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Abstract: Classical observers are constructed on the basis of the nature of the measurement
signals, namely, a continuous observer requires continuous output measurements. In this work,
a novel observer which estimates continuous states when continuous and discrete measurements
are available is presented. By resetting the initial condition of the observer at each sample
instant, the convergence of the continuous states is guaranteed. The application to the the
estimation of substrate and biomass concentrations in an anaerobic wastewater treatment
process in which continuous and discrete measurements usually appear, shows the feasibility
of the proposed scheme.
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1. INTRODUCTION

Because of the increasing complexity and necessity for
safety of industrial processes, e¢ cient monitoring, decision
and control systems are becoming more an more impor-
tant. This is particularly true in the case of bioprocesses
where the state of the live organisms of the system must
be closely monitored. Extensive surveys have been pub-
lished on this topic (Dochain, 2008). Furthermore, the last
two decades have seen an increasing interest in improv-
ing the operation of bioprocesses by applying advanced
control schemes. In particular, biological waste treatment
process, more e¢ cient that the traditional physicochemical
methods but at the same time more complex, call for a
consistent good performance,which leads to a needing for
more e¢ cient instrumentation, control and automation.

To apply any control strategy it is necessary to measure
the process main variables, this can be performed placing
sensors (?), however, although in many cases continuous
measurements are easily available, for example the tem-
perature or pH, due to economical reasons or consuming
time techniques, other key variables can be only measured
intermittently, or even not measured at all. For this reason
the non measurable state variables should be estimated
from available measurements (Meleiro and Filho, 2000).
To deal with these problems, many solutions have been
proposed in the past such as the well known classical
Kalman �lters and Luenberger observers (Ray, 1980) in
both, continuous and discrete approaches. On of the rea-
sons for the popularity of these estimators is that they
are easy to implement since the algorithm can be derived
directly from the state space model. However, these state

? Partially Supported by PROMEP under proyect 103.5/08/2919
and CONACYT under grant 43658.

observers can not be easily implemented when both con-
tinuous and discrete information must be considered. In
this direction Scali et al. (1997) have proposed an extended
Kalman �lter which update some observer parameters each
time that the sampled date is available. Using Lyapunov
functions , Liu et al. (2008) and Muñoz de la Peña and
Christo�des (2008) have designed controllers that involve
continuous and discrete retarded measurements. Nguang
and Shi (2003) also use discrete measurements to design
continuous fuzzy control algorithms. Based on this idea
in this work it is proposed a continuous observer to be
continuously updated from the continuous measurements
and also retune the states at each instant when the discrete
measurement are available.

This work is organized as follows. A review of jump
observers is presented in section 2, then in section 3 the
observational problem is formulated, while the proposed
solution is developed in section 4. In section 5 we analyze
the dynamic behavior through numerical simulations for
an anaerobic digestion system. Finally we close the paper
with some concluding remarks.

2. BASIC FACTS OF JUMP OBSERVERS

Consider the linear system

_x (t) =Ax (t) +Bu (t) 8t 2 [0;1) (1)

y (k�) =Cx (k�) k = 1; 2; 3; : : : ; (2)

where x 2 Rn, u 2 Rm, and y 2 Rq are the state, input
and output vectors, respectively. In this case the outputs
are obtained at each sampling time �.

The usual way to estimate the unknown states of system
(1) from output (2) consists in discretizing the system



and design a discrete observer. However, the observer
thus obtained provides only information at each sampling
period. Additionally, to obtain a discrete version of (1)
it is necessary to have a well de�ned input in order to
place the appropriate holder (for example a zero holder
or a exponential holder), hence unexpected input varia-
tions during intersampling periods may produce discrete
observer failures (García-Sandoval, 2006). For this reason,
an interesting problem would be to construct an observer
given by

_z (t) =Az (t) +Bu (t) 8t 6= k� (3)

z
�
k�+

�
= z (k�)�G [y (k�)� Cz (k�)] t = k� (4)

where z 2 Rn are the observer states and z
�
k�+

�
denotes

the updated observer states at each sampling instant. This
is a continuous observer which updates its states at each
sampling instant. The next lemma establishes conditions
for the existence of such observer.
Lemma 1. Consider system (1)-(2) and suppose the pair�
eA�; C

�
is observable, then an observer of the form (3)-(4)

with the matrix gain G such that matrix (I +GC) eA� is
Schur, guaranteeing that limt!1 [x (t)� z (t)] = 0.

