
     

A  New Process Noise Covariance Matrix Tuning Algorithm for
Kalman Based State Estimators 

Nina P. G. Salau*, Jorge O. Trierweiler*, Argimiro R. Secchi**, Wolfgang Marquardt***�

* Federal University of Rio Grande do Sul, Chemical Engineering Department, Eng. Luiz Englert, s/n°, Campus Central, CEP 
90040-040, Porto Alegre - RS, Brazil, ( ninas@ enq.ufrgs.br,  jorge@ enq.ufrgs.br ) 

** Federal University of Rio de Janeiro, PEQ – COPPE, Av. Horácio Macedo, 2030 - Centro de Tecnologia - Bloco G - Sala 
G-115, Cidade Universitária, CP: 68502, CEP 21945-970, Rio de Janeiro – RJ,  (arge@ peq.coppe.ufrj.br)                 

***RWTH Aachen University, Process Systems Engineering,Turmstr. 46, 52064 Aachen, Germany, 
(wolfgang.marquardt@avt.rwth-aachen.de) 

Abstract: A suitable design of state estimators requires a representative model for capturing the plant 
behavior and knowledge about the noise statistics, which are generally not known in practical 
applications. While the measurement noise covariance can be directly derived from the measurement 
device reproducibility, the choice of the process noise covariance is much less straightforward. Further, 
processes such as continuous process with grade transitions and batch or semi-batch process are 
characterized by time-varying structural uncertainties which are, in many cases, partially and indirectly 
reflected in the uncertainty of the model parameters. It has been shown that the robust performance of 
state estimators significantly enhances with a time-varying and non-diagonal process noise covariance 
matrix, which explicitly takes parameter uncertainty into account. For this case, the parameter uncertainty 
is quantified through the parameter covariance matrix. This paper presents a direct and a sensitivity 
method for the parameter covariance matrix computation. In the direct method, the parameter covariance 
matrix is found during the parameter estimation step of the SELEST algorithm, while in the sensitivity 
method, the parameter covariance matrix is obtained through a time-varying sensitivity matrix. The 
results have shown the efficacy of these methods in improving the performance of an extended Kalman 
filter (EKF) for a semi-batch reactor process.  
Keywords: state estimator design, noise statistics, parameter estimation, sensitivity analyses. 

 

1. INTRODUCTION 

Since usually not all states of a nonlinear dynamic model are 
measured, they need to be estimated to be used in any control 
and optimization strategy. State estimators are used to 
estimate the unmeasured states and to filter the measured 
ones. Therefore, they are essential for any advanced control 
and optimization application. Besides an accurate plant 
model, an appropriate choice of process and measurement 
noise covariances is crucial in applying state estimators. The 
measurement error covariance matrix is usually known from 
the error statistics of the measurement device and is readily 
available. However, in actual problems, the process-noise 
statistics are often unknown, do not satisfy the assumptions 
of normal distribution and are mostly due to the uncertainties 
in the model that can be either parametric or structural.  

Adaptive filtering techniques estimate noise covariances from 
data and have been used for nonlinear systems (Mehra, 1972; 
Odelson et al. 2006). The methods in this field can be divided 
into four general categories (Mehra, 1972): Bayesian, 
maximum likelihood, covariance matching, and correlation 
techniques. Bayesian and maximum likelihood methods have 
fallen out of favor because of their sometimes excessive 
computation times. Covariance matching is the computation 
of the covariances from the residuals of the state estimation 
problem, but has been shown to give biased estimates of the 
true covariances. The fourth category is correlation 
techniques, which is the most popular for determining these 

covariances (Odelson et al. 2006). However, these methods 
assume constant noise characteristics and the availability of 
data required to obtain a true representation of noise 
statistics. For continuous or batch processes with time-
varying process dynamics and operating within a wide range 
of process conditions, these noise statistics are time varying. 
The use of a fixed value of noise statistics can lead to poor 
filter performance and even result in filter divergence 
(Vallapil & Georgakis 1999, 2000, Leu & Baratti, 2000).  

