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Abstract: We discuss in this paper a novel and efficient implementation of distributed Model Predictive
Control (MPC) systems for large-scale systems. The method is based on Partial Enumeration (PE), an
approach that allows to compute the (sub)optimal solution of the Quadratic Program associated to the
MPC problem by using a solution table that stores only a few most recently optimal active sets. This
method is applied to the each local MPC system with significant improvements in terms of computational
efficiency, and the original PE algorithm is modified to guarantee robust stability of the overall closed-
loop system. We also discuss how input constraints that involve different units, e.g. on the summation
of common utility consumption, can be appropriately handled. We illustrate the benefits of proposed
method by means a simulated example comprising three units.
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1. INTRODUCTION AND MOTIVATIONS

Model predictive control (MPC) is the most successful ad-
vanced control technique applied in the process industries (Qin
and Badgwell, 2003), which nowadays tend to implement MPC
systems in more and more plant units. Since units are often
interconnected, it is clear that in some extent different MPCs
may interfere, and depending on the steady-state and dynamic
coupling of the units, these interactions may limit the overall
achievable performance. From a pure theoretical point of view,
the desire for optimality should push practitioners to implement
a smaller number of (larger) MPC systems that encompass
several units. From a practical point of view, however, the use
of larger number of (smaller) MPC units may be preferred due
to increased flexibility of the overall plant-wide control system,
e.g. when one unit requires maintenance. Furthermore, depend-
ing on the size of the overall plant, a global centralized MPC
system may simply be too large and too demanding in terms
of computational resources. For these reasons, researchers are
investigating so-called distributed MPC strategies, which aim
to interconnect different MPC units with a minimal overhead
structure and without increasing the complexity of the online
problem solved by each MPC unit (Venkat et al., 2007; Dunbar,
2007; Rawlings and Stewart, 2008; Aske et al., 2008).

In the design of distributed MPC systems, several different
“flavors” can be considered. The first one is the fully decen-
tralized structure: each MPC unit optimizes its own objective
function and no information regarding the computed input is
exchanged among the MPC units. The second one is the so-
called “non-cooperative” distributed MPC: the different units
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exchange their optimal input sequence, i.e. each MPC unit
considers the other unit’s planned input sequences in its optimal
control problem. Both these approaches have no proven stabil-
ity properties in closed-loop. In decentralized MPC the poten-
tial for instability comes first of all by the inherent model error
induced by neglecting the interactions between different units.
Furthermore in both decentralized and “non-cooperative” MPC
structures, instability may arise because the different MPC sys-
tems optimize over different and competing objectives. When
the closed-loop system is stable, “non-cooperative” MPC leads
to a so-called Nash equilibrium point, which may be arbitrarily
far away from the centralized optimum, also known as Pareto
equilibrium point.

These issues are extensively discussed by Venkat et al. (2006a,
2007), who proposed the so-called “cooperative” distributed
MPC architecture. In this distributed MPC system, each lo-
cal controller optimizes, over its inputs, a common (overall)
objective function and shares the computed optimal input se-
quence with all other controllers. As discussed by Venkat et al.
(2006a,b), this scheme guarantees nominal stability, constraint
satisfaction, and convergence towards the optimal centralized
MPC solution, provided that no constraint involves coupling of
inputs from different units.

In a recent paper (Pannocchia et al., 2007), we proposed for
large-scale centralized MPC systems a novel online solution
method called Partial Enumeration (PE) that allows fast eval-
uation of (a sub-) optimal solution of the MPC problem. Such
method shares some ideas with Explicit MPC (Bemporad et al.,
2002; Alessio and Bemporad, 2008; Baotic et al., 2008), which
however is applicable only to small dimensional systems. In
this paper, we investigate the use of PE for the solution of the
local MPC problems with the aim of increasing the size and



complexity of problems that can be addressed efficiently by
distributed MPC systems. A second objective of the present
paper is to address the issue of coupled input constraints, which
may limit the achievable performance of distributed MPC sys-
tems (Rawlings and Stewart, 2008).

