⎥⎦
T

Note that: (i) the generic composition cl
j
i

si is innovated only
by using temperature at si-th stage; (ii) ni represents the
number of innovated components at si-th stage and the
condition

∑m
i=1 ni = nI holds; (iii) [xI xII z]

T ∈ Rn+m;
(iv) P is a matrix of 1s and 0s, where for every column
i ∈ {1, . . . ,m} there are ni 1s as shown above. When the
integral action state is eliminated, the proportional (P)
GE is obtained.

The robust convergence aspects and its connection with
the tuning of gains can be seen in Alvarez and Fernandez
(2008), and here it suffices to mention that: (i) the conver-
gence criterion is coupled with rather easy-to-apply tuning
guidelines, and (ii) the tuning scheme and guidelines apply
over all structures. In this way, one has the certainty that
the estimator functioning results are due to the structure
and not to the tuning scheme.

Next the GE tuning guidelines for the GE PI estimator
with passive structure are recalled. Consider an innovated

state cl
j
i

si : then, the corresponding temperature used in
order to estimate this composition is Tsi

and the tuning
parameters are:

KP,si
= 2ξsi

ωsi
KI,si

= ωsi

2 (6)
where ωsi and ξsi are respectively the characteristic fre-
quency and the damping factor of the estimator at si-
th stage. The characteristic frequency ωsi must be chosen
between 5 and 10 times faster than ωo,si (where ωo,si is
the natural characteristic frequency of composition at si-
th stage). Following conventional-like filter and control
behavior assessments, the estimator functioning will be
measured with the IAE index and the steady-state error.

As mentioned before, the estimation task is to infer the
effluent impurity compositions (i.e., C3 in the bottom and
IC4 in the top). Since the C3 in the reboiler is adequately
described by the model without measurement, only the
results of the IC4 distillate composition estimates will be
presented. Several simulations have been performed, but
for sakes of brevity only one of them is reported here.
To test the estimator over different structures, a column
transient has been induced by some step changes at the
reboiler duty (ΔQ = +3% at t = 2 hrs and ΔQ = 0 at
t = 8 hrs, with respect to Q value of Table 1)

Two different measures have been employed: (i) the
steady-state error (7a), and (ii) the IAE index (7b)

eji,SS1 if ΔQ = 0 and eji,SS2 if ΔQ = +3% (7a)

IAE(eji ) =
∫
|eji |dt (7b)

where eji is the composition error for the component j
at i-th stage. There are two steady-state errors, since
two different steady-state conditions are present, as can
be seen from Figures 4, 5, and 6. For all the structures
considered, the estimator has been tuned with the tuning

guidelines sketched in (6), with ωsi
= 10ωo,si

and ξsi
= 3

for i = 1, . . . ,m.

4.2 Estimation with one innovated state

On the basis of the structural analysis performed in
Section 3, two single-innovated state cases have been
considered: xI = [cC3

29 ] and xI = [cC3
33 ].

The corresponding GE behavior results are presented in
Figure 4 and Table 3, showing that: (i) comparing with
the reduced model behavior, in both cases the estimate
error undergoes a considerable reduction by measurement
injection, and (ii) the case with cC3

33 -innovation yields a
slightly better behavior than with cC3

29 -innovation. This
result is consistent with the conclusion reached in Section
3, as 33-th stage has the largest stage-to-stage gradient
and is close to the top stage.

Fig. 4. IC4 distillate composition estimate with one inno-
vated state

4.3 Estimation with two innovated states

Now, let us find out whether the joint consideration of
the two previous cases leads to some estimator behavior
improvement, this is xI = [cC3

29 c
C3
33 ]T .

The corresponding GE behavior results are presented in
Figure 5 and Table 3, showing that there is not an
appreciable improvement over the estimation structures
with one innovated state discussed in the last subsection
(see Figure 4).

Fig. 5. IC4 distillate composition estimate with two inno-
vated states

4.4 Estimation with three innovated states

Finally, let us investigate if the effluent estimation behav-
ior can be improved by adding one innovated state to the
two-innovated state structure presented in Subsection 4.3,
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this is xI = [cC3
29 c

C3
31 c

C3
33 ]T , with the incorporation of the

innovated state cC3
31 being motivated by the fact that 29-

th and 33-rd stages bracket the rich-in-information zone
of the enriching section. The corresponding GE behavior
results are presented in Figure 6 and Table 3, showing
that there is an appreciable improvement over the two-
innovated state estimation structure discussed in the last
subsection (see Figure 5).

Fig. 6. IC4 distillate composition with three innovated
states

Table 3. IAE values and steady-state errors
(the subscript T refers to the top stage)

eIC4
T,SS1 eIC4

T,SS2 IAE(eIC4
T )

Reduced model −0.0433 −0.0109 20.1124
xI = [cC3

29 ] −0.0092 −0.0064 5.9306
xI = [cC3

33 ] −0.0049 −0.0058 3.8622

xI = [cC3
29 cC3

33 ]
T −0.0052 −0.0054 3.8077

xI = [cC3
29 cC3

31 cC3
33 ]

T −0.0025 −0.0022 1.7871

4.5 Concluding remarks

The behavior measures of the four estimation structures
considered in this section are summarized in Table 3, show-
ing that: the best GE estimator behavior is obtained with
the three-innovated state structure, followed by the two-
innovated state structure, and by the two single-innovated
state structures. It must be pointed out that the steady-
state estimation error is smaller than 1% and therefore
comparable with typical measurement errors. These re-
sults are in agreement with the a priori structural assess-
ments drawn in Section 3. The IC4 distillate composition
estimation task can be effectively performed using: (i) a
three-component reduced model, (ii) one or more sensors
located between stages 29 and 33 in the enriching section,
and (iii) passive innovation for component C3.

5. CONCLUSIONS

The problem of jointly designing the estimation struc-
ture and algorithm to infer an effluent composition for a
six-component distillation column with temperature mea-
surement option has been resolved in a tractable man-
ner within a GE design framework in the light of the
staged column system characteristics. The design focused
on structural aspects: model reduction, sensor location,
and innovation mechanism. The methodology consisted
of: (i) one structural analysis step that yielded a few
candidate structures and (ii) a step with conclusive struc-
tural results on the basis of estimator behavior assessment.

The resulting GE (with 75 to 77 nonlinear ordinary dif-
ferential equations (ODEs), depending on the structure)
was considerably simpler than its EKF counterpart (with
2812 ODEs) and of tuning procedure (trial-and-error or
optimization for the EKF and well defined for the GE).

Currently, work is underway to apply the proposed ap-
proach to estimate the pollutant contents in the outlet
streams of an actual industrial column.
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Pulis, A., Fernandez, C., Baratti, R., and Alvarez, J.
(2006). Geometric estimation of ternary distillation
columns. In International Symposium on Advanced Con-
trol of Chemical processes, 573–578. Gramado, Brasil.

Reid, R.C., Prausnitz, J.M., and Poling, B.E. (1998). The
properties of gases and liquids. McGraw-Hill, Singapore,
fourth edition.

Skogestad, S. (1997). Dynamics and control of distillation
columns: a tutorial introduction. Trans IChemE, Part
A, 75, 539–559.

Tronci, S., Bezzo, F., Barolo, M., and Baratti, R. (2005).
Geometric observer for a distillation column: develop-
ment and experimental testing. Ind. Eng. Chem. Res,
44, 9884–9893.

Venkateswarlu, C. and Kumar, B.J. (2006). Composition
estimation of multicomponent reactive batch distillation
with optimal sensor configuration. Chemical Engineer-
ing Science, 61, 5560–5574.

Yang, D.R. and Lee, K.S. (1997). Monitoring of a dis-
tillation column using modified extended kalman filter
and a reduced order model. Computers and Chemical
Engineering, 21, 565–570.

452



     

Temperature Inferential Dynamic Matrix Control of Reactive Distillation 

Systems 
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Abstract: Two-temperature inferential control of the ideal and the methyl acetate double feed reactive 
distillation (RD) systems operated neat is evaluated using constrained dynamic matrix control (CDMC) 
and traditional decentralized control. For the ideal RD system, significant improvement in the stripping 
tray temperature control and the transient deviation in the bottoms purity is observed using CDMC. For 
the methyl acetate system, CDMC results in significant improvement in the control of the two tray 
temperatures as well as transient deviations in both the distillate and bottoms purity. Results also show 
that the magnitude of the maximum through-put change for which the control system fails is noticeably 
higher using CDMC. 

Keywords: Reactive distillation control, dynamic matrix control, temperature inferential control 

1. INTRODUCTION 

Reactive distillation (RD) is now an established process 
intensification technology combining reaction and separation 
in a single column with potentially significant economic 
savings when the reaction kinetics and component relative 
volatilities are favorable (Siirola, 1995). When compared to 
conventional “reactor-separator” processes, the high non-
linearity due to direct interaction between reaction and 
separation combined with fewer control degrees-of-freedom 
makes the design of an effective control system crucial to the 
successful implementation of RD technology.  

In probably the first paper on RD control, Roat et al (1986) 
demonstrated that seemingly appropriate control structures 
succumb to a steady state transition for a moderately large 
through-put change suggesting the presence of high-non-
linearity. Several later articles highlighted the presence of 
steady state multiplicity in various RD systems (see eg Mohl 
et al, 1999; Taylor and Krishna, 2000). The presence of 
steady state multiplicity can result in non-linear dynamic 
phenomena under open and closed loop operation. Sneesby 
et al (1997) considered the implications of steady state 
multiplicity on the operation and control of etherification 
columns. Kumar and Kaistha (2008a) demonstrated the 
occurrence of ‘wrong’ control action and closed loop steady 
state transition for the hypothetical quaternary ideal RD 
column studied by Al-Arfaj and Luyben (2000). 

Given the high non-linearity in RD systems, the application 
of non-linear control techniques has been recommended in 
the literature. Among the prominent non-linear RD control 
works, Kumar and Daoutiditis (1999) implemented a non-
linear inversion based control scheme for an ethylene glycol 
RD column. Model based gain scheduling has been applied 
to an ETBE RD column. Gruner et al (2003) report the non-
linear control of an industrial RD column operated by Bayer. 
More recently, Kawathekar and Riggs (2007) have applied a 
non-linear model predictive control scheme to an ethyl 
acetate column. 

 
Even as non-linear model based control is widely accepted 
in the academic community, industrial practice remains 
strongly biased towards the traditional decentralized PI 
control and where justifiable, linear model predictive control 
techniques such as DMC. This is probably due to the 
difficulty in developing a high fidelity non-linear process 
model and identifying the model parameters in an industrial 
setting. 

A careful examination of the RD control literature reveals 
that the control of two-reactant double-feed RD columns 
operated neat (no excess of a reactant) such as the quaternary 
ideal RD system and the methyl acetate RD system, is 
particularly challenging due to the need for stoichiometric 
balancing of the two fresh feeds. Adjusting one of the fresh 
feeds to maintain an appropriate tray composition has been 
shown to be an effective means of maintaining this balance. 
The use of temperature measurements instead of 
composition, the former being much more rugged, reliable, 
cheap and with fast measurement dynamics, however causes 
the control system to succumb to non-linear dynamic 
phenomena such as ‘wrong’ control action in the methyl 
acetate RD system or a closed loop steady state transition in 
the quaternary ideal RD system (Kumar and Kaistha, 2008a). 
Application of linear MPC techniques, which have found 
industrial acceptance, may significantly improve the 
performance of a temperature inferential control system for 
such ‘difficult to regulate’ processes. This work addresses 
the same for the quaternary ideal and the methyl acetate RD 
systems. 

2. BASE-CASE COLUMN DESIGN 

Figure 1 shows a schematic of the double feed RD columns 
studied in this work. The reaction A + B � C + D occurs in 
the reactive zone. For the methyl acetate system, the 
components A, B, C and D correspond to methanol, acetic 
acid, methyl acetate and water respectively. For the ideal RD 
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system, the component relative volatilities are in the order �C 
> �A > �B > �D so that the reactants are intermediate boiling. 
The reaction kinetics and thermodynamic property models 
for the methyl acetate and the ideal RD system are taken 
from Singh et al (2005) and Al-Arfaj and Luyben (2000), 
respectively. The base-case design and operating conditions 
for the ideal RD system are taken from Kaymak and Luyben 
(2006). The internally heat integrated design of the methyl 
acetate RD system reported in Kumar and Kaistha (2008 b) 
is studied here. The salient design and operating conditions 
for the two systems are reported in Table 1. 

QC 

A + B � C + D 

Reactive Section 
FA

FB

Rectifying Section 

Stripping Section 

QR 

Figure 1. Schematic of a double feed 
reactive distillation column 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. TEMPERATURE INFERENTIAL CONTROL  

3.1 Control Structures 

Figure 2 & 3 plot the tray temperature sensitivities with 
respect to the two fresh feeds and the reboiler duty at 
constant reflux ratio for the ideal and methyl acetate 
columns. The sensitivity plots, suggest two candidate control 
structures, labeled as CS1 and CS2 for convenience. In CS1, 
FA controls a sensitive stripping tray temperature while FB 
controls a sensitive reactive tray temperature. The reboiler 
duty (QR) acts as the through- put manipulator. CS2 differs 
from CS1 in that the QR, instead of FB is used to control a 
sensitive reactive tray temperature with FB being the 
through-put manipulator. The two control structures are 
schematically depicted in Figure 4. Using bottom-up tray 
numbering, the temperature of Tray 2 (T2), a stripping tray, 
and Tray 12 (T12), a reactive tray, is controlled in the ideal 
RD column. In the methyl acetate column, the control tray 
temperature locations are Tray 2 (T2) and Tray 13 (T13). 
Note that in the ideal RD system, even as a rectifying tray 
temperature exhibits higher sensitivity than a reactive tray 
with respect to FB (see Figure 2), it is not controlled due an 
inverse response with respect to FB (Kaymak and Luyben, 
2006) and severe input multiplicity resulting in a steady state 
transition for moderately large through-put changes (Kumar 
and Kaistha, 2008a). 
 

Figure 2: Sensitivities of tray temperatures in ideal 
RD system with respect to fresh feeds (FA & FB) 
and reboiler (QR) duty at fixed reflux ratio 
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Figure 3: Sensitivities of tray temperatures in 
methyl acetate system with respect to Methanol 
feed (FMeOH) and Reboiler Duty (QR) at fixed reflux 
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3.2 Dynamic Simulation and Temperature Controller Details  

An in-house dynamic simulator is used to generate the open 
and closed loop dynamic simulation results for the two RD 
columns. With the two level controllers and perfect pressure 
control in place, a 2x2 temperature control system as in 
structures CS1 and CS2 is implemented. A 1 min lag is 
applied to the temperature measurements. The performance 

Table 1: Design Parameters of Ideal RD 

system and Methyl Acetate system 

 Ideal RD 
Column 

Methyl Acetate 
RD column 

Flow rate of 
feeds 

FA =FB = 
12.6 mol/s 

FHAc=FMeOH 
=300 kmol/hr 

NE/NRX/NS 
design 

5/10/5 7/18/10 

Feed tray  
locations 

nFA = 9; nFB 
= 12 

nFMeOH =16; 
nFHAc =28 

Catalyst loading 
per reactive tray 

0.7 kmol 300 kg 

Pressure 8.5 bar 1.013 bar 
Reflux ratio 2.6927 1.4877 

Distillate rate 12.6 mol/s 308.63 kmol/h 
Reboiler duty 0.8516 MW 3.66387 MW 

Product purities XC,D = 
XD,B = 0.95 

XMeOAc,D=0.95 
XH2O,B=0.96 
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of a 2x2 decentralized controller is to be compared with that 
of a 2x2 multivariable constrained dynamic matrix control 
(DMC) controller. For tuning the two decentralized PI 
temperature controllers, the relay feedback test is performed 
to obtain the ultimate gain and ultimate period of the 
temperature loops. The Tyreus-Luyben controller settings 
are then applied with appropriate de-tuning, if necessary. In 
the ideal RD column, both the temperature loops are tuned 
independently. In the methyl acetate column, sequential 
tuning is applied where the stripping loop is first tuned. For 
the DMC controller, appropriate valve saturation and slew 
rate constraints are applied. The slew rate constraint 
corresponds to the maximum rate of change of the DMC 
controller causing the output to saturate in two minutes. The 
sampling rate of the DMC controller is 0.5 minutes for the  

 

 

 

 

 

 

 

 

 

 

ideal RD column and 0.625 minutes for the methyl acetate 
RD column. The DMC step coefficient matrix is obtained 
using a +1% step change in the appropriate input. The tuning 
parameters used for CDMC are shown in Table 2. 

4. RESULTS 

A through-put change is considered as the primary 
disturbance to be rejected by the control system. The closed 
loop performance of the multivariable DMC and 
decentralized controller is now evaluated for the ideal and 
the methyl acetate RD columns. 

Figure 5 plots the ideal RD column closed loop response to a 
±20% through-put change using CS1 as the control structure. 
The response completion time is about 4 hours for both the 
controllers. Significantly tighter stripping tray temperature 
control (T2) is achieved by the DMC controller while the 
reactive tray temperature control is comparable. This 
translates to tighter bottoms purity (xD,B) control and no 
appreciable benefit in the distillate purity (xC,B) control 
using the DMC controller.  

Figure 6 plots the closed loop response to a ±20% through-
put change in ideal RD column for CS2 using a 
decentralized and DMC 2x2 temperature controller. 
Significantly tighter T2 and T12   temperature control is 
achieved by the DMC controller.  

The closed loop response of the methyl acetate column to a 
±20% through-put change is plotted shown in Figure 7. The 
CDMC temperature controller is far superior to the 
decentralized controller. The transient deviation in reactive 
T13 control is much smaller for the DMC controller. The 
tightness of the T2 control is also better. The tighter 
temperature control translates to lower transient deviations 
in both the distillate (xMeOAC,D) and bottoms product purity 
(xH2O,B). Notice that with the DMC controller, the two fresh 
feeds move in tandem for a better stoichiometric feed 
balance during the transient with consequent improvement in 
the control performance. Figure 8 plots the closed loop 
response of CS2 to a ±20% through-put change for the 
methyl acetate RD column. For this structure also, the DMC 
achieves much tighter control of the stripping and reactive 
tray temperatures. 

Table 2:  CS1 & CS2 controller parameters for the 

ideal and methyl acetate RD column 

Tuning parameters used in CDMC in the two systems 
System MV � CV � P 

min 
C 

min 

FA 1 T3 5 Ideal RD 
Column 

with CS1 FB 40 T12 10 
90 

 
50 

 

FA 1 T3 5 Ideal RD  
Column 

with CS2 QR 4 T12 10 
90 

 
50 

 

FMeOH 3 T2 20 Methyl 
Acetate  

Column with 
CS1 FHAc 4 T13 25 

250 125 

FMeOH 1 T2 20 Methyl 
Acetate  

Column with 
CS2 QR 4 T13 25 

250 125 

Span of temperature measurements = 50K; All valves are 
50% open at their design steady state. 
Slew rate constraints used in CDMC limits the rate of 
change of manipulated variable from zero to the base-case 
design value in no less than 2 minutes. 

