
Computation of the Infinite Horizon Continuous
Time Constrained Linear Quadratic Regulator ?

Gabriele Pannocchia ∗ James B. Rawlings ∗∗ David Q. Mayne ∗∗∗
Wolfgang Marquardt ∗∗∗∗

∗ Dept. Chem. Eng., Ind. Chem. & Sc. Mat. – Univ. of Pisa, Italy (email:
g.pannocchia@ing.unipi.it)

∗∗ Dept. Chem. & Biol. Eng. – Univ. of Wisconsin. Madison (WI), USA (emai:
rawlings@eng.wisc.edu)

∗∗∗ Dept. Elec. & Electronic Eng. – Imperial College London, UK (email:
d.mayne@imperial.ac.uk)

∗∗∗∗ AVT–Process Systems Engineering, RWTH Aachen University, Germany
(email: Wolfgang.marquardt@avt.rwth-aachen.de)

Abstract: We present a method for computing the solution to the infinite horizon continuous-time
constrained linear quadratic regulator (CLQR). The method relies on two main features: a multi-grid
method for placing a finite number of time intervals, and a piece-wise linear parameterization of the input
within the intervals. The input values at the grid points and slopes within the time intervals are computed
via quadratic programs (QPs). The grids are gradually refined to efficiently improve the accuracy of the
solution, and the required matrices and vectors for all QPs are computed offline and stored to improve
the online efficiency. We present two examples, a single-input single-output unstable system and a three-
input three-output stable system, to show the main characteristics of the proposed computation method.

Keywords: Constrained Linear Quadratic Regulation, Continuous Time Systems, Model Predictive
Control, Optimal Control

1. MOTIVATIONS FOR CONTINUOUS TIME MODEL
PREDICTIVE CONTROL

The scope of applications of model predictive control (MPC)
has expanded well beyond its original starting point in the
process industries. With this increased scope has come the need
to evaluate in real time the solution to the MPC optimal control
problem for systems with fast open-loop dynamics. It is rea-
sonable to anticipate that this trend to faster applications may
culminate with a return to the continuous time description of the
system model. The previous widespread adoption of discrete
time models to represent the system dynamics made perfect
sense. The typical sample time in earlier applications was small
compared to the closed-loop dynamic response of the system
(seconds compared to minutes) so there was essentially no loss
in model accuracy. Moreover, the earlier analysis of the closed-
loop properties and computational strategies to approximate
infinite horizon control laws was simplified using discrete time
models (Mayne et al., 2000).

In today’s application environment, it is no longer safe to as-
sume that some fixed sample rate can be chosen very small
compared to the closed-loop system dynamics. Next, given the
rapid development of MPC theory for discrete time models
over the last 15 years, there is no real difficulty in establishing
properties of interest in a continuous time setting. Finally, the
actuator hardware has become “smarter” and it is now becom-
ing appropriate to assume that any reasonable time function
may be sent to the actuator, and it is actuator hardware’s job to

? This research was supported by National Science Foundation (Grant CTS-
0456694).

accurately track this signal. If the application has fast dynamics,
obviously a requirement of the process design is the selection
of sensors and actuators that are fast enough to keep up.

In this paper we would like to remove all issues of sampling
and address directly the MPC problem for the continuous-time
model (Yuz et al., 2005). The job of the MPC controller in this
context is to send its solution as a time signal to the actuators
until a measurement becomes available and a new state initial
condition is available to the controller. This context has become
popular in the nonlinear MPC area, where nonlinear models
from physical principles are almost always continuous time
nonlinear differential equations [see (Diehl et al., 2008) and
references therein]. In this paper we would like to explore what
efficiencies can be gained when we restrict attention to linear
continuous time models.

2. PROBLEM DEFINITION

We consider linear time-invariant continuous-time systems
ẋ = Ax+Bu , (1)

in which x ∈ Rn is the state and u ∈ Rm is the input. We define
the following cost function for a given initial state x0 ∈ Rn and
infinite-time input u:

V (x0,u) =
1
2

∫ ∞
0

(x′Qx+ u′Ru) dt,

s.t. (1) and x(0) = x0 . (2)
in which we use the following notation. Given a function u :
R→ Rm, we define u = {u(t)|t ≥ 0}. The aim of this work is
to compute, given the current initial state x0, the solution of the



following infinite horizon optimal constrained linear quadratic
regulation (CLQR) problem

u∗(x0) = argmin
u

V (x0,u), s.t. Du(t) ≤ d , (3)

in which D =
[
D′1 D

′
2

]′
and d =

[
d′1 d

′
2

]′
with d1 > 0

and d2 = 0 (in element-wise sense). Notice that we allow the
possibility of either (D1, d1) or (D2, d2) being empty.