2. COOPERATIVE MODEL PREDICTIVE CONTROL

2.1 Overall system, input constraints and local subsystems

We consider an overall time-invariant system (plant) in the
discrete-time form:

x+ = Ax+Bu, y = Cx , (1)
in which x ∈ Rn and x+ ∈ Rn are the state at a given time and
at the successive time, respectively; u ∈ Rm is the input and
y ∈ Rp is the output. Inputs are assumed to be constrained:

Du ≤ d , (2)
in which the d ∈ Rq has non-negative components.

We assume that the plant is divided intoM sub-systems (units),
and each unit i has pi outputs which are affected, in general,
by all plant inputs. The objective is to design for each unit
a Model Predictive Controller (MPC) that optimizes over a
subset of inputs denoted with ui ∈ Rmi , i = 1, . . . ,M. The
complementary input vector is denoted by ūi ∈ Rm−mi . The
subvectors ui are not assumed to be disjoint. We define the
selection matrices Ti ∈ Rmi×m and T̄i ∈ R(m−mi)×m to be
row submatrices of the identity, such that

ui = Tiu, ūi = T̄iu,

and thus
u = T ′iui + T̄ ′i ūi .

Then, the dynamic evolution of each unit i = 1, . . . ,M can
then described in the following form:

x+
i = Aixi +Biui + B̄iūi, yi = Cixi ,

in which we distinguish the contribution of the inputs that
belong to the i−th unit from the contribution of the other inputs.
The subset of constraints in (2) that involve only ui can be
written as

Diui ≤ di , (3)
with Di equal to the non-zero rows of (DT ′i ) and with di

the corresponding elements of d. Similarly, the subset of con-
straints in (2) that involve ūi can be written as D̄iūi ≤ d̄i

with D̄i equal to the non-zero rows of (DT̄ ′i ) and with d̄i the
corresponding elements of d.

We consider the following assumptions.
Assumption 1. (Properties of subsystems). For each subsystem
i = 1, . . . ,M, the pair (Ai, Ci) is detectable, the pair (Ai, Bi)
is stabilizable, and the inequality (3) represents all and only the
constraints that involve elements of input vector ui. The system
from the input ūi to yi is stable.
Remark 2. (Shared inputs). Notice that Assumption 1 admits
the possibility that some inputs belong to more than one subsys-
tem. It does require that all constraints involving any element of
ui can be written as constraints that do not involve elements of
ūi. Furthermore it assumes that inputs not belonging to unit i,
ūi, do not excite any unstable mode of Ai.

To clarify this point we present the following example.
Example 3. (Coupled constraints). Consider an overall system
with four inputs and the following input constraint matrix and
right-hand-side vector:

D =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1
0 1 1 0


, d =



1
1
1
1
1
1
1
1
1


.

The first eight rows define upper and lower bound on each input
whereas the last row defines an upper bound on the sum of
second and third input. Suppose that we want to design two
MPCs, one of which optimizes over (u1, u2) whereas the other
one optimizes over (u3, u4). Since the last constraint involve
both u2 and u3 that, in principle, belong to different units, in
order to satisfy Assumption 1, we need to include u3 in the
set of inputs for Unit 1 and u2 in the set of inputs of Unit 2.
Thus, for Unit 1 we will consider (u1, u2, u3) as inputs, and for
Unit 2, we will consider (u2, u3, u4) as inputs.

2.2 Centralized MPC problem

To simplify the notation and given the time invariance of the
system, we consider that the current decision time to be k = 0.
Let input, state and output targets be given, and satisfy:

xs = Axs +Bus, ys = Cxs .

Notice that such targets can be either computed by a plant-wide
steady-state optimizer or as the combination ofM local steady-
state optimizers. For convenience of notation we define:

w = x− xs, v = u− us .

