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Abstract: The problem of designing the estimation structure to perform a specific (entire profile, 
single/two-effluent, and so son) concentration estimation task in a binary distillation column with two 
temperature measurements is addressed within a geometric estimation (GE) framework. The structure 
design involves the choices of: (i) the measurement locations, (i) the complete or truncated estimation 
model, and (iii) the innovated-noninnovated state partition of the model. First, a structural analysis is 
performed on the basis of detectability measures in the light of the column characteristics, yielding 
candidate structures for a specific estimation task. Then, the behavior of the structures is assessed with 
estimator functioning and dimension considerations, yielding conclusive structural results. The proposed 
methodology is applied to a representative case example with experimental data.  
Keywords: Nonlinear estimator, geometric estimator, nonlinear system realization, distillation column 
estimation. 

 

1. INTRODUCTION 

The study of the concentration estimation problem for 
distillation columns is motivated by the development of 
advanced monitoring and control schemes. The estimator 
design involves decisions on: (i) the structure (sensor number 
and locations), and (ii) the kind of (EKF, Luenberger, 
Geometric, etc) algorithm. In the distillation column 
estimation field: (i) the EKF has been, by far, the most 
widely employed and accepted algorithm, (ii) the sensor 
structure has been decided with heuristics (Oisiovici and 
Cruz, 2000) or observability measures (van der Berg et al. 
2000; Singh and Hahn, 2005), (ii) only in a few studies 
(Alonso et al, 2004; Bian and Henson 2006; Venkateswarlu 
and Kumar, 2006; Kadu et al, 2008) the measure-based 
sensor location results have been tested with estimator 
functioning and is not clear to what extent the results depend 
on tuning. In principle, the resolution of this drawback 
requires a unified framework to address the algorithm, sensor 
location, and tuning aspects. 

Recently (Alvarez and Fernandez, 2009), the general-purpose 
nonlinear geometric estimator (GE) (Alvarez and Lopez, 
1999; Alvarez 2000) has been redesigned with: (i) an 
implementation in terms of model Jacobian matrices (and not 
of the cumbersome or intractable Lie derivation-based gain of 
the nonlinear Luenberger observer), (ii) the structure 
(sensors, complete/truncated model, innovation scheme) as a 
key design degree of freedom, and (iii) a simple tuning 
procedure based on a robust convergence criterion, regardless 
of the structure, and (iv) testing with an experimental binary 
distillation column. This adjustable-structure GE 
methodology and the associated nonlinear detectability 
measures (Lopez and Alvarez, 2004) constitute the 
methodological points of departure for the present study. 

In this work, the problem of designing the best estimation 
structure (in terms of reconstruction speed, robustness, and 
algorithm simplicity) to perform a specific (entire profile or 
two-effluent) concentration estimation task in a binary 
distillation column with two temperature measurements is 
addressed, with structure meaning the choices of: (i) the 
measurement locations, (i) the (complete or truncated) 
estimation model, and (iii) the innovated-noninnovated model 
state partition. The proposed methodology is applied to a 
representative case example with experimental data. 

2. ESTIMATION PROBLEM 

2.1 Column system and model 

Consider an N-stage binary distillation column, with molar 
feed flow F in tray nf at (light-component) mole fraction cF, 
and bottoms (or distillate) flow B (or D) at composition cB (or 
cD), and a total condenser. Under standard (constant pressure, 
stage equilibrium, fast holdup dynamics with perfect mixing, 
evaporator level control, constant molar flow, saturated feed, 
and adiabatic system) assumptions the N-composition column 
model is given by (Luyben, 1990) 
 

c. 1 = {(R + F)(c2 - c1) - V[ε(c1) - c1]}/M1 := f1,       cB =c1 

c. i = {(R + F)(ci+1 - ci) - V[ε(ci) - ε(ci-1)]}/η-1(R + F) := fi, 
         1 ≤ i ≤ nf -1,                         η(M) = aη(M - Mo)bη  

c. nf = {(R + F)(cnf+1 - cnf) - V[ε(cnf) - ε(cnf-1)]  
        + F(cF - cnf)}/η-1(R + F) := fnf 

c. i = {R(ci+1 -ci) - V[ε(ci) - ε(ci-1)]}/η-1(R) := fi,   nf +1 ≤ i ≤  n-1 

c.N = {R[ε(cN) - cN] - V[ε(cN) - ε(cN-1)]}/η-1(R):= fN, cD =ε(cN) 
y1 = T1 = β(cl1),        y2 = T2 = β(cl2)   



