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Abstract: The Catofin propane process is an emerging industrial process for propylene production 
through dehydrogenation of propane. It is composed of multiple adiabatic fixed-bed reactors which 
undergo cyclic operations where propane dehydrogenation and catalyst regeneration alternate over 
roughly ten minute period for each. One of the major concerns in the operation of the Catofin process is 
maintaining the reactor at an optimum condition while overcoming gradual catalyst deactivation. 
Addressing this issue, an online optimization of the Catofin process combined with a repetitive control 
has been investigated. The optimizer computes optimum initial bed temperatures for dehydrogenation 
and optimum air flow rate for regeneration, and the repetitive controller performs cycle-wise feedback 
action during regeneration to attain the target bed temperatures at the terminal time of the regeneration 
period. Numerical studies have shown that the proposed online optimizing control system performs 
satisfactorily coping with the catalyst deactivation and other disturbances. 
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1. INTRODUCTION 

Advanced control and online optimization are now accepted 
as an essential process intensification technology that can 
create an additional profit in process industries wherever they 
are applicable. During the past two decades or more, there 
have been numerous industrial projects for advanced process 
control alone or integrated with online optimization as 
reviewed in Qin and Badgwell (2003). Such projects have 
typically proceeded for continuous processes with linear 
MPC only or cascaded by online steady state optimization. 
While the continuous process with steady state operation 
represents the majority of the chemical processes, non-
continuous processes such as batch, semi-batch, and 
repetitive processes also take an important part. Such 
processes are run under unceasing dynamics, which renders 
conventional advanced control and online optimization 
techniques to show limitations in the performance. In this 
research, a repetitive process called the Catofin propane 
process (ABB, 2008) has been addressed and an advanced 
control technique combined with online optimization that 
exploits the unique nature of the Catofin process has been 
investigated.  

In this study, an on-line optimizing control system for the 
Catofin propane process has been proposed and investigated 
numerically. The optimizing control system is composed of 
two tiers, a repetitive controller cascaded by an online 
optimizer. Repetitive control is put into an action during the 
regeneration (RG) steering the bed temperatures at two axial 
positions to reach the target values at the terminal time of the 
RG period. The open-loop operation with only a state 
estimation is conducted during the dehydrogenation (DH). 
The optimizer calculates the optimum target values for the 

bed temperatures and the RG air flow rate under a cyclic 
steady state. Both repetitive control and online optimization 
were constructed on the basis of a first principle reactor 
model reduced to a set of ordinary differential equations 
(ODE’s) using the cubic spline collocation method (CSCM) 
(Yun and Lee, 2007). For the repetitive control, the model is 
linearized before the start of each RG cycle around the 
operating trajectories in the previous cycle. The performance 
of the proposed optimizing control scheme has been 
investigated numerically.

2. PROCESS DESCRIPTION 

Fig. 1 shows a simplified process flow diagram of the Catofin 
propane process. It consists of multiple parallel adiabatic 
fixed-bed reactors that contain Cr2O3/Al2O3 catalyst, where 
the DH of propane and RG of catalyst are carried out 
alternatively over roughly ten minute period each with short 
periods of purging and evacuation operations in-between. 

 

Fig. 1. Process flow diagram of the Catofin propane process. 



 
 

     

 

The DH reaction is endothermic and produces a significant 
amount of coke. The bed temperatures are decreased and the 
catalyst loses activity by coke deposit and chromium 
reduction during this period. The RG reaction is coke burning 
by hot air and both the bed temperatures and catalyst activity 
are recovered under the oxidizing condition. The catalyst is 
known to have two years of life time and gradually loses the 
activity as the number of active sites is diminished by surface 
migration and agglomeration of Cr2O3 (Nijhuis, Tinnemans, 
Visser, and Weckhuysen, 2004). 