Valappil & Georgakis (1999, 2000) introduced two 
systematic approaches to be used for the calculation of a 
time-varying and non-diagonal process noise covariance 
matrix, which explicitly takes parameter uncertainty into 
account. The first, called linearized approach, is based on a 
Taylor series expansion of the nonlinear equations around the 
nominal parameter values, while the second, called Monte 
Carlo approach, accounts for the nonlinear dependence of the 
system on the fitted parameters by Monte Carlo simulations 
that can easily be performed on-line. Both approaches have 
been compared favorably with the traditional methods of 
trial-and-error tuning of EKF. For the linearized approach, 
the process noise covariance matrix for the filter is obtained 
by a procedure using the known parameter covariance matrix. 
The main advantage of the linearized approach is that it 
involves very simple algebraic calculations and can easily be 
executed on-line. Afterwards this approach was employed 
successfully in EKF-based NMPC algorithms for batch 



 
 

     

 

processes (Valappil & Georgakis, 2001, 2002; Nagy and 
Braatz, 2003).  

In this work, a new process noise covariance matrix tuning 
algorithm is proposed. It is an extension of the linearized 
approach proposed by Valappil and Georgakis (1999, 2000) 
with two methods for the parameter covariance matrix 
computation. In the direct method, the parameter covariance 
matrix is found during the parameter estimation step using 
SELEST (Secchi et al., 2006), an algorithm for automatic 
selection of model parameters based on an extension of the 
identifiability measure of Li et al. (2004). In the sensitivity 
method, the parameter covariance matrix is obtained through 
a time-varying sensitivity matrix. Both methods can be 
successfully applied for state estimator design. 

2. PROBLEM FORMULATION AND SOLUTION 
STRATEGIES 

2.1 Hybrid Extended Kalman Filter (H-EKF) 

Consider the following nonlinear dynamic system to be used 
in the state estimator 
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� � � �
� �

k k k k k
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x=f x,u,t,p +� t

y =h x ,t +�
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where u denotes the deterministic inputs, x denotes the states, 
and y denotes the measurements. The process-noise vector, 
�(t), and the measurement-noise vector, �k, are assumed to be 
a white Gaussian random process with zero mean and 
covariance Q and Rk, respectively. The H-EKF formulation 
uses a continuous and nonlinear model for state estimation, 
linearized models of the nonlinear system for state covariance 
estimation, and discrete measurements (Simon, 2006). This is 
often referred to as continuous-discrete extended Kalman 
filter (Jazwinski, 1970). Here, the system is linearized at each 
time step to obtain the local state-space matrices as below: 

� �
nomx, u, t ,p

fF t
x

�� �� 	 
�� � ,     � �
nomx, u, t ,p

hH t
x

�� �� 	 
�� �   (2) 

The equations that compose the different steps in the H-EKF 
are given below. 

State transition equation: 

� �k

k k-1 k-1 k-1 k-1
ˆ ˆ ˆx =x + f x,u,�,p d�    (3) 

State covariance transition equation 

� � � � � � � �
k T

k k-1 k-1 k-1 k-1
P =P + F � P � +P � F � +Q d�� �

� �  (4) 

Kalman gain equation: 
-1T T

k k k k kk k-1 k k-1K =P H H P H +R� �
� �    (5) 

State update equation: 

� �k k kk k k k-1 k k-1ˆ ˆ ˆx =x +K y -h x , t� �
� �    (6) 

State covariance update equation: 
� � � �T T

n k k n k k k k kk k k k-1P = I -K H P I -K H +K R K   (7) 

2.2 Linearized Approach to Calculate the �(t) Statistics  

As introduced by Valappil & Georgakis (1999, 2000), the 
linearized approach to calculate the �(t) statistics of (1)  
consists in assuming that the process noise vector �(t) mostly 
represents the effects of parametric uncertainty. As � �tx�   and 