We make the following assumptions.
Assumption 1. Given a matrix T ∈ Rm×r with rank r such
that D2T = 0, the pair (A,BT ) is stabilizable, R is positive
definite, Q is positive semi-definite and (A,Q) is detectable.

It is important to point out that the constraint D2u ≤ 0 is
active at the equilibrium point (u = 0). Assumption 1 states
that the system must be stabilizable under the restricted con-
trol D2u = 0. We can write the restricted optimal control
as u = K̄x = −(T ′RT )−1(BT )P̄ x, with P̄ solution of
the continuous-time Riccati equation for the system matrices
(A,BT ) with penalties (Q,T ′RT ) [see (Rao and Rawlings,
1999; Pannocchia et al., 2003) for further details]. Such con-
trol is feasible for all x in the positively invariant set X =
{x|D1K̄e

(A+BK̄)tx ≤ d1 for all t}.
Compared to the discrete-time counterpart, the continuous-time
CLQR problem has received much less attention, although sev-
eral results are available. Cannon and Kouvaritakis (2000) pro-
posed a method for single-input single-output systems, using
basis functions, in which input constraint satisfaction is ensured
by a backoff strategy. Kojima and Morari (2004) propose a de-
sign method that is based on the singular value decomposition
(SVD) of the finite horizon linear system and that guarantees
in the limit constraint satisfaction and convergence to the op-
timal solution. For low dimensional linear systems, Sakizlis
et al. (2005) present an approach for computing the explicit
solution to the finite horizon continuous-time CLQR problem,
by merging variational analysis with parametric optimization
tools. Goebel and Subbotin (2007) present an approach based
on the solution of the backward Hamiltonian system; optimal
trajectories are stored for subsequent on-line suboptimal evalu-
ation.

In this work, we propose a novel approach based on the di-
rect evaluation of a suboptimal solution to the infinite horizon
CLQR problem that requires, like the discrete-time case, the
solution of only quadratic programs (QPs). Thus, we compute
the control input in a number of grid points that can be effi-
ciently adapted on-line to improve the accuracy of the solu-
tion. Two appropriate continuous-time input parameterizations
(holds) are proposed, which show markedly improved conver-
gence towards the optimal continuous-time solution compared
to the usual piece-wise constant parameterization, and still
guarantees satisfaction of the input constraints. Other related
details, including proofs of the results, can be found in (Pan-
nocchia et al., 2009).

3. INPUT PARAMETERIZATION, EXACT COST
EVALUATION AND CONVERGENCE ANALYSIS

We consider three different input parameterization methods
(also referred to as holds), and for each hold type a discrete-time
system realization is obtained in a way that the continuous-time
and the discrete-time state and input match at given grid points
(t0, t1, . . .) assumed, in general, not evenly spaced. Moreover,

u0

s0
u1 s1

s2

u2

∆2∆1∆0

t0 t1 t2 t3 tN

K̄x

Fig. 1. Piece-wise linear input parameterization and time gridding scheme.

for each hold type we compute the corresponding discrete-time
LQR cost matrices in a way that the cost in (2) is exactly
evaluated. We recall that the solution to (1) is given by:

x(t) = eAtx0 +
∫ t

0

eA(t−τ)Bu(τ)dτ . (4)

3.1 Three input parameterization methods

First we summarize the properties of the well known zero-order
hold (ZOH), defined as:

u(t) = uk, tk ≤ t < tk+1 , (5)
with tk+1 = tk + ∆k. Notice that we do not assume, however,
that ∆k is constant. From (4) and (5), we obtain the time-
varying discrete-time system: xk+1 = A0

kxk +B0
kuk, in which

the matrices (A0
k, B

0
k) are defined as: A0

k = eA∆k , B0
k =

I0(∆k)B, with I0(t) =
∫ t

0
eAτdτ .

