
    

A new approach for the modelling of crystallization processes  
in impure media using Population Balance Equations (PBE) 

François Févotte* and Gilles Févotte**

 

* 99, Avenue de Verdun. 92130 Issy les Moulineaux (France)  
** Ecole des Mines de Saint Etienne, Centre SPIN. 158, Cours Fauriel. 42000 Saint Etienne                                             

& Université Lyon 1, 43, Avenue A. Einstein, 69622 Villeurbanne, Cedex (France). fevotte@emse.fr 

Abstract: For obvious industrial and theoretical reasons the problem of accounting for the effect of 
impurities in the population balance modelling of solution crystallization processes is a very important 
issue, and yet it has never been reported until today. Meanwhile, several kinetic models are proposed in 
the literature that relate the effect of impurities on the crystal growth and could be used for PBE 
modelling. The goal of the present paper is to address this issue and to present a new method, based on 
characteristics, which is shown to efficiently solve the difficulties raised by the specificity of the 
mathematical formulation of the Population Balance Equation (PBE) in the presence of impurities. 
Indeed, as far as hindering effects of the impurities on the crystal growth are concerned, it turns out that 
the “age” of the particles (i.e. the time they spent in the presence of impurities) might plays a key-role in 
the overall dynamic crystallization process. Accounting for such a new internal variable required a 
specific PBE resolution algorithm to be developed and evaluated. 
Keywords: Chemical industry, Crystallization, Characteristic curves, Nucleation, Modeling, Population 
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1. INTRODUCTION 

1.1  Population Balance Equations (PBE) and crystallization 

The formalism of Population Balances Equations (PBEs) is a 
widely used modelling tool in engineering, with applications 
including crystallization, powder technologies, polymer-
rization processes, biotechnologies, etc (Ramkrhisna and 
Mahoney, 2002). PBEs allow describing the time variations 
of properties of a large number of separate entities, such as 
particles, bubbles or droplets, interacting with each other 
and/or with their environment which usually consists of a 
continuous phase.  The dynamics of complex distributed 
particulate systems is related through the evolution of 
appropriate distribution functions evolving in a p-
dimensional space where p represents the number of internal 
coordinates required to characterize the particles. Internal 
coordinates refer to continuous properties of the individual 
dispersed entities such as size, composition, cristallinity, etc, 
or to discrete features such as the number of primary crystals 
in agglomerates or the number of free radicals in a 
polymerizing particle during emulsion polymerization 
reactions. In addition to internal coordinates, external 
coordinates are necessary to describe the physical location of 
the distributed entities.    

As far as dispersed phases are concerned (i.e. separate entities 
in a continuous fluid phase), the governing equations involve 
the number density of particles, which is defined as follows: 
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As already mentioned, external and internal coordinates (i.e. r 
and x, respectively) are necessary to characterize the 
“location” and the properties of the particles. Equation (1) 
actually means that the average number of particles in the 
particle state subspace dVxdVr with coordinates (�� �) is 
given by ��� �� 	
�dVxdVr.  

For the sake of simplicity (�� �) is usually referred to as the 
particle state and, as outlined by Ramkrishna (2000), it is 
worth noting that the further definition of  PBEs requires the 
average number density function���� �� 	
to be sufficiently 
smooth for allowing differentiation with respect to the 
coordinates and time.  

According to the previous definitions, the number � of 
particles belonging to a given subset ��� Ω⊂ is given by:  
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The previous mathematical formalism will now be applied to 
the time variations of crystals (i.e. solid particles generated 
during a crystallization process) characterized by some 
internal coordinates x. The rate of variation of � is referred to 
as
����
�  in the following: 
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where y represents any scalar variables required to quantify 
the possible interactions (e.g. through heat or mass transfer) 
between the particles and the continuous phase.  

Considering that the following operating conditions are 
verified:   
1. The solution crystallization process takes place in a well 
mixed batch reactor, 
2.  new crystals are generated through nucleation phenomena 
only (i.e. according to the “classical” nucleation theory, the 
size of new particles appearing in the dispersed phase is the 
critical size L* which can be assumed negligible. 
Agglomeration and breakage of the particles are both 
neglected),  

the population balance equation relating the time variations 
of the particle state is:  ��	 ���� 	
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with the following boundary conditions: 
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where the vector of internal coordinates is decomposed as: � � �'� ��%

The first assumption above implies that the number density 
function does not depend on space coordinates while 
assumption 2 means that, in order to express the source of 
new particles in the system, one has only to define boundary 
conditions to account for the expression of the rate(s) of 
nucleation of crystals (i.e. h(�,y,t)=0 in (4)).  