 
 

 

 

 
ci is the i-th stage mol fraction of light component, V (or R) is 
the vapor (or reflux) flow, Mi is the i-th stage molar holdup, 
and Ti is the temperature measurement at the l1-th stage, ε, β, 
and η are the liquid-vapor, bubble point, and (Francis weir 
equation) hydraulics functions, respectively. Assuming the 
feed composition is fixed at c̄e, the preceding N-composition 
column model is written by  

c.  = fc(c, u),    c(0) = co,   y = h(c) := [β(cl1), β(cl2)]              (1) 
c = (c1,…, cN)',   u = (F, R, V)',   dim (c, y, u) = (N, m, 3, 1) 
 
In virtue of the afore stated modeling assumptions, the actual 
column dynamics are given by 
 
c.  = fc(c, u) + f̃c(c, ξ, d), c(to) = co,  y = h(c) + h̃c(c, ξ) + ey (2a) 
ξ
.
 = fξ(c, ξ, d, d

.
),        ξ(to) = ξo,  d = (u, eu, de), dim ξ = nξ (2b) 

 
with concentration (or unmodeled) state x (or ξ), actuator 
error eu, and unmodeled exogenous input de. The unmodeled 
dynamics (2b) have slow and fast components due to the 
modeling-measurement errors, including holdup and enthalpy 
QSS assumptions. Thus, the N-composition model (1) is the 
actual system (2) with the modeling assumption (f̃c, h̃c, ey) = 
0. 

2.2 Adjustable-structure estimation model 

Following a previous binary distillation column GE (Alvarez 
and Fernandez, 2009) study with the estimation model 
regarded as design degree of freedom, rewrite the actual 
column dynamics (1) in terms of n ≤ N modeled 
compositions (x): 
 
x.  = f(x,u) + f̃(x, χ, d, u), x(to) =xo, y = h(x) + h̃(x, χ) + ey  (3a) 
χ.  = fχ(x, χ, d, d

.
), χ(to) = χo,  (x, x∅) = Icc,  χ = (x∅, ξ)       (3b) 

 
where x∅ are the unmodeled concentrations and χ is the 
augmented unmodeled state. The vector f depends only on 
the modeled concentrations x, due to a key modeling 
assumption made for estimator decentralization purposes 
(Alvarez and Fernandez, 2009): (i) f is the part of fc that 
describes x, and is calculated with the unmodeled state at an 
average constant value (x-∅), as the related error can be 
effectively compensated by the GE integral action when the 
estimation structure is adequately chosen. In terms of κ1 (or 
κ2) innovated sates x1 (or x2) and (n - κ) noninnovated states 
(xι), the actual dynamics (2) are given by 
 
x. 1 = f1(x1, u) + f̃1(x, χ, d, u), y1 = h1(x1) + h̃1(x, χ) + e1      (4a) 
x. 2 = f2(x2, u) + f̃2(x, χ, d, u), y2 = h2(x2) + h̃2(x, χ) + e2      (4b) 
x. ν = fν(xν, x1, x2, u) + f̃ν(x, χ, d, u),    xν(to) = xνo                (4c) 
χ.  = f̃χ(x, χ, d, d

.
),  χ(to) = χo,  x1(to) = x1o,   x2(to) = x2o      (4d) 

 
where (x1, x2, xν, x∅) = Icc,       dim (x1, x2, xν) = (κ1, κ2, κν) 
κ1 + κ2 = κι,  κ1 + κ2 + κν = n ≤  N,  (x1, x2) = xι, dim (xι) = κι 
 

f1 (or f2) corresponds to x1 (or x2), and is calculated with some 
(average) constant value [x-1(or x-2), x-ν]. From the 
specialization of the general-purpose definition of model 
structure [Alvarez and Fernandez, 2009] to the binary column 
case, the definition of column model structure follows 
 
