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Abstract: Controlled variable (CV) selection from available measurements through exhaustive
search is computationally forbidding for large-scale problems. We have recently proposed novel
bidirectional branch and bound (B3) approaches for CV selection using the minimum singular
value (MSV) rule and the local worst-case loss criterion in the framework of self-optimizing
control. However, the MSV rule is approximate and worst-case scenario may not occur frequently
in practice. In this work, the B3 approach is extended to CV selection based on the recently
developed local average loss metric, which represents the expected loss incurred over the long-
term operation of the plant. Lower bounds on local average loss and fast pruning algorithms
are derived for the efficient B3 algorithm. Numerical tests and binary distillation column case
study are used to demonstrate the computational efficiency of the proposed method.
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1. INTRODUCTION

The selection of controlled variables (CVs) from available
measurements is an important task during the design
of control systems for complex processes. Traditionally,
CVs have been selected based on intuition and process
knowledge. To systematically select CVs, Skogestad (2000)
introduced the concept of self-optimizing control. In this
approach, CVs are selected such that in presence of distur-
bances, the loss incurred in implementing the operational
policy by holding the selected CVs at constant setpoints
is minimal, as compared to the use of an online optimizer.

The choice of CVs based on the general non-linear for-
mulation of self-optimizing control requires solving large-
dimensional non-convex optimization problems (Skoges-
tad, 2000). To quickly pre-screen alternatives, local meth-
ods have been proposed including the minimum singular
value (MSV) rule (Skogestad and Postlethwaite, 1996) and
exact local methods with worst-case (Halvorsen et al.,
2003) and average loss minimization (Kariwala et al.,
2008). Though the local methods simplify loss evaluation
for a single alternative, every feasible alternative still needs
to be evaluated to find the optimal solution. As the number
of alternatives grows rapidly with process dimensions, such
an exhaustive search is computationally intractable for
large-scale processes. Thus, an efficient method is needed
to find a subset of available measurements, which can be
used as CVs (Problem 1).

Instead of selecting CVs as a subset of available measure-
ments, it is possible to obtain lower losses using com-
binations of available measurements as CVs (Halvorsen
et al., 2003). Recently, explicit solutions to the problem
of finding locally optimal measurement combinations have

been proposed (Kariwala, 2007; Kariwala et al., 2008;
Alstad et al., 2009). It is possible, however, that the use of
combinations of a few measurements as CVs may provide
similar loss as the case where combinations of all available
measurements are used (Kariwala, 2007; Kariwala et al.,
2008; Alstad et al., 2009). Though the former approach
results in control structures with lower complexity, it gives
rise to another combinatorial optimization problem involv-
ing the identification of the set of measurements, whose
combinations can be used as CVs (Problem 2).

Both Problems 1 and 2 can be seen as subset selection
problems, for which only exhaustive search and branch
and bound (BAB) method guarantee globally optimal
solution. For minimization problems, a BAB approach
divides the problem into several sub-problems (nodes)
and calculates a lower bound of the selection criterion
over all possible solutions of a node. If the lower bound
is greater than an upper bound of the optimal solution,
then the corresponding node is pruned (eliminated without
further evaluation). In this way, the BAB method gains
its efficiency in comparison with exhaustive search. The
traditional BAB methods for subset selection use down-
wards approach, where pruning is performed on nodes
with gradually decreasing subset size (Narendra and Fuku-
naga, 1977). Recently, a novel bidirectional BAB (B3)
approach (Cao and Kariwala, 2008) has been proposed
for CV selection, where non-optimal nodes are pruned in
downwards as well as upwards (gradually increasing subset
size) directions simultaneously, which significantly reduces
the solution time.

The bidirectional BAB (B3) approach has been applied
to solve Problem 1 with MSV rule (Cao and Kariwala,
2008) and local worst-case loss (Kariwala and Cao, 2009)



as selection criteria. A partially bidirectional BAB (PB3)
method has also been proposed to solve Problem 2 through
minimization of local worst-case loss (Kariwala and Cao,
2009). The MSV rule, however, is approximate and can
lead to non-optimal set of CVs (Hori and Skogestad,
2008). Selection of CVs based on local worst-case loss
minimization can also be conservative, as the worst-case
may not occur frequently in practice (Kariwala et al.,
2008). Thus, CV selection through minimization of local
average loss, which represents the expected loss incurred
over the long-term operation of the plant, can be deemed
as most reliable.