 

Figure 4. Schematic of used two point temperature inferential control structures

Through-put  
Manipulator

 FC
SP

 TC FC SP

CS2

 LC

  RC  FC

(L/D)sp 

LC

 FC 

TC SP

SP

CS1 

Through-put  
Manipulator 

 FC 

SP 

LC 

 LC 

  RC  FC 

(L/D)sp 

 FC 
SP 

 TC 

SP 

 TC  FC SP 

455



 
 

     

 

 

-1 0 1 2 3 4 5
0.94

0.96

0.98

time, hr

X D
,B

-1 0 1 2 3 4 5

0.92

0.94

time, hr

X C
,D

-1 0 1 2 3 4 5
415

420

425

430
T 2,K

-1 0 1 2 3 4 5
394

396

398

400

T 12
, K

-1 0 1 2 3 4 5
12

14

16

F A
, m

ol
/s

-1 0 1 2 3 4 5
12

14

16

F B
, m

ol
/s

CDMC
Decentralized

-1 0 1 2 3 4 5

0.9

0.92

0.94

0.96

time, hr

X D
,B

-1 0 1 2 3 4 5
0.94

0.96

time, hr

X C
,D

-1 0 1 2 3 4 5
405

410

415

420

T 2,K

-1 0 1 2 3 4 5
390

392

394

396
T 12

, K

-1 0 1 2 3 4 5
9

10

11

12

13

F A
, m

ol
/s

-1 0 1 2 3 4 5

8

10

12

F B
, m

ol
/s

Figure 5. Closed Loop response in Ideal RD system 
with CS1structure for +20% (Fig A) and -20% (Fig 
B) change in throughput using CDMC & Traditional 
decentralized temperature controllers 

 

Figure 6. Closed Loop response in Ideal RD system 
with CS2 structure for +20% (Fig A) and -20% (Fig 
B) change in throughput using CDMC & Traditional 
decentralized temperature controllers 
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To gain a better perspective on the performance of the 
controller algorithms and structures, the maximum through-
put change that can be handled was studied. In both the ideal 
and the methyl acetate RD columns, a through-put decrease 
turns out to be the more severe disturbance with both CS1 
and CS2 For the ideal RD column, CS1 using DMC fails for 
value for the decentralized controller is -45%. CS2 on the a   

  

Figure 7. Closed Loop response in Methyl Acetate RD 
system with CS1 structure for +20% (Fig A) and -20% 
(Fig B) change in throughput using CDMC & 
Traditional decentralized temperature controllers 
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Figure 8. Closed Loop response in Methyl Acetate RD 
system with CS2 structure for +20% (Fig A) and -20% 
(Fig B) change in throughput using CDMC & 
Traditional decentralized temperature controllers  

-70% step change in the through-put. The corresponding 
other hand fails for -65% and -55% through-put changes 
using respectively the DMC and decentralized control 
algorithms. For the methyl acetate system, CS2 with a DMC 
controller exhibits no improvement in the magnitude of the 
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maximum through-put decrease handled. Column operation 
using CS1 with a DMC controller allows for a 60% through-
put decrease to be handled where CS1 with decentralized 
control fails for a 45% through-put decrease.  

5 DISCUSSION 

The Integral Abslolute Error (IAE) of product purity is 
plotted in Figure 9 & 10 as the magnitude of the through-put 
change is increased. Regardless of the control structure and 
the RD system, the 2x2 DMC control provides tighter 
product purity controller for large through-put changes.  

We have considered a through-put change to be the primary 
disturbance for the double feed ideal RD systems operated 
neat. In some situations, variation in the fresh feed 
composition may also constitute a principal disturbance into 
the column. To test for the closed loop control performance 
of the temperature inferential control systems under 
consideration, we consider a 5 mol% step change in the 
purity of either feed as a disturbance. For the ideal RD 
system, component B in FA and component A in FB are the 
feed impurities. For the methyl acetate RD system, water is 
taken as the impurity in the fresh feeds. Table 3 reports the 
IAE of the two controlled tray temperatures and the distillate 
and bottoms purity for the two RD systems using CS1 and 
CS2. In both the RD systems, the reactive tray temperature 
control is poorer while the stripping loop temperature is 
better than decentralized controller. The inferior reactive 
temperature control is possibly due to the change in the step 
response coefficients for the altered feed conditions. Inspite  

of the poorer reactive temperature control, the data in the 
Table 3 suggests that the deviations in the distillate and 
bottoms purity for the DMC and decentralized controller are 
comparable. The DMC controller can thus withstand a feed 
composition disturbance. 

The asymmetry in the closed loop results (see e.g. Figure 5) 
suggests the presence of non-linear effects. To investigate 
this, Figure 11 & 12 plots the variation in the two tray 
temperatures with respect to the fresh feeds and the reboiler 
duty at constant reflux ratio. In the ideal RD system, input 
multiplicity in the stripping tray temperature (T2) for excess 
FB and lower FA is evident. The reactive tray temperature 
(T12) exhibits input multiplicity as FA and FB are decreased. 
For the methyl acetate RD system, even as a crossover with 
respect to base-case steady state does not occur for the range 
of variation in the column inputs shown, the reactive tray 
temperature exhibits gain sign reversal with respect to the 
fresh acetic acid feed. Also, notice the severe directionality 
in the steady state reactive tray temperature response with 
respect to the fresh methanol feed with a very small decrease 
in temperature as the feed rate is increased and very large 
increase as it is decreased. This extreme directionality, at 
least partially, explains the asymmetry. The input-output 
(IO) relations (Figure 11 & 12) can also be used to 
understand the control system failure mode to large through-
put changes. For example, for CS1 with a decentralized 
controller, for a -50% through-put change, the FB valve ends 
up shutting down in slightly under an hour with FA 
maintaining T2 at its set-point. The control system failure 
mode likely corresponds to ‘wrong’ control action due to 
input multiplicity. 
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Table 3:  Comparison of  Controllers for Regulatory 

Performance with impure fresh feed as disturbance with 

Integral Absolute Error (IEA’s) key control variables 

 
CS1 CS2 

  

Disturba-
nce 

 Control 
Variable CDMC Decentr-

alized CDMC Decentr-
alized 

T12 72.85 29.285 43.70 46.504 
T2 334.83 433.47 266.01 695.89 

Top Purity 0.46 0.63 0.703 0.76 

Pure FA &  
Impure FB 
with 
ZB=0.95, 
ZA=0.05 Bottom 

Purity 0.59 0.88 0.56 1.27 

T12 96.28 45.78 35.50 48.65 

T2 296.61 202.32 143.31 347.67 

Top Purity 1.33 1.09 0.88 0.581 

Id
ea

l R
D

 C
ol

um
n 

Pure FB &  
Impure FA 
with 
ZA=0.95, 
ZB=0.05 
 

Bottom 
Purity 0.612 0.58 0.47 0.35 

T13 67.26 58.26 68.86 28.94 

T2 126.38 460.02 120.77 425.32 

Top Purity 0.047 0.046 0.06 0.036 

Pure FH2O 
&  
Impure 
FHAc with 
5 % water Bottom 

Purity 0.429 1.40 0.41 1.20 

T13 41.19 167.94 52.65 82.71 

T2 125.61 535.69 137.49 371.41 

Top Purity 0.49 0.51 0.516 0.51 

M
et

hy
l A

ce
ta

te
 R

D
 C

ol
um

n 

Pure FHAc 
&  
Impure 
FH2O with 
5 % water Bottom 

Purity 0.45 2.68 0.350 1.62 
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Figure 11: I/O relation in Ideal RD system 
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Figure 12: I/O relation in Methyl acetate 
column 
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It is comforting to note that in spite of the highly non-linear 
IO relations, a linear control system (decentralized or DMC) 
effectively rejects such a severe disturbance without 
succumbing to non-linear dynamic phenomena. 

6. CONCLUSIONS 

In conclusion, this work demonstrates that the application of 
constrained dynamic matrix control for two-point 
temperature inferential control of double feed RD columns 
operated neat improves the control system performance in 
terms of the maximum through-put handled and/or the 
tightness of product purity control achieved. Specifically, in 
the ideal RD column, significantly tighter bottoms purity 
control is achieved In the methyl acetate column, tighter 
control of both the distillate and bottoms purity is achieved 
using the DMC controller for both the structures. The 
maximum through-put decrease handled is noticeably higher 
in CS1 while no such benefit was observed for CS2. These 
results suggest an overall incentive for the application of 
linear model predictive control algorithms over conventional 
decentralized of the highly non-linear RD systems. 
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A General Quadratic Performance
Approach to Binary Distillation Control
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Abstract: High purity distillation control of a binary mixture in a tray column is considered
in the paper at hand. The approach is based on an inferential control idea: dynamics within the
column may be described as movements of concentration waves; the position of the wave front
on the one hand side can be inferred from few temperature measurements, on the other hand
the position implies the product concentrations. Dynamics of wave propagation is derived by
simplification of a first principles model of the column. The resulting descriptor model is the basis
for a recent LMI based controller design scheme that provides general quadratic performance
for descriptor systems.

Keywords: Quadratic performance; descriptor system; binary distillation; inferential Control.

1. INTRODUCTION

Distillation is one of the most common separation pro-
cesses in the chemical industries and it is also one of the
most energy consuming ones. Therefore the control of this
kind of processes has been a focus of process control for
many years. Most approaches toward control of distilla-
tion columns are based on linear models which are based
on identification techniques (e.g. Skogestad et al. [1988],
Allgöwer and Raisch [1992]). The disadvantage of iden-
tified models is the missing physical interpretation. First
principle models on the other hand are rather complex and
typically not suitable for a direct model based controller
computation.

In the paper at hand a reduced model for a distillation
column is derived in descriptor form. The control problem
is captured as a generalized quadratic performance prob-
lem. A solution to this problem is briefly reviewed (see
Rehm and Allgöwer [2002] for details) and applied to the
problem at hand.

The resulting controller is tested by means of a high order
nonlinear model of the distillation process.

2. DESCRIPTOR MODEL

Separation of a binary mixture in a 40 tray distillation col-
umn with one feed stream is considered. A schematic rep-
resentation of the process is given in the left part of Fig. 1.
Exemplary the separation of two alcohols (Methanol,n-
Propanol) is taken into account. The mixture is fed in the
column with the feed flow rate F . Feed flow rate F and
feed composition xF (molar fraction) are determined by
upstream processes.

The stationary feed flow rate and feed composition are
corrupted by disturbances. The feed stream separates the
column into rectifying- (upper part of the column) and
stripping section (lower part of the column). Separation is

achieved due to intensive heat and mass transfer between
liquid flow and countercurrently rising vapor flow.

At the bottom of the column the liquid flow splits up into
a liquid product stream which is removed with flow rate B
from the column and a stream which is, after being heated
in the reboiler, recirculated back to the column as vapor
flow with flow rate V .

At the top of the column the vapor flow with the accu-
mulated more volatile product is completely condensed
in the condenser. The condensate is partly pumped back
in the column with a flow rate L (reflux stream) and is
partly removed as the distillate product with a flow rate
D (Deshpande [1985]).

We consider the distillation column in “LV” configuration,
that is: liquid flow rate L and vapor flow rate V are
considered to be control inputs. Measured variables are
the concentrations on trays 14 and 28.

2.1 Control Objectives

The main control objective is to stabilize the product
concentrations at the top and bottom of the column at
their stationary values. Additionally the deviations from
the stationary values due to disturbances in the feed flow
should be small.

Table 1. Notation for model variables

xi . . . liquid concentration of the more
volatile component on the ith tray

yi . . . vapor concentration of the more
volatile component on the ith tray

ni . . . liquid holdup of the ith tray
(·)B,M,D . . . corresponding quantities of reboiler

feed tray, and condensor
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Fig. 1. Scheme of considered 40 tray distillation column (left) and subsystem structure for reduced modelling (right).

2.2 Reference Dynamics

A relatively detailed nonlinear model (CMO model with-
out pressure losses, energy balances, and hydrodynamics
(Deshpande [1985])) is used for simulation studies. The
modelling equations describe the liquid concentrations of
the more volatile component and are derived from the mass
balance for every tray and for reboiler and condensor.

yi =
αxi

1 + (α− 1)xi
, α = const. (1)

The most important source of nonlinearity in the model
are the equations (1) describing the vapor-liquid equilib-
rium (constant relative volatility α). The resulting model
consists of 42 first order differential equations (40 equa-
tions from the intermediate trays plus two equations from
reboiler and condensor).

2.3 Reduced Dynamics (Descriptor Model)

Starting point for the development of a reduced model in
descriptor form of the distillation column is the fact (Ret-
zbach [1986]) that qualitatively the behaviour of the col-
umn towards changes in the input values (V,L, F, xF ) can
be regarded as motion and distortion of the stationary
concentration profile (concentration versus tray number).

Instead of having detailed mass balances for rectifying and
stripping section, the idea for a reduced model is thus
to capture dynamics just by one position variable for a
suitable concentration profile in every column section Due
to (1) it is sufficient to consider a moving concentration
profile only for the lighter component (measured in molar
fractions, denoted by x in the following). Therefore the
reduced model will contain two positions (sr for the
rectifying section and ss in the stripping section) and three
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Fig. 2. Illustration of the shape parameters in function (2)

concentrations (concentration xB in the reboiler, xM for
the feed tray, and xD in the condenser) as state variables.

Here, only a sketch of the derivation of the reduced
model in descriptor form is given, details can be found
in Rehm [2004]. Furthermore we restrict ourselves to the
presentation of the procedure for one column section, the
deviation for the other section is completely analogous.
The trays in this section are numbered by z = 1, . . . , N
(see right side of Fig. 1). The concentration profile is
modeled with the (continuous) function x(z) (eq. (2),
Fig. 2) which is well suited to describe the stationary
profile in long packed columns (Kienle [1998]):

x(z) = φ− +
φ+ − φ−

1 + e−�(z−s−ξ)
. (2)

With the least squares method the shape parameters
φ−, φ+, �, and ξ (see Fig. 2) are calculated such that x(z)
matches the stationary concentration profile (s = 0, i.e. s
denotes the displacement relative to the stationary case)
of the tray column for the discrete values z = 1, . . . , N in
a least squares sense.
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However, while � and ξ are kept constant, φ− and φ+

are used as adaptation parameters since concentration
profiles not only move but also are distorted. Adaptation
of these parameters is based on the requirement that (2)
should also match the concentrations for the neighbouring
systems when evaluated for z = 0 and z = N + 1. This
adaptation rule implies that the time derivatives of xB ,
xM , and xD influence the dynamics of wave propagation.
The linearisation of the overall reduced descriptor model
of the distillation column is given in (5). Here “Δ” implies
deviations from the stationary value while “∗” denotes
numerical entries. A detailed derivation of the model and
numerical values are given in Rehm [2004].

3. CONTROLLER COMPUTATION

3.1 Synthesis for Generalized Quadratic Performance for
Descriptor Systems

The idea of generalized quadratic performance (GQP)
control is to impose a general quadratic constraint of the
type ∫ T

0

[
z(t)
w(t)

]T [
UP WP

WT
P VP

] [
z(t)
w(t)

]
dt� 0, (6)

on the external input/output chanel w → z of a general-
ized plant description Gcl. Here the notation “� 0” means
that

∫ T

0
Q(w(t),z(t)) dt ≤ −ε ∫ T

0
wT(t)w(t)) dt holds for

all w(·) ∈ L2 and some fixed ε > 0.

The rather general GQP problem contains some important
control problems as a special case if the objective param-
eters UP ≥ 0, VP = V T

P , and WP are chosen accordingly
(Scherer et al. [1997]). For example

• the H∞ constraint ‖Gcl‖∞ < γ, if UP , VP , and WP

are specified as UP = 1
γ I, VP = −γI, WP = 0;

• the strict passivity constraint Gcl(jω)+Gcl(jω)∗ > 0
for all ω ∈ R∪{∞}, when UP , VP , WP are chosen as
UP = 0, VP = 0, WP = −I;• sector constraints of the form∫ T

0

(z(t)−αw(t))T (z(t)−βw(t)) dt� 0 (7)

for UP = I, VP = −αβI, WP = − 1
2
(α+ β)I.

We consider a generalized plant description Σ in descriptor
form

Σ :
Eẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) +D11w(t) +D12u(t)
y(t) = C2x(t) +D21w(t)

(8)

with x(t) ∈ Rnx , w(t) ∈ Rnw , u(t) ∈ Rnu , z(t) ∈ Rnz , and
y(t) ∈ Rny denoting the generalized state variables, the
external input variables, the control input variables, the
external output variables, and the measurement variables,
respectively. E and A are square constant matrices where,
explicitly, E is allowed to be singular, i.e. rank(E) =:
r ≤ nx. The remaining matrices are constant matrices of
appropriate dimension.

The control problem is, for given matices UP ≥ 0, UP ∈
Rnz×nz , VP = V T

P ∈ Rnw×nw , and WP ∈ Rnz×nw , to
find a linear output feedback controller such that the
undisturbed closed loop (w ≡ 0) is an admissible system
and such that the transfer matrix from the external input
w to the external output z suffices a general quadratic
performace bound (6).

The actual design problem therefore consists in the selec-
tion of matrices UP , VP ,WP such that the transfer matrix
from w to z reflects the performance requirements (e.g.
robustness, energy dissipation, ... ). Since we aim at an
admissible close loop, we assume in the following the corre-
sponding necessary stabilizability/detectability properties
for descriptor systems, namely stabilizability/detectability
at infinity (see also Dai [1989]).
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With a controller KE ,

KE : Eζ̇(t)=AKζ(t)+BKy(t)
u(t)=CKζ(t)+DKy(t), ζ(t) ∈ Rnx

(9)

parametrized by AK , BK , CK , DK the closed loop system
is given by

Eclξ̇(t) = Aclξ(t) +Bclw(t) (10)
z(t) = Cclξ(t) +Dclw(t), ξ(t) ∈ R2nx ,

Ecl =
[
E 0
0 E

]
, Acl =

[
A+B2DKC2 B2CK
BKC2 AK

]
,

Bcl =
[
B1+B2DKD21

BKD21

]
, CT

cl =
[
CT

1 + CT
2 D

T
KD

T
12

CT
KD

T
12

]
,

Dcl = (D11 +D12DKD21) (11)

Then a sufficient condition for a controller KE solving the
GQP control problem for DAE systems is given by the
following theorem:
Theorem 1. Consider a plant (8) and a controller (9).
There exists a controller parameterization AK , BK , CK ,
DK such that the undisturbed (i.e. w ≡ 0) closed loop sys-
tem (10) is admissible with general quadratic performance
if the LMIs (3), (4) 1 admit a solution {R, S, WY , WX ,
ÂK , B̂K , ĈK , D̂K}.
Remark. The preceding theorem constitutes also a neces-
sary condition for the existence of a controller with GQP
in the cases, where the corresponding analysis result is nec-
essary for general quadratic performance, i.e. especially in
the case of the H∞ control problem. Therefore the results
of Masubuchi et al. [1997] are included in Theorem 1 as a
special case.

Theorem 1 is constructive: controller computation consists
of three steps:

• Solution of the LMIs (3), (4). This is possible via
effective numerical tools tailored for LMI problems
arising from control theoretic problem setups (e.g.
Gahinet et al. [1994], El Ghaoui et al. [1995]).

• Computation of non-singular matrices X3, Y3 such
that

X1Y1 +X2Y3 = I (12)
X3Y1 +X4Y3 = 0 (13)

hold together with the coupling condition ETX2 =
XT

3 E. This is a essentially a factorization problem on
the range of E which is always solvable provided (3),
(4) have a solution.

• Solution of the linear equations

D̂K :=DK (14)

ĈK :=CKY3+DKC2Y1

B̂K :=XT
3 BK +XT

1 B2DK

ÂK := XT
1 (A+B2DKC2)Y1+XT

3 AKY3+
+XT

3 BKC2Y1+XT
1 B2CKY3

for the controller matrices DK , CK BK , AK .

1 Here E+ denotes any generalized inverse with the property
EE+E = E and “∗” is used in order to indicate the symmetric
expansion of a block matrix.

3.2 Distillation Control Problem as S/KS Mixed Sensitivity
Problem

As a special case of generalized quadratic performance,
the H∞ control problem for the distillation problem is
solved. The control objectives are translated into a mixed
sensitivity set-up depicted in Fig. 4. with G representing
the plant (reduced model in descriptor form), K the
controller, and W1, W2, V frequency dependent weighting
matrices. Controller design by “loop shaping” requires a
selection of the weighting matrices such that the solution
of the H∞ control problem∥∥∥∥ W1(I +GK)−1V

−W2K(I +GK)−1V

∥∥∥∥
∞

!
< γ (15)

results in a well behaved closed loop system. In this

�
�

−
� K �

�

W2

�

G � �
+

+
�W1

��

V
�

y u z1

z2 w

Fig. 4. Mixed sensitivity configuration

setup V can be interpreted as a filter which models the
disturbance considered to be relevant for the problem at
hand. With S(s) := (I + GK)−1 being the sensitivity
matrix of the closed loop the expression (15) with γ = 1
suggests to choose W1 to be approximately the inverse
of the wanted behavior for S(s) and analogously W2 to
be the inverse of K · S. General indications on selecting
these weighting matrices can be found in Skogestad and
Postlewaite [1996].