σ = (κ, xι-xν),  κ = (κ1, κ2),   κ1 + κ2 = κι ≤ n,  xι = (x1', x2')'  (5) 
 
where κ is the estimation order vector, xι-xν is the innovated-
noninnovated state partition, and x1 (x2) are κ1 (or κ2) 
adjacent concentrations associated with the measurement y1 
(or y2). Thus, from the enforcement of the modeling 
assumption 
 
(f̃1, f̃2, f̃ν) = 0, (h̃1, h̃2) = 0, (e1, e2) = 0                   (6) 
 
upon the actual subsystem (4a-c), the estimation model, with 
estimation structure σ (5), follows: 
 
x. 1 = f1(x1, u),              x1(to) = x1o,        y1 = h1(x1)              (7a) 
x. 2 = f2(x2, u) ,             x2(to) = x2o,        y2 = h2(x2)              (7b) 
x. ν = fν(xν, x1, x2, u),    xν(to) = xνo                                        (7c) 
 

2.3 Adjustable-structure geometric estimator (GE) 

In virtue of the σ-detectability property of the N-composition 
staged model (7), the (possibly truncated) model state (x) can 
be on-line robustly estimated by the geometric estimator 
(GE) with structure σ:  
 

x̂
.

1 = f1(x̂1, u) + O1
-1(x̂1, u){π1ι̂1 + k1(ζ1, ω1)[y1 – h1(x̂1)]}, 

x̂1(to) = x̂1o;       ι̇̂1 = ω1
κ1+1[y1 – h1(x̂1)]},     ι̂1(0) = ι̂1o       (8a) 

x̂
.

2 = f2(x̂2, u) + O2
-1(x̂2, u){π2ι̂2 + k2(ζ2, ω2)[y2 – h2(x̂2)]}, 

x̂2(to) = x̂2o;       ι̇̂2 = ω2
κ2+1[y2 – h2(x̂2)],     ι̂2(0) = ι̂2o       (8b) 

x
.
ν = fν (x̂ι, x̂1, x̂2, u) x̂ν (to) = x̂νo                     (8c) 

 
where:           ki(ζi, ωi) = [a1

i(ζi)ωi, … , aκ
i
i(ζi)ω i

κi]'       (9c) 
Oi'(xi, u) = [β’(cli)]ei[I, Ai(xi, u),…,Α i

κi+1(xi, u)],  i =  1, 2   (9a)  
Ai(x, u) = ∂xf (xi, u),  πi = (0, …, 0, 1)',   dim πi = κi          (9b) 
|β’(cl1)| ≥ εΤ,     |β’(cl2)| ≥ εΤ                                           (10a-b) 
 
ζi (or ωi) is the damping factor (or characteristic frequency) 
of the prescribed linear, noninteractive, pole assignable 
(LNPA) output error dynamics 
 
ỹi

(κi+1)
+ a1

i(ζi) ωiỹi
(κi)+… + a1

i(ζi) ωiỹi
(1) + ω i

κi+1ỹi = 0,  i = 1, 2   (11) 
 
with coefficient sets {a1,…, aκ1}i determined by pole 
placement (Lopez and Alvarez, 1999). The invertibility of O1 
and O2 is ensured by the tridiagonal state dependency of fc 
and the sensor location condition (10) which amounts placing 
each sensor at a tray with temperature gradient larger than a 
minimum value (say, two degrees). For any model structure σ 
(5) (Alvarez and Fernandez, 2009): (i) the afore stated 
nonlocal robustness convergence feature holds with respect to 
the N-composition model (1) with decentralization, 



 
 

 

 

truncation, and actuator-measurement errors, and (ii) the 
rather simple GE tuning scheme applies to any structure. 
Thus, the adjustable structure-algorithm GE methodological 
framework offers the means to fairly compare the behavior of 
different structures, in the sense that the behavior differences 
are due to the structures itself and not to the tuning.  