In this paper, lower bounds on local average loss and fast
pruning algorithms are derived to develop an efficient B3

method for CV selection using the exact local method with
average loss minimization. A PB3 method is also developed
to find a subset of available measurements, whose combi-
nations can be used as CVs to minimize local average loss.
Numerical tests and binary distillation column case study
are used to demonstrate the computational efficiency of
the proposed method.

2. BAB METHODS FOR SUBSET SELECTION

Let Xm = {x1, x2, · · · , xm} be an m-element set. The
subset selection problem with selection criterion T involves
finding an n-element subset Xn ⊂ Xm such that

T (X∗
n) = min

Xn⊂Xm

T (Xn) (1)

For a subset selection problem, the total number of can-
didates grows very quickly as m and n increase, which
renders exhaustive search unviable. BAB approach can
find the globally optimal subset without exhaustive search.

2.1 Unidirectional BAB approaches

Downwards. BAB search is traditionally conducted
downwards (gradually decreasing subset size). A down-
wards solution tree for selecting 2 out of 6 elements is
shown in Figure 1(a), where the root node is the same
as Xm. Other nodes represent subsets obtained by elim-
inating one element from their parent sets. Labels at
nodes denote the elements discarded there. To describe
the pruning principle, let B be an upper bound of the
globally optimal criterion, i.e. B ≥ T (X∗

n) and Tn(Xs)
be a downwards lower bound over all n-element subsets of
Xs, i.e. Tn(Xs) ≤ T (Xn) ∀Xn ⊆ Xs. Then,

T (Xn) > T (X∗
n) ∀Xn ⊆ Xs, if Tn(Xs) > B (2)

Hence, any n-element subset of Xs cannot be optimal and
can be pruned without further evaluation, if Tn(Xs) > B.

Upwards. Subset selection can also be performed up-
wards (gradually increasing subset size). An upwards so-
lution tree for selecting 2 out of 6 elements is shown in
Figure 1(b), where the root node is an empty set. Other
nodes represent supersets obtained by adding one element
to their parent sets. Labels at nodes denote the elements
added there. To introduce the pruning principle, let the
upwards lower bound of the selection criterion be defined
as Tn(Xt) ≤ T (Xn) ∀Xn ⊇ Xt. Then,

T (Xn) > T (X∗
n) ∀Xn ⊇ Xt, if Tn(Xt) > B (3)

As downwards BAB, if Tn(Xt) > B, any n-element
superset of Xt cannot be optimal and hence can be pruned
without further evaluation.

2.2 Bidirectional BAB approach

The upwards and downwards BAB approaches can be
combined to form a more efficient bidirectional BAB
(B3) approach. This approach is applicable to any subset
selection problem, for which both upwards and downwards
lower bounds on the selection criterion are available (Cao
and Kariwala, 2008).

Bidirectional pruning. In a B3 approach, the whole sub-
set selection problem is divided into several subproblems.
A sub-problem is represented as the 2-tuple S = (Ff , Cc),
where Ff is an f -element fixed set and Cc is a c-element
candidate set. Here, f ≤ n and n ≤ f + c ≤ m. The
elements of Ff are included in all n-element subsets that
can be obtained by solving S, while elements of Cc can be
freely chosen to append Ff . In terms of fixed and candidate
sets, downwards and upwards pruning can be performed
if Tn(Ff ∪ Cc) > B and Tn(Ff ) > B, respectively. In
B3 approach, these pruning conditions are used together
(bidirectional pruning), where the subproblem S is pruned,
if either downwards or upwards pruning condition is met.