In case of the distillation control problem at hand an
indirect approach is taken: with stabilizing the measured
concentrations x14, x28 also the stationary profiles are
fixed and thus approximately also the product concentra-
tions. In order to realize this idea the descriptor S/KS H∞
control problem depicted in Figure 4 (with G being the
descriptor model (5)) is solved by the outlined descriptor
GQP synthesis procedure with specification of W , Q, and
Σ as for the H∞ set-up. The synthesis LMIs are jointly
optimized with respect to γ. A final value of γ = 1.01
shows that the control objectives are approximately met.

The resulting controller has a dynamical order of 9, i.e.
equal to the order of the generalized plant description. Af-
ter removing the fastest two eigen-modes of the controller
in order to avoid numerical problems due to stiffness, the
controller is tested in simulation studies with the nonlinear
CMO model of the distillation column.

4. RESULTS

In Figure 5 the stationary concentration profiles for various
severe persistent disturbances for the closed loop are
shown. It can be seen that the controller is able to stabilize
the profile position although the disturbances result in a
distortion of the stationary profile in the vicinity of the
feed tray.
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Fig. 3. Step responses for the controlled distillation column (+15% increase in feed flow rate F and +15% increase in
feed concentration xF with respect to stationary values at t = 500sec). Top: deviations from the steady state for
the controlled variables x14 and x28. Bottom: control variables, i.e. liquid flow rate L and vapor flow rate V .

In Figure 3 a detailed view on the control variables and
the error in the controlled variables is given for a mutual
step in the feed flow rate and feed composition. The
plots show a fast transient behavior and small deviations.
Furthermore no excessive action in the control variables is
needed.

5. CONCLUSION

The generalized quadratic performance control problem
for descriptor systems is solved for a reduced model of a
distillation control problem. The resulting controller shows
rather good results for a nonlinear reference model. The
descriptor problem formulation is a direct result of reduced
modeling. Furthermore, also standard approaches to build
generalized plant descriptions easily fit into the descriptor
system set-up. This was demonstrated by means of a S/KS
- control problem formulation that directly leads to a
descriptor model.
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Fig. 5. Liquid concentration profiles in controlled dis-
tillation column. Solid lines: undisturbed stationary
profile; dotted lines: new stationary profile for non-
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Abstract: Based on a closed-loop step response test, control-oriented low-order model identification 
algorithms are proposed for unstable processes. By using a damping factor to the closed-loop step response 
for realization of the Laplace transform, an algorithm for estimating the process frequency response is 
developed in terms of the closed-loop control structure used for identification. Correspondingly, two 
model identification algorithms are derived analytically for obtaining the widely used low-order process 
models of first-order-plus-dead-time (FOPDT) and second-order-plus-dead-time (SOPDT), respectively. 
Illustrative examples from the recent literature are used to demonstrate the effectiveness and merits of the 
proposed identification algorithms. 

 

1. INTRODUCTION 

As model-based control strategies have demonstrated 
apparently improved set-point tracking and load disturbance 
rejection for open-loop unstable processes, control-oriented 
identification of low-order process model, e.g., first-order-
plus-dead-time (FOPDT) or second-order-plus-dead-time 
(SOPDT), has been increasingly explored in the process 
control community (Seborg, Edgar, and Mellichamp, 2003; 
Liu and Gao, 2008a and 2008b). For safety and economic 
reasons, unstable processes are usually not allowed to be 
operated in an open-loop manner. Closed-loop identification 
methods have been therefore studied in the literature. One of 
the mostly used identification tests is the close-loop step 
response test, owing to its implemental simplicity. Based on 
closed-loop step test in terms of the internal model control 
(IMC) structure, Häggblom K. E. (1996) demonstrated that 
closed-loop identification facilitates better representation of 
the process dynamic response characteristics for closed-loop 
operation. Using a conventional proportional (P) or 
proportional-integral-derivative (PID) controller for closed-
loop stabilization, recent closed-loop step identification 
methods can be seen in the references (Paraskevopoulos, 
Pasgianos and Arvanitis, 2004; Sree and Chidambaram, 2006; 
Cheres, 2006). Using relay feedback to yield sustained 
oscillation within an admissible fluctuation of the process 
output, identification methods based on the resulting limit 
cycle data have been developed in the papers (Shiu, Hwang 
and Li, 1998; Marchetti, Scali and Lewin, 2001; Vivek and 
Chidambaram, 2005; Liu and Gao, 2008a). It was, however, 
pointed out that the conventional relay feedback structure 
cannot guarantee periodic oscillation for unstable processes 
with large time delay (Tan, Wang and Lee, 1998; 
Thyagarajan and Yu; 2003). Some limiting conditions to 
form the limit cycle from relay feedback for an unstable 
process have been disclosed by Liu and Gao (2008b). Besides, 

using the pseudo-random binary sequence (PRBS) as 
excitation signal to the set-point, closed-loop identification 
methods for application of model predictive control (MPC) 
have been reported in the references (Sung et al, 2001; Saffer 
and Doyle, 2002; Bindlish, Rawlings and Young, 2003).  
In this paper, identification algorithms based on a closed-loop 
step test are proposed for obtaining low-order models of 
FOPDT and SOPDT for tuning unstable processes. By using 
a damping factor to the closed-loop step response for 
realization of the Laplace transform, an algorithm is first 
given to estimate the closed-loop frequency response in terms 
of using a conventional P, PI or PID controller for closed-
loop stabilization. Accordingly, the process frequency 
response can be analytically derived from the closed-loop 
frequency response with the knowledge of the controller. 
Then, two identification algorithms are analytically 
developed for obtaining FOPDT and SOPDT models, 
respectively. Both the algorithms can give good accuracy if 
the model structure matches the process. Measurement noise 
tests are also performed to demonstrate identification 
robustness of the proposed algorithms.  

2. FREQUENCY RESPONSE ESTIMATION  

It is commonly known that the Fourier transform of a step 
response does not exist due to ( ) 0y tΔ ≠  for t → ∞ , where 

0( ) ( ) ( )y t y t y tΔ = −  and 0( )y t  denotes the initial steady 
output. However, by substituting s jα ω= +  into the Laplace 
transform to the step response, 

0
( ) ( ) stY s y t e dt

∞ −Δ = Δ�                                                                           (1) 

we can formulate 

0
( ) [ ( ) ]t j tY j y t e e dtα ωα ω

∞ − −Δ + = Δ�                                                  (2) 

Note that if 0α > , there exists ( ) 0ty t e α−Δ =  for Nt t> , 
where Nt  may be numerically determined using the condition 
of ( ) 0Nt

Ny t e α−Δ ≈ , since ( )y tΔ  reaches a steady value after 
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the closed-loop transient response to a step change of the set-
point. Therefore, by regarding α  as a damping factor to the 
closed-loop step response for Laplace transform, we may 
compute ( )Y jα ωΔ +  from the N  points of step response 
data as  

0
( ) [ ( ) ]Nt t j tY j y t e e dtα ωα ω − −Δ + = �                                                       (3) 

For a closed-loop step test with initial steady state, i.e., 
( ) ( )y t r t c= =  for 0t t≤ , where ( )r t  denotes the set-point 

value, c  is a constant and 0t  is the time for step test, we may 
formulate the step change of the set-point by using a time 
shift of 0t  (i.e., letting 0 0t = ) as 

0, 0;
( )

, 0.
t

r t
h t

≤�
Δ = � >

                                                                            (4) 

where h  is the magnitude of the step change. Its Laplace 
transform for s jα ω= +  with 0α >  can be explicitly 
derived as 

( )

0
( ) j t hR j he dt

j
α ωα ω

α ω
∞ − +Δ + = =

+�                                        (5) 

Hence, the closed-loop frequency response can be derived 
using (3) and (5) as 

( ) ( )jT j Y j
h

α ωα ω α ω++ = Δ + , 0α >                                   (6) 

Note that ( ) 0T jα ω+ →  as α → ∞ . On the contrary, 
0α →  will cause Nt  much larger for computation of (6). A 

proper choice of α  is therefore required for implementation. 
Considering that all the closed-loop transient response data to 
a step change of the set-point should be used to procure good 
estimation of the closed-loop frequency response, the 
following constraint is suggested to choose α ,  

set
set( ) ty t e α δ−Δ >                                                                                 (7) 

where set( )y tΔ  denotes the steady-state output deviation to 
the step change in terms of the settling time ( sett ), and δ  is a 
threshold of the computational precision that may be 
practically taken smaller than 61 10−× .  It follows from (7) 
that 

set

set

( )1 ln y t
t

α
δ

Δ<                                                                               (8) 

To ensure computational efficiency with respect to the 
complex variable, s jα ω= + , for frequency response 
estimation, the lower bound of α  may be simply taken as δ , 
if there exists no limit on the time length of the step test. 
Once α  is chosen in terms of the above guideline, the time 
length, Nt , may be determined from a numerical constraint 
for computation of (3), i.e., 

( ) Nt
Ny t e α δ−Δ <                                                                              (9) 

which can be solved as 
( )1 ln N

N
y tt

α δ
Δ>                                                                      (10) 

Note that there exists the following Laplace transform with 
initial steady closed-loop state of (0) (0)y r c= = , where c  is 
a constant, 

0

( )[ ( ) ]
t Y sL y t dt

s
ΔΔ =�                                                                   (11) 

To guarantee identification robustness against measurement 
noise, we may compute the frequency response by 

2

0 0

( )
( )( ) [ ( ) ]( )

Nt t t j t

Y j
jjT j y d e e dtR j h

j

α ω

α ω
α ωα ωα ω τ τα ω

α ω

− −

Δ +
+++ = = ΔΔ +

+

� �
(12) 

It can be seen from (12) that, rather than use individual 
output data measured from the step test, a time integral for 
each measurement point is used to compute the outer-layer 
integral for obtaining the frequency response estimation. This 
facilitates reducing measurement errors according to the 
statistic averaging principle. 
Denote the n -th order derivative for a complex function of 

( )F s  with respect to s  as  
( )

( ) ( ) ( )
n

n
n

dF s F s
ds

= , 1n ≥ .                                                     (13) 

It follows from (3) and (6) that  
(1)

0

1( ) (1 ) ( ) stT s st y t e dt
h

∞ −= − Δ�                                         (14) 

(2)

0

1( ) ( 2) ( ) stT s t st y t e dt
h

∞ −= − Δ�                                        (15) 

Hence, by letting s α=  and choosing α  as well as that for 
computation of (3), the single integral in (14) and (15) can be 
computed numerically. The corresponding time lengths of Nt  
can be respectively determined using the numerical 
constraints,  
(1 ) ( ) Nt

N Nt y t e αα δ−− Δ <                                                     (16) 

( 2) ( ) Nt
N N Nt t y t e αα δ−− Δ <                                                 (17) 

For a conventional PID controller used in the closed-loop 
structure to stabilize an unstable process for step test,  

D
C

I D

1( ) (1 )
0.1 1

sC s k
s s

τ
τ τ

= + +
+

                                               (18) 

where Ck  denotes the controller gain, Iτ  the integral constant 
and Dτ  the derivative constant, it can be derived that 

(1) D
C 2 2

I D

1( ) [ ]
(0.1 1)

C s k
s s

τ
τ τ

= − +
+

                                        (19) 

2
(2) D

C 3 3
I D

0.11( ) 2 [ ]
(0.1 1)

C s k
s s

τ
τ τ

= −
+

                                        (20) 

Note that the closed-loop transfer function can be derived as 
( ) ( )( )

1 ( ) ( )
G s C sT s

G s C s
=

+
                                                            (21) 

It follows from (21) that 
( )( )

( )[1 ( )]
T sG s

C s T s
=

−
                                                         (22) 

Its first and second derivatives can be derived accordingly as  
(1) (1)

(1)
2 2

( 1)
(1 )

T C C T TG
C T

+ −=
−

                                                  (23) 

(2) (1) (1) (2)
(2)

2 2

2 ( 1)
(1 )

CT C T T C T TG
C T

+ + −=
−
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(1) (1) (1) 2 (1)

3 3

2[ ( 1)][ (1 ) (1 )]
(1 )

CT C T T CC T C T T
C T

+ − − − −−
−

 (24) 

Therefore, by substituting ks jα ω= +  ( 1,2, , .k M= � ), 
where M  is the number of representative frequency response 
points in a user specified frequency range, the process 
frequency response can be numerically estimated for model 
fitting. 

3. MODEL IDENTIFICATION ALGORITHMS 

Low-order unstable process models of FOPDT and SOPDT 
are respectively in the form of  

p
1

p

( )
1

sk e
G s

s

θ

τ

−

=
−

                                                                    (25) 

p
2

1 2

( )
( 1)( 1)

sk e
G s

s s

θ

τ τ

−

=
− +

                                                     (26) 

where 
pk  denotes the process gain, θ  the process time delay 

and pτ  (or 1τ  and 2τ ) the process time constant(s).  
By regarding s ∈�  and taking the natural logarithm for both 
sides of (25) in terms of p0 s τ< < , we obtain 

1 p pln[ ( )] ln( ) ln(1 )G s k s sτ θ− = − − −                                      (27) 

Subsequently, taking the first and second derivatives for both 
sides of (27) with respect to s  yields 

p
1

1 p

1 [ ( )]
( ) 1

d G s
G s ds s

τ
θ

τ
= −

−
                                               (28) 

2
p

2 2
p

( )
(1 )

Q s
s

τ
τ

=
−

                                                                (29) 

where 2 1( ) [ ( )] /Q s d Q s ds=  and 1( )Q s  is the left side of (28).  
Substituting s α=  into (29), it can be derived that 

2 2
2 2

2 2
p

2
2 2

2

1 or ,  ;
1 1

1,  .
1

Q Q
if Q

Q Q

Q
if Q

Q

αα α
τ

αα

�
>�

− +�= �
� ≤� +

                       (30) 

Note that for 2
2 1/Q α≥ , we may determine a suitable 

solution based on model fitting accuracy for the closed-loop 
step response. 
It should be noted that the above parameter estimation is 
without loss of generality since there exists 

pα τ<  in general, 
which may be verified from the guideline for choosing α  as 
given in the earlier section. 
Consequently, the other two model parameters can be derived 
from (28) and (25) using s α=  as  

p
1

p

( )
1

Q
τ

θ α
τ α

= − +
−

                                                         (31) 

p p 1( 1) ( )k G eαθτ α α= −                                                      (32) 

Hence, the above algorithm named Algorithm-I for 
obtaining a FOPDT model for an unstable process can be 
summarized as: 

(i) Choose s α=  and Nt  to compute ( )T α , (1) ( )T α  and 
(2) ( )T α  in terms of (6) (or (12)), (14) and (15); 

(ii) Compute ( )C α , (1) ( )C α  and (2) ( )C α  in terms of (18), 
(19) and (20); 

(iii) Compute 1( )G α , (1)
1 ( )G α  and (2)

1 ( )G α  in terms of (22), 
(23) and (24); 

(iv) Compute 1( )Q α  and 2 ( )Q α  in terms of (28) and (29); 
(v) Compute the process time constant, pτ , from (30); 
(vi) Compute the process time delay, θ , from (31); 
(vii) Compute the process gain, 

pk , from (32). 
Following a similar procedure as above, taking the natural 
logarithm for both sides of (26) in terms of 10 s τ< < , yields 

2 p 1 2ln[ ( )] ln( ) ln(1 ) ln( 1)G s k s s sτ τ θ− = − − − + −                 (33) 

Accordingly, the first and second order derivatives for both 
sides of (33) with respect to s  can be derived respectively as 

1 2
2

2 1 2

1 [ ( )]
( ) 1 1

d G s
G s ds s s

τ τ θ
τ τ

= − −
− +

                                (34) 

2 2
1 2

2 2 2
1 2

( )
(1 ) ( 1)

Q s
s s

τ τ
τ τ

= +
− +

                                             (35) 

where 2 1( ) [ ( )] /Q s d Q s ds=  and 1( )Q s  is the left side of (34).  
Substituting s α=  into (35) yields 

2 4 2 2 3 2 2
2 2 1 2 2 1 2 1 2( ) [2 ( )] [2 2 ( )]( )Q Q Qα α α α τ τ α α α τ τ τ τ= − + − −  

2 2 2 2
2 1 2 2 1 2 2 1 24 ( ) [1 ( )]( ) 2 ( )( )Q Q Qα α τ τ α α τ τ α α τ τ+ + − + + − (36) 

To solve 1τ  and 2τ  from (36), we reformulate (36) in the LS 
form of 

( ) ( )Tψ α φ α γ=                                                                   (37) 

where  
2

2 4 3 2
2 2 2 2

2 2 2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2

( ) ( ),
( ) [2 ( ),  2 2 ( ),  ( ),  1,  2 ( )] ,

[ ,  ,  4 ,  ,  ] .

T

T

Q
Q Q Q Q

ψ α α
φ α α α α α α α α α α α
γ τ τ τ τ τ τ τ τ τ τ τ τ τ τ

=�
� = − − −�
� = − + − + −

                                                                                          (38) 
By choosing 5 different values of α  in terms of the guideline 
given in (8) and denoting 

1 2 5[ ( ),  ( ), ,  ( )]Tψ α ψ α ψ αΨ = �  and 
1 2 5[ ( ),  ( ), ,  ( )]Tφ α φ α φ αΦ = � ,  an LS solution can be derived 

from the linear regression, 
1( )T Tγ −= Φ Φ Φ Ψ                                                                (39) 

It is obvious that all the columns of Φ  are linearly 
independent with each other, such that Φ  is guaranteed non-
singular for computation of (39). Accordingly, there exists a 
unique solution of γ  for parameter estimation.  
Then, the model parameters can be retrieved from γ  as 

2
1

2 1

(5) 1 (2)(5) 4
2 2 (5)

(5)

γ γτ γ
γ

τ τ γ

�
= + +�

�
� = −

                                            (40) 

Note that there exist three redundant fitting conditions in the 
parameter estimation of γ , which can be surely satisfied if 
the model structure matches the process to be identified. To 
procure fitting accuracy for a high-order process, we may use 

(1)γ , (3)γ  and (4)γ  together with (2)γ  and (5)γ  to derive 
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an LS fitting solution for parameter estimation in terms of 
using the natural logarithm, i.e., 

1
2

2

2

ln (1)
(4) (3)ln[ ]2 2 4

ln1 1 (5) 1 (2)ln[ (5) 4 ]ln1 0 2 2 (5)
0 1

(5) 1 (2)ln[ (5) 4 (5)]
2 2 (5)

γ
γ γ

τ γ γγτ γ

γ γγ γ
γ

� �
� �−� �� � � �� � � � � �� � =� � � �+ +� � � � � �� � � �� �
� �+ + −� �� �

         (41) 

Consequently, the other two model parameters can be derived 
from (34) and (26) as  

1 2
1

1 2

( )
1 1

Q τ τθ α
τ α τ α

= − + −
− +

                                            (42) 

p 1 2 2( 1)( 1) ( )k G eαθτ α τ α α= − +                                        (43) 

Hence, the above algorithm named Algorithm-II for 
obtaining an SOPDT model for an unstable process can be 
summarized as: 
(i) Choose s α=  and Nt  to compute ( )T α , (1) ( )T α  and 

(2) ( )T α  in terms of (6) (or (12)), (14) and (15); 
(ii) Compute ( )C α , (1) ( )C α  and (2) ( )C α  in terms of (18), 

(19) and (20); 
(iii) Compute 2 ( )G α , (1)

2 ( )G α  and (2)
2 ( )G α  in terms of (22), 

(23) and (24); 
(iv) Compute 1( )Q α  and 2 ( )Q α  in terms of (34) and (35); 
(v) Compute the time constants, 1τ  and 2τ , from (40) (or 

(41)); 
(vi) Compute the process time delay, θ , from (42); 
(vii) Compute the process gain, 

pk , from (43). 

