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Abstract: In the present work a novel inferential control strategy cascaded with a nonlinear profile 
position controller is employed to control the top and bottom product compositions of a simulated 
depropanizer column. The inferential model for estimating product compositions is developed using the 
wave propagation model, and the composition profile position of both rectifying and stripping section is 
calculated using one temperature measurement from the respective section of the column. It is found that 
the estimation of the end product compositions using proposed technique may lead to an offset. The 
accuracy of the proposed inferential model can be further improved by providing an intermittent 
feedback of composition measurement in the form of an integral action. The wave propagation model of 
the depropanizer column is used in the Generic Model Control (GMC) architecture to design the profile 
position controllers.  
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�
1. INTRODUCTION 

A depropanizer column is used to separate propane from a 
mixture of components ranging from ethane to hexane. It is 
important to maintain the column product qualities on 
specification, to limit the negative effects of disturbances and 
upsets, and to reduce the switching time from one operating 
condition to another. An effective control strategy is therefore 
needed to control the depropanizer column. In this work, an 
inferential model based generic model control strategy is 
used which can handle disturbances and input uncertainties.  
 An inferential model is often used in process control when a 
measurement of the true variable being controlled is not 
available in real time. Reasons for the lack of real-time 
measurement include cost, reliability, and long analysis times 
or long dead times for sensors located far downstream. In 
these cases, an inferential model provides an estimate of the 
process variable, which can be used in the design of a 
controller to provide approximate regulation of the true 
variable.  Tray temperatures are commonly used inferential 
measurements for product compositions. The temperature 
control is based on the assumption that the product 
composition can satisfy its specification when an appropriate 
tray temperature is kept constant at setpoint. In ideal 
situation, for a binary distillation column at constant pressure, 
the temperature at an end of the column is an indicator of the 
corresponding product composition. However, in case of a 
multi-component distillation column, tray temperatures do 
not uniquely determine the product composition. As a result, 
for these cases it is essential that an on-line analyzer or, at 
least, periodic laboratory analysis be used to adjust the tray 
temperature set point to the proper level. 

 
In a Brosilow estimator [Weber and Browsilow (1972), 

Joseph and Brosilow (1978)] temperatures and flow rates 
were used for estimating unmeasured disturbances and then 
the derived disturbance values were used to estimate the 
product compositions. This estimator is based on a linearized 
process model. Mejdell and Skogestad (1991a, b) found that 
the steady state Brosilow estimator was very sensitive to 
modeling error for the ill-conditioned plant. In the last few 
decades, the development of composition estimators using 
partial least squares (PLS) regression have been proposed 
[Kresta et al. (1994)]. Furthermore, Mejdell and Skogestad 
dealt mainly with binary distillation columns. For a 
multicomponent column, tray temperatures do not correspond 
exactly to the product compositions. Mejdell and Skogestad 
have shown that the performance of the steady state PLS 
model for a multicomponent column is worse than that for a 
binary column. From the results, Mejdell and Skogestad seem 
to indicate the necessity of a dynamic regression estimator, 
which was implemented by Kano et al. (2000) in the form of 
dynamic partial least squares regression. 

Gilles et al. (1980) reported the presence of a 
temperature front within a small area of the column in their 
extensive experimental study and showed that the locus of the 
temperature front is related to the product compositions. 
Gilles and Retzbach (1983) and Marquardt (1988, 1989) 
characterized the nonlinear behavior of distillation columns 
by the propagation of concentration profile (C-profile) and 
temperature profile (T-profile) in the column sections. Lang 
and Gilles (1990) presented an estimation technique that can 
be applied to complex processes in chemical industries. 
Adapting well advanced theories of fixed bed adsorption, 



 
 

     

 

Hwang (1991) proposed a nonlinear wave theory for 
distillation columns which views the movement of 
composition and temperature profiles as nonlinear waves. 
They reported that these waves tend to sharpen for most 
situations and become constant pattern waves. Han and Park 
(1993) proposed a model based composition controller design 
incorporating Hwang’s nonlinear wave model into the 
generic model control (GMC) framework of Lee and Sullivan 
(1988). To overcome the difficulty of composition 
measurements, Shin et al. (2000) proposed a C-profile 
position observer based on the temperature measurements. 
However, their proposed profile position estimation 
algorithm is applicable only for a binary system. Recently 
Gupta et al. (2009) has extended the application of profile 
position control to a debutanizer column. 
In this work distillate and bottom propane compositions of a 
simulated depropanizer column are controlled by using 
composition to C-profile position cascaded controllers 
(Figure 1). The compositions are inferred from the C-profile 
position observer using one temperature measurement from 
each section (rectifying/ stripping). The objective of this 
article is to present a new approach to infer and control 
product compositions using the C-profile position of a 
depropanizer column, which uses one temperature 
measurement from the respective (rectifying/stripping) 
section.  