The use of bidirectional pruning significantly improves the
efficiency as non-optimal subproblems can be pruned at
an early stage of the search. Further gain in efficiency
is achieved by carrying out pruning on the sub-problems
of S, instead of on S directly. For xi ∈ Cc, upward
pruning is conducted by discarding xi from Cc, if Tn(Ff ∪
xi) > B. Similarly, if T (Ff∪(Cc\xi)) > B, then downward
pruning is performed by moving xi from Cc to Ff . Here,
an advantage of performing pruning on sub-problems is
that the bounds Tn(Ff ∪xi) and Tn(Ff ∪ (Cc\xi)) can be
computed from Tn(Ff ) and Tn(Ff ∪Cc), respectively, for
all xi ∈ Cc together, resulting in computational efficiency.

Bidirectional branching. In downwards and upwards
BAB methods, branching is performed by removing el-
ements from Cc and moving elements from Cc to Ff ,
respectively. These two branching approaches can be com-
bined into an efficient bidirectional approach by selecting
a decision element and deciding upon whether the decision
element be eliminated from Cc or moved to Ff . In the B3

algorithm, the decision element is selected as the one with
the largest upwards or downwards upper bound for upward
or downward search (best-first search), respectively.

The branching direction (upwards or downwards) is se-
lected by comparing the number of terminal nodes (n-
element subsets) of the resulting subproblems with alter-
nate approaches such that the simpler branch is evaluated
first, whilst the other branch is kept for possible pruning
in future. For downwards branching, removing an element
from Cc results in a subproblem with Cn−f

c−1 terminal nodes,
whilst for upwards branching, moving an element from Cc

to Ff gives a subproblem with Cn−f−1
c−1 terminal nodes.

Therefore, if 2(n − f) > c, downwards branching is per-
formed, otherwise upwards branching is selected.
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Fig. 1. Solution trees for selecting 2 out of 6 elements.

3. SELF-OPTIMIZING CONTROL

To present the local method for self-optimizing control,
consider that the economics of the plant is characterized
by the scalar objective functional J(u,d), where u ∈ R

nu

and d ∈ R
nd denote the degrees of freedom or inputs

and disturbances, respectively. The linearized model of the
process around the nominally optimal operating point is

y = Gy u + Gy
d Wd d + We e (4)

where y ∈ R
ny denotes the process measurements and

e ∈ R
ny represents the implementation error including

measurement and control errors. Here, the diagonal matri-
ces Wd and We contain the magnitudes of expected dis-
turbances and implementation errors associated with the
individual measurements, respectively. The CVs c ∈ R

nu

are given as

c = Hy = Gu + Gd Wd d + HWe e (5)
where Gd = HGy

d and G = HGy ∈ R
nu×nu is invertible,

a necessary condition for integral control.

When d and e are constrained to satisfy

∥∥[
dT eT

]∥∥T

2
≤ 1 (6)

Kariwala et al. (2008) have shown that the average loss
over the set (6) is given as

Laverage(H) =
1

6(ny + nd)

∥∥∥(HG̃)−1HY
∥∥∥

2

F
(7)

where G̃ = GyJ−1/2
uu and

Y =
[
(Gy J−1

uu Jud − Gy
d)Wd We

]
(8)

When individual measurements are selected as CVs, the
elements of H are restricted to be 0 or 1 and HHT = I.
Using index notation, this problem can be stated as

min
Xnu⊂Xny

L1(Xnu
) =

∥∥∥G̃−1
Xnu

YXnu

∥∥∥
2

F
(9)

Note that the scalar constant 1/(6(ny+nd)) is neglected in
(9), as it does not depend on the selected CVs. Instead of
2-norm, as used in (6), if a different norm is used to define
the allowable set of d and e, the resulting expressions for
average losses only differ by scalar constants (Kariwala
et al., 2008). Thus, the formulation of optimization prob-
lem in (9) is independent of the norm used to define the
allowable set of d and e.