4. ILLUSTRATION 

Example 1.  Consider the FOPDT unstable process studied in 
the recent literature (Padhy and Majhi, 2006), 

0.81( )
1

sG s e
s

−=
−

 

Based on relay feedback test with two P controllers, Padhy 
and Majhi (2006) derived a FOPDT model, 

0.8033
m 1.0 /(1.0007 1)sG e s−= − . For illustration, the unity 

feedback control structure with a proportional controller of 
c 1.2k = , which is equivalent to that of Padhy and Majhi 

(2006), is used for closed-loop step test. By adding a step 
change with a magnitude of 0.05h =  to the set-point, the 
closed-loop step response is shown in Fig.1. According to the 
guidelines given in (8) and (10), 0.1α =  and 150Nt = (s)  are 
chosen to use the proposed Algorithm-I, resulting in a 
FOPDT model listed in Table 1, which indicates high 
accuracy. The fitting error is given in terms of the closed-
loop transient response in the time interval [0, 50]s. 
To demonstrate identification robustness against 
measurement noise, assume that a random noise of 

2(0, 0.035%)NN σ = , causing the noise-to-signal ratio (NSR) to 
5%, is added to the output measurement which is then used 
for feedback control. By performing 100 Monte-Carlo tests in 
terms of varying the ‘seed’ of the noise generator from 1 to 

100, the identified results are listed in Table 1, where the 
model parameters are respectively the mean of 100 Monte-
Carlo tests, and the values in the adjacent parentheses are the 
sample standard deviation. The results for the noise levels of 
NSR=10% and 20% are also listed in Table 1 to show the 
achievable identification accuracy and robustness.  
Example 2.  Consider the SOPDT unstable process studied 
by Cheres (2006) and Sree and Chidambaram (2006),  

0.51( )
(2 1)(0.5 1)

sG s e
s s

−=
− +

 

Based on a closed-loop step test in terms of a PID controller 
(

c 2.71k = , I 4.43τ =  and 
D 0.319τ = ) and a unity step change 

to the set-point, Cheres (2006) derived only a referential 
FOPDT model for controller tuning, and so was done in Sree 
and Chidambaram (2006). By performing the same closed-
loop step test, the proposed Algorithm-II based on the choice 
of 0.1, 0.15, 0.2, 0.25, 0.3α =  and 300Nt = (s) gives a 
SOPDT model listed in Table 1, again demonstrating good 
accuracy. The fitting error is given in terms of the closed-
loop transient response in the time interval [0, 30]s. 
To demonstrate identification robustness against 
measurement noise, 100 Monte Carlo tests are performed in 
terms of NSR=5%, 10% and 20%, respectively. The 
identified results are listed in Table 1 for comparison, which 
indicate again that good identification accuracy and 
robustness is therefore obtained.   

5. CONCLUSIONS 

Low-order model identification methods have been 
increasingly appealed for improving control system design to 
operate unstable processes. By applying a damping factor to 
the closed-loop step response for realization of the Laplace 
transform, a frequency response estimation algorithm has 
been proposed for model fitting. Based on the process 
frequency response estimated from the closed-loop step 
response with the knowledge of the controller, two model 
identification algorithms have been analytically developed 
for obtaining the widely used low-order process models of 
FOPDT and SOPDT for practical applications. Two 
illustrative examples from the recent literature have been 
performed to demonstrate the achievable accuracy of the 
proposed algorithms. The results under Monte Carlo noise 
tests have also demonstrated good identification robustness 
of the proposed algorithms. 
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Fig. 1. Illustration of choosing α  for example 1 
 
 

 

 
 
 

Table 1. Closed-loop step response identification under different measurement noise levels 
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Abstract:  A process model satisfies the integral controllability (IC) condition if the model can be 
used in a model-based controller that can be arbitrarily detuned without jeopardizing closed-loop 
stability.  For decoupling multivariable control this requirement is equivalent to the inequality 

� �1ˆRe 0> �, ) �+ (GG  for the actual and estimated process steady-state gain matrices G  and Ĝ . This 
necessitates experiments for identification of Ĝ  that satisfies the IC inequality.  In this work we explore, via 
computer simulations, computational issues related to the design of such experiments for an FCC process.  The 
proposed approach is based on a general mathematical optimization framework we presented in prior work.
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1. INTRODUCTION 

A process model satisfies the integral controllability (IC) 
condition if the model can be used in a model-based 
controller that can be arbitrarily detuned without 
jeopardizing closed-loop stability.  For decoupling 
multivariable control this requirement is equivalent to the 
inequality  

� �1ˆRe 0> �, ) �+ (GG (1) 

for the actual and estimated process steady-state gain 
matrices G  and Ĝ  (Garcia and Morari 1985). The problem 
is acute for ill-conditioned processes.  This necessitates 
experiments for identification of a model Ĝ  that satisfies 
the IC inequality.  "The main weakness of the eigenvalue 
conditions [eqn. (1)] is that they consist of a coupling 
between the plant model and the true plant which is highly 
cumbersome for use in robust control analysis and design." 
(Featherstone and Braatz 1998b).  A number of attempts 
have been made to address this weakness.  Featherstone and 
Braatz (1998a) showed that for processes with constant 
rotation matrices in the singular-value decomposition (svd) 
of their transfer matrix the problem reduces to D-optimal 
design of experiments.  Using insightful geometric 
reasoning to ensure IC for general linear 2 2�  systems, 
Koung and MacGregor (1993) introduced experiment 
designs in terms of rotated PRBS input vectors, with power 
of each component of the rotated input vector reciprocally 
proportional to the corresponding singular value of Ĝ .
Koung & MacGregor (1994) heuristically extended these 
design rules to n n�  multivariable systems.  The same rules 
were also used by Bruwer & MacGregor (2006) for the 
design of identification experiments subject to input and 

output bounds in the time domain.  Darby and Nikolaou 
(2008) showed that the design rules proposed by Koung and 
MacGregor (1993; 1994) accept the same deep theoretical 
justification for both 2 2�  and n n�  systems in a number 
of cases. However, Darby and Nikolaou (2008) also showed 
that these design rules are not optimal for a number of 
typical cases, such as when outputs and/or inputs are 
constrained or when input rather than output variance alone 
must be maintained at a minimum.  Furthermore, the same 
authors provided rigorous design rules for optimal inputs in 
a number of such cases.  These design rules from solution 
of corresponding optimization problems.  The purpose of 
this article is to explore the nature of the optimal input 
designs produced by the mathematical framework 
introduced by Darby and Nikolaou (2008) when applied to a 
realistic system, such as a 5 5�  fluid catalytic cracking 
(FCC) unit.   

2. BACKGROUND: EXPERIMENT DESIGN FOR IC 

Consider a stable, linear, time-invariant, multivariable 
system with steady-state input-output relationship 


y Gm  (2) 

where , n.y m � , G  and 1
ˆ ˆ ˆ[ ,..., ]ˆ T n n

n
�
 .G g g � .  Because 

the IC condition, eqn. (1), involves the real process G  and 
identified model Ĝ , it cannot directly guide input design 
for an n n�  system.  The following results (Darby and 
Nikolaou 2008) avoid that difficulty and can be used 
directly to design experiments pursuing IC. 
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Theorem 1.  Experiment design for IC.  Let the model 
uncertainty matrix ˆ n n�
 � .D G G �  belong to the 
ellipsoidal uncertainty set  

: ;2
1[ ... ] , 1ˆ T n n T T

n k kD c k n�
 . � � �d d d M Md� . (3) 

Then, an experiment design guarantees IC if the resulting 
information matrix T

M M  and identified model Ĝ  satisfy 
the inequality 

� � 1

1

ˆ ˆ 1
n

T T
k k k

k
a

�




6� v M M v . (4) 

where

1
ˆ ˆˆk k ka c �
 u , 1,...,k n
 (5) 

and 1ˆ ˆn� �� �� , ˆ ku , ˆ kv  are defined through the svd  

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
n

T T
k k k

k
�





 
 �G U�V u v . (6) 

 Eqn. (4) clearly suggests that IC can be satisfied if the 
information matrix T

M M  is "large enough".  Given bounds 
on the input vector m , a large enough T

M M  can be 
achieved if (a) the identification experiment is run long 
enough, or (b) m  is shaped appropriately.  While the first 
alternative is straightforward, it is far less desirable than the 
second one.  Therefore, the essence of experiment design 
for IC is how to shape process inputs that satisfy eqn. (4) 
subject to relevant constraints.  Darby and Nikolaou (2008) 
showed that numerical or analytical solutions can be 
developed for a number of cases.  While for some of these 
cases the resulting designs are similar to designs that have 
appeared in literature, for others the resulting designs are 
entirely different. 

2.1. Analytical solutions 

Suppose that the quantity 1 1/ 2
1

ˆ ˆ[ ( ) ]n T T
k k kk

a �

� v M M v  in 

eqn. (4) is to be minimized with respect to the zero-mean 
random input m , subject to the total weighted variance 
inequality 

2var( ) (1 ) var( )x x W� � �y m  (7) 

where 0 1x� �  and 10 ... na a6 6 6 .  Then it can be shown 
that the optimal input vector m  is

ˆ
m V� , (8) 

where �  is a zero-mean multivariable PRBS with 

� �

2 / 3 2
2

2 22 / 3

1

k
k

nk
j jj

a WE
b a b






& #
, ) 
 $ !+ (

, )% "
* '+ (�

, 1,...,k n
  (9) 

2 2 1ˆk kb x x�
 � � , 1,...,k n
 . (10) 

and 1 ... 0nb b� � � .  Reversing the role of the above 
objectives and constraints, the minimum of the cost function 

var( ) (1 ) var( )x x� �y m  subject to eqn. (4) can be shown to 
be attained at an optimal m  satisfying eqn. (8) with 

� �
22 / 3

2 / 32
2

1

n
k

k j j
jk

aE a b
b





, )& #
, ) � $ ! * '+ (

% " + (
� , 1,...,k n
 . (11) 

 Note that for 1x 
  (all cost on output variance, as is 
desirable in early stages of an identification experiment) 
both eqns. (9) and (11) result in the well known design rule 

2

2

ˆ ˆ
ˆ

ˆ ˆ
k j j

kj kj
k kj

E
r s

E

 � �
� �

, )+ (
 
 -
, )+ (

. (12) 

where 1/ 3
1 1ˆ ˆ(|| || / || || ) 1ˆkj k js 
 -u u  for most cases of 

practical interest, and 1/ 6 1/ 61/ kjn s n� �  when ˆ ku , ˆ ju  are 

any orthonormal vectors in n� .  However, for 0x 
  (all 
cost on input variance) we get the new input design 

1/ 3 1/ 32

2

ˆ ˆ
ˆ

ˆ ˆ
k j j

kj kj
k kj

E
r s

E

 � �
� �

, ) & # & #+ (
 
 -$ ! $ !
, ) % " % "+ (

. (13) 

The above design would keep inputs small to avoid 
inadvertent loss of IC by failure to excite the process by 
inputs along directions corresponding to small singular 
values. 

 Finally, a D-optimal design subject to eqns. (4) and (7) 
can be shown to be attained, if feasible, at an optimal m  as 
in eqn. (8) with  

� �2 2 2
k kE W nb, ) 
+ ( , 1,...,k n
 , (14) 

if eqn. (4) is satisfied by the above k , or each 2
kE , )+ (

equal to the unique positive solution of the equation 

2
2 2

2

1
1 ( 1)

k
k k

k

a Wb E
t n nt E

� 


& #
$ ! , )� 
 �+ ($ !� $ !, )� + (% "

 (15) 

for a value of 0� �  such that eqn. (4) is satisfied.  It has 
been shown that eqn. (15) guarantees that 

2 2
1k kE E �, ) , )�+ ( + (  and that D-optimality is compatible with 

IC by Cauchy's inequality (Darby and Nikolaou 2008).    
Note that as t E<  eqns. (14) and (15) coincide 
asymptotically. 

2.2. Numerical solutions 

The preceding section 2.1 summarized analytical solutions 
for simple cases, offering insight into the nature of 
corresponding solutions.  However, in many practical 
situations individual constraints on im  and iy  may be 
present, such as 

2 2
,

1
[ ] ( 1)

t
T

i ii im t M�
� 



 � �� M M  (16) 
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2 2
,

1

ˆ ˆ[ ] [ ] ( 1)
t

T T T
i ii ii iy t Y�

� 



 
 � �� Y Y GM MG  (17) 

corresponding to bounds on the variance of individual 
inputs km  or outputs ky .  In such cases a numerical 
solution is required.  To obtain a numerical solution, assume 
a zero-mean input vector m , approximate the information 
matrix as ( 1)T

mt- �M M C , parametrize the input 
covariance matrix mC  in terms of the triangular matrix Q

through the Cholesky factorization T
m 
C QQ , and 

substitute T
M M  into eqn. (4), to get 

� � 11

1

ˆ
ˆ ˆ 1ˆ

ˆ1 1

n
k T T

k k
i k

c c
t t

4

4
�

�





 6
� �
�

u
v QQ v

�����������

. (18) 

(Other parametrizations of a symmetric matrix in terms of 
corresponding basis matrices could be used.  This is subject 
of ongoing investigation.)  We can then design experiments 
for IC using eqn. (18) as a constraint or by minimizing 4
with respect to Q  subject to input and output constraints 
such as in eqns. (16) and (17).  Then, the corresponding 
optimal input m  is

opt
m Q z  (19) 

where z  is a zero-mean PRBS with cov( ) 
z I .  Even 
though 4  is not convex, resulting design problems are not 
prohibitively large for realistic systems, as demonstrated in 
section 4.  It should be stressed that minimizing 4  may 
result to neither uncorrelated rotated inputs � , nor 
magnitudes of rotated input components reciprocally 
proportional to corresponding singular values of the steady-
state gain matrix, eqn. (12).  In fact, the advantage of the 
above numerical formulation is that no such underlying 
assumptions on the nature of optimal inputs are necessary.  
Rather, the numerical optimization determines the nature of 
optimal input designs. 

3. SUMMARY OF PROPOSED APPROACH 

a. Establish constraints commensurate with time t
available for identification experiments. 

b. Obtain preliminary estimates of Ĝ  and 2c .

c. Compute the svd of Ĝ  to get Û , �̂ , ˆ T
V , eqn. (6). 

Case I 

d. Compute ,optk>  via eqns. (9) or similar 

e. Design ˆ
m V�  with �  zero-mean PRBS and 

1

2 2
,opt ,optcov( ) diag( ,..., ) ( 1)

n
t> >
 �� � �

Case II 

d. Compute opt arg min 4
Q  subject to constraints. 

e. Design opt
m Q z  with z  zero-mean PRBS and 
cov( ) 
z I  (eqn. (19)). 

f. Implement m  and collect data, to update Ĝ  and 2c .

g. If Ĝ  is adequate, stop.  Otherwise go to step c. 

4. CASE STUDY 

A steady-state gain matrix is obtained from a linear 
empirical dynamic model of an industrial reactor-
regenerator from a FCC unit, identified from plant testing 
(Harmse 2007).  Note that the specific inputs and outputs 
are not indicated.  Scaling is performed according to the 
inverse of the typical operating ranges of the inputs and 
outputs.  The resulting gain matrix is 

0.3866 0.0 0.1192 0.0 0.0630
0.0 -0.6935 1.5463 -0.1311 -0.2462
0.0 0.0 0.5225 -0.1298 0.0
0.0 0.0 0.0 0.1058 0.0
0.0 -0.5803 -0.3669 -0.2057 -0.4435

, )
* '
* '
* '

* '
* '
* '+ (

G  (20) 

We tested the designs shown in Table 1.  The constraints shown in  
Table 2 were considered. 

Table 1.  Summary of experimental designs tested 
Design Objective Constraints 

ICmin min 4
Q

Q  triangular 

KM (Koung and MacGregor 1994) 

PRBSmax � �min log det
m

m�
C

C diag( )ˆm iv
C 0�

Table 2.  Constraints considered for experiment design 
Design case Bounds 
A 1

2

3

4

5

var( ) var( ) 0.50
1,...,5 var( ) 0.47

var( ) 0.44
var( ) 0.41
var( ) 0.38

im y
i y

y
y
y

� < �

 �

�
�
�

B var( ) 0.5 var( ) 0.5
1,...,5

i im y
i

� �



In all simulations, parameter estimation is initiated at time 
step 5 and is performed at each subsequent time step.  The 
IC condition, eqn. (1), is calculated based on the true gain 
matrix and the inverse of the gain estimate at each time 
step.  For simulations of case A, independent Gaussian 
noise of zero-mean and unit variance is added to all outputs.  
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Realizations of the inputs and outputs for each design are 
shown in Figure 1.  We see that due to the high noise levels, 
the actual output variances are significantly higher than the 
optimal output variances (which are based on the model 
without noise).  Note that the relatively low signal-to-noise 
ratio allows us to observe the evolution of gains over a 
longer period of time. 
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Figure 1 – Example realization of reactor regenerator 
for the three designs of case A (Table 1).  The dotted 
lines represent opt 1/ 2(var( ) )imJ  and opt 1/ 2(var( ) )iyJ
values. 

Trends of the gain errors and an indicator of the IC 
condition are shown in Figure 2  For this realization, we see 
that IC is achieved first by ICmin at time step 7, followed 
by KM at time step 8, and finally PRBSopt at time step 13.  
The evolution of the gain errors is similar for ICmin and 
KM, whereas the PRBSopt results show higher gain errors 
and slower error reduction over time, consistent with the 
lower value of det(cov( ))m  for PRBSopt. 

Figure 2 – Gain errors and IC condition for example 
realization of design case A (Table 1).  Satisfaction or 
violation of the IC condition corresponds to shading 
above or below 0, respectively. 

For the simulations of case B, independent, Gaussian noise 
of zero mean and variance (0.152) is added to all outputs.  
Realizations of the inputs and outputs for each design are 
shown in Figure 3.  Note that the smaller signals for the KM 
design, compared to the other two designs, are due to the 
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fact that inputs must satisfy all inequality constraints, as 
well as equality constraints on rotated input ratios.  The 
latter are clearly not optimal for case B. 
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Figure 3 – Example realization of reactor regenerator 
case B (Table 1).  The dotted lines represent 

optvar( )imJ  and optvar( )iyJ  values. 

Trends of the gain errors and an indicator of the IC 
condition are shown in Figure 4.  We see that the 
parameters estimates for the KM design are significantly 

inferior to the ICmin and PRBSopt designs, reflecting the 
much smaller value of det(cov( ))m  for KM.  Further, while 
IC is achieved by ICmin at time step 6 and by PRBSopt at 
time step 5, the KM design does not satisfy the IC condition 
by time step 20 (it is actually achieved at time step 22 – not 
shown – more then 3 times longer than required for either 
ICmin or PRBSopt).    

Figure 4 – Gain errors and IC condition for example 
realization of design case B (Table 1).  Satisfaction or 
violation of the IC condition corresponds to shading 
above or below 0, respectively. 

To develop these designs we used the Matlab routine 
fmincon with multiple starting points, to reduce the 
possibility of missing a global optimum for non-convex 
optimization problems.  Run time for all simulations was, 
on the average, of the order of 0.25 seconds when using the 
Yalmip interface, and of the order of 0.1 seconds without it. 
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5. CONCLUSIONS 

The purpose of this paper was to explore numerical aspects 
of a numerical optimization approach proposed in prior 
work for the design of experiments targeting IC.  Given that 
analytical solutions for this approach are available only for 
some cases, it is natural to ask how well numerical 
optimization can work, given that the proposed problems 
are non-convex.  In this work, we develop what appear to be 
useful designs for a 5 5�  multivariable FCC unit.  
Convergence time appeared not to be an issue.  These 
results suggest that the proposed approach can work 
reasonably well for problems of that size.  Clearly, other 
optimization methods (either deterministic or probabilistic) 
can be explored. 
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Abstract: This work is concerned with the model re-identification of processes controlled by MPC
systems. The MPC system considered here has a two-layer structure, where in the upper layer a steady-
state optimization algorithm determines a set of optimal targets for the process inputs and passes this set to
the MPC controller that determines the best way to drive the process to such targets. This is the case of
several commercial MPC packages applied in industry. In this paper, it is proposed two internal excitation
approaches aiming to obtain closed-loop data sufficiently rich for process identifiability. Here, the term
internal is used to indicate that the excitation test signal is applied within the MPC control structure. In the
first excitation approach, the test signal is introduced as a weighting factor in the objective function of the
target calculation layer. In the second approach, the test signal is injected as a dither signal in the objective
function of the dynamic controller layer. These two approaches are compared to the usual method where 
the excitation signal is added to the controller output. The application of the methodologies is illustrated 
through numerical simulations carried out on a depropanizer column of the oil industry. The results show
the effectiveness of the proposed approaches and their good potential to be applied in practice.