In the mono-dimensional case where one characteristic size 
of the particle only is considered (e.g. the diameter L of a 
fictitious spherical particle exhibiting the same projected area 
than the crystal under consideration), (4) reduces to the well-
known following partial differential equation allowing to 
compute the time variations of the Crystal Size Distribution 
(CSD). In the following, y is the supersaturation of the 
continuous liquid phase σ, defined by (9), which will now be 
omitted for the sake of simplicity:  
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The initial condition (7) accounts for the possibility of the 
crystallization to start through primary nucleation (i.e. no 
solid phase is initially present in the crystallizer) or through 
seeding. Seeding consists in the introduction of small amount 
of particles, usually sieved, in the supersaturated solution. 
The seed particles initiate the crystallization process and are 

characterized by their size distribution ψseed.  
RN is the rate of nucleation in  #.s-1.m-3 and G is the crystal 
growth rate in m/s. 

1.2  Growth rates and impurities  

In most published PBE modelling studies —according to 
McCabe’s hypothesis— the growth rate G(t) is assumed not 
to depend on the particle size but essentially on the driving 
force of crystallization, the following absolute definition of 
the supersaturation σ is now defined as: 

σ (t)=C(t)-C* (9) 
 

where C* is the equilibrium concentration (i.e. the 
temperature-dependant solubility of the crystallizing 
compound) and C(t) is the solute concentration.  

Several theoretical or phenomenological expressions can be 
found in the literature to express the supersaturation-
dependency of the growth rate which, more or less, turns out 
to obey the following kinetic law:  
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exponent i was shown to depend on the involved growth 
mechanism(s) which, in particular, depend(s) on the level of 
supersaturation (Mersmann A, 2002; Mullin J.W., 1993; 
Chernov, 2004). In practice, consistently with usual 
theoretical models, most published values of i are given 
between 1 and 2.  

Actually, modeling and control papers published in the field 
of crystallization engineering deal essentially with pure 
solute/solvent systems. As far as one considers the context of 
industrial processes, this is obviously an unrealistic 
assumption. Indeed, it is worth noting that industrial 
processes cannot avoid undesirable impurities to be generated 
during the many chemical reactions preceding the 
crystallization steps. It is well-known that even minute 
concentrations of impurities present in the initial solution can 
affect the crystallization processes (Chernov, 2004; Sangwal, 
1996; Wood, 2001) and induce significant reductions of the 
growth rate (Keshra & Sangwal, 1996; Kubota et al., 2000; 
Kubota, 2001).  

It is also known that impurities can lead to supersaturation 
thresholds below which the development of crystallization is 
completely inhibited (see e.g. Sangwal, 2002). To the best of 
our knowledge, such key-features of “real” industrial 
crystallization processes (i.e. processes performed in the 
unavoidable presence of impurities) were investigated 
through the observation of single crystals, and never 
described using PBEs. Therefore it remains important to 
evaluate quantitatively the distribution and the time-
variations of the detrimental effects of impurities during 
crystallization processes.  

Now, if one considers the variety of the techniques which 
were proposed to solve the PBEs in the case of crystallization 
processes, it appears that few of these methods are based on 



    

the method of characteristics (MOC). It is however known 
that MOCs avoid numerical diffusion errors and oscillatory 
solutions caused by the discretization of the involved growth 
term, especially when steep or discontinuous particulate 
phenomena take place in suspension (Kumar and 
Ramkrishna, 1997; Briesen, 2006).  

Quamar and Warnecke (2007) have proposed a numerical 
method for solving PBEs involving nucleation, growth and 
aggregation processes. The scheme combines a method of 
characteristics for computing the growth term, with a finite 
volume technique for calculating aggregation terms. The 
method is compared to a finite volume scheme through the 
modelling of “academic” situations for which analytical 
solutions are available (i.e. combination of crystal growth 
with aggregation or nucleation). The authors show that the 
numerical scheme based on MOC is more efficient than pure 
finite volume schemes, and that it better tracks steep 
variations of number density functions. This interesting 
feature of MOC is attributed to the disappearance of the 
advection term �/<�' from the main PBE.  