Instead of using individual measurements, it is possible to
use combinations of measurements as CVs. In this case,
the integer constraint on H ∈ R

nu×ny is relaxed, but
the condition rank(H) = nu is still imposed to ensure
invertibility of HGy. The minimal average loss over the
set (6) using measurements combinations as CVs is given
as (Kariwala et al., 2008)

min
H

Laverage =
1

6 (ny + nd)

nu∑
i=1

λ−1
i

(
G̃T (Y YT )−1 G̃

)
(10)

Equation (10) can be used to calculate the minimum loss
provided by the optimal combination of a given set of
measurements. However, the use of all measurements is
often unnecessary and similar losses may be obtained by
combining only a few of the available measurements. Then,
the combinatorial optimization problem involves finding
the set of n among ny measurements (nu ≤ n ≤ ny)
that can provide the minimal loss for specified n. In index
notation, the n measurements are selected by minimizing

min
Xn⊂Xny

L2(Xn) =
nu∑
i=1

λ−1
i

(
G̃T

Xn
(YXnYT

Xn
)−1G̃Xn

)
(11)

where the scalar constant has been omitted as (9).

4. BAB METHOD FOR CV SELECTION

As shown in Section 3, the selection of CVs using exact
local method can be seen as subset selection problems. In
this section, the BAB methods for solving these problems
are presented. For simplicity of notation, we define the p×p
matrix M(Xp) and the nu × nu matrix N(Xp) as

M(Xp) = R−T G̃XpG̃
T
Xp

R−1 (12)

N(Xp) = G̃T
Xp

(YXp
YT

Xp
)−1G̃Xp

(13)

where R is the Cholesky factor of YXpY
T
Xp

.

4.1 Lower bounds

Individual measurements. L1 in (9) requires inversion
of GXnu

and thus L1(Xp) is well-defined only when GXp

is a square matrix, i.e. p = nu. On the other hand, BAB
methods require evaluation of loss, when the number of
selected measurements differs from nu. Motivated by this
drawback, two alternate representations of L1 are derived
as follows:



L1(Xp) =
r∑

i=1

λ−1
i (N(Xp)) =

r∑
i=1

λ−1
i (M(Xp)) (14)

where r = rank(G̃Xp
). It is clear that for r = p =

nu, (14) is equivalent to (9). However, (14) generally
holds for any number of measurements since YXp

YT
Xp

is invertible under the reasonable assumption that every
measurement has a non-zero implementation error. Using
the generalized expression for L1 and interlacing properties
of eigenvalues (Horn and Johnson, 1985), the downwards
and upwards lower bounds required for the application of
B3 algorithm are derived as follows.
Proposition 1. (Lower bounds for L1). Consider a node S =
(Ff , Cc). For L1 defined in (14),

L1(Ff )≤ min
Xnu⊃Ff

L1(Xnu
); f < nu (15)

L1(Ff ∪ Cc)≤ min
Xnu⊂(Ff∪Cc)

L1(Xnu
); f + c > nu (16)

To illustrate the implications of Proposition 1, let B
represent the best available upper bound on L1(X∗

nu
).

Then (15) implies that, if L1(Ff ) > B, the optimal
solution cannot be a superset of Ff and hence all supersets
of Ff need not be evaluated. Similarly, if L1(Ff ∪Cc) > B,
(16) implies that the optimal solution cannot be a subset
of Ff ∪ Cc and hence all subsets of Ff ∪ Cc need not be
evaluated. Thus, upwards and downwards pruning can be
conduced using (15) and (16) and the optimal solution can
be found without complete enumeration.

Measurements combinations. The expression for L2

in (11) is the same as the expression for L1 in (14). Thus,
similar to Proposition 1, it can be shown that

L2(Ff ∪ Cc)≤ min
Xn⊂(Ff∪Cc)

L2(Xn); f + c > n (17)

For selecting measurements, whose combinations can be
used as CVs, the result in (17) is useful for downwards
pruning. Equation (16), however, also implies that when
nu ≤ f < n, L2(Ff ) decreases as the subset size increases.
Thus, unlike L1, the expression for L2 cannot be directly
used for upwards pruning. In the following proposition, a
lower bound on L2 is derived, which can instead be used
for upwards pruning, whenever n − nu < f < n.
Proposition 2. (Upwards lower bound for L2). For the node
S = (Ff , Cc), let

L2(Ff ) =
f+nu−n∑

i=1

λ−1
i (N(Ff )) (18)

where f > n − nu. Then, L2(Ff ) represents a lower
bound on the loss corresponding to combinations of any n
measurements obtained by appending indices to Ff , i.e.