We consider a second input parameterization referred to as
“piece-wise linear” hold (PWLH), and defined as:

u(t) = uk + sk(t− tk), tk ≤ t < tk+1 , (6)
in which s ∈ Rm defines the “slope” of u between grid points.
In the sake of clarity, we sketch the PWLH input parameteriza-
tion in Figure 1, in which we also emphasize the uneven time
gridding scheme that we consider later in Section 4. From (4)
and (6), the time-varying discrete-time system xk+1 = AI

kxk+
BI
ku

I
k is obtained, in which uI ∈ R2m =

[
u′ s′

]′
is the

augmented input, and the matrices (AI
k, B

I
k) are: AI

k = A0
k =

eA∆k , BI
k = [I0(∆k)B I1(∆k)B], with I0(t) =

∫ t
0
eAτdτ

and I1(t) =
∫ t

0
eA(t−τ)τdτ .

Finally, we consider a third input parameterization, which also
assumes that the input varies linearly between discrete times,
but with a slope equal to forward finite input difference, i.e.

u(t) = uk+
(
uk+1 − uk

∆k

)
(t− tk), tk ≤ t < tk+1 . (7)

In the sequel, this input parameterization is referred to as
“forward first-order” hold (FFOH). From (4) and (7), we obtain
the time-varying discrete-time system: xII

k+1 = AII
k x

II
k +BII

k u
II
k ,

in which the augmented state xII ∈ Rn+m, the shifted input
uII ∈ Rm, and (AII

k , B
II
k ) are:

xII
k =

[
xk
uk

]
, uII

k = uk+1,

AII
k =

A0
k I0(∆k)B − I1(∆k)

∆k
B

0 0

, BII
k =

I1(∆k)
∆k

B

I

 .
We emphasize that ZOH generates a u(t) constant between
discrete times and discontinuous at the discrete times, PWLH
generates a u(t) linear between discrete times and discontinu-
ous at the discrete times, FFOH generates a u(t) continuous at
all times and linear between discrete times.



3.2 Exact continuous time cost computation

Lemma 2. (Exact cost matrices for ZOH). If the continuous-time
input is given by (5), then∫ tk+1

tk

(x′Qx+ u′Ru)dt = x′kQ
0
kxk + u′kR

0
kuk + 2x′kM

0
kuk ,

with: Q0
k =

∫∆k

0
(eAt)′QeAtdt, R0

k =
∫∆k

0
(R+ (I0B)′QI0B) dt,

M0
k =

∫∆k

0
(eAt)′QI0Bdt.

It is interesting to notice that this quadrature result is known
(Kwakernaak and Sivan, 1972, p.549), (Yuz et al., 2005,
Sec.2.2), but most of the literature on optimal control of
continuous-time systems usually ignores the mixed state-input
cost term and assumes Q0

k = Q∆k, R0
k = R∆k, thus introduc-

ing an inherent quadrature error.

From the previous result it immediately follows that, given an
infinite discrete-time input sequence (u0, u1, u2, . . .), assuming
that the continuous-time input u is defined in (5), then

V (x0,u) =
1
2

∞∑
k=0

x′kQ
0
kxk + u′kR

0
kuk + 2x′kM

0
kuk .

Lemma 3. (Exact cost matrices for PWLH). If the continuous-
time input is given by (6), then

∫ tk+1

tk
(x′Qx + u′Ru)dt =

x′kQ
I
kxk + (uI

k)′RI
ku

I
k + 2x′kM

I
ku

I
k, with:

QI
k =

∫∆k

0
(eAt)′QeAtdt,

RI
k =

∫∆k

0

[
R+ (I0B)′Q(I0B) (I0B)′Q(I1B) +Rt
(I1B)′Q(I0B) +Rt (I1B)′Q(I1B) +Rt2

]
dt,

M I
k =

∫∆k

0

[
(eAt)′Q(I0B) (eAt)′Q(I1B)

]
dt.

From this results it follows that, given infinite discrete-
time input sequence and slope sequence (u0, u1, u2, . . .),
(s0, s1, s2, . . .), assuming that the continuous-time input u is
defined in (6), then

V (x0,u) =
1
2

∞∑
k=0

x′kQ
I
kxk + (uI

k)′RI
ku

I
k + 2x′kM

I
ku

I
k .

Lemma 4. (Exact cost matrices for FFOH). If the continuous-
time input is given by (7), then

∫ tk+1

tk
(x′Qx + u′Ru)dt =

(xII
k )′QII

k x
II
k + (uII

k )′RII
k u

II
k + 2(xII

k )′M II
k u

II
k , with:

QII
k =

∫∆k

0

 (eAt)′QeAt (eAt)′Q(I0 −
I1
∆k

)B

((I0 −
I1
∆k

)B)′QeAt ((I0 −
I1
∆k

)B)′Q(I0 −
I1
∆k

)B +R

(
1− t

∆k

)2

 dt,
RII
k =

∫∆k

0

(
R
(

t
∆k

)2

+
(
I1
∆k
B
)′
Q
(
I1
∆k
B
))

dt ,

M II
k =

∫∆k

0

 (eAt)′Q
I1
∆k

B

((I0 −
I1
∆k

)B)′Q
I1
∆k

B +R
t

∆k

(
1− t

∆k

)
 dt.