We consider a finite-horizon sequence of deviation inputs v =
(v(0), v(1), . . . , v(N − 1)) and define the overall cost:

V (w(0),v) =
1
2

N−1∑
k=0

w(k)′Qw(k) + v(k)′Rv(k)+

1
2
w(N)′Pw(N), s.t. w+ = Aw +Bv ,

Before defining the centralized MPC optimal problem, we
make the following assumptions.
Assumption 4. (Properties of overall system). The matrices Q
and R are positive definite. The matrix P is the given by
P = S′sΠSs with Π solution to the Lyapunov equation:

Π = A′sΠAs + S′sQSs ,

where (As, Ss) come from the real Schur decomposition of A:

A = [Ss Su]
[
As Asu

0 Au

] [
S′s
S′u

]
,

and As contains all stable eigenvalues of A.

The centralized MPC controller solves the following problem:

P : min
v
V (w(0),v) s.t.

Dv ≤ d−Dus, S′uw(N) = 0 . (4)
Remark 5. The constraint Dv ≤ d − Dus is equivalent to
Du ≤ d. The terminal constraint S′uw(N) = 0 is present
only if the system is open-loop unstable (or integrating) and is
needed to zero the unstable modes at the end of the horizon N .
Furthermore, the cost function term 1

2w(N)′Pw(N) represents
the infinite horizon cost-to-go when v(k) = 0 for k ≥ N .

2.3 Distributed cooperative MPC subproblems

Let v̄i be a known sequence (in deviation variables) of the
inputs that do not belong to Unit i, and define the control
problem solved by the i−th MPC controller as follows:



Pi : min
v
V (w(0),v) s.t.

Dv ≤ d−Dus, S′uw(N) = 0, T̄iv = v̄i , (5)

in which T̄i ∈ R(m−mi)N×mN is the block diagonal matrix
formed with T̄i, i = 1, . . . ,M. Similarly, later we use Ti ∈
RmiN×mN to denote the block diagonal matrix formed with
blocks equal to Ti. We denote with ṽi the solution to (5).
Remark 6. The last equality constraint enforces the inputs that
do not belong to Unit i to be equal to the known value v̄i.

The problem Pi (5) contains a large number of decision vari-
ables that are fixed, namely, all inputs of the other units. We can
eliminate these inputs and reformulate this problem as follows.
Let the deviation input sequence v be expressed as

v = T′ivi + T̄′iv̄i , (6)
in which vi = Tiv is the sequence of inputs that belong to
Unit i, and v̄i = T̄iv is the sequence of complementary inputs.
We can now write the local control problem as:

Pi : min
vi

V (w(0),v) s.t. (6) and

Divi ≤ di −Diu
s
i , S′uw(N) = 0 . (7)

Remark 7. We note that in (7) we consider only constraints for
the inputs of Unit i, and constraints for the other inputs are
assumed to be satisfied, i.e. D̄iv̄i ≤ d̄i − D̄iū

s
i . Moreover,

the terminal state constraint may contain equations that are not
affected by vi, and such constraints can be eliminated.

2.4 Algorithm and properties

In distributed MPC, each local MPC unit optimizes and com-
municates its solution with other MPC units, forming a convex
combination of the all M unit solutions to obtain an overall
solution. If decision time permits, this procedure is repeated
iteratively until convergence or until a specified maximum
number of iterations is reached. The distributed MPC algorithm
is initiated with an overall input sequence computed at the
previous decision time, as follows:

v0 = (u∗(1)− us, . . . , u∗(N − 1)− us, 0) , (8)
in which we emphasize that the terms u∗(·) are the components
of the (sub)optimal sequence computed at the previous decision
time, whereas us is the input target at the current decision time.
Remark 8. Such initial sequence is feasible with respect to the
input constraint Dv ≤ d − Dus, and it is also feasible for the
terminal constraint S′uw(N) = 0 if it exists, provided the target
has not changed from the previous decision time.

