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Abstract: Nonlinear model predictive control algorithm is used for the on-line control of polymer 
molecular weight distribution. The control of chain-length distribution is achieved by selecting a 
collection of points in the distribution and using it as set points for the control algorithm. An on-line 
Kalman filter is used to incorporate infrequent and delayed off-line molecular weight measurements. 
Through simulation; the control algorithm is evaluated, under tracking conditions as well as plant-model 
mismatch. The results demonstrate that the control algorithm can regulate the entire molecular weight 
distribution with high computational efficiency and minimum steady state error.
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1. INTRODUCTION

Polymers today are crucial products that are used in all parts 
of our daily life. The range of applications includes standard 
applications as packaging materials and textile fibers, and 
special ones in the automobile and electrical industries.       
Molecular weight distribution (MWD) is considered as one of 
the fundamental properties that determines polymer 
properties and thus its applications. Therefore, it is important 
to monitor and control MWD during the industrial production 
of polymers. A significant amount of research has been done 
in the area of control, monitoring and modelling of 
polymerization reactors; Excellent reviews have been given 
by several researchers (Elicabe and Meira, 1988, Embirucu et 
al., 1996, Congalidis and Richards, 1998, Richards and 
Congalidis, 2006). A careful study of previous works, with 
focus on the description of polymer MWD, results in the 
following conclusions:      

1. Most of the work that was done described polymer MWD 
by the weight average molecular weight (Mw), in addition to 
polydispersity index (PDI). Few researchers used the entire 
molecular weight distribution in their control studies. The use 
of Mw and PDI to describe polymer quality is helpful. 
However, sometimes, the molecular weight averages can be 
misleading when the molecular weight distribution shows 
bimodalities and/or it has high molecular weight tails. 
Besides, it is very useful to describe polymer quality by using 
the entire molecular weight distribution because in many 
polymer applications such as paints and paper coatings, it is 
required to specify such distribution properly (Sayer et al., 
2001).

2. In polyolefins polymerization, the work done to control the 
entire MWD of the produced polymer used mixtures of 

different metallocenes (Chatzidoukas et al., 2007, Heiland 
and kaminsky, 1992) or a hybrid catalyst of Ziegler-Natta and 
metallocene catalysts in a one stage process (Shamshoum et 
al., 2003). The use of single reactor to produce the desired 
polymer is cost-efficient alternative. However, the mixture of 
different catalysts may lead to complex undesirable catalyst 
interactions and non-reproducible catalyst behaviour due to 
the high variability of the polymerization rate of each catalyst
(Nele and Pinto, 2000). Additionally, the implementation of 
such catalyst systems requires a deep understanding of 
polymerization mechanisms using these catalysts; which is 
not a simple task. Finally, this method is still in the research 
phase and, it may take a long time before it can be (if it is 
developed successfully) widely implemented in industry. An 
alternative approach is to vary the polymerization conditions 
periodically in a single polymerization reactor. The periodic 
operation of continuous chemical reactors can improve the 
performance of the reacting system and allow better design 
and control of the molecular weight distribution in a single 
reactor (Nele and Pinto, 2000, Schiffino, 1995).

The scope of this work is to investigate the production of 
polyethylene, in a fluidized bed reactor, with a well-defined 
molecular weight distribution using nonlinear model 
predictive controller (NLMPC).

2. PROCESS MODEL

In fluidized-bed polyethylene reactors, the co-polymerization 
of ethylene and -olefin monomers is carried out using a 
multi-site Ziegler-Natta catalyst, which consists of three 
different types of active sites. Each active site produces 
polymer with molecular weight distribution that can be 
described by Schulz-Flory distribution. The polyethylene 
reactor process is depicted in Fig 1. The process model was 



developed by (McAuley et al., 1995), modifications made in 
this model were described in (Ali et al., 2003).
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Fig. 1. Polyethylene reactor.

2.1 Molecular Weight Distribution Model

The instantaneous molecular weight distribution for each type 
of active sites can be described by Flory-Schulz exponential 
function (Kissin et al., 2005)
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with q is the termination probability, j is the number of 
repeating units and d

jy instantaneous weight distribution. As 
assumed above, the catalyst consists of three different active 
sites and the distribution of the polymers produced by each 
site type can be represented by Flory’s most probable 
distribution. Thus, the overall distribution of the produced 
polymer can be calculated by the weighted sum of the three 
distributions as given below
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where yj,ins is the overall instantaneous molecular weight 
distribution, and wi is the mass fraction of each site. The 
molecular weight distribution of the polymer accumulated in 
the reactor after a certain polymerization time can be 
calculated using the following equation:
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here yj is the cumulative molecular weight distribution, Op is 
polymer production rate and Bw is mass of polymer in the 
reactor bed. Finally the GPC reading of the MWD is 
calculated by the following equation:

ln(10)yjGPC j ��� (4)