Clearly, it follows that given an infinite discrete-time input
sequence (u0, u1, u2, . . .), assuming that the continuous-time
input u is defined in (7), then

V (x0,u) =
1
2

∞∑
k=0

(xII
k )′QII

k x
II
k +(uII

k )′RII
k u

II
k +2(xII

k )′M II
k u

II
k .

3.3 Unconstrained convergence analysis for the three holds

In this section, we evaluate the unconstrained optimal cost that
is achieved by using the three different input parameterizations,
in the case of evenly spaced points, i.e. ∆0 = ∆1 = · · · =
∆, and we compare the order of convergence to the optimal

continuous-time cost as ∆ goes to zero. 1 We first recall the
following well-known results for unconstrained LQR problems.
Lemma 5. The optimal cost-function value for the uncon-
strained continuous-time LQR problem minu V (x0,u) is given
by 1

2x
′
0Px0 in which P is the positive semi-definite solution of

the Riccati equation:
0 = Q+A′P + PA− PBR−1B′P . (8)

Lemma 6. The following discrete-time LQR problem with
mixed state-input terms:

min
(u0,u1,...)

1
2

∞∑
k=0

x′kQ̄xk + u′kR̄uk + 2x′kM̄uk , s.t.

xk+1 = Āxk + B̄uk ,

is equivalent to the following discrete-time LQR problem with-
out mixed state-input terms:

min
(u0,u1,...)

1
2

∞∑
k=0

x′kQ̄xk + u′kR̄uk, s.t.

xk+1 = Āxk + B̄uk , (9)
in which the following change of variables is considered: uk ←
uk − R̄−1M ′xk, Ā← Ā− B̄R̄−1M̄ ′, Q̄← Q̄− M̄R̄−1M̄ ′.
Lemma 7. The optimal cost-function value for the uncon-
strained discrete-time LQR problem (9) is 1

2x
′
0Πx0, in which

Π is the positive semi-definite solution of the Riccati equation:
0 = −Π + Q̄+ Ā′ΠĀ− Ā′ΠB̄(R̄+ B̄′ΠB̄)−1B̄ΠĀ . (10)

If P is the solution of the continuous-time Riccati equation (8)
and Π(∆) is the solution of the discrete-time Riccati equation
(10) using a given hold and a fixed discrete-time interval ∆, it is
straightforward to show that P 4 Π(∆), which is equivalent to
saying Π(∆)−P is positive semidefinite. Clearly, it is desirable
for an input parameterization to have convergence Π(∆) → P
as ∆ → 0. We define the order of convergence ` for a given
hold implementation as the smallest non-negative integer for
which lim∆→0

Π(∆)−P
∆` 6= 0.

We next establish the following results about the convergence
order the LQR cost using different holds 2 . Notice that each
hold defines a discrete-time optimal control problem, in which
the decision variables are {uk}∞k=0 for ZOH and FFOH, and are
{(uk, sk)}∞k=0 for PWLH.
Theorem 8. (Second order convergence of ZOH). The conver-
gence of Π0(∆) to P is second order for system matrices
Ā = A0 − B0(R0)−1(M0)′, B̄ = B0 and cost matrices
Q̄ = Q0 −M0(R0)−1(M0)′, R̄ = R0.

It is interesting to notice that if inexact cost matrices are used
in ZOH, the order of convergence is less than 2. For instance,
if one simply chooses Q0 = Q∆, R0 = R∆, M0 = 0, the
convergence order is 1.
Theorem 9. (Fourth order convergence of PWLH). The conver-
gence of ΠI(∆) to P is fourth order for system matrices Ā =
AI − BI(RI)−1(M I)′, B̄ = BI and cost matrices Q̄ = QI −
M I(RI)−1(M I)′, R̄ = RI.