�
�

1. INTRODUCTION 

Model identification has become a bottleneck of MPC
technology. It is the most expensive, difficult and time-
consuming step of the MPC project. Although industrial
processes present nonlinear dynamic characteristics, 
typically, empirical linear and time-invariant (LTI) models
based on process input-output data obtained in open-loop
operation are used in MPC implementation (Qin & Badgwell,
2003). While this approach is only acceptable at operating 
conditions around the operating point where the model was
obtained, the control system with this model works
satisfactorily in most applications.

However, after some operation time (2-3 years), MPC is
seldom performing as when it was commissioned. The main
cause of this problem is related to the model deterioration
resulting from changes in the dynamics of the plant or
persistent unmeasured disturbances that force the plant to a 
different operating point (Conner & Seborg, 2005). Changes
in the dynamics of the plant may result from fatigue
conditions, fouling, debottlenecking, etc, or changes in the
operating conditions or product specifications. In general, the
above listed problems intensify with time and tend to
accentuate the plant/model mismatch, leading to poor output
prediction and, therefore, degradation of the control system
performance. In order to keep the performance of the MPC at 
an acceptable level, it is essential to carry out the MPC re-
commissioning in a periodic basis, which means to re-
identify the process model and, if necessary, to retune the

MPC considering the new model (Gugaliya et al., 2005).
However, due to production goals and safety aspects, model
re-identification means, in most cases, to develop a new 
model based on plant data obtained in closed-loop conditions. 

Closed-loop identification is a research subject with growing
interest in the last decade (Van den Hof, 1998; Forssell & 
Ljung, 1999; Hjalmarsson, 2005). Important aspects on 
model identification have been studied and several
identification strategies have been proposed, which can be 
categorized as variants of the following three approaches 
(Forssell & Ljung, 1999): direct, indirect and joint input-
output methods. Both indirect and joint input-output methods
require prior knowledge of the controller or assume that it
has a certain LTI structure. Obviously, these methods are not
suitable for MPC applications, because MPC presents 
nonlinear and time-variant features, especially when 
operating under constraints. For this sort of control strategy,
the direct method is the recommended choice for closed-loop
identification. See for example Rivera & Flores (1999). 

In closed-loop identification, the use of routine operating data
would be an ideal goal. But, the inherent reduction in the
excitation resulting from the presence of the controller may
result in a poor signal-to-noise ratio. In this case, and in order 
to achieve the necessary and sufficient conditions for process 
identifiability, an external persistently exciting (PE) test 
signal is required. External excitation is a dither signal that
may be introduced on the controlled variable set-point and/or
on the manipulated variable (added to the controller output).
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However, adding such a signal is often undesirable or too
expensive, and there is no guarantee that the process 
constraints and product specifications will be attended during 
the execution of the excitation procedure. On the other hand,
an insufficient excitation may compromise the identification
requirements.

The main goal of this paper is to compare internal excitation
approaches that exploit the two-layer structure of MPC
packages. Motivation for this work is due primarily to
commercial needs and as an attempt to overcome the
significant gap between practical applications and theory in
closed-loop identification with MPC. In the proposed 
methodologies an external PE test signal is applied within the
MPC control structure: (a) the test signal is introduced in the
objective function of the target calculation layer, and (b) the
test signal is injected in the objective function of the dynamic
MPC control layer. These approaches does not modify the
optimization code and they allows the adequate excitation of
the process coupled with the continuous operation of the
system as the process constraints and product specification
can be satisfied during the test. Results from the proposed 
excitation methodologies are also compared with the one 
provided by a conventional external excitation procedure in
the closed-loop identification of an industrial depropanizer
column.

2. THE TWO-LAYER MPC STRUCTURE 

In modern processing plants, MPC control systems are 
usually implemented in a two-layer scheme (Ying & Joseph,
1999; Qin & Badgwell, 2003; Nikandrov & Swartz, 2009). 
The two-layer MPC considered here is shown in Figure 1.
The upper layer usually corresponds to a simplified steady-
state target optimization and the lower layer stands for a 
constrained dynamic optimization in which the outputs are
controlled in specified zones or ranges instead of fixed
references. It is at the dynamic layer where the main control
objectives (setpoint tracking, disturbance rejection) are 
pursued. All commercial MPC packages offer the option of 
zone control. In the target calculation layer, one searches for 
the optimum steady-state values to the system (input targets),
by usually solving a linear or quadratic objective function
subject to bound constraints in the inputs and outputs. The 
outputs at the optimal steady-state are computed through a
static model, consistent with the dynamic MPC model, and 
the available steady-state output prediction computed at the 
previous time step in the MPC algorithm. The optimal input
targets are sent to the dynamic layer, where the control cost is 
extended with a term that penalizes the distance between the 
present value of the input and the optimal target. Both layers
are executed with the same sampling period. 

In this paper, the target calculation layer solves a LP (linear
programming) problem where the objective may be to
maximize production by forcing one or more inputs to their
bounds, while keeping the outputs inside the bounds:

1 2
,

min
s y

T T
s y

u
W u W

@
@

�
� �    (1) 

subject to:

Fig. 1. Two-layer MPC structure

( 1s su u u k )� 
 � �

0 ˆ(s sy G u y k n)
 � � �    (2) 

min maxsu u u� �

min maxs yy y y@� � �

where ( 1u k )�  is the last implemented control action,  is 
the present time,

k

su  is the vector of steady-state targets for 
the manipulated inputs, sy  is the vector of predicted output
at steady-state, ˆ(y k n)�  is the prediction of the controlled
output at time instant k n�  ( n is the model horizon or 
settling time of the process in open-loop) computed at time

,k y@  is the vector of slack variables for the controlled 

outputs, is the steady state gain matrix model,  and 
 are weight vector of appropriate dimensions,  and 

are the bounds of the manipulated inputs,  and 
 are the bounds of the controlled outputs.

0G 1W

2W minu

maxu miny

maxy

As a result of the solution to the problem formulated in (1)
and (2), it is obtained the input target su  that is passed to the
dynamic layer, which typically solves the following QP 
(quadratic programming) problem:
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where  is the output prediction at time ,ˆ(y k i� ) k i� spy  is 
the setpoint to the system output,

 is the

vector of control moves,  is the upper limit to the
control moves,  is the control horizon,  is the prediction
horizon, and Q ,  and are diagonal weighting matrices
of appropriate dimensions. Note that only the first element of
the computed input sequence 

( ) ( 1) ( 1)
TT Tu u k u k u k m,� 
 � � � � � �+ � T )
(

maxu�
m p

R uR

u�  is implemented in the
plant, i.e. .( ) ( ) ( 1)u k u k u k
 � � �

In this controller, the zone control strategy is implemented as
follows: if the prediction of a given output is inside its
reference zone or range, the error in this output is considered
to be equal to zero and the output is not included in the
controller optimization problem. When the output prediction
lies outside the corresponding reference range, depending on 
whether the prediction is above or below the max or min
values of this range, one of these bounds is adopted as the
output reference. In general, the zone control strategy is used 
as an attempt to release some degrees of freedom to allow the
inputs to approach their optimal targets (constraints pushing)
and to smooth out the system response. For more details see 
Sotomayor et al. (2009). 

The two-layer MPC algorithm as described above is similar
to the structure of several MPC packages widely applied to 
control the refining and petrochemical processes. For 
instance, this MPC algorithm, with slight modifications, is
supported by the advanced control package SICON@, which 
is the standard process control software in the oil refineries of 
PETROBRAS in Brazil. 

3. INTERNAL EXCITATION APPROACHES 

To solve the problem of lack of excitation during normal
operation of MPC systems, some authors have proposed a 
new class of excitation methods for MPC that can be 
considered as internal excitation methods. Genceli &
Nikolaou (1996) use the MPCI framework (model predictive
control and identification) where the PE characteristic of the
inputs is imposed as a constraint in the optimization problem
related to the MPC. The drawback of this method is that the
additional constraint is non-convex, resulting in a non-
convex optimization problem. Since solving non-convex 
problems is significantly more involved than solving convex 
problems, the additional non-convex constraints are 
undesirable and the method cannot be directly applied to
existing commercial MPC packages, without extensive
modifications of the controller code, which limits its practical
application.

On the other hand, a reasonable consideration of the layered
MPC is that when the model is biased, the target calculation 
layer will change the input target to the dynamic layer quite
often, and so, the input target could be viewed as a possible
test signal. However, to assume that these natural moves on
the input targets will be PE is a questionable matter. Here,
taking advantage of the layered structure of MPC, and in
order to guarantee the necessary excitation of the input

targets, an external PE test signal, namely a binary signal of
magnitude 1J , is applied within the MPC control structure
according to the following approaches: 

Method 1. Introducing the test signal into the LP layer 

Given that the weight vector  in the objective function of
the target calculation layer is usually available to be set on-
line by the user of the MPC package, the external test signal 
can be introduced in the MPC system as a variable that 
multiplies . Thus, Equation (1) is re-written as follows:
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where  is a vector whose elements are the components
of the binary test signal and operator U  denotes the Schur 
(or element-by-element) product. Then, if the product

is positive (negative), the solution to the LP 
problem will tend to reduce (increase) input  until it
reaches its lower (upper) bound or the output predictions lies 
outside the control zones. Note that if is set equal to a
vector of ones, then the excitation procedure will end and the
original objective function (1) is recovered. This method is
described with details in Sotomayor et al. (2009). 

excW

, 1,exc i iW W

iu

excW

Method 2. Introducing the test signal into the dynamic

layer

In this case, the external test signal, conveniently scaled, is
injected as a dither signal in the input target su  that enters 
the MPC layer. This is similar to writing the objective
function (3) as follows: 
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with ,s dith excu W>
 , subject to (4), where  is the
excitation vector as defined in Section 3.1 and

excW
>  is a scaling 

factor. Then, the achievement of excitation of the system will 
largely depend on the value of tuning parameter , which 
will define if the MPC layer will implement the input target 
faster than the main process dynamics. Observe that if 

uR

>  is 
set equal to zero, the excitation procedure is ended and the
original cost function (3) is obtained.

Particularly, Method 1 can be easily implemented in existing
MPC packages with a structure similar to the one detailed in
Section 2, as the excitation signal is introduced through a 
tuning parameter of the controller. In both methods the MPC
problem is still solved through a QP, and the problem is
reduced to design the binary sequence for  such that the 
on-line solution of the problems (5)-(2) and (6)-(4) produces
persistent excited inputs, which is the primary requirement
for the process identifiability (Ljung, 1999). 

excW
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As it will be shown in the application section, with the
approaches proposed here, the inputs can be adequately
excited and if the outputs are controlled within zones, the
feedback effect on the test data may be minimized. Also, the
approaches attend the process safety requirements and the
product specifications can be satisfied adequately.

In the next section it is illustrated the application of the
proposed excitation procedures to the closed-loop
identification of a depropanizer column. The identification
procedure follows same steps as the usual identification
methodology applied to industrial processes (Ljung, 1999):
design of the test signal and generation of dataset, model
structure selection, computation of the model parameters and 
model validation.

4. APPLICATION: DEPROPANIZER COLUMN

Figure 2 presents the process considered in this work. It is an
industrial depropanizer column of the FCC unit at the
PETROBRAS Refinery of Cubatão (RPBC), Brazil. 

Fig. 2. Schematic diagram of the depropanizer column

In the depropanizer column, the C3 stream (propane and
propene) is separated from a C4 stream (butane and butene).
The operation of this process is controlled by a commercial
MPC system as detailed in Section 2. Basically, it is a 2x2
control system, where the output variables  and  are the 
molar concentration (%) of C3 in the bottom stream and the
temperature (°C) at the first stage of the top section of the
column, respectively. The input variables  and  are the 
reflux flowrate to the top of the column (m3/d) and the
flowrate of hot oil to the reboiler (m3/d), respectively.
Transfer function models of order 2 corresponding to points
FD and 1 from Porfirio et al. (2003) are used to simulate the
“true” process and to represent the nominal process model (as
it is used by the MPC system), respectively. MPC tuning
parameters are here omitted but they can be found in 
Sotomayor et al. (2009). 

1y 2y

1u 2u

PE test signal and generation of the dataset

Based on the guidelines provided by Zhu (2001) and a priori
knowledge of the process (already existing model in the
MPC), two independent GBN (generalized binary noise)
(Tulleken, 1990) signals of magnitude 1 are designed.
These test signals are applied directly to the LP layer of the
MPC system if Method 1 is used or they are firstly scaled

using

J

1 ,0.065 1su> 
  and 2 0.07 ,2su> 
 , respectively, and 
applied to the MPC dynamic layer if excitation Method 2 is
employed. In addition to the these excitation approaches, the 
system is also perturbed using a conventional external
excitation as in MacArthur &. Zhan (2007). For this purpose,
the MPC controller first calculates the normal movement for
each controller output. New projected outputs are computed
by superimposing a dither signal on the moves proposed by
the controller. The projected outputs are then compared to the 
controller’s high and low limits (constraints). Projected
moves are then modified to ensure that all constraints are 
honored. In the present case, the dither signals are the GBN
test signals scaled to 0.0034J  and , respectively. In 
all the cases, the duration of the excitation test is 4500 min.
The data were collected with a sampling time of 1 min,
resulting 4500 samples of input-output data.

0.0043J

For better identification results, the dataset is normalized, de-
trended and filtered. Next, the dataset is divided into two
subsets, where the first one containing 3000 data points is
used to identify the model while the second one containing
the remaining points is used to cross-validate the model. The
PE characteristic of the inputs for the three cases is tested for 
order 4P 
 , which means that 2nd-order transfer functions 
can be satisfactory identified (Söderström & Stoica, 1989). 

Model structure selection

In the present paper, it is considered that the model structure 
is defined by a continuous-time multi-input and single-output 
(MISO) output-error (OE) transfer function model, with the
stochastic model parameterized as unitary:
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j i�  is the estimated time-delay

between the  input and the  output,thi thj ( )t1  is the residual
or total model error (bias plus variance),  and  are the 
number of inputs and outputs, respectively, and 
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Computation of the model parameters 

The goal is to build a model as defined in eq. (7) based on
closed-loop sampled data, focusing on the parameters of each 
transfer function  rather than on the model error.
Thus, the task of the identification procedure is to compute
the vector of model parameters:

, ,
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Here it is used the CONTSID toolbox (Garnier et al., 2008)
to find the vector j�  for each closed-loop sampled dataset 

from the depropanizer column, assuming 2u yn n
 
 ,

 and . The identification is carried out off-
line considering the values of the parameters of the existing
(old) process model as the initial solution to the identification
problem.

, 2j in 
 , 1j im 


Three new models are obtained and they are evaluated based 
on the following performance criteria: 

� �
� �

2

ˆ( )
100 1

( (

ˆvar
1

var

j j

j j

j j
T

j

norm y y
FIT

norm y mean y

y y
R

y

& �

 � �$$ �%

�

 �

))

#
!!
"

where  is the true system output and  the model output.
Coefficient

y ŷ
FIT  indicates the percentage of the output

variation that can be associated to the model, while
coefficient  measures how well the model output explains
the behavior of the system output, and this parameter will be
close to 1 in low noise conditions.

2
TR

Model validation

Figure 3 shows the step response comparison between the old
model and the new models obtained with the three excitation
methods considered here. Observing the responses of the old
model used in the controller and the new models obtained
with the re-identification procedure, one may conclude that
the re-identification of the process model is quite justified not
only because of the difference between the gains of the old 
and new models, but also because of the different dynamics.
Also, observing the responses of the re-identified models,
one can confirm that the model obtained with excitation
method 3 is, in general, inferior to the models obtained with
the two other excitation methods, showing a significant bias
on the gain of . Moreover, from a practical point of
view, one may conclude that the internal excitation methods
1 and 2 can be considered equivalent in terms of the model
that is obtained, particularly if the step response of the
process is to be used as in several MPCs. This result is in

concordance with the performance indicators obtained from
the cross-validation procedure of the three new models (not
presented here). 

2,1Ĝ

5. CONCLUSIONS 

Three closed-loop excitation methods for systems being
controlled by MPCs with a two layer structure were studied
here. These excitation methods allow the closed-loop model
re-identification that should be used for periodic MPC
monitoring and maintenance and for the design of an explicit
adaptive MPC. The first two methods are based on the
introduction of a persistently exciting signal within the MPC 
structure. The third method corresponds to the traditional 
approach of adding the excitation signal to the controller
output. The three methods showed equivalence in terms of
producing a data set that is adequate for model identification.
The main difference between the excitation methods lies in
the implementation of the approach in practice. Method 1 
introduces the excitation signal in the coefficients of the
objective function of the target calculation layer which are 
usually available as tuning parameters of the controller. So, 
there is no need of any modification in the controller code 
and the method does not require any particular attention of 
the operator while the process excitation is performed. Thus,
this method seems to be the most adequate in practical terms.
Method 2 adds the excitation signal to the input target of the
dynamic layer of the controller. Besides, some new tuning
parameters this method requires a slight modification in the
controller code and, consequently, can only be implemented
if the source code is available. The third or conventional
method, that adds the excitation signal to the output of the
controller, requires more care in the design stage and more
attention of the operator because the control action really
injected in the process will not satisfy the process constraints.
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Abstract: In this paper we propose a novel procedure for obtaining a low order non-linear
model of a large scale multi-phase, non-linear, reactive fluid flow systems. Our approach is
based on the combinations of the methods of Proper Orthogonal Decomposition (POD), and
non-linear System Identification (SID) techniques. The problem of non-linear model reduction is
formulated as parameter estimation problem. In the first step POD is used to separate the spatial
and temporal patterns and in the second step a model structure and it’s parameters of linear
and of non-linear polynomial type are identified to approximate the temporal patterns obtained
by the POD in the first step. The proposed model structure treats POD modal coefficients as
states rather than outputs of the identified model. The state space matrices which happens to be
the parameters of a black-box to be identified, comes linearly in parameter estimation process.
For the same reason, Ordinary Least Square (OLS ) method is used to estimate the model
parameters. The simplicity and reliability of the proposed method gives computationally very
efficient linear and non-linear low order models for extremely large scale processes. The method
is of generic nature. The efficiency of proposed approach is illustrated on a very large scale
benchmark problem depicting Industrial Glass Manufacturing Process (IGMP). The results
show good performance of the proposed method.

1. INTRODUCTION

Industrial processes involving fluid flows are usually mod-
eled by Navier-Stoke’s equations which are solved by
some kind of spatial discretization. Due to this modeling
approach they are referred to as Distributed Parameter
Systems (DPS). Spatial discretization of DPS is done by
means of Finite Volume or Finite Element methods and
Galerkin or Petro-Galerkin projection techniques and they
are simulated in a Computational Fluid Dynamic (CFD)
software environment. Although such discretizations ap-
proximate the dynamic process behavior reasonably well,
it leads to very large order process model. It takes huge
computational efforts (time, CPU requirement) to simu-
late such models and therefore such process models can
not be used for online plant optimization and control
purposes. Model Order Reduction (MOR) is therefore
an important step before proceeding to control design,
see e.g. Shvartsman and Kevrekidis [1998]. The method
of Proper Orthogonal Decomposition (POD) or Principle
Component Analysis (PCA) is widely used for deriving
lower dimensional models from the First Principle Model
(FPM). The POD method searches for dominant pat-
terns in the given process and defines an optimal, data-
dependent basis, that is subsequently used as a projection
space to infer reduced order models through Galerkin type
of projections, see Astrid [2004] and the references therein.
POD methods are empirical (data dependent) in nature
and therefore these methods are susceptible to changes in

� This work was supported by the European Union within the
Marie-Curie Training Network PROMATCH under the grant number
MRTN-CT-2004-512441.

process inputs and process parameters. The reduced model
obtained by POD techniques with Galerkin projections are
usually very dense and one loses the original sparse model
structure. Such a dense model does not always give com-
putational advantage over original full scale CFD model.
This motivates one to look for other possible approaches
which can give computationally efficient, reliable models
which can be used for the online control and optimization
purpose. Other motivations for the method proposed in
this paper are that in many commercial CFD packages
sometimes it becomes impossible to get access to the
Partial Differential Equations (PDE) used to implement
full scale model and even with access to the PDEs the
reduced order modeling efforts can also be very expensive
and laborious. In such situations one needs to explore the
other possible ways to get a low order model by some
identification method. One of such methods is explained
in Wattamwar et al. [2008], which uses POD and system
identification tools like N4SID algorithms, as explained in
e.g. Overschee and Moor [1996], Favoreel et al. [2000]. But
the method proposed there results in linear models which
are not sufficient for approximating the non-linearities
of large scale applications like IGMP. Moreover in the
method proposed there, the states of the linear reduced
order model have no physical meaning. These problems
have motivated us to investigate another model reduction
strategy which can approximate process non-linearity. The
identification based approach proposed in this paper can
be very useful, because it allows to use the available
large-scale first principle based detailed non-linear process
model in the form of commercial package, not just for the
purpose of computationally extremely efficient dynamic
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process analysis but also for the purpose of design of the
process controller and optimization. Therefore the method
proposed here helps in minimizing the dependence on the
expensive testing of the plant required for the controller
design.

