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Abstract: In this paper we present an automatic tuning methodology for PID controllers for
distributed-lag processes. The technique is based on the evaluation of a closed-loop set-point or
load disturbance step response and it can be therefore employed with process routine operating
data. Further, a performance assessment index is also proposed in order to establish when the
performance of a PID controller can be improved by retuning it according to the proposed
method. Simulation results show the effectiveness of the approach.

1. INTRODUCTION

Distributed-lag processes are frequently encountered in the
process industry. For example, transmission lines, heat
exchangers, stirred tanks and distillation columns might
have a dynamic characteristic so that they can be modelled
as an infinite series of infinitesimally small interacting lags
and therefore as a distributed lag (Shinskey, 1994). Despite
this fact, this kind of processes are rarely considered in
the academic literature (Shinskey, 2002), with the notable
exception of the works of Shinskey (see, for example,
(Shinskey, 2001)). Therein a tuning tule for Proportional-
Integral-Derivative (PID) controllers has been proposed
based on process parameters that are obtained by evalu-
ating an open-loop step response.
Indeed, many tuning rules have been developed for PID
controllers (O’Dwyer, 2006) and the great majority of
them are based on a first-order-plus-dead-time (FOPDT)
or second-order-plus-dead-time (SOPDT) model of the
process that can be obtained typically by evaluating an
open-loop step response. However, this experiment can be
time-consuming and, above all, it can imply that the nor-
mal process operations are stopped, which is obviously not
desirable. For this reason, automatic tuning methodologies
have been developed also based on closed-loop experi-
ments, usually by considering a relay-feedback experiment
(Yu, 1999).

In this paper we present a methodology for the automatic
tuning of PID controllers for distributed-lag processes
which is based on the evaluation of a closed-loop set-point
or load disturbance step response. In particular, we assume
that a (possibly badly tuned) PID controller is operating
and the evaluation of the step response is employed to
retune the PID controller if the achieved performance is
not satisfactory, as in (Veronesi and Visioli, 2009). In order
to assess the performance of the controller, a performance
index is proposed, so that the methodology can be ap-
plied both for tuning-on-demand (namely, the controller is
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tuned after an explicit request of the operator) and for self-
tuning (namely, the controller itself determines that the
control performance is not satisfactory and a new tuning is
provided). It is worth stressing that the tuning rule applied
is devoted to the load disturbance rejection task which is
usually of main concern in the above mentioned processes.

The paper is organised as follows. A model for distributed-
lag processes is given in Section 2. The autotuning method
is presented in Section 3, where we explain how the
relevant process parameters can be obtained and how the
PID parameters can be selected. Finally, the practical
implementation of the method is addressed. Simulation
results are given in Section 4, and conclusions are drawn
in Section 5.

2. MODELLING

A distributed-lag process can be described by the following
transfer function (Shinskey, 1994)

P (s) =
2μ

eτs + e−τs
=

μ

cosh
√

τs
(1)

where μ is the process gain. The hyperbolic cosine can be
expanded into an infinite-product series, so that we obtain

P (s) =
μ

[1 + (2/π)2τs][1 + (2/3π)2τs][1 + (2/5π)2τs] · · ·
(2)

It is worth noting that the sum of all time constants,
denoted as T0, is equal to 0.5τ . If a unit step is applied
to the process input, the sum of all time constants can
be estimated easily as the time the process variable takes
to attain the 63.2% of its steady-state value (see Figure
1). Then, the process gain can be estimated easily by con-
sidering the steady-state value of the process output and
the amplitude of the step input (Visioli, 2006a). However,
the open-loop experiment can be time-consuming and, in
order to perform it, it can be necessary to stop the routine
process operations. Thus, we propose a method to estimate
the value of T0 and of the process gain μ with a closed-loop
experiment, namely by employing a PID controller with
any values of the parameters (provided that the closed-
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Fig. 1. Open-loop step response of a distributed-lag pro-
cess. The process variable attains the 63.2% of its
steady-state value at time t = T0 := 0.5τ .
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Fig. 2. The considered control scheme.

loop system is asimptotically stable).
Note that, for the purpose of simulation, transfer function
(2) can be written as

P (s) =
μ∏n−1

i=0

[
1 +

(
2

(2i+1)π

)2

τs

] (3)

with n at least equal to 20, because the dynamics of the
process does not change significantly for n > 20 (Shinskey,
2001).