L2(Ff )≤ min
Xn⊃Ff

Xn⊂(Ff ∪Cc)

L2(Xn) (19)

Proposition 2 implies that the lower bound of L2 defined
in (18) can be used for upwards pruning. In this case,
upwards pruning can only be applied when the size of
fixed set of the node under consideration is greater than
n − nu. Thus, the BAB algorithm based on L2 in (18) is

referred to as partially bidirectional BAB (PB3) algorithm.
Development of fully bidirectional BAB algorithm for
selection of measurement combination as CVs is an open
problem.

4.2 Fast pruning and branching

Propositions 1 and 2 can be used to prune the non-optimal
nodes quickly. Thus, the optimal solution can be found
with evaluation of fewer nodes, but the solution time
can still be large, as direct evaluation of L1 in (14) and
L2 in (11) requires eigenvalue decomposition, which is
computationally expensive.

Individual measurements. When f < nu, M(Ff ) in
(12) is invertible. Similarly when s = f + c > nu, N(Ss)
in (13) for Ss = Ff ∪ Cc is invertible. Thus,

L1(Ff ) =
r∑

i=1

λ−1
i (M(Ff )) = trace(M−1(Ff )) (20)

L1(Ss) =
r∑

i=1

λ−1
i (N(Ss)) = trace(N−1(Ss)) (21)

The use of (20) and (21) for evaluation of lower bounds
on L1 avoids computation of eigenvalues. The next two
propositions relate the bounds of a node with the bounds
of sub-nodes allowing pruning on sub-nodes directly and
thus improving efficiency of the B3 algorithm further.
Proposition 3. (Upwards pruning for L1). Consider a node
S = (Ff , Cc) and index i ∈ Cc. Then

L1(Ff ∪ i) = L1(Ff ) +
‖zT

i YFf
− Yi‖2

2

ηi
(22)

where zi = (G̃Ff
G̃T

Ff
)−1G̃Ff

G̃T
i and ηi = G̃i(I −

GT
Ff

(G̃Ff
G̃T

Ff
)−1G̃Ff

)G̃T
i .

Proposition 4. (Downward pruning for L1). For a node S =
(Ff , Cc), let Ss = Ff ∪ Cc, where s = f + c. For i ∈ Cc,

L1(Ss \ i) = L1(Ss) +
‖xiN−1(Ss)‖2

2

ζi − xiN−1(Ss)xT
i

(23)

where xi = YiYT
Ss\i(YSs\iYT

Ss\i)
−1GSs\i − GT

i and ζi =
Yi(I − YT

Ss\i(YSs\iYT
Ss\i)

−1YSs\i)YT
i .

In comparison with the direct calculation of L1, the use
of (22) and (23) is computationally less demanding. This
happens as in (22), the inverse (G̃Ff

G̃T
Ff

)−1 needs to be
evaluated only once for all c sub-nodes, whilst in (23), two
inverses (ỸSs\iỸT

Ss\i)
−1 and N−1(Ss) are evaluated only

once for all c sub-nodes.

Measurements combinations. As the downwards prun-
ing criteria for minimization of L1 and L2 are the same,
Proposition 4 can be used for fast downwards pruning for
selection of a subset of measurements, whose combinations
can be used as CVs. The fast upwards pruning criteria for
minimization of L2 is presented in the next proposition.
Proposition 5. (Upwards pruning for L2). Consider a node
S = (Ff , Cc) and index i ∈ Cc. Then



L2(Ff ∪ i) ≥
f+nu−n+1∑

j=1

1
λj(N(Ff )) + tj

(24)

where t = [t1 · · · tf+nu−n+1]
T is determined by solving

the following linear equations:

tj − tj+1 = λj+1 − λj , j = 1, 2, · · · , f + nu − n(25)
f+nu−n+1∑

j=1

tj = ‖si‖2
2/βi (26)

with si = YiYT
Ff

(YFf
YT

Ff
)−1GFf

−GT
i and βi = Yi(I−

YT
Ff

(YFf
YT

Ff
)−1YFf

)YT
i .