2.4 Estimation structure design problem 

In view of the preceding adjustable-structure column GE 
approach, our present problem consists in, given a specific 
estimation objective, determining the two-measurement 
structure, which yields the best estimator behavior in terms of 
reconstruction speed, robustness and dimensionality. 
Technically speaking, the problem amounts to choosing the 
(complete or truncated) estimation model (7) and its σ-
detectability structure (5), or equivalently: (i) the location l1 
(or l2) of the temperature measurement y1 (or y2), (ii) the 
corresponding innovated concentrations x1 (or x2), and (iii) 
the noninnovated state (xν). 

2.5 Structure search methodology 

From the perspective of a general-purpose mixed-integer 
optimization approach, in our 12-stage distillation column 
example, the N-composition model offers 527, 345 structural 
possibilities with 4,095 observable (or passive) ones 
structures, and the number of possibilities grows even more 
when model truncation is considered. Leaving aside the 
implementation complexity and difficulties of an 
optimization-based search method, in the spirit of the 
constructive control (Sepulchre, 1997) and GE (Alvarez and 
Fernandez, 2009) approaches, here the structural search will 
performed by exploiting the column staged feature in the 
light of the easy to compute version (Alvarez and Fernandez, 
2009) of the GE detectability measures (Lopez and Alvarez, 
2004), in two steps: (i) first, detectability measures will be 
used to draw candidate structures for a given estimation 
objective, and (ii) then, conclusive structural results will be 
obtained in terms of GE functioning.  

2.6 Experimental case example 

The proposed methodology will be illustrated and tested with 
experimental case example employed before to illustrate and 
test the theoretically drawn features and capabilities of the 
general-purpose GE approach (Alvarez and Fernandez, 
2009): a methanol-water mixture feed F = 40 ml/min, at light 
component composition ce = 0.2 and temperature 57oC. 
Initially, the column was at a steady-state with low reflux 
ratio (R/D = 0.2) and poor separation (cB ≈ 0.0, cD ≈ 0.57). 
Then, at time t = 0, a feed concentration step increase (ce: 0.2 
→ 0.4) was introduced, yielding: (i) an overall composition 
response that settled (≈ 40 min) at an intermediate separation 
steady-state (cB ≈ 0.01, cD ≈ 0.79), and (ii) a distillate (or 
bottoms) composition settling time of ≈ 15 (or 40) min. 
Finally, at t = 40 min, a reflux step increase (R/D: 0.2 → 1.5) 
was introduced, yielding: (i) an overall response that settled 
(≈ 60 min.) at a high-separation steady-state (cB ≈ 0.15, cD ≈ 
0.98), and (ii) a distillate (or bottoms) composition settling 
time of ≈ 20 (or 50) min. The experimental data can be seen 
in (Alvarez and Fernandez, 2007 and 2009). 

3. STRUCTURAL ANALYSIS 

In this section, the dependency of the GE detectability 
measures (Lopez and Alvarez, 2004; Alvarez and Fernandez, 
2007) over sensor location and innovated state dimension are 
analyzed to draw candidate structures for complete profile 
and two-effluent estimation purposes. 

3.1 Detectability measures 

To account for the effect of the decentralization-truncation 
performed in the passage from the complete N-composition 
(1) to the truncated-decentralized n-composition estimation 
model (7) with structure σ (5), the detectability measures (12) 
for the next N-composition model (13) with innovated-
noninnovated state partition will be employed (Alvarez and 
Fernandez, 2009): 
 
sι = 1/msv(O),   cι = cn(O)                  (12a-b) 
sν = msv(F),      cν = cn(F);      λν = ½ lev(F + F') < 0   (12c-d) 
x. ι = fι(xι, xν, u),    x(0) = xιo,  y = h(xι),  dim (xι) = N       (13a) 
x. ν = fν(xι, xν, u),   xν(to) = xνo,                 dim (xν) = N-n  (13b)  
 
where    O(x, u) = bd (E1', E2')'(x, u),       Ai(xi, u) = ∂xιfι(x, u)  
F(x, u) = [∂xνfν + ∂xιfνO

