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Abstract: This article presents an algorithm for identification of nonlinear state-space models
when the “true” model structure of a process is unknown. In order to estimate the parameters
in a state-space model, one needs to know the model structure and have an estimate of states.
An approximation of the model structure is obtained using radial basis functions centered
around a maximum a posteriori estimate of the state trajectory. A particle filter approximation
of smoothed states is then used in conjunction with expectation maximization algorithm for
estimating the parameters. The proposed approach is illustrated through an example.
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1. INTRODUCTION

Nonlinear models are commonly used to describe the
behavior of many chemical processes. Process variables,
typically, can be divided into latent variables (that are
not measured) and measured variables. A combination of
latent and measured variables can be elegantly used to
represent the dynamic behavior of a nonlinear process in
the following form,

xt+1 = f(xt, ut, θ) + wt

yt = g(xt, ut, θ) + vt (1)

where xt ∈ Rn is the n-dimensional state vector, ut ∈ Rs

is the s-dimensional input vector, yt ∈ Rm is the m-
dimensional output or measurement vector, and wt, vt

are independent and identically distributed Gaussian noise
sequences of appropriate dimension and variances Q and
R respectively, θ ∈ Rp is a p-dimensional parameter vector
and f(.), g(.) are some nonlinear functions that describe
the dynamics of the process. The nonlinear functions f(.)
and g(.) are typically obtained using physical laws such as
energy and mass balance expressions for the process. How-
ever, often, due to the complexity of chemical processes,
it is difficult to develop accurate and reliable nonlinear
functions. This article provides an algorithm for approxi-
mation and estimation of f(.) and g(.) using a combination
of radial basis functions and Expectation Maximization
(EM) algorithm Shumway and Stoffer (2000).

The complexity of the parameter estimation problem con-
sidered in this article arises due to unknown nonlinearities,
and presence of unmeasured latent variables. If the latent
variables are measured, then the model parameters can be
estimated using a straightforward nonlinear least squares
method Ljung (1999). If the process dynamic functions are
linear, then any sub-space approach can be used Van Over-

schee and Moor (1996). On the other hand, if the process
dynamic functions are nonlinear and latent variables are
not measured, then approximate maximum likelihood ap-
proaches such as the one based on local linearization in
Goodwin and Agüero (2005) and the one based on particle
filter approximation in Gopaluni (2008) can be used.

The algorithm presented in this article extends the one
in author’s previous work on parameter estimation for
known model structure Gopaluni (2008). The central idea
is to find the parameter vector, θ, that maximizes the
likelihood function of the observations, yt. Due to the
presence of latent variables, xt, it is difficult to develop
this likelihood function. On the other hand, due to Markov
property of latent variables, it is rather straightforward to
develop a joint likelihood function of the the latent and
measured variables. Hence, expectation maximization, a
maximum likelihood approach, that iteratively maximizes
the likelihood of the observations by maximizing the joint
likelihood function in each iteration, is used. EM algorithm
is implemented by iteratively finding the expected value
of the joint likelihood function in the first step and
maximizing it in the second step Dempster et al. (1977).

This approach using EM algorithm for parameter estima-
tion poses two problems. A structure of the process model
(or in other words, the functions f(.) and g(.)), and the
distribution of noise sequence is needed to develop the joint
likelihood function required in EM algorithm. Moreover,
since the process is nonlinear, the distribution of latent
variables, xt, and measurements is not Gaussian even if
Gaussian noise is assumed. As a result, the expected value
of the joint likelihood function required in EM algorithm
can not be analytically calculated. In this article, an ap-
proach that uses radial basis functions to approximate the
process dynamics and particle filters to approximate the
expected value of the joint likelihood function is presented.



The rest of this paper is divided into following sections:
The problem is mathematically defined in section 2, a sum-
mary of expectation maximization algorithm is presented
in section 3, the proposed algorithm is presented in section
4, and an example is presented in section 5.