We now describe the distributed cooperative MPC algorithm.
Algorithm 1. (Distributed Cooperative MPC). Data: current tar-
get (us, xs), deviation state w(0) = x − xs, an overall initial
sequence v0 as in (8). Relative tolerance parameter ρ, maxi-
mum number of iterations lmax.

(1) (Local MPC problems) Set l = 1 and for each MPC unit i
repeat the following steps:
(a) Define v̄i = T̄ivl−1, solve problem Pi. Let vi be the

optimal solution to Pi.
(b) Construct the “complete” solution obtained by Unit i:

ṽi = T′ivi + T̄′iv̄i.
(2) (Convex Step) Define the “overall” solution as combina-

tion of the local solutions vl =
∑M

i=1 λiṽi, with λi > 0
and

∑M
i=1 λi = 1.

(3) (Convergence Test) If ‖v
l−vl−1‖

1+‖vl−1‖ < ρ or l = lmax, set
v∗ = vl and stop. Otherwise, increase l ← l + 1 and go
to 1.

It is possible to show that such cooperative MPC algorithm
converges to the optimal centralized solution in the limit of
infinite iterations. Furthermore, we can establish closed-loop
stability for any finite number of iterations l.

3. PARTIAL ENUMERATION

3.1 Introduction

Both the centralized problem P and each problem Pi can be
written as convex Quadratic Programs, and for small to medium
scale systems, the solution can be computed efficiently using ei-
ther Active Set Method (ASM) or Interior Point Method (IPM)
solvers (Rao et al., 1998; Bartlett et al., 2002; Milman and Davi-
son, 2003). However, as the system dimension increases, online
solvers cannot provide a solution within an acceptable decision
time. In order to compute a (suboptimal) solution for large-scale
systems that are currently out of the range of QP solvers, we
recently proposed an approach called Partial Enumeration (Pan-
nocchia et al., 2007). In Partial Enumeration (PE) we use a
solution table that stores a (small) number of optimal active
sets and the associated piecewise linear solution (Bemporad
et al., 2002). This approach was applied to large-scale central-
ized MPC problems in (Pannocchia et al., 2007) with average
speed-up factors of 80-200 times compared to conventional QP
solvers, and with small closed-loop suboptimality. We review
PE here and make appropriate modifications for applying it to
the distributed MPC problem Pi.

3.2 PE algorithm and properties

We first consider the centralized MPC problem P and write it
as a parametric QP as follows:

min
v

1
2
v′Hv + v′Gw(0) +

1
2
w(0)′Pw(0) s.t. (9a)

Dv + Cus ≤ d, Ev + Fw(0) = 0. (9b)

Note that z = [w(0)′, us′]′ is the parameter that changes at
each decision time point, while all other terms are constant and
omitted in the sake of space.

Given a point v∗, we denote by (Da,Ca,da) the stacked rows
of (D,C,d) such that Dav∗+Cau

s = da (i.e. the active con-
straints). We also denote with (D̄a, C̄a, d̄a) the complementary
stacked rows, i.e. such that D̄av∗+C̄au

s < d̄a (i.e. the inactive
constraints). Next, we define:

G = [G 0] , A =
[
Da

E

]
, B =

[
0 Ca

F 0

]
, b =

[
da

0

]
.

In order for v∗ to be optimal for (9), the following first-order
optimality KKT conditions must hold:

Hv∗ + Gz +A′λ∗ = 0, (10a)
Av∗ + Bz = b, (10b)

λ∗j ≥ 0, j ∈ {indices of active inequalities}, (10c)

D̄av∗ + [0 C̄i]z ≤ d̄a. (10d)
We now solve the system (10) to derive v∗ as a linear function
of the parameter z and we derive the conditions on z for
which the considered active set is optimal. To this aim, several



approaches can be followed, and in this paper we use the so-
called Null-Space method.