Proof. See Appendix.
Remark 2. The main feature of observer (3)-(4) remains
in the fact that the intersampling state information is
available at any time and it is not necessary to have a
pre-established dynamic behavior for the input. Equation
(3) can be seen as a continuous open loop observer in the
intersampling period and whose states, according to (4),
are reseted each sampling period.

3. PROBLEM FORMULATION

Consider the dynamic system

_x (t) = f (x (t) ; u (t)) 8t 2 [0;1) (5a)

y1 (t) =C1x (t) 8t 2 [0;1) (5b)

y2 (k�) =C2x (k�) k = 1; 2; 3; : : : (5c)

where x 2 Rn, u 2 Rm and y1 2 Rq1 , y2 2 Rq2 are the
state, input and output vectors for the dynamic system,
respectively. The outputs are divided into continuous (y1),
and discrete (y2) with sampling time �. For this system it
is desirable to design a continuous observer which uses
both discrete and continuous measurements, in order to
have continuous information about the full vector state.
The following assumption is instrumental for the observer
design.
Assumption 3. De�ning

A =
@f

@x

����
x=0;u=0

and B =
@f

@u

����
x=0;u=0

as the linear matrices for system (5), it is assumed that
the pair (A;C), with

C =

�
C1
C2

�
is observable but, the pairs (A;C1) and (A;C2) related
with continuous and discrete measurements, are not nec-
essarily completely observable. That is, the observability
matrix of these pairs may not have full rank.

In the following section it is presented a continuous ob-
server for system (5), which is the main result of this work.

4. OBSERVER DESIGN

Assume that there is a transformation T � Rn�n, such that
the linear approximation of system (5a)-(5b) becomes

_z = �Az(t) + �Bu(t) (6)

y1 = �C1z(t)

where

z = Tx =

�
z1
z2

�
; �A = TAT�1 =

�
A11 0
A21 A22

�
�B = TB =

�
B1
B2

�
; �C1 = C1T

�1 = (C11 0)

z1 � Rn1 , z2 � Rn2 , and the pair (A11; C11) is completely
observable. In this case a partial observer for z1 can be
designed in such way that given a matrix G11, (A11 �
G11C11) is Hurwitz. Applying the inverse transformation,
the proposed observer is,

_� (t) = f (� (t) ; u (t))�G1 (C1� (t)� y1 (t))
where

G1 = T
�1
�
G11
0

�
:

This is a partial observer which only make use of continu-
ous measurements (5b), however, using discrete measure-
ments it is possible to design a jump observer as described
in section 2, which include both continuous and discrete
measurement. The following theorem states this result.
Theorem 4. Consider the system (5), which has a set
of continuous measurements (5b) and a set of discrete
measurements (5c) with sampling time �. Furthermore
consider that there is a transformation T 2 Rn�n which
transforms the linear approximation of system (5a)-(5b)
to its observable canonical form (6), while the matrix
G1 = T�1

�
GT11 0

�T
, is calculated in such a way that

(A11 �G11C11) is Hurwitz and the matrix G2 is such that
(I +G2C)Ad is Schur, with Ad = e(A�G1C1)�. Then, an
observer for system (5), which takes continuous measure-
ments and is also updated each sampling period is given
by

_� (t) = f (� (t) ; u (t)) 8t 6= k� (7a)

�G1 (C1� (t)� y1 (t)) ;
�
�
k�+

�
= � (k�) t = k�; (7b)

+G2 (C� (k�)� y (k�)) ; k = 1; 2; 3; : : :

where � 2 Rn are the observer states and �
�
k�+

�
are its

updated values at each sampling time and

y(k�) =

�
y1(k�)
y2(k�)

�
:

This observer guarantees that, in a neighborhood of the
origin, the error between the system and the observer
states tends asymptotically to zero, i.e. lim

t!1
[x(t)� �(t)] =

0.