� �tx nom�  are desired to be the same, �(t) can be defined by 

� � � � � �nom nom� t =f x,u,t,p -f x ,u,t,p    (8) 

Performing a first-order Taylor’s series expansion of the 
right-hand side of (8) around the nominal state trajectory 
(xnom) and the nominal parameters (pnom), neglecting the 
higher-order terms, results in following approximation  
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  (9) 

Assuming that � � � �� � � � � �� �nom nomˆx -x = x -x 0t t t t � , the 
process noise is calculated from 

� � � �� �p nomnom
� t =F p-pt     (10) 

where � �pnom
x,u,t,pnom

f
F t p

�� �
� 	 
�� ��

. Calculating the expected 

value of both sides of (10) yields 

� � � �p nom nomnom
� t =F t (p p )=0�     (11) 
indicating that the noise sequence �(t) has zero mean if the 
employed linearization in the parameters was accurate. Then 
the desired computation of the covariance Q(t) of �(t) is 
given by  

� � � � � �T
p p pnom nom

Q t =F t C F t     (12) 

where pp nn
pC ���  is the parameter covariance matrix. In 

this work, we propose two methods to calculate Cp, which are 
presented in the next subsection. 

2.3 Proposed Methods to Calculate the Cp Matrix  

Consider the general process model. 

� �nomx=f x,u,t,p�      (13) 

Differentiating (13) with respect to the nominal parameter 
vector, pnom, gives 

� � � �pnom
nom

f fS S F S Ft tx p
� �� �� �� � � �	 
	 
� �� � � �

�
  

(14) 

where S is the sensitivity matrix � �nomx p� � determined by 
numerical integration of (14) along with the model of (13).  

 

 



 
 

     

 

2.3.1 Direct Method: Parameter Covariance Matrix via 
Parameter Estimation  

In this method, Cp is constant and directly obtained from the 
parameter estimation procedure. For this purpose, we have 
selected the SELEST algorithm proposed by Secchi et al. 
(2006). This algorithm uses a sensitivity matrix, S, based on 
calculation of the parameters effects on the measured outputs 
and of a linear-independence metric, as proposed by Li et al. 
(2004). A predictability degradation index and a parameter 
correlation degradation index are used as stopping criterion. 
The definitions of these indexes as well as the SELEST 
algorithm are presented in Secchi et al. (2006).  

2.3.2 Sensitivity Method: Parameter Covariance Matrix via 
Sensitivity Matrix 

As pointed out by Sharma & Arora (1993), the sensitivity 
matrix, S, can play a role in quantifying how good the 
estimate of the parameters is. For uncorrelated and normally 
distributed measurement errors and for nonlinear least- 
squares problems, a parameter covariance matrix Cp can be 
estimated from 

� �-12 T
pC s S S�      (15) 

where s2 accounts for the accuracy of the data used to fit the 
parameters ( Ŷ ) and is usually represented by the residual 
mean square  

� � � �T

p p2
ˆ ˆY-Y Y-Y

s =
n-np

�     (16) 

where Yp is the estimated data,  n is the number of samples 
and np is the number of estimated parameters. The residual 
mean square s2 is also obtained from the parameter estimation 
using SELEST algorithm. Since the sensitivity matrix, S, is 
time-varying, Cp is also time-varying, which represents an 
advantage of this method.  

3. MATRIX Q TUNING ALGORITHM  

This section presents an algorithm for tuning of the process 
noise covariance matrix. As mentioned earlier, this algorithm 
is an extension of the linearized approach proposed by 
Valappil and Georgakis (1999, 2000) with two methods for 
the parameter covariance matrix computation.  