2. PROBLEM DEFINITION AND NOTATION

As explained in the previous section, it is assumed that the
process dynamics are unknown and therefore an approxi-
mation of the dynamics is needed to apply EM algorithm.
It is well-known that any function can be approximated
to an arbitrary degree of accuracy using basis functions
such as radial basis functions. Hence, the model in (1) is
approximated using radial basis functions as follows:

xt+1 =

Ix∑
i=1

hiρi(xt, ut, ci, Σx) + Axt + But + wt

yt =

Iy∑
i=1

giγi(xt, ut, di, Σy) + Cxt + Dut + vt

where ρi(., .) and γi(., .) are the radial basis functions
centered around ci and di with variance Σx and Σy

respectively, A, B, C, D are appropriate matrices that are
used to capture any linear dynamics in the model. wt, and
vt are identically and independently distributed Gaussian
noise sequences with zero mean and covariances Q and R
respectively. hi and gi are constant vectors of appropriate
dimensions. Ix and Iy are the number of basis functions
used in the state and observation equations. Theoretically,
even linear dynamics in the process can be approximated
if sufficiently large number of radial basis functions are
used. In order to reduce the total number of parameters,
and capture linear dynamics, linear terms involving the
matrices A, B, C, and D are added. In this article, radial
Guassian basis functions of the following form are used:

ρi(xt, ut, ci, Σx) = e[−(x̄t−ci)
T Σ−1

x (x̄t−ci)]

γi(xt, ut, di, Σy) = e[−(x̄t−di)
T Σ−1

y (x̄t−di)]

where x̄t is the concatenated vector of states and inputs.
The input-output data from the nonlinear model in (1) are
denoted by {y1:T , u1:T }, where y1:T are the observations
from time, t = 1, to t = T , and u1:T are corresponding
inputs during that time period. The parameter vector θ
includes all the constant parameters in the above model
that describe the process behavior, and is defined as θ =
(θl, θnl), where θl consists of all “linear” parameters, hi, gi,
Q and R, and θnl consists of all “nonlinear” parameters,
ci, di, Σx, Σy.

The expectation maximization algorithm plays a central
role in the method developed in this article, and hence
a summary of EM algorithm is presented below. It is an
elegant optimization algorithm that constructs a complete
likelihood function including the latent states and obser-
vations, and maximizes the likelihood function of observed
data through iterations. A brief description of the EM
algorithm is presented in this section to facilitate the
development of the proposed algorithm in later sections.

For the state-space model described in this article, let
p(y1:T |θ) denote the likelihood function of the observed

data. The maximum likelihood estimate of the parameter
vector is obtained by maximizing this observed data like-
lihood function. For certain classes of state-space models,
such as linear systems, it is possible to derive an explicit
expression for this joint density. However, for the model
considered in this paper, it is difficult to develop such an
expression due to the presence of latent states. Instead, us-
ing the Markov property of the states it is straightforward
to develop an expression for the complete (including states
and observations) likelihood function, p(x1:T , y1:T |θ). In
light of this feature of the Markovian states, the joint
probability density function of the states and observations
is iteratively maximized to obtain a maximizing θ for
p(y1:T |θ).

This maximization approach is called EM algorithm and
can be summarized in four steps:

(1) Choose an initial guess of the parameter vector, say
θ0.

(2) Estimate the states given the parameter vector and
the observations and evaluate

Q(θi, θ) =∫
log[p(x1:T , y1:T |y1:T , θ)]p(x1:T |y1:T , θi)dx1:T

(2)

where p(x1:T |y1:T ) is the joint conditional density
function of the states given the observations, and θi is
an estimate of the parameter vector from a previous
iteration.

(3) Maximize Q(θi, θ) with respect to θ. Call the maxi-
mizing value θi+1.

(4) Repeat the above two steps until the change in
parameter vector is within a specified tolerance level.

The second step in the above algorithm is called E-
step and the third step is called M -step. The likelihood
function, p(y1:T |θ), increases monotonically through these
iterations. Due to the nonlinear nature of the dynamics
it is not possible to analytically evaluate the Q-function
in (2). In the next section, an approximation of the Q-
function and an approach to maximize it are presented.

