
On-line statistical monitoring of batch

processes using Gaussian mixture model

Tao Chen ∗, Jie Zhang ∗∗

∗ School of Chemical and Biomedical Engineering, Nanyang
Technological University, Singapore 637459 (e-mail:

chentao@ntu.edu.sg).
∗∗ School of Chemical Engineering and Advanced Materials, Newcastle

University, Newcastle upon Tyne, NE1 7RU, U.K. (e-mail:
jie.zhang@ncl.ac.uk)

Abstract: The statistical monitoring of batch manufacturing processes is considered. It is
known that conventional monitoring approaches, e.g. principal component analysis (PCA),
are not applicable when the normal operating conditions of the process cannot be sufficiently
represented by a Gaussian distribution. To address this issue, Gaussian mixture model (GMM)
has been proposed to estimate the probability density function of the process nominal data,
with improved monitoring results having been reported for continuous processes. This paper
extends the application of GMM to on-line monitoring of batch processes, and the proposed
method is demonstrated through its application to a batch semiconductor etch process.
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1. INTRODUCTION

Batch processing is of great importance in many industrial
applications due to its flexibility for the production of
low-volume, high-value added products. With increasing
commercial competition it is crucial to ensure consistent
and high product quality, as well as process safety. These
requirements have resulted in wide acceptance of the tech-
nique of multivariate statistical process monitoring (Mar-
tin et al., 1999; Qin, 2003). The basis of the monitoring
schemes is historical data that has been collected when
the process is running under normal operating conditions
(NOC). This data is then used to establish confidence
bounds for the monitoring statistics, e.g. Hotelling’s T 2

and squared prediction error (SPE), to detect the onset
of process deviations. The primary objective of process
monitoring is to identify abnormal behavior as early as
possible, in addition to keeping an acceptably low false
alarm rate.

As a result of the multi-way characteristic of batch process
data, special tools are required for the modelling and mon-
itoring purposes, including multi-way principal component
analysis (MPCA) (Nomikos and MacGregor, 1995b), hier-
archical PCA (Rannar et al., 1998) and multi-way partial
least squares (MPLS) (Nomikos and MacGregor, 1995a).
The methods for on-line monitoring of batch process can
be classified into two categories. The first does not require
measurements on the entire batch duration to be available.
Techniques that are within this class include hierarchical
and two-dimensional dynamic PCA (Rannar et al., 1998;
Lu et al., 2005). In the other category, the entire batch data
is required for the calculation of the monitoring statistics,
whilst the data from a new batch is available only up to the
current time. Therefore the future data must be predicted

in some way (Nomikos and MacGregor, 1995b). In this
paper the latter of the two approaches is considered, and
the details will be discussed subsequently in Section 2.

However, the afore reviewed conventional process moni-
toring methods are based on a restrictive assumption that
the NOC can be represented by a multivariate Gaussian
distribution. Specifically the confidence bounds for T 2 and
SPE are calculated by assuming the PCA/PLS scores and
prediction errors are Gaussian distributed. This assump-
tion may be invalid when the process data is collected
from a complex manufacturing process. To address this
issue, Gaussian mixture model (GMM) (Chen et al., 2006;
Choi et al., 2004; Thissen et al., 2005), which is capable of
approximating any probability density function (pdf ), has
been proposed for the monitoring of continuous processes,
as well as batch-wise monitoring of batch processes.

The major contribution of this paper is to extend the ap-
plication of GMM to on-line monitoring of batch processes.
As the first step MPCA is applied to the nominal batch
data to extract the low-dimensional representation of the
process. The challenge with on-line monitoring is that
the scores and SPE must be predicted based on available
process measurements up to the current time step. Clearly
the predicted scores and SPE are not identical to the
values that are calculated from the entire batch duration,
and thus the predictions may not conform to the nominal
distribution even if the process is running normally. We
follow the approach of Nomikos and MacGregor (1995b)
to pass the nominal batches through the monitoring pro-
cedure and collect the predicted scores and SPE at each
time step. Then GMM is employed to estimate the joint
pdf of these predicted scores and SPE from MPCA at each



time step, as opposed to the traditional T 2 and SPE where
the process data is assumed to be Gaussian distributed.

The rest of this paper is organized as follows. Section 2
gives a summary of the PCA and GMM tools for process
monitoring, followed by the discussion of the on-line mon-
itoring strategy in Section 3. Section 4 demonstrates the
application of the on-line monitoring techniques to a batch
semiconductor manufacturing process. Finally Section 5
concludes this paper.