Since any model is an abstraction of reality, both the 
structural and parametric uncertainties are present to some 
degree in most real situations. The structural uncertainties is 
often captured by uncertainty in the model parameters only. 
The proposed algorithm requires knowledge about which
parameters can be considered time-varying. Afterwards, 
SELEST algorithm estimates the best possible subset of 
parameters within a full set of model parameters assumed 
time-varying.    

Parameter estimation is a key ingredient to quantify the 
parametric model uncertainty. However, most contributions 
on parameter estimation in process control assume that all 
model states are measured, which is not true in practical 
applications. In order to carry out proper parameter 
estimation, the EKF is used in a previous stage with the 

nominal parameters to estimate the unmeasured states and to 
filter the measured ones. Afterwards, the state estimation is 
carried out a posteriori with the estimated parameters, pest, 
and a time-varying and non-diagonal matrix Q obtained from 
the procedure described above. The required covariance 
matrix Cp is calculated by one of the two methods proposed 
in this work. The structure of the algorithm for process noise 
covariance matrix Q tuning is shown in Fig. 1. 

 
Fig. 1: Process noise covariance matrix Q tuning algorithm. 

Note that the matrix Q in our algorithm takes into account the 
estimated parameters, pest, rather than the nominal 
parameters, pnom, as introduced by Vallapil and Georgakis 
(1999, 2000) in (12). 

4. CASE STUDY: WILLIAMS-OTTO SEMI-BATCH 
REACTOR 

A description of the Williams-Otto semi-batch reactor, as 
introduced by Forbes (1994), is provided in this section. The 
following reactions take place in the reactor: 
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Reactant A is already present in the reactor, whereas reactant 
B is fed continuously to the reactor. During the exothermic 
reactions the products P and E as well the side-product G are 
formed.  The heat generated through the exothermic reaction 
is removed by a cooling jacket, which is controlled by 
manipulating the cooling water temperature. The manipulated 
control variables of this process are the inlet flow rate of 
reactant B (FB) and the cooling water temperature (Tw), 
whose values have been kept constant in our study. The 
model equations are given below and the model parameters 
are reported in Table 1: 
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Table 1.  Model Parameters  
MA 100 kg.kmol-1 �H1 -263.8 kJ.kg-1 
MB 200 kg.kmol-1 �H2 -158.3 kJ.kg-1 
MC 200 kg.kmol-1 �H3 -226.3 kJ.kg-1 
MP 100 kg.kmol-1 A0 9.2903 m2

ME 200 kg.kmol-1 V0 2.1052 m3

MG 300 kg.kmol-1 U 0.23082 kJ(m2.°C.s)-1 
A1 1.6599E3 m3kg-1s-1 FB 5.7840 kg.s-1

A2 7.2117E5 m3kg-1s-1 Tw 100 °C 
A3 2.6745E9 m3kg-1s-1 mA(t0) 2000 kg 
E1 6666.7 K mB(t0) 0 
E2 8333.3 K mC(t0) 0 
E3 11111.1 K mP(t0) 0 
Tref 273.15 K mE(t0) 0 
Tin  35 °C mG(t0) 0 
cp 4.184 kJ.kg-1.°C-1 V(t0) 2 m3

� 1000 kg.m-3 Tr(t0) 65 °C 
tf 1000 s   

In order to illustrate the application of the Q tuning 
algorithm, the kinetic parameters E1, E2, and E3 were chosen 
as uncertain parameters. A parametric uncertainty of %5�  is 
assumed. The correct parameter values (“plant parameters”), 
p, and the nominal parameters, pnom, are reported in Table 2. 

Table 2.  Uncertain Parameters 
 E1 E2 E 3 
p 6333.4 7916.3 11666.6 

pnom 6666.7 8333.3 11111.1 

The application of Q tuning algorithm to the Williams-Otto 
semi-batch reactor is shown below.  