3. AUTOMATIC TUNING

3.1 Estimation of the process parameters from set-point
step response

We consider the unity-feedback control system of Figure
2 where the process P is controlled by a PID controller
whose transfer function is in series (“interacting”) form:

C(s) = Kp

(
Tis + 1

Tis

)
(Tds + 1). (4)

The series form has been chosen for the sake of simplicity,
however, the use of other forms is straightforward by
suitably applying translation formulae to determine the
values of the parameters (Visioli, 2006a). Note also that
the use of a first-order filter that makes the controller
transfer function proper has been neglected for the sake
of clarity but it can be easily selected so that it does not
influence the PID controller dynamics significantly.
We assume that the PID controller has been (roughly)
tuned and a step signal of amplitude As is applied to
the set-point. The process gain μ can be determined by

considering the following trivial relations which involve the
final steady-state value of the control variable u and of the
control error e:

lim
t→+∞

u(t) =
Kp

Ti

∫
∞

0

e(t)dt =
As

μ
(5)

and therefore we have

μ = As

Ti

Kp

∫
∞

0
e(t)dt

. (6)

The determination of the sum of the time constants T0 of
the process can be performed by considering the following
variable:

eu(t) = μu(t) − y(t). (7)

By applying the Laplace transform to (7) and by express-
ing u and y in terms of the reference signal r we have

Eu(s) = μU(s) − Y (s) =
C(s)(μ − P (s))

1 + C(s)P (s)
R(s). (8)

At this point, for the sake of clarity, it is convenient
to write the controller and process transfer functions
respectively as

C(s) =
Kp

Tis
C̃(s) (9)

where
C̃(s) := (Tis + 1)(Tds + 1) (10)

and (see (3))

P (s) =
μ

q(s)
(11)

where

q(s) =
∏

i

(τis + 1) =
∏

i

τis
n + · · · +

∑
i

τis + 1 (12)

with

τi :=

[
2

(2i + 1)π

]2
τ, i = 0, 1, . . . . (13)

Then, expression (8) can be rewritten as

Eu(s) =
μKpC̃(s)

Tisq(s) + μKpC̃(s)
(q(s) − 1)R(s). (14)

By applying the final value theorem to the integral of eu

when a step is applied to the set-point signal we finally
obtain (see (12))

lim
t→+∞

∫ t

0

eu(v)dv = lim
s→0

s
As

s

μKpC̃(s)

Tisq(s) + μKpC̃(s)

q(s) − 1

s

= As lim
s→0

q(s) − 1

s

= As

∑
i

τi

= AsT0.
(15)

Thus, the sum of the time constants of the process can be
obtained by evaluating the integral of eu(t) at the steady-
state when a step signal is applied to the set-point and by
dividing it by the amplitude As of the step.
Remark 1. It is worth noting that both the value of the
gain μ and of sum of the time constants T0 of the process
are determined by considering the integral of signals and
therefore the method is inherently robust to the measure-
ment noise.
Remark 2. Note also that the set-point step signal can
be applied just for the purpose of (re)tuning the PID



controller (in this case its amplitude should be as small as
possible in order perturb the process as less as possible)
but also a step response during routine process operations
can be employed. This issue will be further discussed in
subsection 3.5.
Remark 3. It is worth stressing that the value of T0 is
obtained independently on the values of the PID param-
eters. This is an advantage with respect to the use of
other methods for the identification of the process transfer
function, whose result depends on the control variable and
process variable signals.

3.2 Estimation of the process parameters from load disturbance
step response

The process parameters can be estimated by evaluating
also a load disturbance step d of amplitude Ad. However,
in this case the amplitude Ad is not known and therefore
must be estimated as well. This can be determined by
considering the final value of the integral of the control
error. In fact, the expression of the Laplace transform of
the control error is:

E(s) = − P (s)

1 + C(s)P (s)
D(s) = − Tisμ

Tisq(s) + KpC̃(s)μ

Ad

s
,

(16)
and therefore we obtain

lim
t→+∞

∫ t

0

e(v)dv = lim
s→0

s
1

s

Ad

s

(
− Tisμ

Tisq(s) + KpC̃(s)μ

)

= −AdTi

Kp

.