This paper is organized as follows. The overall method-
ology involving necessary tools from system theory like
POD, a black-box type of system identification for linear
and non-linear polynomial system is explained in section 2.
The application/motivation is IGMP and is explained in
the section 3. Some results of the proposed method on the
motivation problem are presented in the section 4 which
is followed by future work and references.

2. THEORY BACKGROUND AND METHODOLOGY

One of the most promising and successful techniques
for an efficient reduction of large-scale nonlinear systems
in fluid dynamics is the method of Proper Orthogonal
Decompositions (POD) also known as the Karhunen-Loève
method Holmes et al. [1996]. The method is based on
the observation that flow characteristics reveal coherent
structures or patterns in many processes in fluid dynamics.
This has led to the idea that the solutions of model
equations may be approximated by considering a small
number of dominant coherent structures (called modes
or basis) that are inferred in an empirical manner from
measurements or simulated data. Given an ensemble of K
measurements Tk(·), k = 1, . . . ,K with each measurement
defined on some spatial domain Ω, the POD method
amounts to assuming that each observation Tk belongs
to a Hilbert space H of functions defined on Ω. With
the inner product defined on H, it then makes sense to
call a collection {ϕj}∞j=1 an orthonormal basis of H if any
element, say T ∈ H, admits a representation

T(z) =
∞∑

j=1

ajϕj(z), z ∈ Ω (1)

Here, the aj ’s are referred to as the modal coefficients(MC )
and the ϕj ’s are the modes or basis of the expansion. The
truncated expansion

Tn(z) =
n∑

j=1

ajϕj(z), z ∈ Ω (2)

causes an approximation error ‖T − Tn‖ in the norm of
the Hilbert space. We will call {ϕj}∞j=1 a POD basis of H
whenever it is an orthonormal basis of H for which the
total approximation error in some norm over the complete
ensemble is

K∑
k=1

‖Tk −Tk
n‖ (3)

is minimal for all truncation levels n. This is an empirical
basis in the sense that every POD basis depends on the
data ensemble. Using variational calculus, the solution to
this optimization problem amounts to finding the nor-
malized eigenfunctions ϕj ∈ H of a positive semi-definite
operator R : H → H that is defined as

〈ψ1, Rψ2〉 :=
1
K

K∑
k=1

〈ψ1,Tk〉 · 〈ψ2,Tk〉 (4)

with ψ1, ψ2 ∈ H. R is well defined in this manner and
corresponds to a positive semi-definite matrix whenever H
is finite dimensional. In that case, a POD basis is obtained
from the normalized eigenvectors of R, see e.g. Astrid
[2004].

The POD modal coefficients ’aj ’ are then obtained by the
projection of the ensemble on the span of dominant POD
modal coefficients as given by:

aj(k) = 〈ϕj(z),Tn(k, z)〉 (5)

Subsequently, a Galerkin projection is used to obtain the
reduced order model as follows. Suppose that the system
is governed by a PDE of the form

∂Tn

∂t
= A(Tn) + B(u) + F(Tn, u, d) (6)

and let Hn denote an n dimensional subspace of H
and let Pn : H → Hn and In : Hn → H denote
the canonical projection and canonical injection maps or
operators respectively. The injection map reconstruct the
full scale model from reduced space. The reduced model is
then given by

Pn
∂Tn

∂t
= PnA(Tn) + PnB(u) + PnF(Tn, u, d) (7)

where observation Tn(·, k) = Tn(k) ∈ Hn = PnH ∀k, A
is the spatial operator for convection and diffusion, and is
of linear nature B defines input matrix and F is nonlinear
source term. In the specific case of a POD basis, the
finite dimensional subspace Pn = span{ϕj}, j = 1, . . . , n
where the ϕj ’s denote POD basis functions. In that case
eq. (6) becomes an ordinary differential equation in the
coefficients aj(k) in the expansion of Tn as eq. (8) and
eq. (9)
∂〈Pn,Tn〉
∂t

= A〈Pn,Tn〉+ B〈Pn, u〉+ PnF(Tn, u, d) (8)

or equivalently,
dan
dt

= Anan + Bnu+ PnF(P−1
n an, u, d) (9)

Eq. (9) is reduced order model (ROM) and the POD modal
coefficients ’aj ’ are the states of the ROM. Therefore
the POD MC can also be viewed as dominant temporal
patterns/dynamics along which system evolves. The opti-
mization problem to obtain POD basis as mentioned above
in eq. (4) equivalently can also be solved for the ensem-
ble Tn as a ‘Singular Value Decomposition’ SVD which
then gives POD basis function (spatial patterns) in the
form of left singular vectors and POD modal coefficients
(temporal patterns as singular values multiplied by the
right singular vectors. From the property of SVD these
patterns are arranged as per their importance, i.e. the
first POD basis corresponds to the direction of maximum
energy. Usually a tolerance criterion based on amount of
energy captured in the reduced model is used to decide
the order or the reduced model, i.e. the span of POD basis
as defined above in Hn. The criterion is usually called
projection energy and is given as below:

Ptol =
∑r

k=1 λk∑n
k=1 λk

(10)

where λk is the ‘kth’ eigenvalue of the correlation operator
as defined in eq. (4), ‘r’ is order of ROM and ‘n’ is order of
finite dimensional full scale model. The first two terms of
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eq. (9) on RHS are linear and the third non-linear term do
not appear for the systems defined by linear PDEs. For the
system governed by linear PDEs the differential equation
eq. (9) can be transformed in equivalent discrete time form
as:

an(k + 1) = Adan(k) +Bdu(k) (11)

At this point one can observe that given the ensemble Tn

one can obtain POD basis and corresponding MC, and
from this knowledge of MC and system inputs ‘u’ the sys-
tem parameters ‘Ad’ and ‘Bd’ can be easily estimated by
ordinary least square (OLS) estimation techniques. If one
now think of the possible approach to identify the system
parameters when the governing equations are non-linear
like the one in eq. (9), one needs then some approximation
for non-linear terms. There are many possible ways to
approximate the non-linearities like black-box, neural net,
fuzzy logic, grey box, e.g. see Romijn et al. [2008] and
many other input-output based fit of Weiner-Hammerstein
type. It is also well known that Taylor series expansion
of a nonlinear function can be a good approximation of
a non-linear function. The use of Taylor Series is not
considered in usual input-output identification methods
due to the lack of state information. But as explained
earlier in the case of model reduction, the states of ROM
are accessible and therefore one can make use of Taylor
series to approximate the non-linear terms. If one is in-
terested in approximating the original full scale non-linear
model then one need to include the Jacobian terms of the
Taylor series in ROM. But if the approximation by linear
system is not sufficient enough then one must consider the
Hessian and other higher terms from the Taylor series.
Note that the inclusion of the Hessian terms results into
polynomial form of the identified ROM. Replacing the
non-linear part by a polynomial system for multi-variable
system is cumbersome due to the involvement of the tensor
algebra (Hessian computation). For this reason we will
briefly explain what does a Taylor series expansion for a
scalar valued function means and then we will explain it
for the vector valued function, and its implementation for
the computation purpose. Another interesting feature of he
polynomial systems is that they are promising candidates
and have structure better suited for analytical analysis and
for extension of the notions from linear system theory, e.g.
see Ebenbauer et al. [2005]. For a scalar valued function,

ẋ = f (x) , where f : R → R & f(x∗) = 0 (12)

Taylor series expansion in x as a nominal variable and x̃
as a deviation variable, x̃ = x− x∗

˙̃x = f (x∗) + f
′
(x∗) x̃+ (1/2!) f

′′
(x∗) x̃2 + ... (13)

where, f
′
(x) = J (x) : R → R, system jacobian operator

f
′′
(x) = H(x) : R → R, system Hessian operator.

For a vector valued function f : Rn → Rn,

the first derivative is defined as a map: f
′

: Rn →
L(Rn,Rn), and when the first derivative is evaluated at
x∗ ∈ Rn then f

′
(x∗) ∈ L(Rn,Rn), i.e. f

′
(x∗) is a linear

operator, and when it acts on the ‘n’ dimensional vector ‘x’
then its image is ∈ Rn, i.e. f ′(x∗)(x) ∈ Rn. This lets us to
understand first derivative as a map, f ′ : Rn ∗ Rn → Rn.
As f ′(x∗) is constant term (fixed operator), we better write
it as [f ′(x∗)](x) ∈ Rn.

We usually refer the above operator as system Jacobian
matrix as, [f ′(x∗)] := J (x∗).

The operator defined in the last expression can be written
in terms of partial derivatives as,

[f ′(x∗)] (x) =

⎡⎢⎢⎢⎣
∂f1
∂x1

(x∗) . . .
∂f1
∂xn

(x∗)

.
∂fn
∂x1

(x∗). . .
∂fn
∂xn

(x∗)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1
.
.
.
xn

⎤⎥⎥⎥⎦ (14)

equivalently,

[f
′
(x∗)](x) =

⎡⎢⎢⎢⎢⎢⎣

n∑
k=1

∂f1(x∗)
∂xk

xk

.
n∑

k=1

∂fn(x∗)
∂xk

xk

⎤⎥⎥⎥⎥⎥⎦ (15)

The same procedure is repeated for computing the second
derivative of the function,

f ′′ : Rn ∗ Rn ∗ Rn → Rn, i.e.
f ′′ : Rn → L(Rn,L(Rn,Rn)), i.e.
f ′′(x∗) ∈ L(Rn,L(Rn,Rn)), i.e.
f ′′(x∗)(x) ∈ L(Rn,Rn), i.e.
f ′′(x∗)(x)(x) ∈ Rn, i.e. [f ′′(x∗)](x, x) ∈ Rn

[f ′′(x∗)] := H(x∗), system Hessian operator.

It is clear from the above discussions that the Hessian
operator is a tensor with argument from two domains
while its codomain remains the same that of the Jacobian
operator. The linearity of Hessian operator allows us to
compute it like the Jacobian operator as in (15), but now
with one more argument as:

[f
′′

(x∗)](x, x) =

⎡⎢⎢⎢⎢⎢⎢⎣

n∑
k=1

n∑
j=1

∂2f1(x∗)
∂xk∂xj

xkxj

.
n∑

k=1

n∑
j=1

∂2fn(x∗)
∂xk∂xj

xkxj

⎤⎥⎥⎥⎥⎥⎥⎦ (16)

the above expression can be written as:

[f
′′

(x∗)](x, x) = A1(x⊗ x) (17)
where, (x⊗ x) is the Kroneckar product.

The complete simplification procedure mentioned above
is aimed to express, f ′′ : Rn → L(Rn,L(Rn,Rn)) as,
f ′′ : Rn → L(Rn2

,Rn). This is possible due to the notion
of the linearity of the tensor operator.

From the discussion above, a nonlinear equation of the
form ẋ = f(x, u) can be expanded in Taylor series as
in (13) which can be approximated by a polynomial of
the form,

ẋ =Ax(t) +Bu(t) +A1(x(t)⊗ x(t))
+B1(u(t)⊗ u(t)) +Q(x(t)⊗ u(t)) (18)

Where, A1, B1, Q are equivalent Hessian operators and
x ∈ Rn, u ∈ Rl, A ∈ Rn∗n, B ∈ Rn∗l, A1 ∈ R(n∗n)∗n,
B1 ∈ R(l∗l)∗n, Q ∈ R(l∗n)∗n and ⊗ is the Kronecker
products.

These methodological developments are based on CFD
software as plant model, so for the moment we are not
considering the output equations here.
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Equivalent discrete form of Eq. (18) can be written as:
x(k + 1) =Adx(k) +Bdu(k) +A1d(x(k)⊗ x(k))

+B1d(u(k)⊗ u(t)) +Qd(x(k)⊗ u(k)) (19)
As we are considering the discrete identification problem
here, for the convenience in remaining part of the paper
we have dropped the superscript ‘d’ from eq. (19).

Please note that the polynomial equation (19) is non-linear
in states and inputs but it is linear in all the system
parameters (equivalent Jacobian and Hessian terms). This
is a big advantage. Because if the states and inputs
are known then by fixing the above polynomial model
structure we can estimate the system parameters by Least
Square parameter Estimation (LSE) techniques.

Coming back to the problem of the reduced model identi-
fication, the states in the (18) can be seen as POD modal
coefficients (MC) and then linear and non-linear part in (9)
can be written as (18).

Another interesting feature of the proposed framework is
that for a large scale parameter varying systems, given the
knowledge of the variation of the time varying parameter,
similar approach as proposed above can be used. But the
uncertain parameter should then be treated like process
inputs and therefore the corresponding process snapshots
due to the parameter excitation need to be included while
computing the POD basis functions and MCs. As per the
knowledge of the author, this approach of model reduc-
tion for very large scale process under process parameter
uncertainty is never studied in past.

Once the MC and POD basis are obtained from the full
scale CFD model as mentioned earlier, then by using
the tensors decomposition as in eq.(16) for eq.(18), the
problem of polynomial model parameter estimation is an
ordinary least square estimation( OLS ) problem and if we
define,
ξk := col (x(k), u(k), (x(k)⊗ x(k)), (x(k)⊗ u(k)), (u(k)⊗ u(k)))

(20)
then from (19), xk+1 ' Θ ξk Where, Θ = [ABA1B1Q]
and define the parameter estimation error at each time
instance as

ek+1 = xk+1 −Θ ξk (21)
similarly the estimation error that is minimized by LSE
method over the complete simulation horizon ‘N’ is

E := [x1 . . . xN ]−Θ[ξ0 . . . ξN−1] (22)

equivalently, E := X −ΘΞ
where, N is the number of samples and ,
X ∈ Rn∗(N−1), Ξ ∈ R(n+l+n∗n+l∗l+n∗l)∗(N−1) and Θ ∈
Rn∗(n+l+n∗n+l∗l+n∗l)

The least square solution will be
Θ = X ΞT (Ξ ΞT )−1 (23)

Please make a note here that the system parameter vector
Θ is rank deficient due to the involved Kronecker product.
Nevertheless, there are some simple ways to estimate the
parameters for rank deficient problem as well. We simply
used Matlab routines for our case.

The complete CFD spatio-temporal information can be
reconstructed by projecting back the solution of reduced
model (19) on the span of dominant POD basis Pn. The
reconstructed CFD state space will be:

T̃n(k) = In an(k) = P−1
n an(k), or equivalently (24)

T̃n(k) =
r∑

j=1

φ−1
j aj(k) (25)

As this study is based on software simulations, the outputs
can be chosen as per the user choice. In our study we
have decided them close to the real life situation. The
constructed output equations can be approximated as:

ỹ(k) = C T̃n(k) (26)
Note that the original Navier-Stokes equation (non-linear
PDEs) modeled in CFD software are continuous in time
and in the approach presented above we have proposed
to approximate them by using discrete time linear or
polynomial type non-linear equations.
The error involved here will be the sum of projection
error and the statistical fit in the identification step to
the few selected POD modal coefficients corresponding to
the maximum energy content as per eq. (10).

One of the serious drawbacks of this approach is that the
OLS estimation method for as described earlier can easily
lead to an unstable system, although the original system
could be a stable one. Notion of stability is discussed here
as divergence of simulation results. We think one of the
possible explanation could be the small data set, another
could be that the POD MC obtained from SVD are
right singular vectors and they are orthonormal vectors.
These Orthonormal basis functions (MC) are considered as
signals while they are being fitted by using a polynomial
model. The orthogonality of vectors is equivalent to the
property of uncorrelatedness of signals. Or, orthogonality
of MC in terms of the inner product is

< ai, aj >

{
= 1, i = j
= 0, i �= j (27)

To overcome this drawback of spurious instability one
might like to try some other parameter estimation method
or to impose the stability in the proposed polynomial
model by using some regularization trick. But usually
regularization leads to bad performance of the identified
model. Moreover regularization if not carried out smartly
can lead to completely different dynamics of the identified
model. Typically in subspace state space linear model
identification techniques, regularization is imposed in the
form of forcing the eigenvalues of the identified model to
lie in the unit circle, e.g. see Gestel et al. [2000].
In this paper we have not solved the stability issue as the
research in polynomial systems is still relatively new and
imposing the stability in identification procedure will need
considerable amount of further efforts.

3. MOTIVATION: GLASS MANUFACTURING

This section describes the motivating example of Industrial
Glass Manufacturing Process, IGMP. IGMP is usually
carried out in large furnaces which are very well designed
in order to have a desired laminar flow pattern of the glass.
A 2D view of a typical furnace is shown in figure 1. The
flow pattern of glass determines the residence time of the
glass in the melting furnace which in turn determines the
quality of the glass produced. The process is an example
of very large scale integrated systems. Most of the process
variables like temperature, velocity, pressure, viscosity are
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Fig. 1. Glass Manufacturing Furnace

interacting with each other. Due to this interacting nature
the control of the furnace has to be done carefully. Usually
pull rate (production rate), heat input and pressure valve
positions are some of the control variables. Whereas vari-
ables of interest are temperature distribution and velocity
profiles in the furnace. The product quality is determined
by these two factors. The temperature maintained inside
the furnace varies between 1400− 1650 0C. The glass raw
material enters from the left side (inlet) in the form of
a batch blanket, it is melted by applying heat from the
top. After circulating through the glass furnace for many
hours glass passes through the throat and then leaves
via the outlet. Based on the process operation there are
roughly three regimes - glass melting, fining to remove high
concentration of dissolved gases from the molten glass and
refining to remove all remaining undissolved gases from
the glass. The IGMP shows large variation in the time
constants, from minutes to days. The transport of physical
quantities in IGMP can be approximated with reasonable
accuracy by modeling it by a set of nonlinear Navier-Stokes
equations, see Huisman [2005]. There are many different
types of glass furnaces and many different ways to manu-
facture glass depending on the type of glass required. Most
of the glass manufacturing process dynamics are series
combination of Continuous Stirrer Tank Reactor (CSTR)
and Plug Flow Reactor (PFR). Some more details about
mathematical modeling of glass can be found in Huisman
[2005], Patankar [1980], Post [1988].

Due to very high process temperature and due to the
viscous nature of glass, the glass furnace is a hostile
environment for sensor systems. Sensors are largely limited
to temperature measurements in the bottom refractory of
the melting furnace. As 3 dimensional glass furnace model
easily consist of 104 − 106 finite elements, simulating its
steady and/or dynamic behavior takes days for a normal
configured PC and therefore it becomes very difficult to
generate and process sufficient data that can be used to
develop a model reduction method. For this reason we are
using an approximate 2D glass furnace which mimics the
vertical cross section along the length of 3D glass furnace
and has only 2 grids cells in width direction.

Currently, apart from modeling the process non-linearity
in the reduced order model, we are also trying to model
the very slow geometric changes that take place in real 3D
furnace in the form of throat or dam wall corrosion, see fig-
ure 1. This corrosion results into back-flow of molten glass
from the refining zone to the fining zone. Such back-flow

behavior causes undesired changes in the temperature dis-
tribution in the furnace which ultimately leads to economic
losses. In this paper we are not addressing the corrosion
problem but interested readers can refer Wattamwar et al.
[2008] and a Linear Parameter Varying (LPV ) system
approximation in Wattamwar et al. [2009].