2. PCA AND GAUSSIAN MIXTURE MODEL FOR
PROCESS MONITORING

This section presents a brief overview of the PCA and
GMM techniques. A number of issues related to the
application to process monitoring are discussed, including
model selection and the construction of confidence bound.

2.1 PCA

Principal component analysis (PCA) (Jolliffe, 2002) is a
general multivariate statistical projection technique for
dimension reduction, where the original data is linearly
projected onto low-dimensional space such that the vari-
ance is maximized. Formally the D-dimensional data x is
represented by a linear combination of the Q-dimensional
scores t plus a noise vector e: x = Wt + e, where W are
the eigenvectors of the sample covariance matrix having
the Q largest eigenvalues (Q ≤ D). Consequently normal
process behavior can be characterized by the first Q prin-
cipal components, which capture the main source of data
variability.

The proper number of principal components can be se-
lected using a number of criteria, including variance ra-
tio, cross-validation and the “broken-stick” rule (Jolliffe,
2002). This is essentially a model selection problem. The
“broken-stick” rule is adopted in this paper due to its low
computation and good results reported in the literature
(Nomikos and MacGregor, 1995b). According to this rule,
the q-th principal component should be retained if the
percentage of variance explained by it exceeds the cor-
responding G value given by

G(q) =
100

C

C∑
i=q

1

i
(1)

where C = min(D,N).

In statistical process monitoring, the next step is to define
the monitoring statistics and the corresponding confidence
bounds. Traditionally two metrics are used: T 2 = tTΛ−1t
and SPE as r = eTe, where Λ is a diagonal matrix
comprising the Q largest eigenvalues.

As discussed previously, the first issue with T 2 and SPE is
that the corresponding confidence bounds are calculated
based on restrictive Gaussian distribution. Secondly two
separate metrics are required for process monitoring. Prac-
tically the process is identified as deviating from normal
operation if either T 2 or SPE moves outside the confidence
bounds. This empirical solution could potentially increase

the false alarm level 1 . The technique of GMM is suitable
for addressing the two issues simultaneously. In our previ-
ous work (Chen et al., 2006) we have demonstrated that a
unified monitoring statistic can be obtained by estimating
the joint pdf of the PCA scores and log-SPE using GMM,
i.e. the pdf of a (Q+1)-dimensional vector z = (tT, log r)T.
The logarithm operator is used to transform the non-
negative SPE onto the whole real axis on which the GMM
is defined.

In this paper the methodology in (Chen et al., 2006) is
followed to establish the confidence bounds for process
monitoring based on PCA and GMM techniques. GMM
is described in detail in the next subsection.

2.2 Gaussian mixture model

As a general tool for pdf estimation, Gaussian mixture
model (GMM) has been used in a wide variety of problems
in applied statistics and pattern recognition. A GMM is
a weighted sum of M component densities, each being a
multivariate Gaussian with mean μi and covariance matrix
Σi:

p(z|θ) =

M∑
i=1

αiG(z; μi,Σi) (2)

where the weights satisfy the constraint:
∑M

i=1 αi = 1.
A GMM is parameterized by the mean vectors, covari-
ance matrices and mixture weights: θ = {αi,μi,Σi; i =
1, . . . , M}.

Given a set of training data {zn, n = 1, . . . , N}, the
parameters can be estimated by maximizing the likelihood

function: L(θ) =
∏N

n=1 p(zn|θ). In the context of process
monitoring, zn is the (Q + 1)-dimensional vector of PCA
scores and log-SPE: zn = (tT

n , log rn)T. The maximization
is typically implemented iteratively using the expectation-
maximization (EM) algorithm (Dempster et al., 1977).

The number of mixture components, M , must be selected
prior to the training of a GMM. This is a model selection
problem that can be addressed using a number of meth-
ods, including cross-validation and Bayesian information
criterion (BIC) (Schwarz, 1978). BIC is widely applied in
model selection problems for its effectiveness and low com-
putational cost. According to BIC the model is selected
such that L − (H/2) log N is the largest, where L is the
log-likelihood of the data and H is the total number of
parameters within the model. The motivation of BIC is
that a good model should be able to sufficiently explain
the data (the log-likelihood) with low model complexity
(the number of parameters). In this study BIC is adopted
for the selection of number of mixtures.

One of the advantages of the GMM for process monitoring
is that it provides the likelihood value as the single statistic
for the construction of confidence bounds, as opposed to
the confidence bounds for two statistics (i.e. the T 2 and
SPE) in conventional process monitoring techniques. In

1 Suppose 95% confidence bound is used, and thus by definition
the false alarm rate is 5% for both T

2 and SPE. The probability of
either T

2’s bound or SPE’s bound being exceeded, when the process
is runing normally, will be equal to or greater than 5%.



practice a single monitoring statistic simplifies the plant
operators’ decision effort, and it may be more sensitive to
some subtle process faults (Chen et al., 2006).