Sotowa et al. (2000) compared the numerical resolution of a 
simple crystallization PBE using a finite difference method 
and the method of characteristics. The study aimed at 
evaluating the impact of numerical dispersion on the design 
of feedback controllers. It was finally concluded that, as far 
as the simulation of control systems is concerned, the method 
of characteristics is recommended as a numerical technique 
for simulating crystallization processes.  

More recently, in order to simulate the growth of anisotropic 
particles, Briesen (2006) proposed a reduced two-
dimensionnal PBE model. Here, the MOC approach is used 
to validate the calculations. The application deals with the 
crystallization of potassium dihydrogen phosphate which is 
assumed to exhibit the shape of parallelepipeds terminated by 
two tetragonal pyramids. However, the simulation assumes 
initial seeding of the crystallization process only, i.e. no 
primary or secondary nucleation is taken into account, which 
is a rather questionable assumption. It should also be noticed 
that no specific information is reported about the MOC used.  

It is the goal of the present paper to address the problem of 
accounting for the “birthdate” of crystals in the governing 
crystallization PBE, and to propose a new numerical scheme, 
based on MOC, for the resolution of the latter PBE. In fact, it 
is clear that the approach proposed by Kumar and 
Ramkrishna (1996a,b, 1997) in their series of three papers is 
much more “advanced” than the approach presented here, in 
terms of the accuracy of the used size integration technique 
and with respect to the ability of the method to describe 
agglomeration and breakage phenomena. Nevertheless, the 
present algorithm offers another way of considering
nucleation phenomena and, through its great simplicity, could 
be valuable for applications where fast computation is 
required (i.e. for in-line feedback control applications for 
example).   

2. MODELING THE CRYSTAL GROWTH RATE IN THE 
PRESENCE OF IMPURITIES. 

2.1 The pinning mechanism 

With respect to the growth of crystals in pure solvent, the 
time-averaged advancement velocity of a step in impure 
media appears to be hindered by the adsorption of impurity 
species on the growing crystal surface. Indeed, as Fig. 1 
schematically shows, during the step advancement, kink sites 
can be blocked by foreign species that cannot easily be 
incorporated in the crystal lattice. To allow further crystal 
growth, the growth-step has to circumvent the pinned 
impurity, which obviously reduces the overall growth rate. 
Several models describing such a pinning mechanism were 
early described in the literature (see e.g. Cabrera & 
Vermilyea, 1958). Moreover, it is worth noting that many 
convincing observations of the pinning mechanism were 
reported, using e.g. advanced imaging techniques such as 
AFM (Atomic Force Microscopy, see e.g. Land et al., 1999, 
Thomas et al., 2004).   

Kubota-Mullin’s model (1995) was proposed to describe the 
pinning mechanism through Γ, the ratio between the step 
velocities in pure (u0) and impure (u) media. Γ is given by the 
following expression:  
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where γ is the edge free energy, a is the size of the growth 
unit, T is the absolute temperature, k is the Boltzmann 
constant and θ is the fraction of coverage of active growing 
crystal surface by adsorbed impurities, d is the average 
distance between actives growth sites.  

Fig. 1. Adorption of impurities at kink sites on the growing 
steps after Kubota (2001).

Parameter α  is an effectiveness factor which quantifies the 
efficiency of the impurity specie in hindering the crystal 
growth. It is very important to notice that α does not only 
depend on properties of the involved solid, but also on 
supersaturation.  

The coverage of the crystal surface by impurities is itself a 
stable dynamic process which therefore reaches a steady-state 
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θ∗. According to the hypotheses set to describe the 
adsorption process, various theoretical approaches can be 
used to compute the equilibrium coverage parameter θ∗. 

In Kubota-Mullin’s Model (Kubota & Mullin, 1995; Kubota 
et al., 1997), the equilibrium coverage of the growing surface 
is estimated  thanks to Langmuir’s adsorption theory: 

θ *=KCi /(1+KCi)  (12) 

where K is the Langmuir adsorption constant and Ci is the 
concentration of impurity.  

Even though the adsorption process is often regarded as 
instantaneous (i.e., the steady-state coverage θ∗ is reached 
instantaneously), it was shown that the dynamics of the 
adsorption of impurity species on the crystal surface cannot 
always be neglected. This is the reason why, as a first 
phenomenological approximation, the transient behavior of 
the coverage process was proposed by Kubota (2001) to obey 
a first-order dynamics: 

θ = θ * (1-exp(-t/τ)) (13) 

where τ is the time constant of the coverage dynamic process.  
  
