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Abstract: Minimum variance (MV) benchmark is useful for identifying variance reduction
opportunities in industrial control systems. During the past two decades, MV benchmarks for
single-input single-output (SISO) and multi-input multi-output (MIMO) systems have been
proposed. These MV benchmarks do not account for the structure of the decentralized or multi-
loop controllers, which are used almost exclusively for regulation purposes in process industries.
Due to this drawback, the available MV benchmarks can lead to incorrect conclusions regarding
the performance of decentralized controllers. This paper aims to fill this gap. For performance
assessment of decentralized controllers on a loop-by-loop basis, we present a simple modification
of the available MV benchmark for SISO systems. For simultaneous performance assessment of
all loops, we present a method for computing a tight lower bound on the achievable output
variance. In the latter approach, the non-convexity of the resulting optimization problem is
handled using sums of squares programming. The usefulness of the proposed benchmarks is
evaluated using examples drawn from the literature.
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1. INTRODUCTION

The performance of a well-designed control system can
degrade over time due to changes in operating condi-
tions and disturbance dynamics. Controller performance
assessment is useful for identifying the opportunities for
performance improvement of industrial controllers. Among
the various available methods (Qin, 1998; Jelali, 2006),
minimum variance (MV) benchmarking is one of the most
promising methods for controller performance assessment.
In this approach, the controller is deemed to provide sat-
isfactory performance, if MV benchmark (ratio of least
achievable and observed output variances) is close to 1. On
the other hand, reduction in output variance is considered
to be feasible through controller retuning, when the MV
benchmark is significantly lower than 1.

The origin of MV benchmark can be traced back to Åström
(1970), who demonstrated that the achievable output vari-
ance for a single-input single-output (SISO) process under
feedback control depends on the first few impulse response
coefficients of the disturbance model. Harris (1989) showed
that with a priori knowledge of time delay, MV benchmark
can be estimated using closed loop operating data and
established it as a tool for performance assessment of
SISO systems. Using the concept of interactor matrices,
Harris et al. (1996) and Huang et al. (1997) proposed MV
benchmark for multi-input multi-output (MIMO) systems.

This paper focusses on performance assessment of decen-
tralized or multi-loop controllers, which are used almost
exclusively for regulation purposes in process industries.
Though useful, the available MV benchmarks for SISO

and MIMO processes show limitations, when applied to
processes under decentralized control. The conventional
approaches for performance assessment of decentralized
controllers include (see e.g. (Harris et al., 1996) and
(Huang et al., 1997) for examples):

(1) Loop by loop analysis: The performance of individual
loops is assessed independent of each other using MV
benchmark for SISO processes.

(2) Simultaneous analysis: The performance of all loops
is assessed simultaneously using MV benchmark for
MIMO processes.

The MV benchmark for SISO processes assumes that the
loop under consideration is being operated in isolation
from the rest of the process and thus inherently views
the process as being diagonal; see Figure 1. Due to this
assumption, it may be possible to improve the performance
of the existing controller further than indicated by the MV
benchmark; see Section 3 for details. On the other hand,
MV benchmark for MIMO processes ignores the diagonal
structure of the decentralized controller and thus has more
degrees of freedom for variance minimization than are
available in the actual controller. Using a simple 2 × 2
process, we demonstrate in Section 4 that the least output
variance that can be achieved using a diagonal controller
can be four times higher than that can be achieved using a
full multivariable controller. In summary, ignoring the con-
troller structure can lead to incorrect conclusions regard-
ing performance assessment of decentralized controllers.

The derivation of an approach for MV benchmarking of
decentralized controllers requires characterization of the



Fig. 1. Insufficiency of available MV benchmarks for performance assessment of decentralized controllers

least achievable output variance and its subsequent esti-
mation from closed-loop data. This paper mainly focusses
on the first issue. We first propose an MV benchmark for
loop-by-loop analysis, where the presence of other loops is
accounted for. The proposed result requires a small modi-
fication of the existing MV benchmark for SISO processes.
It is further shown that the modified MV benchmark
for loop-by-loop analysis can be directly estimated from
closed-loop data with a priori knowledge of the delays of
the different elements of the process model. An interesting
insight is that for processes under decentralized control,
the pre-whitening of output data using algorithms such as
filtering and correlation (FCOR) algorithm (Huang and
Shah, 1999) does not necessarily provide the first few
impulse response coefficients of the disturbance model, as
is traditionally believed.