On the basis of the pdf p(z|θ) for the normal operating
data, the 100β% confidence bound is defined as a likeli-
hood threshold h that satisfies the following integral (Chen
et al., 2006):

∫
z:p(z|θ)>h

p(z|θ)dz = β (3)

To determine the confidence bound, we can calculate the
likelihood of all the nominal data, and then find h that is
less than the likelihood of 100β% (e.g. 99%) of the nominal
data (Thissen et al., 2005). This approach is applicable to
most continuous processes where the number of nominal
data points can be up to several thousand; however it may
be unreliable when the nominal data is very limited as in
batch process monitoring. The estimation of the confidence
bound based on limited batches would be very sensitive to
the data, and thus a small perturbation in the data would
result in very different estimation of the h.

To address this issue, we resort to numerical Monte Carlo
simulation to approximate the integral in Eq. (3) (Chen
et al., 2006). Specifically we generate Ns random samples,
{zj , j = 1, . . . , Ns}, from p(z|θ). These samples serve as
the “pseudo data” (since the real data is not sufficient)
to represent the normal process behavior. Thus the Monte
Carlo samples, in conjunction with nominal process data,
are used to calculate the confidence bound h. Then a
new batch z is considered to be faulty if p(z|θ) < h
(or equivalently −p(z|θ) > −h). The number of Monte
Carlo samples required (Ns) to approximate the confidence
bounds is dependent on the dimension of z, and it can be
determined heuristically.

3. MONITORING OF BATCH PROCESSES

To analyze the three-way batch data (N × J × K) (N , J
and K denote the number of batches, process variables at
each time instance, and time steps, respectively), multi-
way analysis methods have been proposed to unfold the
data array into a two-way matrix on which conventional
PCA is then performed (Nomikos and MacGregor, 1995b).
This study unfolds the data array into a large matrix
(N × JK) such that each batch is treated as a “data
point”. This two-way matrix is then pre-processed to zero
mean and unit standard deviation on each column, prior
to the application of PCA to extract the scores tn and
SPE rn, n = 1, . . . , N . Then a Gaussian mixture model is
developed for the joint vector zn = (tT

n , log rn)T, followed
by the calculation of confidence bound using Monte Carlo
simulation.

3.1 On-line monitoring

In the on-line monitoring stage, it is necessary to project
the new batch onto the PCA space to obtain the scores
and SPE, and then to calculate the likelihood value under
the GMM to identify possible process anomaly. The issue
is that, at time step t, the batch measurements are
only available up to the current time. It is possible to

develop multiple PCA and GMM models at each time step;
however this strategy requires excessive computation and
computer memory. A more reasonable and widely accepted
method is to predict the scores and SPE using the available
measurements.

More specifically, let x̄1:t be the vector of a new batch with
available measurements from time step 1 to t. Note x̄1:t is a
vector of order Jt. According to Nomikos and MacGregor
(1995b), the least square prediction of the scores is:

t̄1:t =
(
WT

1:tW1:t

)−1
WT

1:tx̄1:t (4)

where W1:t is the sub-matrix of W having the rows
corresponding to time step 1 to t. In Eq. (4) the matrix
to be inverted is well conditioned due to the orthogonality
of the loading W. Since the future measurements are not
available, the prediction error can only be calculated up
to time step t:

ē1:t = x̄1:t − W1:tt̄1:t (5)

The SPE is then obtained as ēT
1:tē1:t. It was suggested to

use the “instantaneous” SPE associated with the latest on-
line measurements for process monitoring (Nomikos and
MacGregor, 1995b), i.e. ēT

t ēt, which is expected to increase
the sensitivity of fault detection method. However the
instantaneous SPE leads to an excessive number of false
alarms in the case study of this paper (see details in Section
4). This phenomenon could be due to the non-Gaussian
distribution of the process data. The SPE calculated from
Eq. (5), which in a sense is a smoothed version of the
instantaneous SPE, may be a more appropriate monitoring
metric. We will discuss this issue through the application
study in Section 4.