As the crystal growth rate is usually assumed to be 
proportional to the step velocity, it finally turns out that G
depends on both time and supersaturation while in “usual” 
crystallization approaches dealing with pure media, G is 
assumed to depend only on σ(t). Combining equations (10) to 
(13) leads to the following expression where ν  is the time at 
which the crystal surface is set in contact with impure liquid 
phase (i.e. the time of nucleation): 
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2.2 Expression of the PBEs accounting for Kubota-Mullin’s 
model of impurities adsorption.  

Applying the previous impurity adsorption model (14) is not 
straightforward as it increases the dimension of the problem: 
the time (t-ν) spent by the crystals in contact with impurities 
should now be accounted for. To this effect, we introduce a 
population density function φ depending on the “classical” 
variables, L and t, as well as ν : 
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The standard definition of the crystal size distribution can 
still be retrieved as: 
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3.    A METHOD OF CHARACTERISTICS FOR SOLVING 
POPULATION BALANCE EQUATIONS ACCOUNTING 

FOR IMPURITY EFFECTS. 

3.1  A method of characteristics for monodimensional PBEs 
without impurities. 

Actually, the supersaturation σ(t) given by Eq. (9), is the 
driving force of the crystallization process. The decrease of 
the solute concentration C(t)  is caused by the generation of 
crystals: the molecules of solute initially present in the liquid 
phase are transferred through crystallization to the dispersed 
solid phase. The total amount of solid is therefore given by 
the total volume of solid after integrating the whole CSD:  
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where ρs (kg/m3) is the density of the solid compound, and ϕp
is a volumetric particle shape factor (ϕp  is equal to π/6 if one 
assumes ideally spherical particles.)  

An elementary mass balance of the solute allows computing 
the evolutions of C(t) and consequently yields σ(t) through 
(9), provided that the solubility curve is known. 

Assuming first that the crystallization takes place in pure 
solvent, the PBE system (6-8) is expressed as follows where 
the growth rate G(t) is a complex function of physical and 
kinetic variables depending on σ(t) and, through the indirect 
size-dependency of the solute concentration Cs(t), on the 
overall current size distribution �'� 	
: 
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In the sequel, it is clear that the process is operated in 
supersaturated conditions (i.e. σ > 0), the following condition 
is therefore always fulfilled: 
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Now, the following characteristic curves are considered: 
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As represented in Figure 2, the CSD along a given 
characteristic curve is defined as follows: 
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� 	m,   so that one can write: 
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Fig. 2. Schematic representation of the relationship between 
the number of particles nucleated at time ν and the overall 
distribution at time t.

It therefore turns out that ij does not depend on t, which 
implies that the solution of (20) is fully determined by the 
boundary condition (22) and the resolution of (24) describing 
the time evolutions of the characteristic curves:  
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Now, let us show that equation (27) allows determining the 
CSD for every size and time, i.e. every point �'� 	
 in the 
phase space can be represented as l'ij�	
� 	m. To this effect, 
the following application is considered: 
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which, given (23), shows that λτ is strictly decreasing and 
therefore invertible from [0,t] to [0,���'iT�	
]. It follows that 
the characteristic curves do not exhibit shock or rarefaction. 

A means of computing the distribution density function is 
therefore given by: 
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3.2  Semi-discretization of the size population density 
function.  

Considering successive sampling times, the time variable ν is 
discretized as follows: 
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From (28), and setting the following change of coordinates:  
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As illustrated by Fig.2, it finally turns out that integrating ψ
in size between Li (t) and Li-1 (t), at a given time t, amounts to 
integrating ψ  in ν  between νi-1 and νI , for a given size, and 
that the result of this integration does not depend on time t.  

Consequently, one simply has now to solve the following two 
systems which are coupled by the growth rate G: 
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3.3  Time-discretization.  

Actually, any time-discretization algorithm can be used to 
solve jointly the two coupled systems defined by (31). As an 
example, t can be discretized in the same way as ν, which 
leads to the very simple numerical scheme displayed below.  

Any numerical integration technique can also be used for the 
computation of the time variations of both L and . The 
global accuracy of the final numerical solution will mostly be 
limited by the order of the applied integration scheme. 
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3.4 Method of characteristics for monodimensional PBEs 
accounting for impurity effects. 