 
Figure 1: Depropanizer column with control strategy 

 

2. PROCESS DESCRIPTION AND CONTROL 

STRATEGY 

The depropanizer column of a gas recovery unit is simulated 
in this work [Huang and Riggs (2002)]. The depropanizer 
column consists of 40 trays, and feed, a mixture of C2-C6 

components, is fed to the column at 22nd tray (counted from 
the bottom). The column has a partial condenser and the 
pressure is controlled via a hot vapor bypass around the 
overhead condenser. The distillate accumulator level is 
controlled by adjusting propane product flow rate. In a 
depropanizer column, the control objective should be to 
remove impurities (C4+ components) in the distillate and 
maintain minimum possible propane loss in the bottom 
product to maximize the yield of propane in the distillate. 
This is a separate optimal control problem and is not in the 
scope of this work. Here the control is achieved by 
controlling the propane compositions in the distillate and 
bottom product to their already known optimum targets. The 
control scheme is shown in Figure 1 and the nominal values 
required for the distillation column simulation is presented in 
Table 1. The composition controllers (CC1 & CC2) are PI 
controllers which generate the profile position setpoints by 
using the inferred values of propane composition from the 
inferential model. 

reflux rate (k mol/sec)  0.30 
reboiler duty (k joule/sec)  5248.8 
condenser duty (k joule/sec)  -4881.7 
Stream Details 
 feed  distillate bottoms 
flowrate (k mol/sec) 0.21 0.06 0.15 
Temperature (°C)  86 43 112 
pressure (k pascal)  3052 1515 1612 
Composition (mol %) 
C2  0.6 2 - 
C3  30 95.1 1.2 
C4  54.2 2.9 76.8 
C5  8.1 - 11.7 
C6  7.1 - 10.3 

Table 1: Operating variables for depropanizer column 

3. NONLINEAR WAVE MODEL 

The dynamic behavior of distillation columns is characterized 
by the propagation of concentration or temperature profile in 
the column sections. Numerical simulation results of this 
typical dynamic behavior for the depropanizer column 
presented in figure 2 for 10% heavier and 10% lighter feed 
(Table 2). Propane composition and temperature profile 
moves up or down to the column ends as a result of increase 
or decrease of heavier components in the feed. It is also 
evident from the figure that both the waves ultimately tend to 
become steep and constant pattern as they move up or down 
the column. 

The travel of such a constant-pattern self-sharpening 
wave can be characterized by the ‘shock wave’ velocity 
[Hwang (1991)] tracking the propagation of specific value of 
concentration. This wave velocity is derived from the 
material balance across the wave: 
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where r is vapor to liquid holdup ratio, � is normalized time 
( /tF NM� � ), and �  is normalized distance from bottom of 
the column ( /k N� � ). Assuming the liquid flow is so slow 
that local equilibrium is attained, y  in equation (1) can be 



 
 

     

 

substituted with the vapor liquid equilibrium relation. The 
concentration and temperature waves will travel to either one 
of the column ends unless the balance of convective 
transports is carefully maintained to have a zero shock wave 
velocity with the compositions and flow rates of all streams 
entering the column sections including feed, reflux, and 
reboiler vapor flow. Therefore, the behavior of the column is 
severely nonlinear and sensitive since even a small upset of 
the balanced condition will lead to a large shift of the 
composition/temperature profile, giving dramatic changes in 
the product purity. By analyzing the profile positions for each 
section and the compositions at the column ends 
(distillate/bottoms) a model equation can be obtained to 
correlate the profile position with the compositions from the 
steady state data for the profile position and the top/bottom 
compositions collected from the steady state plant model 
simulation. 
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Figure 2: Dynamic profiles of the depropanizer column to a step disturbance 
(10% heavier feed and 10% lighter feed) of feed composition in open loop 
(each curve is separated by 5 minutes). 
 