4.1 First Iteration of Q Tuning Algorithm.  

4.1.1 Results of State Estimation: First Stage  

A first state estimation with nominal parameters is performed 
to provide information on unmeasured states to be used in the 
subsequent parameter estimation step. The states and 
measurements of the Williams-Otto semi-batch reactor are 

� �A B C P E G rx= m m m m m m V T   (29) 

� �B E Gy= m m m V     (30) 

The measurements are obtained from a simulation of the 
plant model with the plant parameters p. The initial condition 
and the parameters of the state estimation are 

� �0x = 2000 0 0 0 0 0 2 65    (31) 
2

0 8x8P =0.0001 I      (32) 

k k-1�t=t -t =31.25      (33) 

� �2 2 2 2R=diag 0.1 0.1 0.01 0.01    (34) 

� �2 2 2 2 2 2 2 2Q=diag 0.1 0.01 0.1 0.01 0.01 0.1 0.1 0.01 (35) 

The state estimation results using the EKF with nominal 
parameters and a constant-value and diagonal matrix Q are 
shown in Fig. 2. As expected, in the presence of a constant 
parametric model mismatch, the estimated states show a bias 
(cf. Fig. 2b). 

 
(a) 

 
(b) 

Fig. 2: EKF with nominal parameters (pnom) and a constant-
value and diagonal matrix Q (Qd): (a) filtered measured states 
and (b) estimated states.  



 
 

     

 

4.1.2 Results of Parameter Estimation Step 

Using the SELEST algorithm, the parameter estimation step 
is based on the nominal parameters, pnom. The data used to fit 
the parameters are composed of the estimated states and the 
filtered measured states provided by the first state estimation 
stage. As a result of the parameter estimation step, the 
SELEST algorithm provides the estimated parameters, pest, 
the parameter covariance matrix, Cp, and the residual mean 
square, s2 

� �estp 6333.8 7957.9 11223.5�  
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where � is composed of the estimated and the filtered 
measured states resulting from the first state estimation stage 
and  Yp is calculated by the SELEST algorithm. 

4.1.3 Results of State Estimation: Second Stage   

At this point, state estimation is carried out with the 
estimated parameters and the time-varying and non-diagonal 
Q obtained by Cp. The performance of the EKF with the 
following choices for calculating Q is compared and the 
results are shown in Fig. 3.   

Direct method: Q is time-varying and non-diagonal, with pest 
and Cp estimated by means of the SELEST algorithm.  

Sensitivity method: Q is time-varying and non-diagonal, with 
pest and s2 estimated by means the SELEST algorithm and Cp 
obtained via sensitivity integration. 

Random Variation: Proposed by Valappil and Georgakis 
(1999, 2000). The parameters in the plant are assumed to 
vary with time, taking values at each sample interval from a 
nominal distribution. The mean value of the varying plant 
parameter is assumed to be different from the nominal value 
of the model parameter by a fixed amount 	. The parameter 
covariance matrix used in the filter is given by Cp = 	2. 

Monte Carlo Approach: Proposed by Valappil and Georgakis 
(1999, 2000). This approach accounts for the nonlinear 
dependence of the system on the fitted parameters by Monte 
Carlo simulations. For the case study, 500 Monte Carlo 
simulations of different parameter values were used, resulting 
in 500 evaluations of the process noise. 

The initial conditions (31) and the parameters of the state 
estimation algorithm (32 to 35) remain the same in this stage. 
According to Fig. 3, the EKF with a time-varying and non-
diagonal matrix Q obtained by random variation in the plant 
parameters presents the worst performance. The sensitivity 
method performs better compared to the direct method. As 
mentioned before, an advantage of this method is that the 
parameter covariance matrix, Cp, is time-varying due to the 
time-varying sensitivity matrix S. In spite of accounting the 
nonlinear dependence of the system on the fitted parameters, 

the Monte Carlo shows a performance slightly inferior to the 
that of the sensitivity method for estimated states (Fig. 3b) 
and a performance quite inferior to that of the sensitivity and 
direct methods for measured states (Fig. 3a), not to mention 
the high computational effort. 