The derivation of MV benchmark for simultaneous anal-
ysis of decentralized controller is more challenging. This
happens as the optimization problem involving minimiza-
tion of output variance becomes non-convex, once the
diagonal structure is imposed on the controller (Sourlas
and Manousiouthakis, 1995; Rotkowitz and Lall, 2006).
With this difficulty, one may alternately look for tight
upper and lower bounds on the least achievable output
variance using decentralized controllers. Clearly, any sub-
optimal tuning strategy for the decentralized controller
provides an upper bound on the least achievable output
variance. Some approaches for finding upper bounds on
least achievable output variance have been reported using
non-convex optimization (Ko and Edgar, 1998; Jain and
Lakshminarayanan, 2007) or by utilizing the structure of
the optimization problem (Yuz and Goodwin, 2003; Kari-
wala et al., 2005). Recently, Kariwala (2007) addressed the
more difficult problem involving derivation of a tight lower
bound on the least achievable output variance, where an
explicit bound is proposed by considering those impulse
response coefficients of the closed-loop transfer function
between disturbances and outputs, which depend linearly
on the controller parameters. In general, however, the
lower bound proposed in (Kariwala, 2007) can be conser-
vative due to the neglected impulse response coefficients.

In this paper, we show that though nonlinear, the impulse
response coefficients of the closed-loop transfer function
between disturbances and outputs can be represented
as polynomials in unknown controller parameters. Sub-
sequently, the non-convex optimization problem related
to the minimization of output variance is solved using
sums of squares (SOS) programming (Parillo, 2000). This
result is further extended to find a lower bound on the
least achievable output variance, when the individual sub-
controllers of the decentralized controller are restricted
to be of proportional-integral-derivative (PID) type. The

estimation of these lower bounds is difficult from closed-
loop data only and the knowledge of process model is
required. Nevertheless, the derivation of lower bound on
the least achievable output variance can itself be seen as
a major step towards systematic performance assessment
of decentralized controllers.

2. PROBLEM FORMULATION

Fig. 2. Block diagram of closed-loop system

We consider the closed-loop system shown in Figure 2. For
this system, we denote G(q−1) and H(q−1) as the process
and disturbance models, respectively, such that

y(t) = G(q−1)u(t) + H(q−1) a(t) (1)
Here, y(t), u(t) and a(t) are controlled outputs, manipu-
lated variables and disturbances, respectively. We make
the following simplifying assumptions:

(1) G(q−1) and H(q−1) are stable, causal transfer ma-
trices, contain no zeros on or outside the unit circle
except at infinity (due to time delays), and are square
having dimensions ny × ny.

(2) a(t) is a random noise sequence with unit variance.

When H(q−1) contains zeros outside the unit circle, these
zeros can be factored through an all pass factor without
affecting the noise spectrum (Huang and Shah, 1999).
Further, there is no loss of generality in assuming that
the system is affected by noise having unit variance, as
the disturbance model can always be scaled to satisfy
this assumption. For notational simplicity, we drop the
arguments q−1 and t in the subsequent discussion.

Our objective is to find the least achievable value of Var(y)
with respect to the controller K, i.e.

Jdecen = min
K

Var(y) = min
K

E[tr(y yT )] (2)

where K is assumed to have a diagonal structure, i.e.
K = diag(K1,K2, · · · ,Kny

). In (2), E(·) and tr(·) denote
the expectation and trace operators, respectively. The
pairings are considered to be selected on the diagonal
elements of G.

Based on (2), the MV benchmark for decentralized con-
troller can be defined as



ηdecen =
Jdecen

E[tr(y yT )]
(3)

where E[tr(y yT )] is the observed output variance.

A related problem involves finding the least achievable
variance of the ith output, i.e.

Ji,decen = min
Ki

E[tr(yi y
T
i )] (4)

Similar to (3), the MV benchmark for the ith output can
be defined as

ηi,decen =
Ji,decen

E[tr(yi yT
i )]

(5)

where E[tr(yi y
T
i )] is the observed variance of the ith

output.