Feed composition 
Composition 

(mol %) 
normal 10% 

lighter 
10% 

heavier 
20% 

heavier 
30% 

heavier 
C2 0.6 0.64 0.56 0.52 0.48 
C3 30 32.12 27.96 25.99 24.10 
C4 54.2 52.51 55.83 57.39 58.90 
C5 8.1 7.85 8.34 8.58 8.80 
C6 7.1 6.88 7.31 7.52 7.72 

Table 2: Feed composition in different scenarios 

 

4. DEPROPANIZER CONTROLLER DESIGN 

4.1. Profile position controller  
The profile position controller is a nonlinear model-based 
controller, and is designed by embedding a nonlinear wave 
model directly into the generic model control (GMC) control 
framework. 
The GMC equation can be written as the following in the 
case that state vector is a composition profile position S. 

� � � �* * '
1 2

0

tdS
K S S K S S dt

dt
� 	  	�  (2) 

where, S and *S  are the profile position and its setpoint 
respectively; dS

dt is the propagation rate of profile. S  is 
expressed in terms of the normalized distance from the 
bottom of the column ( 0S � at the bottom; 1S �  at the top). 
The propagation rate can be expressed from the nonlinear 
wave model as follows: 
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Distillation columns, in general, have two sections: one is the 
rectifying section and other is the stripping section. 
Combining equations  (2) and (3) gives one equation for each 
section as follows: 
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where, subscripts 1 and 2 represent rectifying section and 
stripping section respectively, and L and V  are the liquid and 
vapor flow rates respectively in the rectifying section and 
L and V in the stripping section. The profile position and the 
slope of the equilibrium curve at the representative 
concentration can be estimated by the profile position 
observer. Mass balance around the feed tray gives 

L L qF�   (6) 

� �1V V q F�  	  (7) 
where, q is the liquid mole fraction of the feed. Knowing the 

feed conditions L ,V , L  and V  is calculated from equations 
(4)-(7). 

4.2. Online estimation of the profile position 
The success of the inferential controller is mainly dependent 
on the ability to estimate the profile positions for both 
rectifying and stripping sections. The profile position in each 
section can be regarded as the location of the constant pattern 
wave representing a single point corresponding to a 
representative temperature. The profile position of the 
constant pattern wave can be determined by tracking the 
representative temperature instead of the entire wave.  
In this case, the profile position observer is designed using 
the nonlinear wave model for the depropanaizer with an 



 
 

     

 

additional feedback of weighted output error of 
temperature(s) feedback.  
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where, i  is the measurement tray number and  l  and m are 
the number of first measurement tray and the number of last 
measurement tray in a column section respectively. For 
�y/�x and T relationship the steady state plant data can be 
used which will be associated with the tray efficiencies also. 
The tray temperature measurement location (26th and 18th 
tray) in each section is selected based on the inflection points 
in the temperature waves. The above equations are solved 
with initial estimates of the profile position S and 
representative slope �y/�x to obtain the profile position. The 
sample time for the composition controller has been taken as 
2 seconds while that of the profile position controller was 0.2 
seconds. 
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Figure 3: Graphical representation of steady state data set, of rectifying 
section profile position vs XD (propane), and stripping section profile 
position vs XB  (propane). 

5.  INFERENTIAL CONTROL 

In earlier work, the column end compositions were estimated 
using more than one measurement in the form of temperature, 
flow rate, and heat duty etc. In the proposed estimator one 
temperature measurement from each section (rectifying/ 
stripping) is used to find out the distillate and bottom 
composition of propane in the depropanizer.  

5.1. Model identification using profile position 
In this section we are proposing a model based inferential 
control using the profile position estimation. By analyzing 
the profile positions for each section and the compositions at 
the column ends (distillate/bottoms) a model equation can be 
obtained to correlate the profile position with the 
compositions. The steady state data for the profile position 
and the top/bottom compositions collected from the steady 
state plant model. Figure 3 shows that the data obtained from 
the plant model can be expressed by a 3rd order polynomial.  
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Figure 4: Closed loop transient response of the distillate composition 
(propane) and bottoms composition (propane) for 30% heavier feed using 
inferential control, with feedback /no feedback to the inferential composition 
estimator for the depropanizer column 
Figure 4 shows that the proposed model is fair enough to 
control the end compositions of the depropanizer column. 
However, the current structure of the model leads to an offset 
with the final setpoint compositions. 
 