 
(a) 

 
(b) 

Fig. 3: EKF with estimated parameters (pest) and a time-
varying and non-diagonal Q matrix obtained by the proposed 
methods: direct (Qdm) and the sensitivity (Qsm); and by the 
literature methods: random variation (Qrv) and Monte Carlo 
(QMC): (a) filtered measured states and (b) estimated states.  

4.2 Second Iteration of Matrix Q Tuning Algorithm 

Since the unmeasured states are unknown in practical 
applications, the state estimation accuracy shall be quantified. 
The matrix Q tuning algorithm is hence performed iteratively 
with the proposed methods for the parameter covariance 
matrix computation until the state estimation accuracy could 
not be significantly improved.  

The parameter estimation is now taking place with the 
estimated parameters, pest, and the estimated states and 
filtered measurements from the first iteration of the proposed 
algorithm. The parameter estimation results for both methods 
are given in Table 3. 

Table 3.  Uncertain Parameters 

Method pest s2 
E1 E2 E 3 

Direct 6328.1 7952.7 11668.9 7.0880 
Sensitivity 6333.9 7921.3 11666.3 0.7785 



 
 

     

 

Disregarding numerical round off, the matrix Cp is the same 
for both methods, i.e. 
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As expected, the residual mean square s2 is smaller for the 
sensitivity method which performs better than direct method 
in an a-posteriori state estimation stage, as shown in Fig. 4.    

 
Fig. 4: Estimated states for the EKF with estimated 
parameters (pest) and a time-varying and non-diagonal Q 
matrix obtained by the direct (Qdm) and the sensitivity (Qsm) 
methods.  

For this example, a third iteration of the algorithm has not 
improved significantly the state estimation accuracy.   

5. CONCLUSIONS 

A new process noise covariance matrix tuning algorithm is 
presented which incorporates the linearized approach 
proposed by Valappil and Georgakis (1999, 2000) with two 
methods for the parameter covariance matrix computation. 
As pointed out by Valappil and Georgakis (1999, 2000), the 
investment in a nondiagonal time-varying matrix Q is 
justified because (a) parametric uncertainties cause 
significant cross-correlations between the process noises for 
different states (b) for continuous or batch processes with 
time-varying process dynamics and operating on wide range 
of process conditions, the noise statistics are time varying.  

The Q tuning algorithm consists of two state estimation steps 
and a parameter estimation step in between. A first state 
estimation step with nominal parameters is performed to 
provide information on unmeasured states to be used in the 
subsequent parameter estimation step. Afterwards, the state 
estimation is carried out with the estimated parameters and a 
time-varying and non-diagonal tuning of matrix Q obtained 
from the parameter covariance matrix Cp, evaluated by the 
direct and sensitivity methods. In the direct method, Cp is 
assumed to be constant and directly obtained from the 
parameter estimation step using the SELEST algorithm 
(Secchi et al., 2006). In the sensitivity method, Cp is obtained 
from the computation of the time-varying sensitivity matrix. 
Although the EKF with a time-varying and non-diagonal 
matrix Q obtained from the sensitivity method performs 

better compared to the direct method, both methods can be 
successfully applied for state estimator design. Moreover, 
these methods improve considerably the EKF performance 
when compared to a) the case of a constant-value and 
diagonal matrix Q in the presence of constant parametric 
uncertainty and to b) the methods of prior publications. 
Successive iterations of the Q tuning algorithm shall improve 
the state estimation accuracy.  For the Williams-Otto semi-
batch reactor, only two iterations were necessary to improve 
the state estimation accuracy, significantly.   

The main advantage of the algorithm presented in this work 
is that it is feasible for practical applications. Besides, of an 
online EKF tuning, the process model is updated online due 
to the integration of the state and the parameter estimation 
steps. Further, the algorithm eliminates an offline, exhaustive, 
and inexact tuning of EKF by trial and error. 
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