3. LOOP-BY-LOOP ANALYSIS

We first consider performance assessment of the decen-
tralized controller on a loop-by-loop basis. For clarity of
presentation, we limit the discussion to 2×2 systems. The
result can be generalized to ny × ny systems using block-
partitioning of G and H. We have

y1 =G11 u1 +G12 u2 +H1 a (6)

y2 =G21 u1 +G22 u2 +H2 a (7)
The time delay associated with Gij is denoted as dij , i.e.

Gij = q−dij Ḡij (8)
where Ḡij denotes the invertible part of Gij . Without
loss of generality, we consider that the objective is to
characterize the least achievable variance of y1.

3.1 Conventional approach

The traditional approach for loop-by-loop analysis involves
using the MV benchmark for SISO systems. Here, H1 is
decomposed using Diophantine identity as

H1 = F1 + q−d11R1 (9)

Then, the least achievable variance of y1 is taken as (Åström,
1970; Harris, 1989)

J1 = min
K1

E[tr(y1 yT
1 )] = ‖F1‖22 (10)

where ‖ · ‖2 denotes the H2-norm. The MV benchmark for
individual outputs is defined similar to (5). An inherent
assumption in the derivation of (10) is that u2 = 0 at all
times or in other words, the first loop is being operated in
isolation from the rest of the process. We next demonstrate
that when the presence of other loops is accounted for,
the first d11 elements of H1 are not necessarily feedback
invariant and thus the least achievable variance of y1 can
be lower than J1 in (10).

3.2 Modified MV benchmark

Consider that the second loop is closed with u2 = −K2y2.
Under partially closed loop conditions, we have (Skogestad
and Postlethwaite, 2005)

y1 = P11 u1 + Pd1 a (11)
where

P11 =G11 −
G12K2G21

1 +G22K2
, Pd1 = H1 −

G12K2H2

1 +G22K2
(12)

Since 1/(1 +G22K2) and K2 are rational and invertible, it
follows that the delay associated with P11 or the effective
delay of the first loop is

d
′

1 = min(d11, d12 + d21) (13)

Now, let Pd1 be decomposed using Diophantine identity as

Pd1 = F
′

1 + q−d
′
1R

′

1 (14)

Using (11) and (14), it follows that

y1 = F
′

1 a+ q−d
′
1(P̄11 u1 +R

′

1 a) (15)

where P11 = q−d
′
1 P̄11 and P̄11 denotes the invertible part

of P11. Since the first term in (15) cannot be affected by
u1 (invariant of K1), it follows that

J1,decen = min
K1

E[tr(y1 yT
1 )] = ‖F

′

1‖22 (16)

Note that ‖F ′

1‖22 represents the least achievable variance
of y1, when the presence of second loop is accounted for
and can be used readily for performance assessment of
decentralized controllers on a loop-by-loop basis.
Remark 1. In general, J1,decen may depend on K2. This
dependance, however, has no bearing on the loop-by-loop
performance assessment, where the objective is to find the
least achievable variance of yi through tuning ofKi. If both
controllers are allowed to be tuned simultaneously, using
similar analysis as used in this section earlier, it can be
shown that the first d

′′

1 = min(d11, d12) impulse response
coefficients of H1 are feedback invariant and thus

min
K1,K2

E[tr(y1 yT
1 )] = ‖F

′′

1 ‖22 (17)

where H1 = F
′′

1 + q−d
′′
1 R

′′

1 . Note that the bound in (17)
is independent of controller type (full multivariable or
decentralized).

Though the result in (16) may seem entirely mathematical,
a physical reasoning with this result can be associated by
considering the block diagram of a 2× 2 system shown in
Figure 3. Here, u1 can affect y1 directly through G11, but
also through a parallel path involving G12 and G21 (shown
with thick line in Figure 3). Thus, d

′

1 = min(d11, d12 +d21)
represents the delay of the fastest path through which u1

can affect y1. In this sense, loop interaction can sometimes
be beneficial for reducing output variance.
Example 2. To illustrate the findings of this section, we
use the case study of a binary distillation column (Wood
and Berry, 1973). The continuous-time model is discretized
with a sampling time of 1 minute to get

G=


0.744q−2

1− 0.942q−1

−0.879q−4

1− 0.954q−1

0.579q−8

1− 0.912q−1

−1.302q−4

1− 0.933q−1

 (18)