Before presenting the convergence result for FFOH, it is
important to recall that, in system (3.1), the state is aug-
1 The proof for ZOH is reported in (Pannocchia et al., 2009), and follows
Taylor expansions of all terms in the discrete algebraic Riccati equation. For
PWLH and FFOH, symbolic manipulation software may be useful.
2 Since the time interval is fixed, all the discrete-time matrices are time-
invariant. Thus, we drop the subscript k in this section.



mented. Thus, the corresponding solution of (10) is in the form

Π =
[
Πxx Πxu

Π′xu Πuu

]
, and, hence, the unconstrained cost for any

given initial state x0 is given by 1
2 (x′0Πxxx0 + 2x′0Πxuu0 +

u′0Πuuu0). Since the input u0 is a decision variable, the optimal
unconstrained cost for any given initial state x0 using FFOH is
easily obtained as 1

2x
′
0(Πxx −ΠxuΠ−1

uuΠ′xu)x0.
Theorem 10. (Fourth order convergence of FFOH). The conver-
gence of ΠII(∆) = Πxx−ΠxuΠ−1

uuΠ′xu to P is fourth order for
system matrices Ā = AII − BII(RII)−1(M II)′, B̄ = BII and
cost matrices Q̄ = QII −M II(RII)−1(M II)′, R̄ = RII.

We now show how the optimal discrete-time cost matrices for
different holds are “ordered”.
Theorem 11. (Cost comparison). The following linear matrix
inequalities hold: ΠI(∆) 4 Π0(∆), ΠI(∆) 4 ΠII(∆).

The reader may naturally expect the following ordering also
to hold, ΠII(∆) 4 Π0(∆), but this is not valid for arbitrary
∆. The discontinuities allowed in ZOH may provide better
performance than the continuous FFOH for large ∆. Of course,
due to the different convergence orders, the ordering does hold
for sufficiently small ∆.

4. ALGORITHM FOR COMPUTATION OF THE
CONTINUOUS-TIME CLQR

4.1 Introduction and main definitions

Motivated by the nice convergence results of the PWLH
and FFOH input parameterizations, we propose computing
a suboptimal solution to problem (3) in terms of an appro-
priate finite number of decision variables, namely the in-
puts (u0, . . . , uN−1), and for the PWLH case also the slopes
(s0, . . . , sN−1). As shown in this section, we can write the
infinite-horizon continuous-time CLQR problem as a finite di-
mensional Quadratic Program, whose complexity is the same
as that of the discrete-time CLQR problem. Furthermore, we
define a procedure for placing the grid points (t0, . . . , tN ) in a
way that the number of decision variables is kept small while
the accuracy of the solution is improved.

Let (t0, . . . , tN ) be a sequence ofN+1 grid points with t0 = 0,
and consider the following suboptimal CLQR problems:

uI = argmin
u

V (x0,u) s.t. Du(t) ≤ d, (6), and

D2u(t) = 0, for t ≥ tN , (11)

uII = argmin
u

V (x0,u) s.t. Du(t) ≤ d, (7), and

D2u(t) = 0, for t ≥ tN , (12)

From what presented so far, we can rewrite the problem (11) as
follows:

min
(uI

0,u
I
1,...,u

I
N−1)

1
2
x′NP

IxN +
1
2

N−1∑
k=0

x′kQ
I
kxk + (uI

k)′RI
ku

I
k

+2x′kM
I
ku

I
k, s.t. (13a)

xk+1 = AI
kxk +BI

ku
I
k, x0 = x(0),

[
D 0
D D∆k

]
uI
k ≤

[
d
d

]
,

(13b)

in which P I = P̄ , provided that xN ∈ X .

Similarly, the problem (12) can be rewritten as follows:

min
(xII

0 ,u
II
0 ,u

II
1 ,...,u

II
N−1)

1
2 (xII

N )′P IIxII
N +

1
2

N−1∑
k=0

(xII
k )′QII

k x
II
k +

(uII
k )′RII

k u
II
k + 2(xII

k )′M II
k u

II
k , s.t. (14a)

xII
k+1 = AII

k x
II
k +BII

k u
II
k , IxII

0 = x(0),
D[0, I]xII

0 ≤ d, DuII
k ≤ d , (14b)

in which P II = I ′P̄I and I = [I, 0], provided that IxII
N ∈ X .

After elimination of the state variables using (13b), prob-
lem (13) can be written as a convex QP in 2mN decision vari-
ables. Similarly, using (14b), the problem (14) can be written
as a convex QP in m(N + 1) decision variables. Notice that
xII

0 = [x′0, u
′
0]′ is a decision variable in (14), but the initial

constraint in (14b) implies that only u0 is a free variable.