3. ON-LINE NLMPC ALGORITHM

In this work, the structure of the MPC version developed by
Ali and Zafiriou (1993) that utilizes directly the nonlinear 
model for output prediction is used. A usual MPC 
formulation solves the following on-line optimization:
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For nonlinear MPC, the predicted output, y over the 
prediction horizon P is obtained by the numerical integration 
of:
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y=g(x) (7)

from tk up to tk+P where x and y represent the states and the 
output of the model, respectively. The symbols || . || denotes 
the Euclidean norm, k is the sampling instant, � and � are 
diagonal weight matrices and R = [r(k+1) … r(k+P)]T is a 
vector of the desired output trajectory. �U(tk)=[�u(tk) … 
�u(tk+M-1)]T is a vector of  M  future changes of the 
manipulated variable vector u that are to be determined by 
the on-line optimization. The control horizon (M) and the 
prediction horizon (P) are used to adjust the speed of the 
response and hence to stabilize the feedback behavior. � is 
usually used for trade-off between different controlled 
outputs. The input move suppression, �, on the other hand, is 
used to penalize different inputs and thus to stabilize the 
feedback response. The objective function (Eq. 5) is solved 
on-line to determine the optimum value of �U(tk). Only the 
current value of �u, which is the first element of �U(tk), is 
implemented on the plant. At the next sampling instant, the 
whole procedure is repeated.

To compensate for modeling error and eliminate steady state 
offset, a regular feedback is incorporated on the output 
predictions, y(tk+1) through an additive disturbance term. 
Therefore, the output prediction is corrected by adding to it 
the disturbance estimates. The latter is set equal to the 
difference between plant and model outputs at present time k 
as follows:

d(k) = yp(k) – y(k) (7)

The disturbance estimate, d, is assumed constant over the 
prediction horizon due to the lack of an explicit means of 
predicting the disturbance.  However, for severe modeling 
errors, or open-loop unstable processes the regular feedback 
is not enough to improve the NLMCP response. Hence, state 
or parameter estimation is necessary to enhance the NLMPC 
performance in the face of model-plant mismatch. In this 
work, Kalman filtering (KF) will be incorporated to correct 
the model state and thus, to address the robustness issue. 
Utilization of the NLMPC with KF requires adjusting an 
additional parameter, �. More details on the integration of KF 



with the NLMCP algorithm are given elsewhere (Ali and 
Zafiriou, 1993). In addition to state estimation by KF, the 
predicted output will be also corrected by the additive 
disturbance estimates of Eqn.7.
The main objective of the NLMPC is to control the entire 
MWD. It is also necessary to maintain acceptable polymer 
production rate. Process stability is another important issue 
which is handled through regulating the total gas pressure and 
the bed temperature. These two controlled variables are 
adapted via separate PI control loops. The design and tuning 
parameters of these loops are given elsewhere (Ali et al., 
2003).

4. RESULTS AND DISCUSSION

It is worth mentioning that determining input trajectories that 
provide the desired distribution is difficult as the final 
polymer quality is sensitive to hydrogen concentration (X)
value and the mass of the produced polymer. In this sense, 
maintaining the desired MWD during process operation is 
even more challenging. In the presence of model-plant 
mismatch and/or when unmeasured disturbances enter the 
plant, the situation becomes more complex. The control 
objective here is to produce broad polyethylene with well-
defined MWD starting from narrow distribution and maintain 
it there. The results of this case are shown in Figs. 2 and 3. 
Four manipulated variables, which are the monomer, 
hydrogen, nitrogen and catalyst flow rates, are used. The 
weighting factors for these inputs are �=[0 0 20 50]. Four 
controlled variables, which represent specific points in the 
target MWD, are considered as shown by the dots in Fig 3. 
The weighting factor for all outputs is given the same value 
of �=[1 1 1 1]×100. The lower limit for the manipulated 
variables is set to zero and the upper limit is set to twice their 
nominal values. The MWD target function contains 103 
points, however only four points were selected as controlled 
outputs to reduce the computation effort consumed by the 
NLMPC calculations. The input horizon (M) and output 
horizon (P) are taken equal to 1 and 4, respectively. A 
sampling time of 1 hr is used. Usually the GPC 
measurements are available at low frequency. Advanced 
measurement sensors that can provide measurements in the 
order of minutes are available but at high cost.

Fig. 3 demonstrates the ability of NLMPC to maintain the 
new set point for the polymer distribution with minor 
distortion in the distribution function. More interesting is the 
response of the manipulated variables as shown in Fig. 2. The 
resulted response of the manipulated variables is in the form 
of periodic functions. Long prediction and moving horizon 
capability of NLMPC helped the controller to understand the 
dynamic nature of the process to an extent that it produced 
cyclic input sequences. Moreover, Fig. 2 shows how the 
bleed flow rate (BT) and the cooling water inlet temperature 
(Tw) varies by separate PI controllers to maintain the total 
pressure at 20 atm and the reactor temperature at 82 oC. Note 
that the manipulated variables used by NLMPC are plotted in 
discrete form because the NLMPC works in discrete time 
fashion.
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Fig. 2. Manipulated variable response using NLMPC. 
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Fig. 3. MWD using NLMPC. Dotted line: initial distribution, 
solid: target, dashed: controlled distribution. 