-1D](x, u),           Aν(x, u) = ∂xνfν(x, u) 
Ei'(x, u) = β’(cli)ei(I, Ai,…, Α i

κi-1)(x, u),     i = 1, 2 
D'(x, u) = β’(cli)ei(I, Aν,…, Αν

κi-1)(x, u),    (x1', x2')' = xι 

 
sι (or sν) is the singularity measure equal to the inverse of the 
minimum singular value (msv) of the matrix O (or F), cι (or 
cν) is the illconditioning measure equal to condition number 
(cn) of the matrix O (or F), and λν is the dominant frequency 
of the noninnovated dynamics, or equivalently, the negative 
of the smallest eigenvalue (lev) of the matrix (F + F')/2, O is 
the estimation matrix of the σ-structure model (13), and F is 
the Jacobian matrix of the noninnovated dynamics (13b). The 
illconditioning value cι (or cν) measures the overshoot 
response of the innovated (or noninnovated) state estimation 
error to an initial estimate error, and the singularity value sι 
(or sν) measures the asymptotic offset of the innovated (or 
noninnovated) state error due to persistent modeling errors, 
and the number λν measures the convergence rate of the 
noninnovated state error dynamics. In general, these 
measures can be taken over a column motion x(t) (Lopez and 
Alvarez, 2004). In our column case, the detectability 
measures will be computed at the intermidiate steady state 
(reached after ≈ 40 min).   

3.2 Measurement locations 

In Figure 1 are presented the singularity (sι) and ill 
conditioning (cι) measures (12) of the estimation matrix O 
(9a) as function of the sensor location pair (l1, l2), for a 
completely observable structure σ (5) with estimation order 
pair κ = (κ1, κ2) = (6, 6) and κι = κ1 + κ2 = 12 = n = N (i.e., 
complete model with observable structure), showing that: (i) 
the largest singularity and illconditioning values are obtained 
with the sensor stage location pair (l1, l2) ≈ (1 to 2, 12), (ii) 
the smallest singularity and illconditioning values are 



 
 

 

 

obtained with the sensor location (l1, l2) ≈ (1, 2) [ or (11, 12)] 
with two adjacent sensors in the bottom (or top) of the 
column, followed by the sensor location (l1, l2) ≈ (5, 6) with 
two adjacent sensors above or below the feed tray (5). These 
consideration lead to the following conclusions: (i) the two 
sensors should not be in the same section, and (ii) the best 
location pair for complete profile estimation is given by 
 
 (l1, l2) = (2, 12) := (ls, le)                                                    (14) 
 
meaning one sensor in stage ls = 2 (tray one) [or le = 12 tray 
10] of the stripping (or enriching section), precisely in the 
stage with the largest temperature and concentration stage-to-
stage gradient. 

a)  

b)  
Fig. 1: Dependency of the singularity sι and ill conditioning cι of the 
estimation matrix O on the sensor location pair (l1, l2), for comple 
observable structure σ (5) estimation order pair κ = (κ1, κ2) and κ1 + 
κ2 = 12. 
 
These location results are in agreement with location criteria 
employed in: (i) two-point temperature PI control of 
distillation columns (Tolliver, 1980; Castellanos-Sahagun et 
al., 2005), and (ii) previous distillation column studies with 
EKF (Baratti et al., 1995; Oisiovici and Cruz, 2000). 