H =


0.247q−9

1− 0.935q−1

0.358q−4

1− 0.927q−1

 (19)



Fig. 3. Presence of parallel path (shown with thick line)
from u1 to y1 for 2× 2 systems

For diagonal pairings, the following decentralized PI
controller is tuned using internal model control (IMC)
method (Skogestad, 2003)

K = diag
(

0.652− 0.571q−1

1− q−1
,
−0.124 + 0.115q−1

1− q−1

)
(20)

which provides Var(y1) = 0.122 and Var(y2) = 0.759.
After factoring the time delay of H, the least achievable
variances of y1 and y2 according to the conventional
approach discussed in Section 3.1 are J1 = 0.114 and
J2 = 0.413, respectively. Thus, the conventional MV
benchmarks for loops 1 and 2 are η1 = 0.932 and η2 =
0.544, respectively, which indicate that the variance of y2
can be reduced significantly by re-tuning K2, but tuning
K1 will not reduce variance of y1 significantly. Using
the modified MV benchmark, we next show that this
conclusion is not entirely correct.

We have d11 = 2, d12 = 4, d21 = 8 and d22 = 4. Thus, d
′

1 =
min(d11, d12 + d21) = 2 and d

′

2 = min(d22, d12 + d21) = 4.
Since the first d

′

2 = d22 impulse response coefficients of Pd2

and H2 are the same, we find that J2,decen = J2 = 0.413
and η2,decen = η2 = 0.544. The first d

′

1 = d11 impulse
response coefficients of Pd1, however, are different from
the corresponding impulse response coefficients of H1 and
we find that J1,decen = 0.031 and η1,decen = 0.251. Thus,
the modified MV benchmark identifies that the variance
of y1 can be reduced by approximately 4 times through
tuning of K1.

We point out that for this process, the first d
′

1 impulse
response coefficients of Pd1 and thus J1,decen depend on
K2. For example, when the gain of K2 is decreased by
a factor of 0.75, J1,decen increases to 0.037. With this
controller tuning the variance of y1 is 0.126. Thus, we
have η1,decen = 0.293, which indicates that the variance
of y1 can still be reduced by approximately 3 times.
Remark 3. Although for Example 2, the effective delays
for both loops are the same as open-loop delays, i.e.
d

′

1 = d11 and d
′

2 = d22, this is not true in general. For
example, when pairings are chosen on the off-diagonal
elements of G in (18), the effective delay for loop 1 is
d

′

1 = min(d12, d11 +d22) = 6, which is different from open-
loop delay, d12 = 8.
Remark 4. Based on (11), under closed loop conditions

y1 =
Pd1

1 + P11K1
a (21)

Let K1 = M1/(1− P11M1), where M1 is a stable transfer
function (Youla parameterization). Then,

y1 = (1− P11M1)Pd1 a (22)

= F
′

1a− q−d
′
1(P̄11M1Pd1 −R

′

1)a (23)

Thus, F
′

1 and thus ηi,decen can be estimated using closed
loop data, e.g. using the FCOR algorithm (Huang and
Shah, 1999), with a priori knowledge of the delays of
Gij . It is also interesting to note that the use of FCOR
algorithm for loop-by-loop analysis of decentralized con-
trollers leads to estimation of the first few impulse response
coefficients of Pd1 and not H1, as is traditionally believed.

4. SIMULTANEOUS ANALYSIS

The variance of other outputs can increase, when the
variance reduction of ith output is attempted through
tuning of Ki. This effect is not taken into account by loop-
by-loop analysis. To overcome this drawback, we derive an
MV benchmark for simultaneous performance assessment
of all loops in this section.

4.1 Conventional approach

A multivariable process can be represented as

G = D−1Ḡ (24)

such that Ḡ and D−1 contain the invertible and non-
invertible parts of G, respectively. We consider that D(q) is
a unitary interactor matrix, i.e. DT (q−1)D(q) = I (Huang
and Shah, 1999). Let

q−dDH = F + q−dR (25)

where d denotes the order of the interactor matrix.
Then (Harris et al., 1996; Huang et al., 1997),

Jfull = min
K

E[tr(y yT )] = ‖F‖22 (26)

The MV benchmark for simultaneous analysis is defined
similar to (3). The bound on achievable output variance
in (26), however, does not take the diagonal structure of
the controller into account and thus may classify well-
performing decentralized controllers as poorly performing.
In the subsequent discussion, we present a lower bound on
the achievable output variance for systems under decen-
tralized control.