The following apparent reaction kinetics proposed by Kim, 
Lee, and Song (1980) for the propane DH and Mickley, 
Nestor, and Gould (1965) and Pena, Monzon, and Santamaria 
(1993) for the coke combustion were assumed: 
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The rate constants are given in Table 1, which were slightly 
adjusted from the original values (Kim, Lee, and Song, 1980; 
Mickley, Nestor, and Gould, 1965; Pena, Monzon, and 
Santamaria, 1993) to more closely fit the conversion and 
yield of the real process (ABB, 2008). 

Table 1. Parameters and normal operating conditions for 
the Catofin reactor model 

Constants 

Bed length = 1.5 (m), Bed diameter = 5.7 (m) 
Cc = 0.80 (kJ/kg•K), �c=8x102 (kg/m3),  
Cg = 3.71 for DH, 5.66 (kJ/kg•K) for RG 
D =1.7  for DH, 0.76 (m2/min) for RG 
kB=1.982 (kJ/min•m•K),  
R= 8.3462 (kJ/kmol K), DH and RG periods 
= 9min each 

Normal 
operating 

condition for 
DH 

Inlet temp=650 , 
Propane flow=56.8(kmol/min), 
P=0.5 (atm) 

Reaction rates 
(kmol/kg-

cat.min) for 
DH 

r1= k1[C3H8]RT,   k1=3.126*107e(-47100/RT) 

r2=k2[C3H8][H2]R2T2,  k2=9.70*10-3e(-12800/RT) 

r3=k3[C3H6]R2T2,      k3=8.407*109e(-62900/RT) 

r4= k4 [C3H8][C3H6]R2T2,k4=9.498*105e(-47800/RT) 

Normal 
operating 

condition for 
RG 

Inlet temp=690 , 
Air flow=103.4 (kmol/min), 
P=2.0 (atm) 

Reaction rate 
for RG r5=k5[C][O2]RT,       k5=4.129*103e(-25575/RT) 

It is assumed that the bed temperatures are measured at z = 
0.2, 0.4, 0.6, 0.8, and 1.0, respectively, and the product gas 
compositions are available as the time average values over 
the DH and RG periods each with one cycle of measurement 
delay. It is also assumed that the RG is conducted under 

feedback control while the DH is carried out in an open loop 
state under a constant propane flow rate. The control 
objective during the RG is to steer the bed temperatures at 
z=0.2 and 0.4 to the target values provided by the optimizer 
using the RG air temperature as a manipulating variable 
(MV). The RG air flow rate was chosen as a decision variable 
for the optimizer together with the bed temperature target 
values. 

3. REACTOR MODELLING 

3.1  Mass and Energy Balances 

In an adiabatic fixed-bed reactor, radial distribution of the 
concentrations and temperatures can be neglected. Under this 
assumption, the component mass and energy balance 
equations are written as 
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where ir  and iC  represent the rate of generation (kmol/kg-

cat min) and concentration (kmol/m3) of component i , which 
refers to C3H8, C3H6, H2, CH4, C2H6 for DH operation, and 
CO2, O2 for RG operation, respectively; cr  and cC  represent 

the rate of generation (kmol/kg-cat min) and concentration 
(kmol/m3) of coke, respectively; jr  referes to the rate of the 
jth reaction; z  denotes the normalized axial distance. Note 
that cr  for DH is different from cr  for RG. Other parameters 
and variables in the above model equations are given in Table 
1. 

In the above, the second boundary condition is specified at 
5z �   instead of 1z �  whereas the spatial domain is 
(0,1]z � . The reason for this is to more reasonably represent 

the true phenomenon, / 0dT dz �  as z � � , using a 
condition at a distant axial position, which was named as the 
far-side boundary condition (Yun and Lee, 2007). 