3.3 Innovated state dimension pair 

Next, the sensor pair location (14) determined in the last 
section for the complete model (1), with observable structure 
κ (5), is kept fixed, and the dependency of the illconditioning 
cι (12a) and the speed parameter λν (12c) of the noninnovated 
dynamics upon the innovated state dimension (or 

equivalently, estimation order) pair κ = (κs, κe) is examined, 
with κs (or κe) being the number of adjacent innovated states 
xs (or xe) associated with the measurement ys (or ye) of the 
stripping (or enriching) section. The resulting measure cι (or 
λν) is presented in Figure 2a (or 2b), showing that the 
illconditioning measure cι remains within a reasonable bound 
(1 ≤ cι ≤ 100) for all the estimation order pairs with at most 
three innovated states per measurement [(κs, κe) ≤ (3, 3)]. As 
expected (Lopez and Alvarez, 2004): (i) the passive structure 
(κs, κe) = (1, 1) yields the smallest possible value cι = 1, and 
(ii) the speed parameter λν  of the noninnovated dynamics is 
minimum (λν  = 0) when the structure is observable with (κs, 
κe) = (6, 6). These results are consistent with the general-
purpose GE approach (Alvarez y Fernandez, 2009): (i) as the 
number of innovated states grows, the reconstruction speed 
grows and the robustness decreases, and (ii) the maximum 
robustness is obtained with the passive structure (κs, κe) = (1, 
1), and (iii) the maximum reconstruction speed is obtained 
with the observable structures (κs, κe) = (6, 6). 

3.4 Candidate structures 

From the preceding structural analysis the next results follow. 
For complete profile estimation, the candidate models are 
decentralized versions of the N-concentration model (1) with 
structure σ (5): 
 

c. s = fs(cs, u),          c. e = fe(ce, u),    y = h(c)                       (15a) 
(κs, κe) ≤ (3, 3),    (ls, le) = (2, 12)                                     (15b) 
 
For two-effluent estimation, the candidate model is the 
truncated-decentralized model with passive structure σ (5): 
 

c. 1 = {(R + F)(c2 - c1) - V[ε(c1) - c1]}/M1,                         (16a) 

c. 2 = {(R + F)(c-3 - c2) - V[ε(c2) - ε(c1)]}/η-1(R + F), ys = β(c2)  

c. 12 = {R[ε(c12) - c12] - V[ε(c12) - ε(c-11)]}/η-1(R),      ye = β(c12) 
(κs, κe) = (1, 1),          (ls, le) = (2, 12)                   (16b) 
 

4. STRUCTURAL RESULTS 

Having as point of departure the suggestive structural results 
(15, 16) of the last section, in the present section conclusive 
results are obtained by assessing the candidate structures in 
terms of reconstruction speed and robustness. 

4.1 Estimator tuning and convergence 

 The column (or holdup) dominant (or fastest) frequency ωc 
(or ωη) was determined from the experimental data and the 
detailed model (1), the estimator frequency ω is written as nω 
times ωn, and the adjustable constants (20) are listed next: 
 
(ωc, ωη) ≈ (1/15, 1) min-1; ζs, ζe, ωs = ωe = ω   = nω ωc     (17-18) 
 
Thus: (i) there are three adjustable gains (ζs, ζe, nω), and (ii) 
the limit upper ω+ is related to ωη. From the specialization to 
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the column case of Lemma and Proposition 1 in (Alvarez and 
Fernandez, 2009): (i) the GE error dynamics is robustly 
stable if the stabilizing term λs dominates the potentially 
destabilizing one λd (λs and λd defined in Alvarez and 
Fernandez, 2009), according to inequality (19), or 
equivalently, if:  (i) the related threshold equation (20) has 
two strictly positive and sufficiently separated roots (ω- and 
ω+) for ω, and (ii) the gain frequency ω (18) of the prescribed 
LNPA output error dynamics (11) is chosen so that the low-
high gain conditions (21) are met: 
 
λs(ω, ζ, σ) - λd(ω, ζ, σ) := λ(ω, ζ, σ) >  0,  ζ = (ζs, ζe)      (19) 
λ(ω, ζ, σ) = 0     ⇒     ∃     ω = ω-(ζ, σ),      ω+(ζ, σ)         (20) 
0  <  ω-(ζ, σ)  <  ω   <  ω+(ζ, σ)                                           (21) 

a)  

b)  

Fig. 2: Dependency of the singularity (or noninnovated-dynamics 
speed parameter) sι (or cι) of the estimation matrix O (or Jacobian 
matrix F) on the dimension κ = (κs, κe) of the innovated state pair xs-
xe, for the sensor location (ls, le) = (2, 12) 
 