5.2. Model identification using profile position with feedback 
Our study leads that the composition measurements are 
required for the tight control of the end compositions of the 
depropanizer column. To remove the offset, an integral action 



 
 

     

 

as a feedback to the estimator is proposed. The final form of 
the composition estimator can be expressed as follows: 

� �. model ' last measurement modelestx x k x x dt�  	�  (8) 

where, 'k is a tuning parameter. Figure 4 shows that the 
proposed model with feedback is able to control the end 
compositions of the column without any offset. For the 
depropanizer column value of tuning parameter 'k is tuned at 
1 and 0.1 for rectifying section and stripping section 
respectively, and a lag of 5 minutes allowed for the 
composition measurement. 
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Figure 5: Closed loop transient response for the distillate and bottoms 
composition (propane) for setpoint change in XD (propane) of 0.009 (0.951 
to 0.96) at 10 minutes followed by a setpoint change in XB (propane) of 
0.007 (0.012 to 0.005) at 150 minutes, with feedback to the inferential 
composition estimator 

 

6. RESULTS AND DISCUSSION 

The depropanizer column with all control loops is simulated 
to verify the proposed control strategy.  
 
6.1. Effect of composition setpoints change 
Two concurrent setpoint changes are implemented to the top 
and bottom composition controllers. Closed loop transient 
response for the distillate and bottoms composition (propane) 
for a setpoint change in XD (propane) of 0.009 mole fraction 
(0.95 to 0.96) at 10 minutes followed by a setpoint change in 
XB (propane) of 0.007 mole fraction (0.012 to 0.005) at 150 
minutes is shown in Figure 5. Increasing the propane purity 
in the distillate caused an immediate loss in propane content 

in the bottom causing a shift in the profile position. To 
maintain the propane composition in the bottom product the 
GMC controller has to put back the profile position in place 
which causes a sluggish response in the top composition 
response after the initial jump. When the bottom composition 
setpoint is also changed, both the controllers acted speedily 
because the changes are in favored direction from the 
viewpoint of the process dynamics.  

6.2. Effect of noise and input uncertainty 
To examine the robustness aspects of the controller about 
input uncertainty and temperature measurement noise, a 
simulation experiment is conducted on the depropanizer 
controlled by the proposed control strategy. During the 
simulation experiment following setpoint changes and 
disturbances are given to the system: 
Setpoint change in XD (propane) at 10 minutes (from 0.95 to 
0.96). 
Setpoint change in XB (propane) at 150 minutes (from 0.012 
to 0.01). 
Step disturbance in the feed composition at 300 minutes 
(20% heavier feed, Table 2). 
The following uncertainties have been taken into account 
during the simulation experiment: 
Random disturbance in the feed flowrate (±5%) 
Random disturbance in the reboiler heat duty (±10%) and 
reflux rate (±10%) 
Temperature measurement noise (±0.5 °C) 
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Figure 6: Effect of noise and input uncertainty: closed loop transient 
response in XD (propane) and XB (propane)  



 
 

     

 

The distillate and bottom propane composition responses are 
shown in Figure 6. In spite of the severe input disturbances 
and measurement noise, the proposed controller is able to 
control the product propane compositions with reasonable 
speed of response and accuracy.  

 

7. CONCLUSIONS 

This study has shown a method of developing an inferential 
model for process control of depropanizer column using the 
observed profile position. A nonlinear profile position 
observer has also been developed to estimate the profile 
position of the column section with sufficient accuracy using 
temperature measurement. The profile position has been 
shown to be a powerful approach to building such models 
and uses the existing available measurements in the 
depropanizer. However, steady state plant data is needed for 
design of such models which may be collected while the 
process is operating under a feedback structure. Under a 
process/model mismatch, cascaded inferred composition to 
nonlinear profile position controller performed adequately 
well in controlling the depropanizer column. It will be 
interesting to compare the performance of the proposed 
controller with other nonlinear controller using input-output 
linearization controller or nonlinear model predictive 
controller which are much more computationally intensive 
than the proposed controller. 
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