Proof. First, consider the linear approximations of both,
system (5a) and observer (7a)



_x (t) =Ax (t) +Bu (t) 8t 2 [0;1) (8)
_�(t) = (A�G1C1) � (t) +Bu (t) +G1y1 (t) (9)

additionally, consider that there is a matrix T that trans-
forms the system (8) and its output (5b) to its observable
canonical form (6), i.e.

z = Tx = col (z1; z2) ;

� = T� = col (�1; �2) ;

where z1 and �1 are the observable modes of x and �. Then
for the observable subsystems of z and � de�ning the error
e1(t) = z1(t)� �1(t), whose dynamic is

e1 (t) = (A11 �G11C11) e1 (t) :
Since G11 is such that (A11 �G11C11) is Hurwitz, e1(t)
tends asymptotically to zero. On the other hand, using
discrete measurements, y(k�), a jump observer (7) which
allows the updating of the continuous dynamic observer
states in every sampling period it is designed, taking
advantage of the discrete information. De�ning now the
error

� (t) = x (t)� � (t)
�
�
k�+

�
= x (k�)� �

�
k�+

�
its linear dynamic approximation around � = 0 is

_� (t) = (A�G1C1) � (t) 8t 6= k�
�
�
k�+

�
= (I +G2C) � (k�) t = k�; k = 1; 2; 3; : : :

As described in Lemma 1, these dynamics are stable if the
pair (Ad; C) with Ad = e(A�G1C1)� is observable and the
gain G2 is such that the matrix (I + G2C)Ad is Schur,
thereby ensuring that limk!1 [x (k�)� � (k�)] = 0 and
thus limt!1 [x (t)� � (t)] = 0, which proves the theorem.

Observer (7) can be seen as a hybrid observer since
incorporates continuous dynamics ( 7a) and a discrete
event (7b) which modi�es the continuous part. It should
be also noted that the calculation of the observer part for
continuous measurements is independent of the discrete
observer part, however, the total discrete observer depends
on the gain G1.

5. STUDY CASE

Last years, the environmental laws have been tightened
and it has became mandatory treating wastewater from in-
dustries as well households (?Huntington, 1998). Because
of this, the wastewater treatment control processes have
received great importance, especially anaerobic processes
are being widely considered as an alternative for the treat-
ment of wastewater because it produces smaller quanti-
ties of organic matter and also yields a high-energy gas
(Méndez-Acosta et al., 2008). To achieve the control of
these processes, state observers are frequently used, how-
ever for economical reasons some key variables can just be
measured using long sampling times, while others may be
measured more often. For this reason, a jump observer is
proposed as presented in theorem 4.

There exists many dynamic models to describe anaerobic
process (?Batstone et al., 2002; Bernard et al., 2006).
However, to apply the proposed observer, a macroscopic

model of the anaerobic process developed and validated by
Bernard et al. (2001) it is considered,

_X1 = (�1(S1)� �D)X1 (10a)
_S1 =�k1�1(S1)X1 + (S1in � S1)D (10b)
_X2 = (�2(S2)� �D)X2 (10c)
_S2 =�k3�2(S2)X2 + k2�1(S1)X1

+(S2in � S2)D (10d)

where X1, X2, S1, S2, are respectively the concentrations
of acidogenic bacteria, methanogenic bacteria, Chemical
Oxygen Demand (COD) and Volatile Fatty Acids (VFA),
D is the dilution rate, de�ned by the ratio D = Q=V ,
whereQ is the feeding �ow and V the digester volume, S1in
and S2in are respectively the concentrations of in�uent
organic substrate and of in�uent VFA. The kis are pseudo-
stoichiometric coe¢ cients associated to the bioreactions.
Parameter � 2 (0; 1] represents the fraction of the biomass
which is not retained in the digester (Hess and Bernard,
2008). The bacterial growth rates �1(S1) and �2(S2), are
nonlinear functions given respectively by the Monod and
Haldane kinetics (Henze and Harremoes, 1983)