Let Z be a full rank matrix such AZ = 0, and consider the
point v0 = A+(b − Bz), which A+ is the pseudo-inverse
of A. We can express any point that is feasible for (10b) as
v = v0 + Zp and thus rewrite (10a) as follows:

HZp+ Hv0 + Gz +A′λ∗ = 0 .
Next, we multiply (on the left) by Z ′ (to eliminate the term
Z ′A′λ∗) and solve for p to obtain

p =
(
H−1(Z ′HA+B − Z ′G)

)
z −H−1(Z ′HA+)b

= Γpz + γp ,

withH = Z ′HZ . Finally, we compute v∗ as follows:

v∗ = v0 + Zp = A+(b− Bz) + Z(Γpz + γp)
= Γz + γ .

(11)

Now (10a) can be solved for λ∗ as follows:
λ∗ = −(A′)+(Hv∗+Gz) = −(A′)+(HΓ+G)z− (A′)+Hγ.

Finally, we write the Primal and Dual inequalities (10c) and
(10d) as follows:[

D̄aΓ + [0 C̄a]
[I 0] (A′)+(HΓ + G)

]
z ≤

[
d̄a − D̄aγ

− [I 0] (A′)+Hγ

]
,

or more concisely as [
ΨP

ΨD

]
z ≤

[
ψP

ψD

]
. (12)

Furthermore, by inserting the solution (11) into the objective
function of (9), we can write the optimal cost for the current
active set as: V ∗(z) = 1

2z
′V2z + V1z + V0.

In Partial Enumeration we store (ΨP ,ΨD,Γ), (ψP , ψD, γ),
and also (V0, V1, V2), for a fixed number of active sets that were
optimal in the most recent decision time points. Online we scan
the table to check if, for the given parameter z, optimality con-
ditions (12) are satisfied, and in such case compute the optimal
solution from (11). However, given the fact that not all possible
optimal active sets are stored, it is possible that no entry in
the table is optimal. In such cases it is necessary to compute
a suboptimal solution for closed-loop control. Nonetheless, a
QP solver is called afterwards to compute the optimal solu-
tion v∗, and thus derive the matrices/vectors (ΨP ,ΨD,Γ),
(ψP , ψD, γ), (V0, V1, V2) for the corresponding optimal active
sets. Whenever this table entry becomes available, it is inserted
into the table. When the table exceeds its maximum size (de-
fined by the user), we delete the entry that was optimal least
recently. Thus, the table size is fixed and hence the table lookup
process is fast, but the table entries are updated to keep track of
new operating conditions for the plant.

In order to compute a suboptimal input sequence when the table
does include the optimal active set for the current parameter
z several options can be considered. It is important to ensure
that the given suboptimal solution guarantees, at least, nominal
closed-loop stability, and this can be obtained if we ensure a
cost decrease from the previous decision time point. Here, we
propose a procedure that allows us to prove robust stability
of the closed-loop under PE MPC. The procedure requires
two points, the first one which needs to be feasible and its
computation is discussed later in Algorithm 2. The second
point, instead, is a particular minimizer of (9a) subject to the
equality constraint (if present) and all the input inequalities that
are active at the target point. More specifically, given the input

target us, let (D̄, d̄) denote the subset of rows of (D,d) such
that C̄us = d̄. We define v̂ as the solution to:

min
v
V (w(0),v) s.t. D̄v = 0, Ev + Fw(0) = 0 . (13)

We can show that v̂ = Γ̂(us)w(0), where the dependence of
the matrix Γ̂ on us comes from the fact that us defines (D̄, d̄).