3.2  ODE Models by Cubic Spline Collocation Method 

ODE models for the virtual process and nominal model were 
derived separately using the CSCM (Yun and Lee, 2007) 
using ten and five equally spaced collocation points over 



 
 

     

 

(0,1]  plus an additional point at 5z � , respectively. The 
resulting ODE models can be concisely written as 

( , ), ,
i

i i ik
k k

dx f x u i DH RG
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In the above, the subscript k  denotes the cycle number; DHx  
represents the state for the DH model, that consists of bed 
temperatures, concentrations of C3H8, C3H6, H2, CH4, C2H6, 
and C at the internal collocation points; RGx  is similar to 

DHx   except that the concerned chemical components are C 
and O2; u  denotes the MV and represents the air temperature  

airT  for i=RG and is void for i=DH, respectively. 

3.3  Process Behavior under a Cyclic Steady State 

Fig. 2 shows the bed temperature trajectories of the virtual 
process under a cyclic steady state at the nominal operating 
condition. The bed temperatures are initially increased as the 
higher bed temperatures in the fore part of the respective 
collocation points recede by the gas flow. After a while, 
however, bed temperatures are decreased by the endothermic 
reactions as the propane DH proceeds and restored again by 
the coke combustion during the RG. The amount for the coke 
deposit changes during this operation are as shown in Fig. 3. 
The coke generation is larger at the higher temperature 
positions and vice versa. 

 

Fig. 2. Bed temperature trajectories at six axial positions 
under a cyclic steady state. 

 

Fig. 3. Trajectories of coke deposit at six axial positions 
under a cyclic steady state. 

The associated propane and propylene concentration 
trajectories during propane DH are shown in Fig. 4.  Over an 
initial period while the bed temperatures are high, almost 
complete propane conversion and high propylene yield are 
obtained at the reactor outlet. As the bed temperatures begin 

to fall, both the propane conversion and propylene yield 
decrease. If we scrutinize Fig. 4, it can be seen that the front 
half of the bed where temperatures are higher than the rear 
half contribute more than 78.2% of the propylene production. 
The propane conversion and propylene selectivity averaged 
over a DH period are 51.5% and 86.2%, respectively. 

 
(a)                                            (b) 

Fig. 4. Trajectories of propane and propylene concentrations 
under a cyclic steady state. 

4. OPTIMIZING CONTROL SYSTEM 

4.1  Structure 

The optimizing control system consists of three major parts: 
the online cyclic steady state optimizer, the repetitive 
controller, and the model estimator. Fig. 5 shows the overall 
structure of the proposed system. 
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J
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spT
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Fig. 5. Structure of the optimizing control system. 

Fig. 6 illustrates the information flow through the state 
estimators along the operational sequence in more detail.  
The state estimation continues for the DH as well as RG 
periods based on the measurements of the bed temperatures 
and average product gas compositions in the previous cycle. 
Estimates of the coke deposit and bed temperature at the 
collocation points are transferred from the DH to RG and also 
from the RG to DH. 

 

Fig. 6. Information flow along the sequence of operations. 



 
 

     

 

4.2  Repetitive Control 

4.2.1  Discrete-time Nominal Model 

We first describe how the discrete-time nominal model for 
the state estimator and controller design is derived. The 
forward difference approximation applied to (5) results in 
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where y  and p  represent the bed temperatures at z=0.2, 
0.4,…,1.0 and the average product gas composition measured 
at the end of the DH and RG periods with one cycle of 
measurement delay, respectively; N  denotes the total 
number of sampling instance during the period of DH (or  
RG). V  is a matrix that extracts the bed temperatures from 
the state and H  is defined in a similar way for the 
compositions at the bed outlet. Hereafter, let us drop the 
superscript i  for notational simplicity wherever there is no 
confusion. 

The composition equation in (7) can be rewritten in the form 
of a state space equation. For this, let us define 

1
0

1( 1) ( )
t

k k
n

p t H x n
N �

�

� ��  

1, 1 2, 1 ,( ) ( ), ( ) ( 1), , ( ) ( 1)k k k k N k kw t x t w t x t w t x t� � � �� � � �      (8) 

� �

1,

2,

1,

,

( ) 0 0 0 0
( ) 0 0 0 0

( ) , , , 0 0 0
( ) 0 0 0 0

( ) 0 0 0 0

k

k

k

N k

N k

w t I
w t I

w t M J J I
w t I
w t I

�

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � � !  ! !