4. RESULTS AND DISCUSSION

In this paper a 2D benchmark CFD model of the original
process is considered. The full scale CFD model has 3000
cells. It has many variables like temperature, velocity,
concentration, pressure, etc. in each grid cell. Although
most of the variables are interconnected, for the study
here we have considered only temperature as variable of
the interest. Therefore the order of the full scale model
is 3000. From the method explained in the section 2 we
have obtained a fourth order linear and non-linear polyno-
mial model. The choice of fourth order approximation is
decided based on the stability issue of polynomial model.
Approximation order larger than four leads to an unstable
ROM. For the linear model as well, there is not much
improvement in the parameter fit above fourth order. This
means that for the linear reduced model larger than fourth
order there is no way to improve its performance merely
by increasing its order, and there is need for non-linear
reduced order model. The four POD modal coefficients
corresponding to the order approximately capture 80%
of the total projection energy. Usually it is desired to
capture approximately 99% of the energy of the full model.
But due to the stability limitation we can not satisfy this
requirement.
The input considered for the identification purpose is pull-
rate(feed) in terms of tons/day, which varies 5% around
the nominal value in the form of +/- steps superimposed
by PRBS signal. This is done to excite the slow and fast
dynamics. The simulation horizon is 120 hrs and sampling
time is 16 mins, therefore we have 450 snapshots. Like most
of the POD related methods, this identification process is
very sensitive to the type of input excitation signal. For
such complex process it is also very important to know
what non-linearity the identification input signal excites. If
one excites soft non-linearities for such a complex process
then one can expect to get a better and stable polynomial
model which would fit more POD MC.
Figure 2 shows the identification result for both linear and
polynomial models as proposed in this paper. Figure 3
shows zoomed version of the faster dynamics from the
figure 2. Plot shows the result for four outputs which are
temperature at the bottom of the four main zones of the
glass, viz. Melting, Fining, Throat and Refining section.
The sensors are assumed to be placed at the bottom of the
tank. This is close to the real life situation. The readers
can refer to the figure 1 for sensor locations. S1 to S9 are
the sensors in the figure. Plot shows that the both the
models approximates the overall trend very well, but the
linear model fails to capture the PRBS signal dynamics
precisely compared to the polynomial model.
Figure 4 shows the performance of the two models for
the validation signal, which is a step input on the raw-
material feed rate. Plot shows that both models follows
the trend very well, but both models do not match the
time constant and the final gain exactly. This is due to
the two reasons. First, this is a distributed system and the
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excitation signal used for the identification was designed
based on the average time constant of the whole glass tank
and it was not designed based on only the four location
shown in the figure. Reason for the mismatch of the final
gain is that these ROM could not capture 99% of the
projection energy of the full scale model. One can expect
smaller offset if the approximation order of the reduced
model is higher. Unfortunately, as explained earlier in 2,
approximation order can not be increased more than 4th

for the polynomial form of ROM. Nevertheless, for the size
and involved complexity in GMP, even the current results
seems to be very interesting.

Fig. 2. Model Identification

Fig. 3. Model Id: Zoom

Fig. 4. Model Validation

5. CONCLUSION AND FUTURE RESEARCH

In this paper we have proposed a new model reduction
method and its application on large scale industrial appli-

cation. The proposed method is promising and suited es-
pecially for the very large scale processes where complexity
reduction by using merely physical insight is not possible.
The proposed method is also well formulated in technical
aspects and with further improvements in imposing the
stability in the identification of polynomial system could
make this method of great potential.

We want to explore following topics in near future which
has never/rarely been explored in literature like:
1. To investigate the possibility of imposing the stability
in the identification process for the polynomial systems.
2. It is also possible to identify multiple linear/polynomial
ROM at different working points by the method explained
in this paper and construct a non-linear LPV ROM like
the one described in Wattamwar et al. [2009].
3. Observer and controller design for polynomial ROM.
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when the “true” model structure of a process is unknown. In order to estimate the parameters
in a state-space model, one needs to know the model structure and have an estimate of states.
An approximation of the model structure is obtained using radial basis functions centered
around a maximum a posteriori estimate of the state trajectory. A particle filter approximation
of smoothed states is then used in conjunction with expectation maximization algorithm for
estimating the parameters. The proposed approach is illustrated through an example.

Keywords: Nonlinear Systems, Maximum Likelihood Parameter Estimation, Expectation
Maximization, Particle Filters.

1. INTRODUCTION

Nonlinear models are commonly used to describe the
behavior of many chemical processes. Process variables,
typically, can be divided into latent variables (that are
not measured) and measured variables. A combination of
latent and measured variables can be elegantly used to
represent the dynamic behavior of a nonlinear process in
the following form,

xt+1 = f(xt, ut, θ) + wt

yt = g(xt, ut, θ) + vt (1)

where xt ∈ Rn is the n-dimensional state vector, ut ∈ Rs

is the s-dimensional input vector, yt ∈ Rm is the m-
dimensional output or measurement vector, and wt, vt
are independent and identically distributed Gaussian noise
sequences of appropriate dimension and variances Q and
R respectively, θ ∈ Rp is a p-dimensional parameter vector
and f(.), g(.) are some nonlinear functions that describe
the dynamics of the process. The nonlinear functions f(.)
and g(.) are typically obtained using physical laws such as
energy and mass balance expressions for the process. How-
ever, often, due to the complexity of chemical processes,
it is difficult to develop accurate and reliable nonlinear
functions. This article provides an algorithm for approxi-
mation and estimation of f(.) and g(.) using a combination
of radial basis functions and Expectation Maximization
(EM) algorithm Shumway and Stoffer (2000).

The complexity of the parameter estimation problem con-
sidered in this article arises due to unknown nonlinearities,
and presence of unmeasured latent variables. If the latent
variables are measured, then the model parameters can be
estimated using a straightforward nonlinear least squares
method Ljung (1999). If the process dynamic functions are
linear, then any sub-space approach can be used Van Over-

schee and Moor (1996). On the other hand, if the process
dynamic functions are nonlinear and latent variables are
not measured, then approximate maximum likelihood ap-
proaches such as the one based on local linearization in
Goodwin and Agüero (2005) and the one based on particle
filter approximation in Gopaluni (2008) can be used.

The algorithm presented in this article extends the one
in author’s previous work on parameter estimation for
known model structure Gopaluni (2008). The central idea
is to find the parameter vector, θ, that maximizes the
likelihood function of the observations, yt. Due to the
presence of latent variables, xt, it is difficult to develop
this likelihood function. On the other hand, due to Markov
property of latent variables, it is rather straightforward to
develop a joint likelihood function of the the latent and
measured variables. Hence, expectation maximization, a
maximum likelihood approach, that iteratively maximizes
the likelihood of the observations by maximizing the joint
likelihood function in each iteration, is used. EM algorithm
is implemented by iteratively finding the expected value
of the joint likelihood function in the first step and
maximizing it in the second step Dempster et al. (1977).

This approach using EM algorithm for parameter estima-
tion poses two problems. A structure of the process model
(or in other words, the functions f(.) and g(.)), and the
distribution of noise sequence is needed to develop the joint
likelihood function required in EM algorithm. Moreover,
since the process is nonlinear, the distribution of latent
variables, xt, and measurements is not Gaussian even if
Gaussian noise is assumed. As a result, the expected value
of the joint likelihood function required in EM algorithm
can not be analytically calculated. In this article, an ap-
proach that uses radial basis functions to approximate the
process dynamics and particle filters to approximate the
expected value of the joint likelihood function is presented.
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The rest of this paper is divided into following sections:
The problem is mathematically defined in section 2, a sum-
mary of expectation maximization algorithm is presented
in section 3, the proposed algorithm is presented in section
4, and an example is presented in section 5.

2. PROBLEM DEFINITION AND NOTATION

As explained in the previous section, it is assumed that the
process dynamics are unknown and therefore an approxi-
mation of the dynamics is needed to apply EM algorithm.
It is well-known that any function can be approximated
to an arbitrary degree of accuracy using basis functions
such as radial basis functions. Hence, the model in (1) is
approximated using radial basis functions as follows:

xt+1 =
Ix∑

i=1

hiρi(xt, ut, ci,Σx) +Axt +But + wt

yt =
Iy∑

i=1

giγi(xt, ut, di,Σy) + Cxt +Dut + vt

where ρi(., .) and γi(., .) are the radial basis functions
centered around ci and di with variance Σx and Σy

respectively, A, B, C, D are appropriate matrices that are
used to capture any linear dynamics in the model. wt, and
vt are identically and independently distributed Gaussian
noise sequences with zero mean and covariances Q and R
respectively. hi and gi are constant vectors of appropriate
dimensions. Ix and Iy are the number of basis functions
used in the state and observation equations. Theoretically,
even linear dynamics in the process can be approximated
if sufficiently large number of radial basis functions are
used. In order to reduce the total number of parameters,
and capture linear dynamics, linear terms involving the
matrices A, B, C, and D are added. In this article, radial
Guassian basis functions of the following form are used:

ρi(xt, ut, ci,Σx) = e[−(x̄t−ci)
T Σ−1

x (x̄t−ci)]

γi(xt, ut, di,Σy) = e[−(x̄t−di)
T Σ−1

y (x̄t−di)]

where x̄t is the concatenated vector of states and inputs.
The input-output data from the nonlinear model in (1) are
denoted by {y1:T , u1:T }, where y1:T are the observations
from time, t = 1, to t = T , and u1:T are corresponding
inputs during that time period. The parameter vector θ
includes all the constant parameters in the above model
that describe the process behavior, and is defined as θ =
(θl, θnl), where θl consists of all “linear” parameters, hi, gi,
Q and R, and θnl consists of all “nonlinear” parameters,
ci, di, Σx, Σy.

The expectation maximization algorithm plays a central
role in the method developed in this article, and hence
a summary of EM algorithm is presented below. It is an
elegant optimization algorithm that constructs a complete
likelihood function including the latent states and obser-
vations, and maximizes the likelihood function of observed
data through iterations. A brief description of the EM
algorithm is presented in this section to facilitate the
development of the proposed algorithm in later sections.

For the state-space model described in this article, let
p(y1:T |θ) denote the likelihood function of the observed

data. The maximum likelihood estimate of the parameter
vector is obtained by maximizing this observed data like-
lihood function. For certain classes of state-space models,
such as linear systems, it is possible to derive an explicit
expression for this joint density. However, for the model
considered in this paper, it is difficult to develop such an
expression due to the presence of latent states. Instead, us-
ing the Markov property of the states it is straightforward
to develop an expression for the complete (including states
and observations) likelihood function, p(x1:T , y1:T |θ). In
light of this feature of the Markovian states, the joint
probability density function of the states and observations
is iteratively maximized to obtain a maximizing θ for
p(y1:T |θ).
This maximization approach is called EM algorithm and
can be summarized in four steps:

(1) Choose an initial guess of the parameter vector, say
θ0.

(2) Estimate the states given the parameter vector and
the observations and evaluate

Q(θi, θ) =∫
log[p(x1:T , y1:T |y1:T , θ)]p(x1:T |y1:T , θi)dx1:T

(2)

where p(x1:T |y1:T ) is the joint conditional density
function of the states given the observations, and θi is
an estimate of the parameter vector from a previous
iteration.

(3) Maximize Q(θi, θ) with respect to θ. Call the maxi-
mizing value θi+1.

(4) Repeat the above two steps until the change in
parameter vector is within a specified tolerance level.

The second step in the above algorithm is called E-
step and the third step is called M -step. The likelihood
function, p(y1:T |θ), increases monotonically through these
iterations. Due to the nonlinear nature of the dynamics
it is not possible to analytically evaluate the Q-function
in (2). In the next section, an approximation of the Q-
function and an approach to maximize it are presented.

3. MAIN ALGORITHM

3.1 Approximation of Q function

A number of approximations of EM algorithm, involv-
ing different approximations of Q function have been
proposed in the literature. They either involve approx-
imating the nonlinearities Goodwin and Agüero (2005)
or approximating expected value of the joint likelihood
function using particle filters and other simulation based
approaches Schön et al. (2006); Gopaluni (2008). Methods
involving approximation of nonlinearities will fail if the
nonlinearities are prominent and on the other hand, meth-
ods involving approximation of expected value are usually
computationally intensive. In this article, the Q function
is approximated using a combination of particle filters and
smoothers. The complete details of this approximation
and its extension to handle missing data are presented
in the author’s work in Gopaluni (2008). For continuity a
summary of this approach is presented in this section.
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The Q function, using Markov property of states, can be
expanded to

Q(θi, θ)

=
∫

log[p(x1|y1:T , θ)]p(x1|y1:T , θi)dx1

+
T∑

t=2

∫
log[p(xt|xt−1, θ)]p(xt−1:t|y1:T , θi)dxt−1:t

+
T∑

t=1

∫
log[p(yt|xt, θ)]p(xt|y1:T , θi)dxt. (3)

From the above expression, it is easy to notice that in
order to obtain an approximation of the Q function, the
following density functions are needed:

(1) p(x1|y1:T , θi),
(2) p(xt−1:t|y1:T , θi), and
(3) p(xt|y1:T , θi).

It is possible to obtain the following particle approxima-
tions of the above density functions (please see Gopaluni
(2008) for details)

p(x1|y1:T , θi) =
N∑

i=1

w
(i)
1|1δ(x1 − x

(i)
1 )

p(xt|y1:T , θi) =
N∑

i=1

w
(i)
t|T δ(xt − x(i)t )

p(xt−1, xt|y1:T , θi) =
N∑

i=1

w
(i)
t−1,tδ(xt−1 − x(i)t−1)δ(xt − x(i)t )

where w(i)
1|1, w

(i)
t|T and w(i)

t−1,t are appropriate weights cal-
culated using Bayes rule and importance sampling Klaas
et al. (2006), δ(.) is the Kronecker delta function, and
x

(i)
t are N samples of states obtained through simulations.

Using the above approximations of the density functions
in the Q function, one can write the following expression,

Q(θi, θ) ≈
N∑

i=1

w
(i)
1|1 log[p(x(i)1 |y1:T , θ)] +

T∑
t=2

N∑
i=1

w
(i)
t−1,t

log[p(x(i)t |x(i)t−1, y1:T , θ)] +
T∑

t=1

N∑
i=1

w
(i)
t|T log[p(yt|x(i)t , θ)]

(4)
In the above approximation, since the noise sequences
are assumed to be Gaussian, the density functions,
p(x(i)t |x(i)t−1, y1:T , θ), and p(yt|x(i)t , θ) can be written in
terms of Gaussian density functions and hence,

log[p(x(i)t |x(i)t−1, y1:T , θ)] =

− 1
2

log(2π)− 1
2

log(det(Q))− 1
2
(x(i)t − x̂(i)t−1)

TQ−1

(x(i)t − x̂(i)t−1)

log[p(yt|x(i)t , θ)] =

− 1
2

log(2π)− 1
2

log(det(R))− 1
2
(y(i)t − ˆ̂x

(i)

t−1)
TR−1

(y(i)t − ˆ̂x
(i)

t−1)

where x̂(i)t =
∑Ix

i=1 hiρi(x
(i)
t , ut, ci,Σx) +Ax(i)t +But, and

ˆ̂x
(i)

t =
∑Iy

i=1 giγi(x
(i)
t , ut, di,Σy) + Cx(i)t +Dut.

3.2 Maximization of Q function

The maximization of Q function is performed in two steps
using separable least squares. It is easy to notice that
the parameters in θl enter the model linearly, while those
in θnl enter the model nonlinearly. Hence, a two step
procedure (called separable least squares) where the linear
parameters are estimated in the first step using linear
least squares, and the nonlinear parameters are estimated
in the second step through nonlinear least squares. The
procedure is explained below.

Step 1 Starting with an initial guess for the nonlinear
parameter vector, θnl, the Q function is maximized with
respect to θl. This maximization can be achieved through
linear least squares. Before providing the maximizing value
of the linear parameter vector, define the following matri-
ces,

Ωx = [h1 h2 · · ·hIx A B]

st = [I1ρ1(xt, ut, c1,Σx) I1ρ2(xt, ut, c2,Σx) · · ·
I1ρIx(xt, ut, cIx ,Σx) xt ut]

where I1 is a vector of ones of appropriate dimensions.
Noting that the Q function is quadratic in Ωx, through
straightforward calculations, it can be shown that

Ωx =

[
T∑

t=1

< xts
T
t >xx

][
T∑

t=1

< sts
T
t >xx

]−1

(5)

where < . >xx is used to denote integration with respect
to the density function p(xt−1:t|y1:T , θ). This integration
can be approximated using the particle approximation of
p(xt−1:t|y1:T , θ). The state co-variance can be shown to be

Q=
1
T

T∑
t=1

〈
(xt+1 − Ωxst)xT

t+1

〉
xx
.

Similarly, defining the matrices,

Ωy =
[
g1 g2 · · · gIy C D

]
rt = [I1γ1(xt, ut, d1,Σy) I1γ2(xt, ut, d2,Σy) · · ·

I1γIy (xt, ut, dIx ,Σy) xt ut

]
and noticing that the Q function is quadratic in Ωy, it can
be shown that,

Ωy =

[
T∑

t=1

< ytr
T
t >x

][
T∑

t=1

< rtr
T
t >yx

]−1

(6)

where < . >x denotes integration with respect to the
density function p(xt|y1:T , θ) and < . >yx denotes integra-
tion with respect to the density function p(yt|xt, θ). The
measurement noise co-variance can be shown to be,
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R=
1
T

T∑
t=1

〈
(yt − Ωyrt)yTt

〉
x
.

The parameters in the matrices Ωx, Ωy, Q, and R consti-
tute the linear parameter vector, θl.

Step 2 : In step one, it is assumed that the centers and
widths of the radial basis functions are known. However,
in practice, it is difficult estimate them. In this step an
approach to estimate centers and radii is presented. The
idea is to obtain a maximum a posteriori (MAP) estimate
of the state trajectory and fix centers and radii that pro-
vide the best possible predictions of MAP state estimate
and the observations. The MAP estimate of the state is
obtained using a modified Viterbi algorithm as described
in Godsill et al. (2001). For the sake of completeness,
Viterbi algorithm is described below 1 .

Viterbi Algorithm

1. Initialization: For 1 ≤ i ≤ N , δ1(i) = log(p(x(i)1 ) +
log(p(y1|x(i)1 )).

2. Recursion: For 2 ≤ t ≤ T , and 1 ≤ j ≤ N ,

δt(j) = log(p(yt|x(j)t )) + max
i

[δt−1(i)+

log(p(x(j)t |x(i)t−1))
]

ψt(j) = arg max
i

[
δt−1(i) + log(p(x(j)t |x(i)t−1))

]
3. Termination: iT = arg maxi δT (i) and xMAP (T ) =
x

(iT )
T .

4. Backtracking: For t = T − 1, T − 2, · · · , 1, it =
ψt+1(it+1), and xMAP (t) = xt(it).

An estimate of θnl is now obtained from the data
{xMAP (1 : T ), y1:T , u1:T} by fixing θl to its estimated
value from step 1 and using nonlinear least-squares. Step 1
and Step 2 are iterated until changes in θl and θnl between
iterations are less than a specified tolerance level.

3.3 Proposed Algorithm

The complete proposed identification algorithm is summa-
rized below:

0. Initialization: Initialize the parameter vector to θ0.
1. Expectation: Approximate the expected value of

the complete log-likelihood function (E-step) using
particle filters.

2 Maximum a Posteriori Estimate: Obtain a max-
imum a posteriori estimate of the state trajectory
using Viterbi algorithm. Using this MAP estimate of
the state trajectory, fix the centers and variances of
the radial basis functions. In other words, estimate
(θnl)i+1, where i denotes the number of EM algorithm
iterations performed so far.

3. Maximization: Maximize the Q function with re-
spect to θl and call the maximizing parameter,
(θl)i+1. Then set θi+1 = [(θl)i+1 (θnl)i+1].