In the following, we denote by v0 = (u∗(1)− us, . . . , u∗(N −
1) − us, 0) the previous shifted optimal sequence, where the
inputs (u(1)∗, . . . , u∗(N − 1)) were computed at the previous
decision time, while us is the current input target.
Algorithm 2. (Partial Enumeration). Data: table with M en-
tries, each comprising the terms (ΨP ,ΨD,Γ), (ψP , ψD, γ),
(V0, V1, V2); current parameter z = [w(0)′, us′]′; candidate
sequence v0 and its cost V 0 if feasible (otherwise V 0 = ∞);
maximum table size Mmax. Output: Input sequence v∗ and
updated table. Set j = 0, Ṽ = V 0, ṽ = v0.

(1) (Table scanning.) Set j ← j+1. If j > M and ṽ is feasible
go to 4. If j > M and ṽ is infeasible go to 3. Otherwise,
perform the following steps for the j−th entry:
(a) If ΨP z ≤ ψP does not hold, go to 1. Otherwise,
(b) If ΨDz ≤ ψD holds go to 2. Otherwise,
(c) Compute the cost V . If V < Ṽ , set ṽ = Γu(da −

Cau
s) + Γww(0). Go to 1.

(2) (Optimal solution found.) Compute the optimal solution
v∗. Inject the optimal input. Put this entry in first position
of the table. Stop.

(3) (Feasibility recovery; arrive at this step only if ṽ is not
feasible.) Solve the LP

min
q,s

1′(q + s) s.t. D(q− s) ≤ r1,

E(q− s) = r2, q ≥ 0, s ≥ 0
where r1 = d−Cus−Dṽ, r2 = −Fw(0)−Eṽ, and 1 is
the vector of ones. Redefine ṽ← ṽ + q− s and compute
its cost Ṽ .

(4) (Solution improvement; ṽ is feasible at this point.) Evalu-
ate v̂, and compute the largest t ∈ [0, 1] such that D(v̂ −
ṽ)t ≤ d−Cus −Dṽ. Set v∗ = ṽ(1− t) + tv̂.

(5) (Table update, performed in parallel.) Solve the QP (9),
and find the terms (ΨP ,ΨD,Γ), (ψP , ψD, γ), (V0, V1, V2)
for the optimal active set. Insert this entry in first position
of the table, setM ←M+1. IfM = Mmax+1, delete the
entry that was optimal least recently, and set M = Mmax.

Remark 9. The “feasibility recovery” step 3 is required only if
the system is open-loop unstable and either the target changed
from the previous decision time or a disturbance occurred.
In the nominal case without target change, such step is not
performed because v0 is always feasible. Step 3 is the only
“expensive” computation in Algorithm 2 and is justified by
closed-loop stability reasons of an open-loop unstable plant.
For input bound constraints (i.e., umin ≤ u ≤ umax) further
simplifications that allow increased speedup and lower sub
optimality can be considered.

It can be shown that PE MPC is nominally stabilizing and
robustly stabilizing for sufficiently small measurement noise
and additive disturbances (Pannocchia et al., 2009).

3.3 Application of Partial Enumeration to cooperative MPC

Each Pi in (7) can be written as the following parametric QP:



Table 1. Outputs and inputs of the three units, according to
two design schemes: Design A (existing), Design B (optimal).

Outputs Inputs
Design A Design B

Unit 1 (y1, y2, y3) (u1, u2, u3) (u1, u2, u3, u4, u8)
Unit 2 (y4, y5, y6) (u4, u5, u6) (u3, u4, u5, u6, u8)
Unit 3 (y7, y8) (u7, u8) (u3, u4, u7, u8)

min
vi

1
2
v′iHivi + v′iGizi +

1
2
ziPizi s.t. (14a)

Divi + Cizi ≤ d, Eivi + Fizi = 0 , (14b)
in which zi = [z′, v̄′i]

′ is the parameter augmented with the
sequence of inputs that do not belong to Unit i, and Hi =

TiHT′i, Gi =
[
G TiHT̄′i

]
, Pi =

P 0
0 0 G′T̄′i
T̄iG T̄iHT̄′i

 , Di =

DT′i, Ci =
[
0 C DT̄′i

]
, Ei = ET′i, Fi =

[
F 0 ET̄′i

]
.