Notice that if V I(x0) = V (x0,uI) and V II(x0) = V (x0,uII)
denote the optimal cost-function values for the problems (11)
and (12), respectively, obtained with the same grid points
(t0, . . . , tN ), then it follows that V II(x0) ≥ V I(x0) ≥ V ∗(x0).

4.2 Offline and online computations

The degree of suboptimality of the solution depends on the
number of grid points, where it is clear that a larger number of
intervals would result in a more accurate solution. However, it is
important to observe that, in order to improve the solution, more
grid points need to be placed where input and states are far away
from the origin, whereas when they approach the origin, many
intervals are unnecessary. During this work we tested several
strategies for deciding the number and size of the intervals,
with two desired goals in mind: (i) at each iteration the solution
accuracy is improved, i.e. the computed objective function is
decreased; (ii) the total number of intervals, and hence the
number of QP decision variables, is kept small. We next present
the simplest algorithm that is used offline to generate the QP
associated with (13).
Algorithm 1. Data: maximum time tN , initial number of inter-
vals Θ, number of halving loops Θs.

(1) Compute the Θ intervals (∆0, . . . ,∆Θ−1) such that
∆k/∆k+1 = 0.5 and

∑Θ−1
k=0 ∆k = tN .

(2) Define the initial sequence of N1 = Θ intervals as P1 =
(∆1

0, . . . ,∆
1
N1−1) = (∆0, . . . ,∆Θ−1).

(3) Set j ← j + 1 and define the next sequence Pj of
Nj = 2Nj−1 intervals by halving each interval of Pj−1.

(4) If j < Θs + 1 go to 3. Otherwise, for each interval
sequencePj with j = 1, . . . ,Θs+1, compute the matrices
(AI

k, B
I
k, Q

I
k, R

I
K ,M

I
k) in (13), build the associated QP in

the form:
QPj : min

v

1
2v
′Hv + v′Qx0, s.t. Av ≤ b (15)

with v = (uI
0, . . . , u

I
Nj−1), storing H, Q, A, b.

For open-loop unstable systems, in order to avoid ill-conditioning
of H, the input variable re-parameterization discussed in (Rossiter
et al., 1998) is recommended.

The next algorithm describes the operations that are performed
online to compute uI(x0).
Algorithm 2. Given x0, the relative cost decrease tolerance µ >
0. Initialize j = 1.



10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0.01 0.1 1

‖P
−

Π
‖ 2
/‖
P
‖ 2

∆

ZOH
FFOH

PWLH

Fig. 2. System 1: Relative error between P and discrete-time cost Π for ZOH,
FFOH, PWLH vs ∆.

(1) Solve QPj , let V I
j (x0) be the associated optimal cost and

uI
j(x0) the optimal input.

(2) If j = 1, set j ← j + 1 and go to 1. Otherwise,

(3) If the relative cost decrease satisfies
V I

j−1(x0)−V I
j (x0)

V I
j−1(x0)

< µ

or j = Θs + 1, set uI(x0) = uI
j(x0) and stop. Otherwise,

set j ← j + 1 and go to 1.

Notice that if at any iteration j, the solution to QPj is such that
xN /∈ X , then an additional interval of the largest size is added,
i.e. tN ← tN + ∆N−1 and QPj is solved again xN /∈ X . Such
additional intervals are retained also for subsequent iterations.
For efficient online computation it is advised that the matrices
associated with each QPj are built and stored for different
increasing tN , so that the online CPU time is required only for
solving the QPs.

We have the following important result.
Theorem 12. For each iteration j > 1 of Algorithm 2, we have
that:

V I
j (x0) ≤ V I

j−1(x0), for all j > 0 . (16)

It is important to remark that the same cost decrease property
holds true if Algorithm 2 is applied to compute uII(x0).

5. CASE STUDIES

To illustrate the main features of the proposed method, we
present two examples. The first example is a SISO unstable
system, whose transfer function is shown below:

g1(s) = − 6.512s+ 1.628
−2.4390s2 + 3.9756s+ 1

.

The second example is the 3 input, 3 output Shell Control
Problem (Prett and Morari, 1987), for which we use a 10 state
continuous-time model. For both examples we use Q = I ,
R = 0.1I .

In Figure 2 we show, for the first example, the relative error
(evaluated using the 2-norm) between the continuous-time LQR
cost matrix P and the corresponding discrete-time cost matrix
Π obtained with ZOH, FFOH, PWLH as a function of ∆. As
expected from Theorems 8, 9, 10, the orders of convergence for
ZOH is 2, whereas it is 4 for PWLH and FFOH.