Clearly the predicted scores and SPE from Eqs. (4)(5),
based on current available measurements, are not identical
to the values that are calculated should the entire batch
be available. As a result the predicted scores and SPE
may not conform to the pdf developed based on the entire
duration of nominal batches, even if the process being
monitored is running normally. This is a serious issue
particularly in the initial stage of a batch processing, when
only a small number of measurements are available to
calculate the scores and SPE. We follow the standard
approach in on-line batch process monitoring (Nomikos
and MacGregor, 1995b) to pass each of the nominal
batches through the monitoring procedure to collect the
predicted scores and SPE at each time step from Eqs.
(4)(5), and then apply GMM to estimate the joint pdf
of these predicted scores and log-SPE at each time step,
and to establish the confidence bounds as presented in
Section 2. Essentially we propose to replace the confidence
bounds for T 2 and SPE in (Nomikos and MacGregor,
1995b), where the process data is assumed to be Gaussian
distributed, with more powerful Gaussian mixture model.
For on-line monitoring of a new batch, the scores and SPE
are calculated from Eqs. (4)(5), and the likelihood value
is calculated under the GMM for the current time step. If
this likelihood value is lower than the confidence bound,
the process under monitoring is considered to be in a faulty
condition.



Table 1. Variables used for the monitoring of
the semiconductor process.

1 Endpoint A detector 7 RF impedance
2 Chamber pressure 8 TCP tuner
3 RF tuner 9 TCP phase error
4 RF load 10 TCP reflected power
5 RF Phase error 11 TCP Load
6 RF power 12 Vat valve

4. CASE STUDY

The manufacture of semiconductors is introduced as an
example of the on-line monitoring of batch processes.
This study focuses specifically on an Al-stack etch process
performed on the commercially available Lam 9600 plasma
etch tool (Wise et al., 1999). Data from 12 process sensors,
listed in Table 1, was collected during the wafer processing
stage which run for 80 s. A sampling interval of 1 s was
used in the analysis. Thus for each batch, the data is
of the order (12 × 80). A series of three experiments,
resulting in three distinct data groups, were performed
where faults were intentionally introduced by changing
specific manipulated variables (TCP power, RF power,
pressure, plasma flow rate and Helium chunk pressure).
There are 107 normal operating batches and 20 faulty
batches. Twenty batches were randomly selected from the
normal batches to investigate the effect of false alarms.
The remaining 87 nominal batches were used to build the
MPCA and GMM models.

4.1 Off-line analysis

According to MPCA, the three-way nominal data array
(N × J × K = 87 × 12 × 80) is unfolded into a large two-
way matrix of the order (87 × 960), which is then mean-
centered and scaled to unit standard deviation on each
column. Then PCA is applied to the pre-processed data,
where two principal components are retained according to
the broken-stick rule (Jolliffe, 2002). Considering there are
960 columns in the unfolded matrix, it is not surprising to
find that two principal components explain only 45.50%
of the total variance (similar results can be found in the
literature, e.g. (Nomikos and MacGregor, 1995b)).

Figure 1 gives the scatter plot of the PCA scores corre-
sponding to the first two principal components. It is clear
that the nominal data exhibits the characteristic of multi-
ple groups, and it cannot be adequately approximated by a
single multivariate Gaussian distribution. As a result, the
99% confidence bound does not capture the region of NOC
accurately. In addition to the normal testing batches, 17
out of 20 faulty batches are within the confidence bound,
resulting in 17 missing errors. Clearly more complex mod-
els are required to represent the nominal behavior of the
process.

To develop a GMM for the PCA scores and log-SPE, the
appropriate number of mixtures must be selected. Accord-
ing to the BIC, the GMM with three mixture components
is utilized for the analysis of the semiconductor process.
Once the GMM is developed, the 95% and 99% confidence
bounds is calculated using Monte Carlo simulation pre-
sented in Section 2.2, where the number of random samples
is heuristically determined to be 10,000. Despite the large
sample size, the CPU time for the Monte Carlo simulation
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Fig. 1. Bivariate scores plot for principal components 1
and 2 with 99% confidence bound (−−−−): nominal
(+), normal (◦) and faulty (�).

Table 2. Off-line monitoring results.

T
2 SPE T

2 + SPE GMM

False alarms 0 0 0 0
Missing errors 17 7 7 4

was only 0.03 s (Matlab implementation under Windows
XP with Pentium 2.8 GHz CPU). In the literature the 95%
is treated as “warning bound” and 99% “action bound”.
Throughout this section the process is classified as faulty
if the 99% confidence bound is violated.

Table 2 summarizes the off-line batch-wise monitoring re-
sults for both conventional PCA and the GMM approach.
Both methods incur no false alarms in this example. The
large number of missing errors from T 2, as depicted in
Figure 1, is the result of over-estimation of the confidence
bound. It appears that SPE is more sensitive to the fault
and it attains seven missing errors. By combining T 2 and
SPE in the way that the process is identified as faulty if
either metric is exceeded, the number of missing errors is
still seven. Table 2 clearly indicates that GMM outper-
forms the conventional PCA in terms of smaller number
of missing errors through the direct estimation of the joint
pdf of the PCA scores and log-SPE.