(17)
Thus, the amplitude of the step disturbance can be deter-
mined as

Ad = −Kp

Ti

∫
∞

0

e(t)dt. (18)

Once the amplitude of the step disturbance has been
determined, the process gain μ can be determined by first
considering the Laplace transform of the process input
i = u + d, that is:

I(s) = U(s) + D(s)

= − C(s)P (s)

1 + C(s)P (s)
D(s) + D(s)

=
1

1 + C(s)P (s)

Ad

s

=
Tisq(s)

Tisq(s) + KpC̃(s)μ

Ad

s
.

(19)

Thus, if we integrate i(t) and we determine the limit for
t → +∞ we obtain

lim
t→+∞

∫ t

0

i(v)dv = lim
s→0

s
1

s

Tisq(s)

Tisq(s) + KpC̃(s)μ

Ad

s
=

TiAd

μKp

(20)
The process gain μ can be therefore found easily, once the
value of Ad has been determined by using (18), as

μ = Ad

Ti

Kp

∫
∞

0
(u(t) + Ad)dt

. (21)

Finally, the determination of the sum of the time constants
of the process can be performed by initially considering the
variable

Table 1. Tuning rules for distributed-lag pro-
cesses.

Kp Ti Td

PI 5/μ 0.54T0 0

PID 100/15/μ 0.25T0 0.10T0

ei(t) := μ(u(t) + d(t)) − y(t). (22)

By applying the Laplace transform to (22) and by express-
ing u and y in terms of d we have

Ei(s) =
μ − P (s)

1 + C(s)P (s)
D(s)

=
μ − P (s)

1 + C(s)P (s)

Ad

s

=
μTiAds

Tisq(s) + Kpμc̃(s)

q(s) − 1

s
.

(23)

By twice integrating ei and by applying the final value
theorem we obtain (see (15))

lim
t→+∞

∫ t

0

∫ v2

0

ei(v1)dv1dv2

= lim
s→0

s
1

s2

μTiAds

Tisq(s) + μKpC̃(s)

q(s) − 1

s

=
TiAd

Kp

T0.

(24)

Thus, T0 can be obtained as

T0 =
Kp

TiAd

∫
∞

0

∫ t

0

ei(v)dvdt. (25)

Remark 4. Note that also in this case the estimation of the
process parameters is based on the integral of signals and
therefore the method is inherently robust to the measure-
ment noise. Further, the process parameters are obtained
independently on the values of the PID parameters, be-
cause the estimation is based on steady-state values of the
variables. Finally, as for the set-point step response, the
step disturbance signal can be applied just for the purpose
of (re)tuning the PID controller (in this case its amplitude
should be as small as possible in order to perturb the
process as less as possible) but also a step response during
routine process operations can be employed.
Remark 5. In the proposed method, the occurrence of an
abrupt (namely, step-like) load disturbance has been as-
sumed. Indeed, this is the most relevant case for the control
system, as the disturbance excites significantly the dy-
namics of the control system itself. Thus, the performance
assessment technique has to be implemented together with
a procedure for the detection of abrupt load disturbances.
Methods for this purpose have been proposed in (Hägglund
and Åström, 2000; Veronesi and Visioli, 2008).

3.3 Tuning of the controller

Once the sum of the time constants has been estimated
by evaluating the set-point or the load disturbance step
response, the PID controller can be tuned properly by
considering the load disturbance rejection task, which
is usually of main concern in practical applications. We
propose to use the tuning rules devised by Shinskey and
explained in (Shinskey, 1994, 2001). They are reported
in Table 1, for the sake of clarity, for both PI and PID
controller.



Fig. 3. The implementation of the proposed technique
by means of the Yokogawa Centum VP Distributed
Control System (courtesy of Yokogawa Italia).