Unless otherwise specified, in the subsequent studies we con-
sider input constraints −1 ≤ u ≤ 1, the optimal input uII(x0)
is computed with Algorithm 2 using FFOH input parame-
terization and using a relative tolerance of µ = 10−4. For

0

1

0 1 2 3 4 5 6 7 8
t

u

-1

0

1

2

0 1 2 3 4 5 6 7 8
t

y

CLQR
Sat-LQR

DLQR

Fig. 3. System 1. Input and output closed-loop response using
CLQR, “saturated” LQR and DLQR.

-1

0

1

0 50 100 150 200
In

pu
ts

t (min)

-5
0
5

10
15
20
25

0 50 100 150 200

O
ut

pu
ts

t (min)

u1

u2

u3

y1

y2

y3

Fig. 4. System 2. Closed-loop inputs and outputs using CLQR at decision
times 0, 1, . . ..

System 1 we show in the top plot of Figure 3 the optimal
closed-loop input and output, computed by solving the opti-
mal control problem with the proposed algorithm at decision
times 0, 1, . . . , 7, and implementing the computed infinite hori-
zon input in a receding horizon fashion. For comparison, we
also show the results obtained by: (i) infinite horizon discrete-
time constrained LQR (DLQR), (ii) “saturated” continuous-
time LQR law u = sat (Kx). We observe that DLQR generates
a stable closed-loop response that is fairly different from the
optimal one obtained with CLQR. We also note that Kx0 is
feasible, but nonetheless the saturated LQR makes the closed-
loop system unstable, whereas CLQR and DLQR stabilize the
system in closed-loop (due to the infinite horizon formulation).
Inputs and outputs for System 2 computed with constrained
LQR at the decision times 0, 1, . . . , 200 are shown in Figure 4.

Finally, for System 1, we report in Table 1 the relative cost error,
the number of required intervals, and CPU-time for solving
all the QPs 3 for different values of µ. In computing the rel-
ative cost error, we approximate V ∗(x) with the value obtained
using PWLH-CLQR with µ = 10−8. The data reported in
Table 1 refer to the computation of u(x0) for the same initial
state considered in Figure 3. We report in Table 2 the same
computational study for System 2. We can observe that, when
the number of intervals is the same, PWLH-CLQR achieves
a slightly lower cost than FFOH-CLQR. However, this comes
at the expense of a higher CPU time because PWLH-CLQR

3 Using GNU Octave on an AMD AthlonTM 64 X2 Dual Core Processor
4400+ running Debian Linux.



Table 1. System 1. Comparison of cost relative error, number of intervals of the final QP and overall CPU-time for solving all
QPs vs. relative tolerance µ for PWLH-CLQR and FFOH-CLQR

PWLH-CLQR Algorithm FFOH-CLQR Algorithm

µ
V I(x0)−V ∗(x0)

V ∗(x0)
N CPU-time (s) V II(x0)−V ∗(x0)

V ∗(x0)
N CPU-time (s)

10−2 1.755 · 10−3 6 0.00012 7.689 · 10−4 12 0.00020
10−3 1.841 · 10−4 24 0.00120 1.883 · 10−4 24 0.00040
10−4 4.495 · 10−8 96 0.0376 4.926 · 10−8 96 0.0075
10−5 4.495 · 10−8 96 0.0376 4.926 · 10−8 96 0.0075
10−6 4.495 · 10−8 96 0.0376 4.926 · 10−8 96 0.0075
10−7 6.408 · 10−9 192 0.360 8.841 · 10−9 192 0.0440
10−8 — 384 3.264 1.468 · 10−9 384 0.444

Table 2. System 2. Comparison of cost relative error, number of intervals of the final QP and overall CPU-time for solving all
QPs vs. relative tolerance µ for PWLH-CLQR and FFOH-CLQR

PWLH-CLQR Algorithm FFOH-CLQR Algorithm

µ
V I(x0)−V ∗(x0)

V ∗(x0)
N CPU-time (s) V II(x0)−V ∗(x0)

V ∗(x0)
N CPU-time (s)