4.2 On-line monitoring

The on-line monitoring results are given in Table 3. A
normal testing batch is considered to be a false alarm
if it is identified as faulty within the batch duration. A
missing error means a faulty batch is not detected during
the entire duration. Similar to the off-line monitoring, T 2

fails to detect most of the faulty batches because the scores
do not conform to a multivariate Gaussian distribution. A
comparison between Table 3 (a) and (b) suggests that the
instantaneous SPE can detect more faulty batches than
the smoothed SPE; however the increased sensitivity is at
the cost of dramatically decreased robustness. The number
of false alarms for instantaneous SPE is excessively large
(13 out of total 20 batches), and thus the smoothed SPE
is adopted for the rest of this paper. Table 3 indicates
that the GMM approach gives better results than the
conventional MPCA in terms of smaller number of false
alarms and missing errors.



Table 3. On-line monitoring results. (a) SPE
is calculated based on process measurements
at current time step (instantaneous SPE); (b)
SPE is calculated based on process measure-
ments from batch beginning to current time

step (smoothed SPE).

(a)

T
2 SPE T

2 + SPE GMM

False alarms 0 13 13 8
Missing errors 17 2 2 0

(b)

T
2 SPE T

2 + SPE GMM

False alarms 0 3 3 1
Missing errors 17 4 4 2
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Fig. 2. Delay in the detection of the faulty batches.

It should be noted that the number of missing errors in
on-line monitoring is not the only index to evaluate the
monitoring performance. Of greater practical importance
is the time delay between the occurrence and the detection
of the fault. Figure 2 illustrates the detection delay of the
20 faulty batches using MPCA and GMM. To facilitate the
calculation of average delay for comparison, the detection
delay is artificially set to the batch duration (i.e. 80 s) if
a faulty batch is not detected by the monitoring system.
Essentially this is to assume that the abnormal behavior
will be identified in some way (e.g. the presence of off-
specified product) when the batch finishes. In practice
plant operators are often not able to identify the fault
until much later than the end of batch duration. On
average, the detection delay for GMM is 11.6 s that is
significantly shorter than 20.3 s obtained by the PCA
method. Since the process is operating relatively fast, the
reduction of delay in 9 s (equivalently 9 time steps) may
not be sufficient for the operators to take appropriate
actions in practice. Nevertheless if the proposed approach
is applied to monitor a slow process, for example batch
fermentation that takes several days to complete where
data is sampled every half day, a shorter detection delay of
9 time steps would provide significant advantage in terms
of reduced operational cost and improved process safety
and product quality.

Figure 3 illustrates the on-line monitoring charts of a nor-
mal batch, which is false-alarmed by conventional PCA.
Since the value of on-line SPE increases with time, we
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Fig. 3. On-line monitoring of a normal batch using T 2 and
SPE.

plot SPE divided by time for better illustration in the
figure. The T 2 indicates that this batch is under normal
operation; however T 2 is not a reliable index for the mon-
itoring of this process as discussed previously. The SPE
metric appears to be susceptible to process disturbance;
it exceeds the 95% confidence bound from 17 s and is
over the 99% bound between 50 s to 60 s, despite the
fact that the process is running normally. Figure 4 shows
the GMM based monitoring chart, where the negative
likelihood value is plotted. The GMM approach correctly
recognizes that this batch is within the region of NOC
during the whole batch duration.

Figure 5 and 6 give the on-line monitoring charts of a
faulty batch (batch 5 as in Figure 2), using conventional
PCA and the GMM approach, respectively. Both T 2 and
SPE fails to detect this fault. In contrast, the likelihood
value from the GMM is becoming outside the 99% confi-
dence bound since time 3 s.

5. CONCLUSIONS

This paper extends the GMM technique for the modelling
and on-line performance monitoring of batch manufac-
turing processes. The handling of the unobserved future
batch measurements is discussed for the purpose of on-
line monitoring. The GMM provides a probabilistic ap-
proach to estimating the pdf of the nominal process data
and therefore enables more accurate calculation of the
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Fig. 4. On-line monitoring of a normal batch using GMM.
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Fig. 5. On-line monitoring of a faulty batch using T 2 and
SPE.

confidence bounds. The case study confirms that through
accurate modelling of the process historical data collected
from NOC, GMM is a promising approach to maintaining
a low rate of both false alarms and missing errors in process
performance monitoring.
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