4.2 MV benchmark for Decentralized controllers

For regulatory control, we have u = −K y. Thus, the
closed loop transfer function between a and y can be
written as

y = S a; S = (I +GK)−1H (27)

Since E[a(t)aT (t)] = I,

Jdecen = min
K

E[tr(y yT )] = min
K
‖S‖22 (28)



When diagonal structure is imposed on K, the optimiza-
tion problem in (28) becomes non-convex. A key observa-
tion to overcome this difficulty is that

‖S‖22 =
∞∑

i=0

tr (ST
i Si) ≥

n∑
i=0

tr (ST
i Si) (29)

for any finite n. Thus, a lower bound on Jdecen can be
found by minimizing

∑n
i=0 tr (ST

i Si). Here, Si represents
the ith impulse response coefficient of S.

When the closed-loop system is stable, (27) can be ex-
panded using Taylor Series expansion to get

S =

[ ∞∑
i=0

(−1)i(GK)i

]
H (30)

For given n, we define the following nny×nny-dimensional
Hankel matrices

GH =


G0 0 · · · 0
G1 G0 · · · 0
...

...
. . .

...
Gn−1 · · · G1 G0

 (31)

KH =


K0 0 · · · 0
K1 K0 · · · 0
...

...
. . .

...
Kn−1 · · · K1 K0

 (32)

and the following nny × nnd-dimensional matrices

Hv =
[
HT

0 HT
1 · · · HT

n−1

]T
(33)

Sv =
[
ST

0 ST
1 · · · ST

n−1

]T
(34)

Based on (32)-(34), Sv can be compactly written as

Sv =

[
n∑

i=0

(−1)i(GH KH)i

]
Hv (35)

Now, a lower bound on Jdecen can be found by solving

Jdecen = min
K

∞∑
i=0

tr (ST
i Si) ≥ min

K
tr (ST

v Sv) (36)

for any finite n. Based on (35), we note that Sv and thus
tr (ST

v Sv) depend polynomially on the controller parame-
ters. Thus, the optimization problem in (36) can be seen as
finding the global minimal value of a polynomial. For this
purpose, we use sums of squares (SOS) programming (Par-
illo, 2000) in this paper. SOS programming transforms
the polynomial minimization problem to a semi-definite
program, which is solved using Sedumi (Sturm, 1999)
interfaced with Matlab through Yalmip (Löfberg, 2004)
in this paper.

SOS programming does not necessarily provide the min-
imum value of the polynomial, but guarantees a global
lower bound (Parillo, 2000). For any controllerK, however,
since

n+1∑
i=0

tr (ST
i Si) ≥

n∑
i=0

tr (ST
i Si) (37)

tight lower bound on Jdecen can be found by increasing n
sequentially until convergence. In comparison with Kari-
wala (2007), where only the first (2d−1) impulse response

coefficients of S are used to find a lower bound on Jdecen,
the use of SOS programming provides a tighter lower
bound, whenever n > (2d− 1). A similar approach involv-
ing SOS programming has been used earlier by Sendjaja
and Kariwala (2009) to characterize the achievable output
variance of SISO systems under PID control.
Example 5. We consider the following 2× 2 process, where

G =

 −0.1q−2

(1− 0.1q−1) (1− 0.2q−1)

−0.25q−1 (1− 0.3q−1)

(1− 0.1q−1) (1− 0.2q−1)
0.5q−1 (1 + 0.9q−1)

(1− 0.1q−1) (1− 0.2q−1)

−0.1q−2

(1− 0.1q−1) (1− 0.2q−1)

(38)

and H = 1/(1 − q−1) I (Kariwala, 2007). Then, D = q I,
F = I and Jfull = ‖F‖22 = 2.