10−2 3.3681 · 10−3 6 0.00040 6.4084 · 10−3 6 0.00027
10−3 5.0657 · 10−5 48 0.334 1.1411 · 10−4 48 0.0267
10−4 8.8931 · 10−7 96 2.40 1.0786 · 10−6 192 2.29
10−5 0 192 15.8 1.0786 · 10−6 192 2.29

optimizes over the input and the slope in each interval, while
FFOH-CLQR optimizes only over the input with the slope fixed
by continuity at the end point of the interval. For instance, for
System 1, with µ = 10−3 PWLH-CLQR optimizes (in the last
QP) over 2mN = 48 decision variables while FFOH-CLQR
overm(N +1) = 25 variables. Also notice that a relative toler-
ance between 10−2 and 10−3 results in small suboptimality. For
these reasons, the most effective algorithm appears to be FFOH-
CLQR, which achieves a solution in 0.40 ms with a relative cost
error of about 1 · 10−4. For System 2, a reasonable value for
µ is also between 10−2 and 10−3. For instance using FFOH-
CLQR with µ = 10−3, we compute a solution in 27 ms with a
relative cost error less than 2 · 10−4. Such a computational time
is clearly negligible compared to the systems dynamics. The
resolution of the actuator in the application also implies a fairly
loose tolerance (∼ 10−3) on the solution should be used. It
obviously makes little sense to compute an optimal input more
accurately than the actuator hardware can resolve.

6. CONCLUSIONS

In this paper we presented a method for solving the infinite
horizon continuous-time constrained linear quadratic regulator,
by solving a finite number of finite dimensional quadratic pro-
grams. A number of unevenly spaced grid points are selected
and adapted on-line to achieve a tolerance specification in the
controller cost. The input parameterization is piecewise linear
on the chosen time intervals; we examined both continuous and
discontinuous parameterizations. The parameterizations guar-
antee exact input constraint satisfaction. Both of these input
parameterizations converge to the optimal solution much more
quickly than piecewise constant inputs, allowing a reduction
in the final number of intervals and, therefore, decision vari-
ables. Furthermore, we derived exact discrete-time matrices
and penalties to avoid quadrature errors, and moved offline all
the computation required for solving ODEs and creating the
Hessian and linear terms in the QPs solved online. Finally,
we presented simulation results for two examples to illustrate
the main ideas. The online complexity of solving the infinite
horizon continuous-time CLQR with the proposed method is no
larger than that required for solving an infinite horizon discrete-
time CLQR problem of the same size.

REFERENCES

Cannon, M. and Kouvaritakis, B. (2000). Infinite horizon
predictive control of constrained linear systems. Automatica,
36, 943–955.

Diehl, M., Ferreau, H.J., and Haverbeke, N. (2008). Efficient
numerical methods for nonlinear MPC and moving horizon
estimation. In Proceedings of the International Workshop on
Assessment and Future Directions of NMPC. Pavia, Italy.

Goebel, R. and Subbotin, M. (2007). Continuous time linear
quadratic regulator with control constraints via convex dual-
ity. IEEE Trans. Auto. Contr., 52(5), 886–892.

Kojima, A. and Morari, M. (2004). LQ control of constrained
continuous-time systems. Automatica, 40, 1143–1155.

Kwakernaak, H. and Sivan, R. (1972). Linear Optimal Control
Systems. John Wiley & Sons.

Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert, P.O.M.
(2000). Constrained model predictive control: Stability and
optimality. Automatica, 36(6), 789–814.

Pannocchia, G., Wright, S.J., and Rawlings, J.B. (2003). Ex-
istence and computation of infinite horizon model predic-
tive control with active steady-state input constraints. IEEE
Trans. Auto. Contr., 48(6), 1002–1006.

Pannocchia, G., Rawlings, J.B., Mayne, D.Q., and Marquardt,
W. (2009). On computing the solutions to the continuous
time constrained linear quadratic regulator. Submitted for
publication in IEEE Trans. Auto. Cont.

Prett, D.M. and Morari, M. (1987). The Shell Process Control
Workshop. Butterworth Publishers.

Rao, C.V. and Rawlings, J.B. (1999). Steady states and con-
straints in model predictive control. AIChE J., 45, 1266–
1278.

Rossiter, J.A., Kouvaritakis, B., and Rice, M.J. (1998). A
numerically robust state-space approach to stable-predictive
control strategies. Automatica, 34, 65–73.

Sakizlis, V., Perkins, J.D., and Pistikopoulos, E.N. (2005).
Explicit solutions to optimal contol problems for contrained
continuous-time linear systems. IEE Proc.-Control Theory
Appl., 152(4), 443–452.

Yuz, J., Goodwin, G., Feuer, A., and De Doná, J. (2005).
Control of constrained linear systems using fast sampling
rates. Syst. Contr. Lett., 54, 981–990.