4. Iterate: Repeat steps 1, 2, and 3 until the change in
parameter vector is within a specified tolerance level.

1 for notational clarity, the parameter dependence is not shown in
the density functions below

4. ILLUSTRATIVE EXAMPLES

The proposed approach is tried on data collected from
a real continuous stirred tank reactor. The governing

Fig. 1. Continuous Stirred Tank Reactor - Picture taken
from Seborg et al. (2004).

equations of this popular CSTR, shown in figure 1, are
given below (Morningred et al. (1992); Chen (2004))

dCA

dt
=
q

V
(CAi − CA)− k0CAe

−EA/T

dT

dt
=
q

V
(Ti − T )− ΔH

ρCp
k0CAe

−EA/T − ρcCpc

ρCpV
qc

(1 − e− hA
qcρcCpc )(T − Tc)

where CA is the concentration of the reactant in the
reactor, T is the temperature in the reactor, q is the
flow rate, V is the volume of the reactor, CAi and Ti

are inflow concentration and temperature, k0CAe
−EA/T

is the reaction rate, ΔH is the reaction heat, ρ and ρc
are the densities of the reactant and the cooling fluid
respectively, Cp and Cpc are the corresponding specific
heats, h andA are the effective heat transfer coefficient and
area respectively, Tc and qc are the temperature and flow
rate of the cooling fluid. Finite difference discretization of
the above continuous time differential equations results in
the following model,

f(xt, ut, θ) = xt−1

+ Δt

⎡⎣ qV (CAi − xt−1(1))− θ1xt−1(1)e−EA/xt−1(2)

q

V
(Ti − xt−1(2))− θ2xt−1(1)e−EA/xt−1(2)

⎤⎦
+

⎡⎣ 0
ρcCpc

ρCpV
ut−1

[
1− e−θ3A/(ut−1ρcCpc)

]
(Tc − xt−1(2))

⎤⎦
where the state vector is xt = [xt(1) xt(2)] =
[CA(t) T (t)], θ1 = k0, θ2 = (k0ΔH)/(ρCp), θ3 = hA,
ut = qc, g(xt, ut, θ) = xt and Δt is the discretization
sample time. CAi and qc are input variables. Real data 2

collected from this reactor is shown in figures 2 and 3. Our
goal is to fit a state-space model to this data assuming that
the energy and mass balance expressions provided above
are unknown.
2 Please note that this data is available at
http://homes.esat.kuleuven.be/ smc/daisy/
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Fig. 2. The concentration, CA, measurements.
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Fig. 3. The temperature, T, measurements.

The proposed algorithm is applied on this data, with a
single radial basis function to describe the nonlinearities
in the state and observation equations i.e., with Ix =
1, Iy = 1. The accuracy of the model can definitely
be increased by increasing the number of radial basis
functions used. The predictions of concentration from this
model for different prediction horizons are shown in figure
4. The %-fit, at these prediction horizons, calculated with
the estimated model is comparable to that of input-output
Hammerstein-Weiner (HW) models built using Matlab
system identification toolbox. However, it should be noted
that while there is no realistic and fair way to compare the
complexities of HW and state space models, an attempt is
made to compare the “best” trial and error based HW
model with the state-space model estimated using the
proposed approach.

The main advantage of the proposed method, over other
nonlinear input-output identification methods, is in its
ability to handle missing data - both in states and ob-
servations. In this article, missing observations are not
considered. However, as shown in Gopaluni (2008), it
is possible to derive particle approximations of density
functions, required to approximate the Q function, even
if there are some missing observations. Hence, extension
of this approach to handle missing observations is rather
straightforward.
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Fig. 4. True and predicted concentration profiles.

5. CONCLUSIONS

An approach to identify stochastic nonlinear systems using
a combination of expectation maximization algorithm and
particle filters is presented. In the proposed approach it
is assumed that the model structure is unknown, and is
approximated using radial basis functions. The expecta-
tion step in the algorithm is approximated using particle
approximations of certain density functions. The maxi-
mization step is performed by separable least squares,
where linear parameters are estimated using linear least
squares, and the nonlinear parameters are estimated by
using nonlinear least squares on a sequence of maximum
a posteriori states and observations. The developed algo-
rithm is applied to a real continuous stirred tank reactor.
The proposed approach is easily extendable to handle
missing observations.

REFERENCES

Chen, W. (2004). Bayesian Estimation by Sequential
Monte Carlo Sampling For Nonlinear Dynamical Sys-
tems. Ph.d. thesis, Ohio State University.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum
likelihood from incomplete data via the EM algorithm.
J. R. Stat. Soc. B, 39, 1–38.

Godsill, S., Doucet, A., and West, M. (2001). Maximum
a posteriori sequence estimation using Monte Carlo sim-
ulations. Ann. Inst. Stat. Math, 53(1), 82–96.
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Abstract: Linear identification of time invariant systems operating in closed loop is of special interest for 
a large number of engineering applications. There are different techniques and methods to carry out this 
type of identification. For example, modifying the N4SID method, one can derive a closed loop subspace 
identification method. The same can be done using the MOESP method. Based on them, the MON4SID 
method is introduced, which estimates the extended observability matrix and the state sequence directly 
from a LQ decomposition, using a combination of the techniques contained in both, MOESP and N4SID. 
This new method uses an algorithm to identify state space model of a plant in a closed loop system, in the 
same way as in MOESP method. The advantage of the proposed algorithm is that it does not require any 
knowledge about the controller, whereas such information is essential for other methods (e.g. N4SID).  
The disadvantage of this algorithm is that it needs a great amount of data to obtain better estimates. A 
simulated process to show the performance of this algorithm is presented. 

 

Keywords: Subspace identification; closed loop identification; state space models. 

 

1. INTRODUCTION 

Great part of the literature referring to system identification 
deals with how to find polynomial models as Prediction Error 
Method (PEM). In case of complex systems, there is a 
parameterization problem in the PEM model, so the state 
space model appears as an alternative to PEM, such as 
Multivariable Output-Error State sPace (MOESP) 
(Verhaegen, 1994), Canonical Variate Analysis (CVA) 
(Larimore, 1990) and Numerical algorithms for Subspace 
State Space System Identification (N4SID) (Van Overschee; 
De Moor, 1996). Statistical properties such as consistency 
and efficiency of these algorithms were studied by (Bauer, 
2003; Bauer; Ljung, 2002; Chiuso; Picci, 2005). One of the 
main assumptions of theses methods is that the process and 
the measurement noises are independent of the plant input. 
This assumption is violated when the system is working in 
closed loop. The closed loop identification is of special 
interest for a large number of engineering applications 
(Ljung, 1999), since closed loop experiments are necessary if 
the open loop plant is unstable, or the feedback is an inherent 
mechanism of the system (Forssell; Ljung, 1999; Van den 
Hof, 1997). Several closed loop identification methods have 
been suggested in the last years and can be broadly classified 
into three main groups: direct, indirect and joint input output 
identification methods (Forssell; Ljung, 1999). The results of 
any of the N4SID, MOESP and CVA methods cited above 
are asymptotically biased when closed loop identification is 
applied. To solve this problem, the MOESP method 
(Verhaegen, 1993) proposed a closed loop subspace 
identification method through the identification of an overall 
open loop state space. Based on it, the plant and the controller 

models are estimated. To do so, it is necessary to know the 
order of the controller. In the N4SID case (Van Overschee; 
De Moor, 1997) it is necessary to know a limited number of 
impulse response samples of the controller and, via direct 
identification, the plant model is estimated. There are other 
possible solutions to the closed loop identification problem; 
the reader can consult (Huang et al., 2005; Katayama, 2005; 
Katayama et al., 2002; Katayama et al., 2005; Ljung; 
McKelvey, 1996; Qin et al., 2005). 
Combining the MOESP and N4SID methods, we obtain the 
MON4SID algorithm, which estimates the extended 
observability matrix in the same way it occurs in the MOESP 
method, the state sequence is computed through the oblique 
projection, as it is done in the N4SID method. From this 
sequence, the past and future states are obtained, and finally a 
consistent estimate of the system matrices is obtained, 
applying the least squares method. In this paper, it is 
proposed an algorithm to identify the state space model of a 
plant in a closed loop system, in the same way as it was 
proposed in the MOESP method, that first computes a global 
model from which is extracted the plant model. This method 
does not need any knowledge about the controller. 

1.1 Open Loop  Subspace identification 

Consider a time discrete linear time invariant dynamic system 
described by the state space models in the innovation form: 

kkkk

kkkk

eDuCxy
KeBuAxx

++=

++=+1  (1) 
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where m
k Ru �  and l

k Ry �  denote the input and output 
signals, respectively and n

k Rx �  is the vector of states. 
l

k Re �  is zero-mean Gaussian white noise and independent 
of past input  and output data. A, B, C, D and K are matrices 
with appropriate dimensions. 

1.2 Open Loop  Subspace identification problem 

The subspace identification problem is: given [ ]nduuu ,..,1=  
and [ ]ndyyy ,..,1=  a set of input-output measurements, 
determine the order n of the unknown system, the system 
matrices (A, B, C, D) up to within a similarity transformation 
and Kalman filter gain K (Van Overschee; De Moor, 1996). 

1.3 Subspace matrix equation 

Making successive iterations in equation (1), one can derive 
the following matrix equation: 

f
s
if

d
ifif EHUHXY ++�=  (2) 

where subscript f  stands for the “future” and p  for the 
“past”. For the definition of the matrices d

iH and s
iH  given 

in (2), see (Van Overschee; De Moor, 1996). The past and 
future input block-Hankel matrices are defined as: 
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 (3)  

where mixN
fp RUU �, . The output and noise innovation 

block-Hankel matrices lixN
fp RYY �,  and mixN

fp REE �, , 

respectively, are defined in a similar way to (3). 
The states are defined as: 

[ ]100 ,.., �== jp xxXX  (4) 

[ ]1,.., �+== jiiif xxXX  (5) 

The extended observability matrix i�  is given by: 

	
	
	
	
	

�

�

�
�
�
�
�

�

�

=�

�1i

i

CA

CA
C

K

 (6) 

The orthogonal projection of the row space of xA into the row 
space of xB  is: 

x
T
xx

T
xxxx BBBBABA *)(/ =  (7) 

where *)(• denotes the Moore-Penrose pseudo-inverse of the 
matrix )(• . 

The projection of the row space of xA  into the orthogonal 
complement of the row space of xB  is: 

xxxxx BAABA // �=
�  (8) 

The oblique projection of the row space of G along the row 
space H into the row space of J is: 

JHJHGJG H ��=
�� *)/()/(/  (9) 

Properties of the orthogonal and oblique projections: 
0/ =

�

xx AA  (10) 

0/ =xAx CA
x

 (11) 

For a proof, see (Van Overschee; De Moor, 1996). 

2. PROPOSED IDENTIFICATION METHOD 

2.1 MON4SID identification method 

In this subsection, the MON4SID method is presented. To 
solve the problem in section 1.2, it is used the POMOESP 
method to calculate the extended observability matrix i� and 
the N4SID method is employed to calculate the matrices A, 
B, C, D  through the least squares method. Therefore, it is 
necessary to eliminate the last two terms in the right side of 
equation (2). That is done in two steps: first, eliminating the 
term f

d
i UH  in (2), performing an orthogonal projection of 

equation (2) into the row space of �

fU , which yields: 
����

++�= ff
s
iff

d
iffiff UEHUUHUXUY ////  (12) 

And by the property (10), equation (12) can be simplified to: 
���

+�= ff
s
iffiff UEHUXUY ///  (13) 

Second, to eliminate the noises in (13), an instrumental 
variable TT

p
T
p YUZ )(=  is defined. Multiplication of (13) by 

Z yields: 
ZUEHZUXZUY ff

s
iffiff

���
+�= ///  (14) 

As it is assumed that the noise is uncorrelated with input and 
output past data (Verhaegen; Dewilde, 1992), which means 
that 0/ =

�ZUE ff . Therefore, (14) is written as: 

fiff XZUY ˆ/ �=
�  (15) 

In equation (15), fff XZUX ˆ/ =
� is the estimate of the 

Kalman filter state. Equation (15) indicates that the column 
space of i�  can be calculated by the SVD decomposition of 

ZUY ff
�/ . For further details, see (Verhaegen; Dewilde, 

1992). i� , given in (15), can be derived from a simple LQ 
factorization of a matrix constructed from the block-Hankel 
matrices fU , pU  and fY , pY , in the form: 
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333231

2221

11

0
00

Q
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Q
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LL

L

Y
Z
U

f

p

f
 (16) 

and the orthogonal projection in the left side of (15) can be 
computed by matrix 32L  (Verhaegen; Dewilde, 1992). The 
SVD of  32L  can be given as: 
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The order n of the system is equal to the number of non-zero 
singular values in S . The column space of  1U  approximates 
that of i�  in a consistent way (Verhaegen; Dewilde, 1992), 
that is: 

1Ui =�  (18) 

The system (1) can be written as: 
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1
~~
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U
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DC
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Y
X i

ii

i

ii

i  (19) 

In equation (19), suppose (ideally) that 1
~

+iX and iX~  are 
given, then the system matrices (A, B, C, D) could be 
computed through the least squares method. Therefore, the 
problem now is to find the state sequences. 

pUfi ZY
f

/=�  is the oblique projection (Van Overschee; 

De Moor, 1996), which is achieved by performing an oblique 
projection of equation (2), along the row space  fU  onto the 

row space of  pZ , that is: 

pUf
s
i

pUf
d
ipUfipUf

ZEH

ZUHZXZY

f

fff

/

///

+

++�=  (20) 

It is easy to see that the last two terms of equation (20) are 
zero, by the property of the oblique projection, equation (11); 
and by the assumption that the noise is uncorrelated with 
input and output past data (Van Overschee; De Moor, 1996). 
Thus, equation (20) can be simplified to: 

iipUf XZY
f

~/ �=  (21) 

where 
pUfi ZXX

f
/~

= . Then equation (21) is written as: 

iii X~�=�  (22) 

The oblique projection i� given in equation (22) can be 
computed from (16) by: 

		
�

�
��
�

�
==�

�

2

1
2221

1
2232 )()(/

Q
Q

LLLLWUY pffi
. (23) 

An estimate of the state sequence X  is given by: 

pi ZLLX 1
2232

* )()( �
�= . (24) 

The following matrices are defined: )1:1(:,~
�= NXX i , 

):2(:,~
1 NXX i =+

. Thus, the system matrices can be 
estimated from equation (19). To estimate K see (Van 
Overschee; De Moor, 1996) or (Verhaegen; Dewilde, 1992). 

2.2 Closed loop identification method 

Figure 1 shows a typical standard closed loop system, where 
P and C denote respectively the plant and the controller, kr  

is the exogenous input, ku  the input control, ky  the plant 

output, kw  the plant disturbance and kv  the plant noise. 

 

 
 
 
 
 
Figure1. Standard closed loop system. 
P is given by equation (1) and C can be described by the 
following state equation: 

)(
)(1

kkckck

kkckck

yrDxCu
yrBsAs

�+=

�+=+  (25) 

where cA , cB , cC  and cD  are matrices with appropriate 
dimensions. 

2.3 Closed loop subspace identification problem 

Given ),,( kkk yur , a set of input output measurements finite 
data, of a well posed problem (Katayama, 2005), one 
considers the problem of identifying the deterministic part of 
the plant, that is, one determines the order n of the unknown 
system, the system matrices (A, B, C, D) up to within a 
similarity transformation. 

2.3 Identification by joint input output approach 

The objective of this paper is to obtain a state space model of 
the deterministic part of the plant P, based on finite 
measurement data ),,( kkk yur . The present problem is 
practically the same as it was exposed in Verhaegen (1993), 
but the approach is quite different, as it is not necessary to 
know any information about the controller. 
Using equations (1) and (25), it is possible to obtain a global 
state space model (Verhaegen, 1993): 

kkkk

kkkk

rDC

rBA

�++�=�

�++�=� +

~~

~~
1  (26) 

where TT
k

T
kk sx ][=� , TT

k
T
kk yu ][=� . kk �� , are noises 

and DCBA ~,~,~,~  are matrices with appropriate dimensions. 

The method MON4SID is applied to find an estimate of the 
matrices DCBA ~,~,~,~ , and based on them, to estimate k� . 
Once k�  is known, it is easy to compute the matrices of the 
plant. To do so, the method POMOESP (Verhaegen, 1994) is 
used. 

3. SIMULATION 

In this section, we provide a simulation example to evaluate 
the performance of the MON4SID algorithm and to compare 
it with other existing identification algorithms PEM, N4SIDC 
and ARXS. N4SIDC here denotes the algorithm of Van 
Overschee and De Moor (1997) and ARXS the algorithm of 
Ljung and MacKelvey (1996). This example was used by 
(Huang et al., 2004; Katayama, 2005; Overschee; De Moor, 
1997 and Verhaegen, 1993). It is important to stress that the 
algorithm N4SIDC has three versions (Overschee; De Moor, 
1997): two of them are unbiased and one is biased. The 
version implemented in this paper is the biased one, based on 

kw  kv  

P C 
+ 
   

-

kr   ku  ky  
+ 
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states. In this version, it is used two different initial 
conditions, one for past states and the other for future states, 
what causes the bias. For further details see (Overschee; De 
Moor, 1997). 
The plant is a discrete time model of a laboratory plant setup 
of two circular plates rotated by an electrical servo motor 
with flexible shafts. For further details, see (Hakvoort, 1990). 
The model of the plant is given by equation (1), where: 
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86336.0
0146.4
515.7

64.6
3.2

K
  and 0=D  

ke  is the white noise, which generates the disturbance on the 
plant, with standard deviation equal to 0 (for the case of 
deterministic system), 0.001 (to denote a system of little 
noise) and 0.01 (to denote a system of high noise). The 
controller has a state space description as in the equation 
(25), where: 

�
�
�
�

�

�

�
�
�
�

�

� ��

=

0
1
0
39.0

1
0
0
75.1

0
1
0
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0
0
1
65.2
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0
1
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�
�
�
�

�

�

�
�
�
�

�

�

�

�

=

2521.0
7625.0

8629.0
4135.0

T
CC  and 61.0=cD  

PRBS was used as an exogenous input signal, that is, 
persistently exciting of any finite order. There were collected 
3000 samples and the number of block rows 20=i . 
The simulation results for a closed loop deterministic 
identification without noise is shown in figure 2, where the 
order of the plant is n = 5. From figure 2, one can observe 
that all the algorithms had a good performance, apart from 
the algorithm N4SIDC, which had am improvement using n 
=7, as it is shown in figure 4. Figure 3 shows the poles of the 
original open loop plant and the estimated systems, where •  
denotes the original poles of the plant. One can see that all 
the algorithms had a good performance in relation to the 
estimation of the poles, which are on the unit circle. 
To see an advantage of the proposed algorithm, a white noise 
is added to the plant, first with measurement noise variance 
0.001 and then with 0.01. The comparison results are shown 
in figures 5 and 7 respectively. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Bode plots of the plant P, to n=5 and no noise. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Poles of the eigenvalues of the estimated A matrix. 

 
From figures 5 and 7 one can see that the algorithm 
MON4SID performs better in the presence of noise. The 
order for identification of the plant is 7=n . Figures 6 and 8 
show the pole estimates and the true poles of the plant. From 
figure 5 one can see that the algorithm ARXS does not have a 
good performance. 
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Fig.4. Bode plots of the plant P, to n=7 and no noise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. Bode plots of the plant P, to n=7 and little noise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Poles of the eigenvalues of the estimated A matrix. 

As can be noticed in figure 6 for the ARXS model, there is a 
difference between the estimated and real poles, what causes 
the difference between the real and estimated plots in figure 
5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. Bode plots of the plant P, to n=7 and high noise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 Poles of the eigenvalues of the estimated A matrix. 
From figure 8 it can be seen that the MON4SID method 
provides a better estimation of the most crucial pole and all 
the poles are inside the unit circle. This does not happen for 
the other methods. Based on figure 8 one can say that direct 
identification models do not have a good performance for 
closed loop identification in the presence of high noises. 
 

6. CONCLUSIONS 

In this work, the MON4SID algorithm is presented, which 
uses LQ factorization in the same way as the MOESP 
method, which is used to compute the oblique and orthogonal 
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projections; these projections are used to compute the state 
sequence and the extended observability matrix, respectively. 
The past and future state sequences are computed from the 
state sequences, which have only one initial state. It does not 
happen in the N4SID method, because for each oblique 
projection ( i� and 1+�i ) different state sequences ( 1

~X and 

1
~

+iX ) are computed, generating a problem of bias in the 
estimates.  
This algorithm was compared with three identification 
algorithms (PEM, N4SIDC, ARXS), when applied to a 
simulated example, which was used in (Van Overschee; De 
Moor, 1997) to identify a plant model in discrete time state 
space. Their results were compared by means of Bode plot 
and the comparison of the estimated poles with the true poles. 
The algorithm MON4SID presented good performance in all 
the cases. This algorithm has an advantage over the N4SIDC 
algorithm in the sense that it does not need any knowledge 
about the controller. 
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