3.4 Practical implementation

If a set-point step response is employed for estimating
the process parameters, the proposed methodology can
be easily implemented in a DCS with a suitable software
development environment, as shown in Figure 3. The PID
block (TIC1001) executes the standard PID control: its
input and output are indicated respectively as TT1001
and TV1001. The calculation block TUNER determines
the value of T0 by computing the integral of the process
variable (PV) and of the control output (MV) it receives
from the PID block. Further, it computes the process
gain. For this reason it needs also the setpoint (SV) and
the PI parameters, namely, the proportional gain (or,
equivalently, the proportional band) and the integral time
constant. Finally the block TUNER computes the new
values of the PID parameters by implementing the tuning
rules shown in Table 1 and send them back to the PID
block. Note that Q01..08 and J01..03 are the conventional
name of the ports that the calculation block uses for
exchanging data with the other function blocks.
If a load disturbance response is employed, the estimation
procedure has to be estimate first the step amplitude Ad

and then its value has to be employed to determine the μ
and T0 as indicated in (21) and (25).

3.5 Performance assessment

In a practical context it is also useful to evaluate the
performance of a (PID) controller in order to determine
if it has to be retuned or not. This is especially necessary
if a self-tuning procedure has to be implemented, namely,
the control system itself evaluates the control performance
during process routine operations and a new tuning is
provided in case it is not satisfactory. In this context, a
measure of the performance of a control system can be
effectively based on the integrated absolute error

IAE =

∫
∞

0

|e(t)|dt (26)

which implicitly considers both the peak error value and
the settling time. For the technique proposed in this paper
it is of interest to assess the control performance when a
load disturbance occurs. For this purpose, the integrated
absolute error obtained by applying the tuning rules of
Table 1 to distributed-lag processes (2) with different

0

10

20

30

40

0

20

40

60

80

100
0

1

2

3

4

5

6

nτ

IA
E

Fig. 4. Values of IAE for different values of τ and n
(process order) with a PI controller tuned according
to Table 1.

values of μ and τ , and different process order n has been
computed. Results for μ = 1 are shown in Figure 4 and
5 for PI and PID controller respectively. By interpolating
these results, we obtain that the value of IAE achieved by
applying the tuning rules of Table 1 are (for PI and PID
controllers respectively):

IAEPI = 0.058τμ = 0.116T0μ (27)

IAEPID = 0.02τμ = 0.04T0μ (28)

Thus, the integrated absolute error achieved by a PI(D)
controller should be ideally that expressed in (27) and (28).
A performance index can be therefore defined as

JPI =
IAEPI∫
∞

0 |e(t)|dt
(29)

JPID =
IAEPID∫
∞

0
|e(t)|dt

(30)

and it can be determined, once the process parameters
have been estimated by applying the technique described
previously, by considering the obtained integrated absolute
error.
In principle, the performance obtained by the control
system is considered to be satisfactory if JPI = 1 or
JPID = 1. From a practical point of view, however, the
controller can be considered to be well-tuned if JPI or
JPID is greater than a threshold (less than one) which can
be selected by the user depending on how tight are its
control specifications. In any case a sensible default value
of 0.8 can be fixed.
Remark 6. It turns out from the presented results that
using the derivative action allows to improve the perfor-
mance significantly with respect to a PI controller.
Remark 7. It is worth noting that a performance index J
greater than one can result because of the (small) interpo-
lation error in determining (29) and (30) and because in
any case the tuning formulae of Table 1 does not guarantee
that the integrated absolute error is globally minimized.
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Fig. 5. Values of IAE for different values of τ and n
(process order) with a PID controller tuned according
to Table 1.