Now, in order to account for the distribution of growth rates 
resulting from the adsorption of impurities, the general 
system (15-18) is considered. As already explained, the 
growth rate /�	
 is a complex function of physical and 
kinetic variables depending on time and, through the indirect 
size-dependency of the solute concentration, on the whole 
current size distribution: 
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where CS  is the overall concentration of crystallized solid 
given by (19).  

The nucleation time of every crystal is introduced in (32) 
because, as explained in Part 2, the growth rate G now 
depends on the time spent by the growing crystal surface in 
the presence of adsorbing impurities.  

As in the “classical” case, it is obvious in the following that 
during the crystallization process the supersaturation remains 
positive: 
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Now, let us consider characteristic curves defined as follows: 
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The distribution along a given characteristic curve is noted as 
follows:   
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As before, it therefore turns out that [i��	� P
 does not depend 
on t. It can also be concluded that:  
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3.5  Semi-discretization of the size population density 
function taking the nucleation time into account.  

The time variable μ is discretized considering successive 
sampling times: � � ��:� � � �����and one can define the 
following distribution function: e| � fg, e�� � �$� |��������':�	
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Using (40) and setting:  
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It follows that: 
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The following two systems are thus obtained which are 
coupled by the growth rate G: 
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The principle of the resolution numerical method is the same 
as previously (see Fig. 2 and Part 3.3). 

4. APPLICATION: SIMULATION OF THE CRYSTALLI-
ZATION OF CITRIC ACID MONOHYDRATE IN THE 

PRESENCE OF IMPURITIES. 

In order to illustrate the resolution method, the crystallization 
of citric acid monohydrate is simulated using kinetic data 
previously published by Févotte et al. (2007). In the absence 
of reported experimental results in impure media, the 
parameters of the Kubota-Mullin model were set arbitrarily in 
order to compare the features of crystallization operations 
performed with and without impurities. The corresponding 
parameters are summarized in Table (1).  

In the following, no effect of the impurities on the nucleation 
kinetics is simulated, which is probably a very rough 
assumption. Actually published data about nucleation in the 
presence of impurities are really lacking and the goal here is 
rather to show the usefulness of the resolution method than to 
investigate real solute/solvent/impurity systems.  

Isothermal desupersaturation crystallization operations were 
simulated at 15°C. In order to initiate the crystallization in 
the supersaturated zone (i.e. Cinit. >C* at 15°C)), a seed mass 
of 10 kg (2% of the expected final mass of solid) is supposed 
to be introduced in a 1 m3 pilot-scale well-mixed crystallizer 
initially feed with a supersaturated citric acid solution. The 
intial solute concentration is: Cinit = 1.825 kg/kg water. After 
seeding, the number of particles increases, due to secondary 
nucleation, and the initial supersaturation is consumed 
through the growth of crystals. Despite the adsorption of 
impurity species at the crystal surfaces, the overall 
concentration Ci is assumed to remain constant during the 

crystallization (i.e. the amount of adsorbed molecules is 
clearly negligible with respect to the dissolved impurities.  

Fig. 3. Simulation of seeded isothermal crystallization of 
citric acid monohydrate in pure water at 15°C. 

Fig. 4. Simulation of seeded isothermal crystallization of 
citric acid monohydrate in water and in the presence of 
impurity at 15°C. The parameters of Kubota-Mullin’s are 
given in Table 1. 

As one can see in Figs. 3 and 4, the computed CSD is smooth 
and does not exhibit oscillatory behaviour, even when coarse 
time intervals are used for the numerical simulation. As 
expected, the presence of impurities has a clear effect on the 
development of the CSD. Fig. 3 shows that the size of the 
biggest particles obtained in pure water is about 1.2 mm 
while it is only 1 mm in the presence of impurities (Fig.4). 
However, Fig.5c shows that the main difference between the 
two final CSDs can be observed in a rather significant 
increase in the number of fines which is expected to have a 
very detrimental effect on the the downstream operation such 
as filtration.  

It turns out that the most significant effects of the impurities 
on the development of the batch process arise from the 
reduction of the supersaturation decrease, as displayed in 
Fig.5a.  

Indeed, as outlined in Part 1.2, due to the pinning mechanism, 
the level of supersaturation remains higher when impurities 
are present in the crystallizing solution. As during the present 
simulation no impurity effect is assumed to affect the 
secondary nucleation of new citric acid particles, higher 
levels of supersaturation lead to a much higher overall 



    

number of particles (Fig.5d) while, due to growth rate 
reductions and to the final supersaturation threshold outlined 
previously, the overall production of solid is clearly reduced. 
Figure 5b shows that only 70% of the expected solid is 
obtained at the end of the batch process performed in the 
presence of impurities (0.5 kg/L of crystals was expected 
from the selected values of Cinit and C*).  