The meaning of these conditions and their dependency on κι 
(= κ1, κ2, κ3 with κ1 < κ2 < κ3) are depicted in the Figure 1b 
of Alvarez and Fernandez (2009): (i) the fulfilment (κι = κ1) 
or violation (κι = κ2, κ3) of the conditions, and (ii) as the 
estimation order κι grows, the convergence gain (ω+, ω-) 
decreases, and eventually vanishes. In our column problem, 
we shall be interested in the interplay between structure, 
behavior, and tuning (ζs, ζe, ω,  ω-, ω+, Δω). 

4.2 Entire profile estimation 

First, the GE estimator (8) was run with the candidate 
structures (κs, κe) = (1, 1), … (6, 6), finding that the best 
behavior was attained with (κs, κe) = (3, 3), followed by (2, 
2). In Figure 3 are presented the results for (κs, κe) = (1, 1), 
(3, 3), and (6, 6), and the corresponding gain tuning limit 
results are listed in Table 1. The structure with three 
innovated states per measurement yields the best speed 
versus robustness behavior, with a reasonable gain interval 
(ω+, ω-). In agreement with the convergence-tuning 
theoretical derivations (Alvarez and Fernandez, 2009): (i) the 
passive (or observable) structure yields the slowest (or 
fastest) reconstruction rate with the largest (smallest) 
robustness, or equivalently, the largest (or smallest) gain 
interval Δω, and (iii) to avoid oscillatory response, the 
damping factor ζs/e = 21/2 (or 1.5) is used for observable (or 
passive) innovation (Alvarez and Lopez, 1999). 

4.3 Two-effluent estimation 

In this case, the three-state model with two decoupled 
subsystems and passive innovation candidate structure (15) 
was implemented as well as several other neighbouring 
structures, finding that, the candidate structure yielded the 
best behavior with the least number of states, followed 
closely by some neighboring structures. The corresponding 
tuning and behavior are listed in Table 2 and Figure 4, 
respectively. As it can be seen in the Figure 4, for effluent 
estimation purposes, the truncated model outperforms the 
complete one, and this verifies the effectiveness of setting the 
model dimension as design degree of freedom. Comparing 
with the complete model-based estimation cases, the 
truncated model with single-stage innovation per 
measurement yields faster and more robust effluent estimates. 
 

Table 1. Tuning for entire profile estimation. 

y κ ζ ω- ω ω+ Δω nω 
T2, T12 6, 6 21/2 1/15 2/5 8/15 7/15 6 
T2, T12 3, 3 1 1/15 2/3 4/5 11/15 10 
T2, T12 1, 1 3/2 1/15 4/5 14/15 13/15 12 

 

Table 2. Tuning for two-effluent estimation. 

n κ ζ ω- ω ω+ Δω nω 
12 1, 1 3/2 1/15 4/5 14/15 13/15 12 
3 1, 1 3/2 1/15 14/15 1 14/15 14 

5. CONCLUSIONS 

The problem of drawing the structure for best estimator 
behavior with respect to a specific concentration estimation 
task has been resolved for a binary distillation column with 
two temperature measurements and experimental data. It was 
found that: (i) the (12-concentration) profile must be 
estimated with the complete model, six innovated 
concentrations (three per measurement), and a 6-
concentration open-loop observer module, and (ii) the two-
effluent concentration must be estimated with a three-stage 
truncated model, two innovated concentrations, (one per 
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measurement), and one noninnovated module. In the 
complete (or two-effluent) estimation case, the GE consists of 
5 (or 14) ODE’s, which are considerably less than the 72 
ODEs required by an EKF implementation. 

The proposed approach: (i) resolves the structure-algorithm 
estimation design problem in a way that is more effective and 
simpler than the ones of previous studies, and (ii) is a point of 
departure to address the multi-component case. 

 
Fig. 3. Profile estimation with two sensors (ls = 2, le = 12) and 
complete model. 
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