�
�

�� � � � �� � � � � �
�
�

 

Then the associated state transition equations are recast to 
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The resulting model equation can be rewritten in the 
following simplified form: 
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Note that (10) and (11)  holds for DH and RG separately. 

4.2.2  Control Algorithm for RG Operation 

The repetitive control conducts cycle-wise integral control 
action. To facilitate the construction of the control law, it is 
convenient to transform (10) to a state space model with 

1( ) ( ) ( )k k ku t u t u t�� ��  and ( )ky t  as the input and output 
variables, respectively. Linearization of (10) around the 
trajectories of the process variables in the k-1th cycle yields 
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where 1( ) ( ) ( )k k kx t x t x t�� �� ; 1( )kA t�  represents a  

shorthand notation of 1 1 1( ( ), ( | ))k k kA u t x t t� � � , and 

similarly for 1( )kB t�   and 1( )kC t� .  ( )ku t�  is allowed to 
change P times at 1 2( 0) , , , Pt t t� �  during the RG period and 
determined at each time moment to satisfy the following 
quadratic prediction objective: 
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At other occasions than , 1, ,mt m P� �  ( ) 0u t� � .  In the 
above, ˆ ( | )k my N t  represents a prediction of ˆ ( )ky N , the bed 
temperatures at z=0.2 and 0.4, on the basis of the information 
up to mt  at the kth cycle; sp

kT  denotes the target value of 
ˆ ( )ky N . ˆ ( | )k my N t   is given by the following form: 
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It is straightforward to derive (14) from (12). Note that the 
state estimate 1( | )kx t t�   and ( | )RG

k m mx t t�  are needed to 
construct (12) (for linearization) and to solve (13) for ( )ku� 	  
(using (14)), respectively. 

4.2.3  State Estimator 

The state estimator is constructed separately for DH and RG 
in the form of the extended Kalman filter (EKF) for (10) and 
is given as 
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The observer gain ( )kK t  was obtained according to the EKF 
law using the process and measurement noise covariance 
matrices as the tuning factors. Using ( | )RG

k m mx t t  and 

1( | )RG
k m mx t t� ,  ( | )RG

k m mx t t� = ( | )RG
k m mx t t - 1( | )RG

k m mx t t�   for 
(14) was estimated. The state estimator acts as a fixed-lag 
smoother at t=N because the average product gas 
compositions are measured with one cycle of delay. 

4.2.4  Implementation procedure 



 
 

     

 

Over a DH-RG cycle, the following steps take turns in the 
repetitive control level: 

[Step 1]  DH period 

( | )DH
kx t t   is estimated for 1, ,t N� �  using (15). 

[Step 2]  Transition from DH to RG 

Initialize (1 | 0)RG
kx  by carrying over the coke deposit and bed 

temperature estimates in ( | )DH
kx N N  to (1 | 0)RG

kx . Obtain the 
linearized model in (12) by linearizing (10) around  

1( | )RG
kx t t� and 1( 1), 1, ,ku t t N� � � � . 

[Step 3]  RG period 

Perform the state estimation using (15). Compute 
1( | ) ( | ) ( | )RG RG RG

k k kx t t x t t x t t�� � � . Determine ( )k mu t� ,  
1, ,m M� �  according to (13) and (14). Implement 

1( ) ( ) ( ) ( )air
k k k kT t u t u t u t�� � � �  to the process. 

[Step 4]  Transition from RG to DH 

Initialize (1 | 0)DH
kx  by transferring the coke deposit and bed 

temperature estimates in ( | )RG
kx N N  to (1 | 0)DH

kx . 