Table 1.  Kinetic equations and parameters used for the 
simulation of the crystallization of Citric Acid 
monohydrate. 
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where     )*�	
  is the rate of secondary nucleation  
                         of monohydrate citric acid, ������������������K�       is a “lumped” kinetic constant  
                         for secondary nucleation, ������������������8�(       is the solubility of monohydrate citric  
                         acid at 15°C (1.35 kg/kg of water), ��������������������§�¨� are exponents expressing the supersaturation   
                         dependency of the growth rate  
                         and nucleation rate, ��������������������       is the exponent accounting for the impact of  
                         solid already present in suspension on  
                         the secondary nucleation rate. 

���������������������82�	
 � `2ab � �'� 	
'c�'^
d(

where    �������������`2= 1545 kg/m3������������ab= π/6 (spherical particles) 

Parameters of Kubota-Mullin’s Model:

K = 1 m3/kg 
Ci = 0.01 kg/m3  
τ   = 500 s 
α  = 10/σ  

Fig. 5 . Simulation of seeded isothermal crystallization of 
citric acid monohydrate in water with (dotted line) and 
without (continuous line) the presence of impurities, at 15°C.  

(a) Desupersaturation profile. (b) Generation of total 
crystallized solid during time. (c) Nucleation rate assuming 
negligible effect of the impurity species on the generation of 
particles. (d) Overall number of crystals.   
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5. CONCLUSIONS 

A method of characteristics for the resolution of population 
balance equations was developed and evaluated using 
published kinetic data on the crystallization of citric acid in 
water. The method can be applied to crystallization processes 
without agglomeration and breakage, and it is intended to 
allow the simulation of growth rate reductions observed 
during solution crystallizations performed in the presence of 
industrial impurities.  

Indeed, the effect of impurities was shown by Kubota and 
Mullin (1995) to depend on the time spent by every crystal in 
the impure liquid medium and, consequently, to depend on 
the “age” of the crystals. Such a particular problem requires 
accounting for an additional time variable in the expression 
of the PBEs and finding a way of solving the resulting PBE 
system.  

From a physical viewpoint, the simulation results are shown 
to be consistent and demonstrate the ability of the model to 
simulate the development industrial crystallization processes 
in the presence of impurities. Such simulation could be 
applied, for example, to the design of optimal temperature 
trajectories aimed at minimizing the detrimental effect of the 
concentration of impurities on the yield of industrial 
crystallization operations.  

As outlined by several authors (Kumar and Ramkrishna, 
1997; Briesen, 2006), despite the apparent simplicity of these 
two processes, the discretization of crystal nucleation and 
growth raises numerical diffusion and stability issues which 
arise from the hyperbolic features of the governing equations 
(6) to (8). From this latter viewpoint it is clear that the 
proposed resolution method allows one to account for 
nucleation and growth rates in a very straightforward way.  

NOMENCLATURE 

C Solute concentration kg solute/kg 
solvent 

C* Solubility concentration kg solute/kg 
solvent 

Ci Impurity concentration kg.m-3  
CS Solid concentration kg.m-3  
G Growth rate m. s-1

i Exponent of the supersa-
turation dependency of the 
crystal growth rate 

[-] 

im Exponent of the dependency 
of the nucleation rate on the 
concentration of solid in 
suspension 

[-] 

jm Exponent of the 
supersaturation dependency 
of the nucleation rate 

[-] 

K Langmuir’s  constant m3. kg-167 Growth rate constant [-] 
K2 Kinetic nucleation parameter  

L Particle size m ���� 	
 Number of particles at time t 
in a given subset 

#.m-3

)* Nucleation rate #.s-1.m-3

t Time s 
u Step velocity m. s-1

  

α 

Greek letters 

Impurity effectiveness factor [-] 
θ Fraction of coverage of 

growing crystal surface by 
adsorbed impurity 

[-] 

θ∗ Fraction of coverage of 
growing crystal surface by 
adsorbed impurity at the 
equilibrium 

[-] 

ν Nucleation time s 
σ  Supersaturation [-] 
τ Adsorption time constant s �'� 	
 Population density function  #.m-1.m-3
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