3. MAIN ALGORITHM

3.1 Approximation of Q function

A number of approximations of EM algorithm, involv-
ing different approximations of Q function have been
proposed in the literature. They either involve approx-
imating the nonlinearities Goodwin and Agüero (2005)
or approximating expected value of the joint likelihood
function using particle filters and other simulation based
approaches Schön et al. (2006); Gopaluni (2008). Methods
involving approximation of nonlinearities will fail if the
nonlinearities are prominent and on the other hand, meth-
ods involving approximation of expected value are usually
computationally intensive. In this article, the Q function
is approximated using a combination of particle filters and
smoothers. The complete details of this approximation
and its extension to handle missing data are presented
in the author’s work in Gopaluni (2008). For continuity a
summary of this approach is presented in this section.



The Q function, using Markov property of states, can be
expanded to

Q(θi, θ)

=

∫
log[p(x1|y1:T , θ)]p(x1|y1:T , θi)dx1

+

T∑
t=2

∫
log[p(xt|xt−1, θ)]p(xt−1:t|y1:T , θi)dxt−1:t

+

T∑
t=1

∫
log[p(yt|xt, θ)]p(xt|y1:T , θi)dxt. (3)

From the above expression, it is easy to notice that in
order to obtain an approximation of the Q function, the
following density functions are needed:

(1) p(x1|y1:T , θi),
(2) p(xt−1:t|y1:T , θi), and
(3) p(xt|y1:T , θi).

It is possible to obtain the following particle approxima-
tions of the above density functions (please see Gopaluni
(2008) for details)

p(x1|y1:T , θi) =

N∑
i=1

w
(i)
1|1δ(x1 − x

(i)
1 )

p(xt|y1:T , θi) =

N∑
i=1

w
(i)
t|T δ(xt − x

(i)
t )

p(xt−1, xt|y1:T , θi) =
N∑

i=1

w
(i)
t−1,tδ(xt−1 − x

(i)
t−1)δ(xt − x

(i)
t )

where w
(i)
1|1, w

(i)
t|T and w

(i)
t−1,t are appropriate weights cal-

culated using Bayes rule and importance sampling Klaas
et al. (2006), δ(.) is the Kronecker delta function, and

x
(i)
t are N samples of states obtained through simulations.

Using the above approximations of the density functions
in the Q function, one can write the following expression,

Q(θi, θ) ≈

N∑
i=1

w
(i)
1|1 log[p(x

(i)
1 |y1:T , θ)] +

T∑
t=2

N∑
i=1

w
(i)
t−1,t

log[p(x
(i)
t |x

(i)
t−1, y1:T , θ)] +

T∑
t=1

N∑
i=1

w
(i)
t|T log[p(yt|x

(i)
t , θ)]

(4)

In the above approximation, since the noise sequences
are assumed to be Gaussian, the density functions,

p(x
(i)
t |x

(i)
t−1, y1:T , θ), and p(yt|x

(i)
t , θ) can be written in

terms of Gaussian density functions and hence,

log[p(x
(i)
t |x

(i)
t−1, y1:T , θ)] =

−
1

2
log(2π) −

1

2
log(det(Q)) −

1

2
(x

(i)
t − x̂

(i)
t−1)

T Q−1

(x
(i)
t − x̂

(i)
t−1)

log[p(yt|x
(i)
t , θ)] =

−
1

2
log(2π) −

1

2
log(det(R)) −

1

2
(y

(i)
t − ˆ̂x

(i)

t−1)
T R−1

(y
(i)
t − ˆ̂x

(i)

t−1)

where x̂
(i)
t =

∑Ix

i=1 hiρi(x
(i)
t , ut, ci, Σx) + Ax

(i)
t + But, and

ˆ̂x
(i)

t =
∑Iy

i=1 giγi(x
(i)
t , ut, di, Σy) + Cx

(i)
t + Dut.

3.2 Maximization of Q function

The maximization of Q function is performed in two steps
using separable least squares. It is easy to notice that
the parameters in θl enter the model linearly, while those
in θnl enter the model nonlinearly. Hence, a two step
procedure (called separable least squares) where the linear
parameters are estimated in the first step using linear
least squares, and the nonlinear parameters are estimated
in the second step through nonlinear least squares. The
procedure is explained below.