�1 (S1) = �max 1
S1

S1 +KS1

�2 (S2) = �max 2
S2

S2 +KS2 + (S2=KI2)
2

where �1max, KS1, �2max, KS2 and KI2 are the maximum
bacterial growth rate and the half-saturation constant
associated to the substrate S1, the maximum bacterial
growth rate in the absence of inhibition, and the sat-
uration and inhibition constants associated to substrate
S2, respectively. The values of parameters and the input
concentrations used for simulations are listed in Tables 1
and 2.

If we consider that VFA concentration (S2) is a continuous
measurement while the COD concentration (S1) can just
be periodically acquired (in fact in real operations, VFA
concentration can be obtained up to every hour or less
(Méndez-Acosta et al., 2008), hence it can be considered
continuous compared with the resident time and the COD
concentration that could be measured even just once a

Table 1. Model Parameters (Alcaraz-González
et al., 2003)

Parameter Value
�1 1:2 d�1

�max 2 0:69 d�1

KS1 4:95 kg COD=m3

KS2 9:28mol VFA=m3

KI2 20mol VFA=m3

k1 6.6 kg COD= kg X1
k2 7.8 mol VFA= kgX1
k3 611.2 mol VFA= kgX2
� 0.5 (addimentional)

Table 2. Input Concentrations

Substrate Value
S1in 20 Kg COD/m3

S2in 100 mol VFA/m3



day), the jump observer developed in the previous section
can be then applied to the dynamic system (10) writing it
in the form

_x(t) =

0B@ �1(S1)X1
�k1�1(S1)X1
�2(S2)X2

�k3�2(S2)X2 + k2�1(S1)X1

1CA (11)

+

0B@ ��X1
S1in � S1
��X2
S2in � S2

1CAu(t)
y1(t) = ( 0 0 0 1 )x(t)

y2(k�) = ( 0 1 0 0 )x(k�)

where

x(t) =

0B@X1S1X2
S2

1CA ; C = �C1C2
�
=

�
0 0 0 1
0 1 0 0

�
;

and u (t) = D (t). System (11) can be represented as

_x(t) = f(x) + g(x)u(t): (12)

To calculate the jump observer (7) is necessary to linearize
the system (12) around a neighborhood of equilibrium
points (Hess and Bernard, 2008; Méndez-Acosta et al.,
2008) so the system has the form

_x(t) = Ax(t) +Bu(t) + f̂(x; u)

where

A =

�
@f

@x
+
@g

@x
u

�
x=0;u=0

, B = g (x)jx=0

are the linear approximation matrices around the steady
state [see (Hess and Bernard, 2008) for a detailed steady
state analysis]. In this case, the observability matrices for
pairs (A;C1), (A;C2) and (A;C) have ranks 4, 2 and 4,
respectively, i.e. using S2 it is possible to estimate the four
states, while using S1 it is just possible to estimate the
acidogenic part of the system. This is obvious since system
(10) has a cascade dynamic form between acidogenic and
methanogenic dynamics.

Considering a sampling time (�) equal to 1 and parameters
listed in Tables 1 and 2, it is easy to verify that A;B and
Ad take the values

A=

0B@ 0 0:7900 0 0
�1:8756 �5:7825 0 0

0 0 0 0:0015
2:2166 6:1622 �173:6936 �1:4701

1CA ;

B =

0B@�2:797618:4640
�0:1413
90:0000

1CA ;

Ad =

0B@ 0:8033 0:1145 0 0
�0:2719 �0:0349 0 0
0:0003 0:0008 0:9186 0:0007
0:1556 0:3069 �87:2825 0:1798

1CA ;
Using LQR techniques to calculate observer gains, ob-
server (7) is designed in order to ful�ll theorem 4, obtaining

Table 3. Initial conditions for simulations runs.