Notice that several rows of Di and Ei are zero and can be
deleted along with the corresponding rows of Ci and Fi.

We notice that the QP (14) is in the same form of (9), with
the main difference that the parameter z is augmented with the
known sequence of inputs not belonging to Unit i. Given this
increase in dimensionality, a full explicit MPC is impractical
even for small systems. On the other hand, PE Algorithm 2
can be readily applied to solve (14). Since PE does not guar-
antee that each Pi is solved exactly, no convergence to the
optimal centralized solution can be proved. Nonetheless, we
can show closed-loop nominal stability and robust stability for
sufficiently small disturbances.

4. APPLICATION EXAMPLE

4.1 Overall system and units definition

As an example, we consider a stable system with 8 inputs, 8
outputs and 48 states, whose details are omitted in the sake of
space. Each input of the system is constrained in [−1, 1], and
the following coupled constraint holds:

[0 0 0 1 1 0 0 1]u ≤ 1 . (15)
In the MPC design we use: Q = I , R = I , and N = 30.

We consider that this overall plant is divided in three units.
Outputs and inputs of each unit are reported in Table 1, where
we emphasize two different design schemes. In Design A,
which can be regarded as the existing scheme for this plant,
no inputs belong to more than one unit at a time. However,
because of the coupled constraint (15), such input partition
scheme does not satisfy Assumption 1. Therefore, for such
scheme convergence to the optimal centralized solution cannot
be guaranteed. For this reason, we consider an alternative input
partition scheme (Design B) in which the inputs (u3, u4, u8)
belong to all three units.

4.2 Effect of coupled constraints

First of all we investigate about the different convergence prop-
erties for the two distributed MPC architectures. We consider
that at decision time 10, the input target changes from 0 to
us = (0, 0, 0.5, 0.2, 0, 0, 0, 0.3)′, thus making the coupled con-
straint active. We report in Figure 1 the closed-loop response
of u3 + u4 + u8 obtained by three controllers: CMPC is the
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Fig. 1. Effect of coupled input constraints: closed-loop response of u3+u4+
u8 for centralized MPC (CMPC), distributed cooperative MPC based on
Design A (DMPC-A), distributed cooperative MPC based on Design B
(DMPC-B). Both DMPC-A and DMPC-B make l = 1 iteration.

Table 2. Suboptimality of DMPC-A and DMPC-B for differ-
ent number of iterations l.

Dec. MPC SI

l = 1 l = 5 l = 10 l = 50

DMPC-A 22.9 0.885 0.682 0.673
DMPC-B 2.29 4.86 · 10−2 5.43 · 10−4 1.53 · 10−8

centralized controller, DMPC-A is the distributed control struc-
ture with l = 1 iteration based on Design A, DMPC-B is
the distributed control structure with l = 1 iteration based on
Design B. For this study, we solve the optimal control problems
exactly, i.e. we do not use Partial Enumeration. We report in
Table 2, the suboptimality of DMPC-A and DMPC-B as the
number of iterations l increases, defined by the index:

SI = 100
VCL − V ∗CL

VCL
,

in which VCL is the closed-loop cost for the considered (dis-
tributed) controller and V ∗CL is the closed-loop cost for the
optimal centralized controller. As expected DMPC-B handles
the coupled constraint much better than DMPC-A, and as the
number of iterations increases, DMPC-B converges to the opti-
mal centralized MPC solution, whereas the suboptimality index
for DMPC-A does not go to zero.

4.3 Comparison of PE-based and QP-based distributed MPC

We now present the results for several decentralized controllers
that solve the local MPC problems Pi either via PE or via an
exact (active set) QP solver. We are interested in assessing the
suboptimality of each scheme, as well as the computational
efficiency quantified by the two indices 1 :

• Average Speed Factor: ASF = T∗aver
Taver

where T ∗aver is
the average CPU time required to solve the centralized
problem P via QP solver, and Taver is the average CPU
time required to compute the solution using Algorithm 1
(either via PE or via exact QP solver).