Step 1 Starting with an initial guess for the nonlinear
parameter vector, θnl, the Q function is maximized with
respect to θl. This maximization can be achieved through
linear least squares. Before providing the maximizing value
of the linear parameter vector, define the following matri-
ces,

Ωx = [h1 h2 · · ·hIx
A B]

st = [I1ρ1(xt, ut, c1, Σx) I1ρ2(xt, ut, c2, Σx) · · ·

I1ρIx
(xt, ut, cIx

, Σx) xt ut]

where I1 is a vector of ones of appropriate dimensions.
Noting that the Q function is quadratic in Ωx, through
straightforward calculations, it can be shown that

Ωx =

[
T∑

t=1

< xts
T
t >xx

][
T∑

t=1

< sts
T
t >xx

]−1

(5)

where < . >xx is used to denote integration with respect
to the density function p(xt−1:t|y1:T , θ). This integration
can be approximated using the particle approximation of
p(xt−1:t|y1:T , θ). The state co-variance can be shown to be

Q =
1

T

T∑
t=1

〈
(xt+1 − Ωxst)x

T
t+1

〉
xx

.

Similarly, defining the matrices,

Ωy =
[
g1 g2 · · · gIy

C D
]

rt = [I1γ1(xt, ut, d1, Σy) I1γ2(xt, ut, d2, Σy) · · ·

I1γIy
(xt, ut, dIx

, Σy) xt ut

]
and noticing that the Q function is quadratic in Ωy, it can
be shown that,

Ωy =

[
T∑

t=1

< ytr
T
t >x

][
T∑

t=1

< rtr
T
t >yx

]−1

(6)

where < . >x denotes integration with respect to the
density function p(xt|y1:T , θ) and < . >yx denotes integra-
tion with respect to the density function p(yt|xt, θ). The
measurement noise co-variance can be shown to be,



R =
1

T

T∑
t=1

〈
(yt − Ωyrt)y

T
t

〉
x

.

The parameters in the matrices Ωx, Ωy, Q, and R consti-
tute the linear parameter vector, θl.

Step 2 : In step one, it is assumed that the centers and
widths of the radial basis functions are known. However,
in practice, it is difficult estimate them. In this step an
approach to estimate centers and radii is presented. The
idea is to obtain a maximum a posteriori (MAP) estimate
of the state trajectory and fix centers and radii that pro-
vide the best possible predictions of MAP state estimate
and the observations. The MAP estimate of the state is
obtained using a modified Viterbi algorithm as described
in Godsill et al. (2001). For the sake of completeness,
Viterbi algorithm is described below 1 .

Viterbi Algorithm

1. Initialization: For 1 ≤ i ≤ N , δ1(i) = log(p(x
(i)
1 ) +

log(p(y1|x
(i)
1 )).

2. Recursion: For 2 ≤ t ≤ T , and 1 ≤ j ≤ N ,

δt(j) = log(p(yt|x
(j)
t )) + max

i
[δt−1(i)+

log(p(x
(j)
t |x

(i)
t−1))

]
ψt(j) = arg max

i

[
δt−1(i) + log(p(x

(j)
t |x

(i)
t−1))

]
3. Termination: iT = arg maxi δT (i) and xMAP (T ) =

x
(iT )
T .

4. Backtracking: For t = T − 1, T − 2, · · · , 1, it =
ψt+1(it+1), and xMAP (t) = xt(it).

An estimate of θnl is now obtained from the data
{xMAP (1 : T ), y1:T , u1:T} by fixing θl to its estimated
value from step 1 and using nonlinear least-squares. Step 1
and Step 2 are iterated until changes in θl and θnl between
iterations are less than a specified tolerance level.

3.3 Proposed Algorithm

The complete proposed identification algorithm is summa-
rized below:

0. Initialization: Initialize the parameter vector to θ0.
1. Expectation: Approximate the expected value of

the complete log-likelihood function (E-step) using
particle filters.

2 Maximum a Posteriori Estimate: Obtain a max-
imum a posteriori estimate of the state trajectory
using Viterbi algorithm. Using this MAP estimate of
the state trajectory, fix the centers and variances of
the radial basis functions. In other words, estimate
(θnl)i+1, where i denotes the number of EM algorithm
iterations performed so far.

3. Maximization: Maximize the Q function with re-
spect to θl and call the maximizing parameter,
(θl)i+1. Then set θi+1 = [(θl)i+1 (θnl)i+1].