4.3  Online Cyclic Steady State Optimizer 

The online optimizer determines spT  and airm , the target bed 
temperatures and the combustion air flow rate, respectively, 
that minimize the cost function under a cyclic steady state 
whenever the optimizer is invoked. 
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where refT , pm , and pY  represent the reference temperature, 
propane mass flow rate, and average propylene yield over a 
DH period, respectively and the subscript css means the 
cyclic steady state. The summation is taken over the RG 
period. 

The last term in J  is to enforce the cyclic steady state 
condition, which is slackened by introducing a slack variable 
s defined the last equation in (16). 

4.4  Model Parameter Estimator 

In this study, the catalyst deactivation was assumed to be the 
most important process change and the parameter estimator 
was designed to update the pre-exponent rate constants by 
minimizing the following quadratic objective on the 
prediction error: 
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where , ( )m i
ky t  and ( ; )i i

ky t (  represent the measurement and 
model prediction of ( )i

ky t  based on i( , respectively. 

We devised a three parameter function as in (18), which is to 
be multiplied to each of the pre-exponent rate constants. 
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Since there are four rate constants for the DH, DH( �  
� �1 4 1 4 1 4a a b b d d� � � . Likewise, � �5 5 5

RG a b d( � . 

It is true that (18) is only a rough description of the catalysts 
activity distribution in the real process. Nonetheless, both the 
repetitive controller and the optimizer can achieve highly 
precise tracking as well as the true minimum, respectively, 
overcoming model uncertainties since the controller performs 
the cycle-wise integral action and the optimizer searches for 
the minimum on the basis of the process  measurements. 

5. SIMULATION CONDITIONS 

The sampling period was chosen to be 3 sec resulting in total 
sampling instants of 360 with 180RG DHt t� �  over an entire 
cycle. The number control moments P was chosen as 3 and t1, 
t2, and t3 were selected as 1, 60, and 120, respectively. The 
following constraints were imposed on the MV movements 
for repetitive control: 

o600 ( ) ( ) 750( C)airu t T t& � &                      (19) 

In the virtual process, the case of catalyst deactivation is 
represented by multiplying all ik ’s by 2.41 0.5 ze�� . 

6.  RESULTS AND DISCUSSION 

The performance of the optimizing control system has been 
investigated for two cases. In the first case, the reactor was 
assumed to be initially at an arbitrary open-loop cyclic steady 
state and the optimizer steers the reactor to an optimum 
condition. In this case, the model parameter estimator was 
not invoked. In the second case, the optimum operation 
condition was assumed to be changed by catalyst deactivation, 
and the optimizer seeks for a new optimum condition from 
the previous operating condition determined in the first case. 
In the second case, the model parameter estimator plays an 
important role for both the repetitive controller and the online 
optimizer. 



 
 

     

 

The simulation results for the first case are summarized in 
Fig. 7. It shows the response of the bed temperatures to their 
respective target values sent by the optimizer and the 
decrease of the objective function as the online optimization 
proceeds. The online optimizer calculates the new optimal 
target values once a cyclic steady state is reached on the basis 
of the nominal model and process measurements whereas the 
repetitive controller maneuvers the air temperature to attain 
the target values. 

 

Fig. 7. Results of online optimization starting from an 
arbitrary open-loop state; (a) bed temperatures and their 
target values, (b) combustion air flow rate, (c) objective 
function. 

The simulation results for the second case are given in Fig. 8. 
It can be seen that the overall responses are similar to Fig. 7. 
Unlike in the previous case, however, DH(  and RG(  were 
recurrently updated during the optimization. One thing to 
note is that the bed temperatures are raised even higher from 
the values determined in the first case to compensate for the 
catalyst deactivation. 

 

 

Fig. 8. Results of online optimization after the catalyst 
deactivation occurs; (a) bed temperatures and their target 
values, (b) combustion air flow rate, (c) objective function. 
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