State variable X1 (0) S1 (0) X2 (0) S2 (0)
kg=m3 kg=m3 kg=m3 mol=m3

Plant 1:433 0:1 0:2 0:4
Observer 0:5 0:3 0:1 1

G1 =

0B@�0:00050:0115
�0:9985
17:2429

1CA ; G2 =

0B@ 0:0007 0:3923
�0:0002 �0:1330

0 0:0003
0 �0:0002

1CA :
5.1 Simulation Results

In order to illustrate the performance of observer (7), some
numerical simulations were carried out. Initial conditions
and input concentrations for these simulations are listed in
Table 3 and 2, while dilution rate was considered as a time
varying sinusoidal signal around the nominal value. To
verify if the incorporation of the discrete measurement to
the continuous observer reduces convergence time, hybrid
observer (7) was compared with a continuous observer
identical to (7a) without the use of (7b) (or equivalently,
for this observer G2 was settled equal to zero). Figure
1 shows the dynamic behavior of hybrid observer, the
discrete actualization is clearly visible in Figure 1a where
at time t = 1d there is a jump on the acidogenic biomass
estimation. As can be seen, observer states converges
after approximately tree days. In contrast, the continuous
observer (see Figure 2) converges in approximately twelve
days, i.e. four times slower than the hybrid observer.
Comparing both observers it easy to see that the hybrid
observer obtained a faster convergence rate.

6. CONCLUSIONS

An nonlinear observer which updates the states using con-
tinuous and discrete measurements was presented. Despite
this is a local observer, since observer gain matrices were
calculated using the linear approximation of the original
nonlinear system, its application to an anaerobic digestion
model presents an excellent performance and stability,
obtaining an improvement in convergence rate in com-
parison with an observer which only uses the continuous
information. As future work, the authors are considering
to extend this theory to the case where there exists para-
metric variations in the original plant, as well as the use of
these observers to the control of systems with continuous
and discrete measurements.

(Chapter head:)*
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Appendix A. APPENDIX

Proof. [Lemma 1] Let us de�ne

� (t) = x (t)� z (t) ; and �
�
k�+

�
= x (k�)� z

�
k�+

�
;

where � (t) represents the continuous error and �
�
k�+

�
is the updated error for each sampling period. Note that
x
�
k�+

�
= x (k�) since system (1) is continuous. Now

_� (t) =A� (t) 8t 6= k� (A.1)

�
�
k�+

�
= (I +GC) � (k�) t = k�: (A.2)

Solving (A.1) for t 2
�
k�+; (k + 1) �

�
, it follows that

� (k + 1) = Ad�
�
k�+

�
; (A.3)

where Ad = eA�. From (A.2) and (A.3) it is obtained

�
�
(k + 1) �+

�
= (I +GC) � (k + 1)

= (I +GC)Ad�
�
k�+

�
;

and thus, if the pair (Ad; CAd) is observable, then a
matrix G can be calculated such that Ad + GCAd is
Schur and the error �

�
k�+

�
will converge to zero, hence

limk!1
�
x (k�)� z

�
k�+

��
= 0; then for k� < t �

(k + 1) � the solution z (t) converges to x (t), that is
lim
t!1

[x (t)� z (t)] = 0. On the other hand, to prove that

the pair (Ad; CAd) is observable if the pair (Ad; C) is
observable, consider its observability matrix

O =

0BB@
CAd
CA2d
...

CAnd

1CCA ;
where Ad 2 Rn�n, then using the Hamilton-Cailey theo-
rem (Kailath, 1980)

And = a0I + a1Ad + � � �+ an�1An�1d ;

the observability matrix becomes

O =

0BBB@
CAd
CA2d
...

a0C + a1CAd + � � �+ an�1CAn�1d

1CCCA :
Since Ad is obtained through a discretization of matrix A
then a0 6= 0 and O has full rank if the pair (Ad; C) is
observable.