4. Iterate: Repeat steps 1, 2, and 3 until the change in
parameter vector is within a specified tolerance level.

1 for notational clarity, the parameter dependence is not shown in
the density functions below

4. ILLUSTRATIVE EXAMPLES

The proposed approach is tried on data collected from
a real continuous stirred tank reactor. The governing

Fig. 1. Continuous Stirred Tank Reactor - Picture taken
from Seborg et al. (2004).

equations of this popular CSTR, shown in figure 1, are
given below (Morningred et al. (1992); Chen (2004))

dCA

dt
=

q

V
(CAi − CA) − k0CAe−EA/T

dT

dt
=

q

V
(Ti − T ) −

ΔH

ρCp
k0CAe−EA/T −

ρcCpc

ρCpV
qc

(1 − e
− hA

qcρcCpc )(T − Tc)

where CA is the concentration of the reactant in the
reactor, T is the temperature in the reactor, q is the
flow rate, V is the volume of the reactor, CAi and Ti

are inflow concentration and temperature, k0CAe−EA/T

is the reaction rate, ΔH is the reaction heat, ρ and ρc

are the densities of the reactant and the cooling fluid
respectively, Cp and Cpc are the corresponding specific
heats, h and A are the effective heat transfer coefficient and
area respectively, Tc and qc are the temperature and flow
rate of the cooling fluid. Finite difference discretization of
the above continuous time differential equations results in
the following model,

f(xt, ut, θ) = xt−1

+ Δt

⎡
⎣ q

V
(CAi − xt−1(1)) − θ1xt−1(1)e−EA/xt−1(2)

q

V
(Ti − xt−1(2)) − θ2xt−1(1)e−EA/xt−1(2)

⎤
⎦

+

⎡
⎣ 0

ρcCpc

ρCpV
ut−1

[
1 − e−θ3A/(ut−1ρcCpc)

]
(Tc − xt−1(2))

⎤
⎦

where the state vector is xt = [xt(1) xt(2)] =
[CA(t) T (t)], θ1 = k0, θ2 = (k0ΔH)/(ρCp), θ3 = hA,
ut = qc, g(xt, ut, θ) = xt and Δt is the discretization
sample time. CAi and qc are input variables. Real data 2

collected from this reactor is shown in figures 2 and 3. Our
goal is to fit a state-space model to this data assuming that
the energy and mass balance expressions provided above
are unknown.

2 Please note that this data is available at
http://homes.esat.kuleuven.be/ smc/daisy/
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Fig. 2. The concentration, CA, measurements.
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Fig. 3. The temperature, T, measurements.

The proposed algorithm is applied on this data, with a
single radial basis function to describe the nonlinearities
in the state and observation equations i.e., with Ix =
1, Iy = 1. The accuracy of the model can definitely
be increased by increasing the number of radial basis
functions used. The predictions of concentration from this
model for different prediction horizons are shown in figure
4. The %-fit, at these prediction horizons, calculated with
the estimated model is comparable to that of input-output
Hammerstein-Weiner (HW) models built using Matlab
system identification toolbox. However, it should be noted
that while there is no realistic and fair way to compare the
complexities of HW and state space models, an attempt is
made to compare the “best” trial and error based HW
model with the state-space model estimated using the
proposed approach.

The main advantage of the proposed method, over other
nonlinear input-output identification methods, is in its
ability to handle missing data - both in states and ob-
servations. In this article, missing observations are not
considered. However, as shown in Gopaluni (2008), it
is possible to derive particle approximations of density
functions, required to approximate the Q function, even
if there are some missing observations. Hence, extension
of this approach to handle missing observations is rather
straightforward.
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Fig. 4. True and predicted concentration profiles.

5. CONCLUSIONS

An approach to identify stochastic nonlinear systems using
a combination of expectation maximization algorithm and
particle filters is presented. In the proposed approach it
is assumed that the model structure is unknown, and is
approximated using radial basis functions. The expecta-
tion step in the algorithm is approximated using particle
approximations of certain density functions. The maxi-
mization step is performed by separable least squares,
where linear parameters are estimated using linear least
squares, and the nonlinear parameters are estimated by
using nonlinear least squares on a sequence of maximum
a posteriori states and observations. The developed algo-
rithm is applied to a real continuous stirred tank reactor.
The proposed approach is easily extendable to handle
missing observations.
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