• Worst Case Speed Factor: WSF = T∗max
Tmax

, where T ∗max and
Tmax are the maximum CPU times for the centralized (QP
based) problem P and for the distributed Algorithm 1 (PE
or QP based), respectively.

1 All computations are performed using GNU Octave on a Pentium-M
(1.86 GHz, 1 GB RAM) running Linux.



Table 3. Comparison of suboptimality and computational
efficiency for several DMPC-B, based on PE or exact QP solver

QP based PE based
Iter. SI ASF WSF SI ASF WSF

l = 1 14.7 5.24 12.1 14.8 93.5 285
l = 5 0.604 1.25 4.66 0.612 22.0 66.7
l = 10 0.0408 0.797 2.37 0.0490 13.9 34.4

We consider a closed-loop simulation of 5000 decision time
points, in the presence of random output noise, affecting the
state estimate and the target at each decision time, and 14 large
target changes. When PE is used, each MPC unit deploys an
initially empty table of maximum dimension Mmax = 10. The
results are summarized in Table 3. We can observe, first of all,
that as number of iterations l increases, DMPC-B converges
to the centralized optimum performance, as indicated by the
negligible suboptimality index SI . Next, we can see that for a
given number of iterations l, the suboptimality index obtained
by solving the local problems with the QP solver is essentially
equal to that obtained with the PE solver. However, the compu-
tational requirements using QP and PE solvers are remarkably
different. If we compare the distributed controllers using the
same number of iterations, DMPC-B based on local PE solvers
can compute the solution 17–18 times faster (on average), 14–
24 times faster (worst case) than the corresponding DMPC-B
based on local QP solvers. In practice, since the time allowed
for computation of local solutions and iterations among the
distributed controllers may be regarded as fixed, the goal of
using local PE solvers is that we can allow more iterations and
thus (almost) achieve the centralized optimal performance. If
compared with the centralized MPC, most of the computational
benefits of using DMPC-B based on PE solvers are achieved
with a limited number of iterations, e.g. l = 5, which allows one
to obtain a suboptimality less than 1% with an average speedup
factor of 22 and a worst case speedup factor of 67.

A final remark can be made regarding the possible (apparent)
overlap of applicability and scope of Partial Enumeration and
distributed MPC, i.e. as alternative means for solving MPC
problems in large-scale systems. We want to stress that the
main motivation for distributed MPC is organizational rather
than computational and, in fact, if the number of iterations l
is increased the distributed MPC architecture (based on QP
solvers) may be even more time consuming than a centralized
MPC architecture (notice the average “speedup” factor less
than 1 for DMPC-B based on QP with l = 10 iterations).
Therefore, distributed MPC should not be considered as a
possible competitor of Partial Enumeration centralized MPC
which, on the other hand, is motivated by computational issues.

5. CONCLUSIONS

We proposed in this paper an efficient implementation for
distributed cooperative Model Predictive Control. The approach
is based on Partial Enumeration, that solves the Quadratic
Program associated to the MPC problem by means of a small
solution table, which includes the most recently optimal active
sets. If the optimal solution is not found in the table, a quick
suboptimal solution is computed for closed-loop control. In
parallel, the optimal active set is evaluated and inserted into
the table, possibly deleting the least recently optimal active set.
In this way the size of the table is kept small, thus limiting the
required time for scanning it. We applied such approach for the
solution of “local” MPC problems that are solved in each unit

of a distributed MPC system. We also revised the cooperative
distributed MPC architecture to optimally handle the case of
coupled input constraints. Finally, we presented a simulation
example of an 8 input 8 output plant comprising three units
in which we achieved relevant speedup factors and negligible
suboptimality compared to QP-based MPC.
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