Next the algorithm was tested for targeting another MWD. In 
this case, seven points on the GPC curve is taken as the 
controlled variables with their weights are fixed at G=[ 1 100 
100 200 100 50] ×102.  The lower limit of FM1 is set to 40 
mole/s to keep high monomer concentration in the reactor. 
The value of the rest of the parameters remains the same as 
before. The simulation results are shown in Figs. 4 - 5. 
Evidently, NLMPC generated suitable periodic input 
sequences that produce MWD close to the desired one as 
shown in Fig. 5. The MWD suffered from minor distortion; 
however exact match of the target function is not necessary 
especially when we know that the relative error in GPC 
measurements is around 10%. This outcome can be obtained 
at shorter simulation time. The small production rate is 
obvious from Fig. 4; in fact, the average production rate is 
found to be 2.42 kg/s. To improve the production rate, the 
latter is incorporated as a controlled variable in the NLMPC 
algorithm. Using �=0.1 for the production rate, NLMPC 
managed to increase the polymer production to 2.86 kg/s but 
with notable loss of the MWD. Results are not shown here 
for simplicity. Increasing the weight of the designated 



controlled output further will of course propagates the 
production rate but the MWD will depart away from the 
desired set point. Our investigation revealed the existence of 
trade-off between the production rate and broadening the 
MWD. Widening the distribution requires pronounced 
changes in hydrogen concentration inside the reactor.
Increasing hydrogen concentration is achieved by feeding 
more hydrogen to the reactor this reduces ethylene 
polymerization rate and as a consequence reduces the overall 
production rate. Whereas, reducing hydrogen concentration is 
achieved by opening the vent (Lo and Ray, 2006) that allows 
hydrogen concentration in the reactor to escape, causing 
hydrogen concentration to fall quickly. Such reduction in the
concentration affects positively on the production rate. 
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Fig. 4. Manipulated variable response using NLMPC. 
Decreasing polymer average molecular weight.
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Fig. 5. MWD using NLMPC. Dotted line: initial distribution, 
solid: target, dashed: controlled distribution.  

The previous simulations are carried out assuming perfect 
model. However, this is not always true in real practice. To 
test the robustness of NLMPC to reject the effect of modeling 
errors, the simulation of targeting higher molecular weight is 
repeated with ��	
� ��� ��� ���� �������� ���� ��������� ����
catalyst activity. The results are shown in Figs. 6 - 7. It is 

evident that NLMPC is able to keep good control 
performance despite minor loss of controller performance.
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Fig. 6. Manipulated variable response using NLMPC in the 
presence of -20% in catalyst activation and reaction rate 
constant. 
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Fig. 7. MWD using NLMPC in the presence of -20% error in 
catalyst activation and reaction rate constant. Dotted line: 
initial distribution, solid: target, dashed: controlled 
distribution.

It is worth mentioning that controller performance could be 
improved more if the dynamics of hydrogen is faster. Since, 
hydrogen is not consumed in the reactor and large
fluctuations in hydrogen concentration are required to
broaden polymer distribution, improving controller 
performance would not be an easy task. This challenge can be 
solved using either a catalyst that is highly-sensitive to 
hydrogen as metallocenes or hydrogen consuming agent. The 
first approach depends on implementing a relatively new 
catalyst that is not widely used industrially (Galli and 
Vecellio, 2001). The second approach still needs more 
investigation to prove its applicability for the studied process. 
Finally, note that venting is usually used to reduce hydrogen 
concentration, as described above, however; venting reactor 
contents is not an economical choice because monomer also 



escapes from the reactor. Nonetheless, no other choices are 
available. 

5. CONCLUSIONS

In industrial applications, the molecular weight distribution 
of the produced polymer is usually measured using molecular 
weight averages and polydispersity index. In this article, we 
have presented an on-line MWD control technique to produce 
polymers with a target distribution in a fluidized-bed 
polymerization process. This strategy uses detailed 
polymerization process model, and Kalman filter to correct 
model states. A NLMPC controller is designed to control 
polymer MWD and polymerization process productivity. For 
the calculation of the MWD, selected points in polymer 
distribution curve are used as set-points for the controller that 
manipulates monomer, hydrogen, nitrogen and catalyst feed 
rates. To test the feasibility of the proposed MWD control 
technique, simulations have been carried out for ethylene gas-
phase polymerization using conventional Zielger-Natta 
catalyst. The simulations suggest that the proposed control 
strategy can be useful new technique to control the MWD of 
polymer in continuous polymerization processes. The 
performance of the developed control algorithm can be 
improved more if the dynamic response of hydrogen 
concentration inside the polymerization reactor is less 
sluggish.    
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