4. SIMULATION RESULTS

4.1 Example 1 - PID control

As a first example we consider a process with μ = 1, τ = 10
and n = 30 lags. Initially, the PID controller parameters
are selected as Kp = 3.3, Ti = 1.9, Td = 0.25. Then,
a unit step load disturbance is applied to the process
and the amplitude of the disturbance, the gain of the
process and the sum of the time constants are estimated
as Ad = 1, μ = 1.0, and T0 = 4.97. Based on these values,
the PID parameters are retuned, according to Table 1, as
Kp = 6.66, Ti = 1.24, Td = 0.5. The load disturbance step
response provided by the new values of the PID controller
parameters is shown as a solid line in Figure 6, where
the load disturbance step response provided by the initial
values is also plotted as a dashed line. The control signal
is not shown for the sake of brevity, in any case there
are no significant differences between the two cases. By
retuning the controller, the performance index is improved
from JPID = 0.32 to JPID = 1.03 while the integrated
absolute error decreases from IAE = 0.62 to IAE = 0.19.
It is worth noting that the same result is achieved if a set-
point step response is employed for estimating the process
parameters.

4.2 Example 2 - PI control

As a second example we consider the same process of
Example 1, but the use of a PI controller is assumed.
Initially, the controller parameters are selected as Kp = 7
and Ti = 2 (note that the controller is aggressive). Then,
a unit step load disturbance is applied to the process
and the amplitude of the disturbance, the gain of the
process and the sum of the time constants are estimated
as Ad = 1, μ = 0.99, and T0 = 4.97 (the same parameters
are estimated by considering a set-point step response).
Based on these values, the PI parameters are retuned,
according to Table 1, as Kp = 5.06 and Ti = 2.68. The
load disturbance step responses provided by the initial
and new values of the PI controller parameters are shown
in Figure 7 as a dashed and solid line respectively. As
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Fig. 6. Load disturbance step response for example 1.
Dashed line: initial tuning. Solid line: automatic tun-
ing.
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Fig. 7. Load disturbance step response for example 2.
Dashed line: initial tuning. Solid line: automatic tun-
ing.

in Example 1, retuning the controller allows to increase
the performance. In particular, the performance index is
improved from JPI = 0.64 to JPID = 1.01 while the
integrated absolute error decreases from IAE = 0.88 to
IAE = 0.56.
It turns out that the proposed autotuning method is
effective and, by comparing these results with those of
Example 1, it appears that the use of the derivative action
allows to increase the controller performance significantly.

4.3 Example 3 - Measurement noise

As a third example we consider again the same process
of Example 1, but the process output is corrupted with
zero-mean white noise with a variance of 0.1 · 10−3. The
load disturbance step response obtained by selecting the
controller parameters as Kp = 3, Ti = 2, and Td = 0.5 is
shown in Figure 8. In order to determine the performance
index JPID correctly, it is necessary to discard from the
computation of the integrated absolute error those areas
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Fig. 8. Load disturbance step response for example 3 with
Kp = 3, Ti = 2, and Td = 0.5.
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Fig. 9. Load disturbance step response for example 3 with
Kp = 6.87, Ti = 1.26, and Td = 0.51.

whose value is less than a predefined threshold (because
they are actually due to the noise) (Visioli, 2006b). It
results JPID = 0.29, which suggests that the controller
needs to be retuned. The gain of the process and the sum
of the time constants are then estimated as Ad = 1, μ =
0.97, and T0 = 5.06 (once again, note that virtually the
same values are obtained by considering a set-point step
response). Based on these values, the PID parameters are
retuned, according to Table 1, as Kp = 6.87, Ti = 1.26, and
Td = 0.51. The load disturbance step response obtained
with the new PID controller is shown in Figure 9. In this
case the performance index is JPID = 1.06. By retuning
the controller the integrated absolute error is decreased
from IAE = 0.68 to IAE = 0.19. It turns out that the
presence of noise does not impair the effectivess of the
method, as expected because the considered variables are
integrated.

5. CONCLUSIONS

In this paper we have proposed an automatic tuning
methodology for distributed-lag processes based on a
closed-loop experiment. Being based on the evaluation of
a set-point or load disturbance step response, the tech-
nique can employ process routine operating data and can
therefore be extended straightforwardly as a self-tuning
method. Indeed, a performance index has been devised in
order to assess the performance of the controller based
on the achieved integrated absolute error. Illustrative ex-
amples have shown the effectiveness of the method and
that it is robust to the measurement noise. Thus, the
methodology appears to be suitable to implement in an
industrial setting.
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