By considering the contribution of first (2d − 1) impulse
response coefficients of S towards ‖S‖22, Kariwala (2007)
found Jdecen ≥ 4. Using the SOS programming approach,
however, we find Jdecen ≥ 8.023. Using non-convex opti-
mization with multiple randomized initial guesses, Kari-
wala (2007) showed that the exact value of Jdecen is ap-
proximately 8.16. This example amply demonstrates the
usefulness of the SOS programming approach for finding
tight lower bound on least achievable value of output vari-
ance for systems under decentralized control. The reader
should also note that for this process, the MV benchmark
found using conventional approach will be approximately
4 times lower than the MV benchmark found by account-
ing for the controller structure. Thus, the conventional
approach for performance assessment of decentralized con-
trollers may incorrectly classify well-performing controllers
as poorly performing.
Remark 6. Unlike loop-by-loop analysis (see Remark 4),
it is difficult to estimate ηdecen directly from closed-loop
data. When G is known (or has been identified using
open or closed-loop identification experiments), H can be
estimated by pre-whitening the pseudo-signal (y − Gu).
Then, SOS programming can be used to identify a lower
bound on Jdecen and ηdecen based on identified model.
We point out that the knowledge of G is also required
by other available approaches for performance assessment
of decentralized controllers (Ko and Edgar, 1998; Jain
and Lakshminarayanan, 2007). In practice, the task of
identifying G should be undertaken, only when Jfull differs
significantly from the observed output variance.

4.3 MV benchmark for Decentralized PID Controllers

In industrial practice, the individual sub-controllers of the
decentralized controller are often fixed to be of PID-type.
Clearly, the presence of additional controller structure can
further limit the least achievable variance of outputs. Next,
we show that the SOS programming approach can be
easily extended to derive a tight lower bound on Jdecen

for decentralized PID controllers.

We note that the decentralized PID controller can be
expressed as

KPID =
1
∆

2∑
i=0

Ci q
−1 (39)

where Ci has diagonal structure and ∆ = 1 − q−1 is the
integrator. For

Ĝ =
1
∆
G (40)



let us define the Hankel matrices ĜH and CH , which have
the same structure as GH and KH defined in (32). Using
similar approach, as used in Section 4.2, it can be shown
that for any finite n

Sv =

[
n∑

i=0

(−1)i(ĜH CH)i

]
Hv (41)

Thus, a lower bound on Jdecen for decentralized PID
controller can be found by minimizing tr (ST

v Sv) using
SOS programming as before.
Example 7. We revisit Example 5. When individual sub-
controllers are restricted to be of PI-type, the lower bound
on Jdecen increases to 9.980 (approximately 25% higher
than unrestricted decentralized controller). The following
sub-optimal controller is designed using trial and error

KPI = diag
(
−0.629 + 0.474 q−1

∆
,
−2.844 + 1.862 q−1

∆

)
(42)

which provides E[tr(y yT )] = 10.087. When PID con-
trollers are used, the lower bound on Jdecen is 9.250 (ap-
proximately 15% higher than unrestricted decentralized
controller). The following sub-optimal controller

KPID = diag
(
−0.884 + 0.924 q−1 − 0.205 q−2

∆
,

−3.210 + 2.764 q−1 − 0.869 q−2

∆

)
(43)

provides E[tr(y yT )] = 9.421. For both cases (PI and PID
control), the lower bounds are close to the upper bounds,
which demonstrates that SOS programming technique can
be used to find tight bounds on Jdecen for decentralized
PID controllers efficiently and reliably.

5. CONCLUSIONS AND OPEN ISSUES

The use of decentralized or multi-loop controllers is com-
mon in process industries. In this paper, we have shown
that the use of existing MV benchmarks for SISO and
MIMO systems for performance assessment of decentral-
ized controllers may lead to incorrect conclusions regarding
the opportunities for variance reduction through controller
retuning. We proposed modified MV benchmarks for loop-
by-loop analysis of the decentralized controller, which
can be directly estimated from closed-loop data. An MV
benchmark for simultaneous analysis of the decentralized
controller is also proposed through the novel use of SOS
programming, which guarantees a lower bound on the least
achievable output variance. In summary, this paper takes
a major step towards systematic performance assessment
of decentralized controllers.

A limitation of the use of SOS programming approach
is that the knowledge of process model is required. Fur-
thermore, SOS programming requires solving large semi-
definite programs, whose size and solution time increase
rapidly with process dimensions. We are currently explor-
ing the use of alternate approaches to handle the compu-
tational complexity of the SOS programming approach.
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