Note that the relationship in (24) is an inequality, which
can be conservative. As a BAB method spends most of its
time in evaluating nodes that cannot lead to the optimal
solution, we use the computationally cheaper albeit weaker
pruning criteria in this paper.

5. NUMERICAL EXAMPLES

To examine the efficiency of the proposed BAB algorithms
developed in this work and listed in Table 1, numerical
tests are conducted using randomly generated matrices
and binary distillation column case study. All tests are
conducted on a Windows XP SP2 notebook with an Intel�
CoreTM Duo Processor T2500 (2.0 GHz, 2MB L2 Cache,
667 MHz FSB) using MATLAB� R2008a.

Table 1. BAB programs for comparison

program description

UP upwards pruning (22)
DOWN downwards pruning (23)

B3 bidirectional BAB by combining (22) and (23)
PB3 partially B3 by combining (23) and (24)

5.1 Random tests

To evaluate the efficiency of the different BAB algorithms
developed in this work, we consider selection of nu out
of ny = 36 variables, where nu varies between 1 and 35
with nd = 5. Six random matrices are generated: three full
matrices, Gy ∈ R

ny×nu , Gy
d ∈ R

ny×nd and Jud ∈ R
nu×nd ,

and three diagonal matrices, We ∈ R
ny×ny , Wd ∈ R

nd×nd

and Juu ∈ R
nu×nu . The average computation time and

number of nodes evaluated over the 100 random cases are
summarized in Figure 2.

From Figure 2, it can be seen that all the developed
algorithms (UP, DOWN and B3) show much superior per-
formance than the currently used brute force method. As
one may expect, upwards pruning based algorithm (UP)
shows better efficiency for problems involving selection of a
few variables from a large candidate set, whilst downwards
pruning based algorithm (DOWN) is more efficient for
problems, where a few among many candidate variables
need to be discarded to find the optimal solution. The
solution times for the B3 algorithm is similar to the better
of UP and DOWN algorithms, however, its efficiency is
insensitive to the kind of selection problem. Within 1000
seconds, both UP and DOWN algorithms can only handle
problems with nu < 9 or ny − nu < 9. For all cases,
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Fig. 2. Random test: (a) computation time and (b) number
of nodes evaluated against nu.

however, the B3 algorithm exhibits superior efficiency and
is able to solve the problem with nu = 18 within 200
seconds.

5.2 Distillation column case study

To demonstrate the efficiency of the developed PB3 al-
gorithm, we consider self-optimizing control of a binary
distillation column (Skogestad, 1997). The objective is to
minimize the deviation of the distillate and bottoms com-
position from their nominal steady-state values in presence
of disturbances in feed flow rate, feed composition and
vapor fraction of feed. Two degrees of freedom (reflux
and vapor boilup rates) are available and thus two CVs
are required for implementation of self-optimizing control
strategy. It is considered that the temperatures on 41
trays are measured with an accuracy of ±0.5o C. The
combinatorial optimization problem involves selection of
n out of 41 candidate measurements, whose combinations
can be used as CVs. The reader is referred to Hori and
Skogestad (2008) for further details of this case study.

The PB3 algorithm is used to select the 10 best measure-
ment combinations for 2 ≤ n ≤ 41. The trade-off between
the losses of the 10 best selections and n is shown in
Figure 3(a). It can be seen that when n ≥ 14, the loss is less
than 0.075, which is close to the minimum loss (0.052) by
using a combination of all 41 measurements. Furthermore,
the reduction in loss is negligible, when combinations of
more than 20 measurements are used.

Figures 3(b) and (c) show the computation time and num-
ber of node evaluations for PB3 and DOWN algorithms.
Overall, both algorithms are very efficient and are able to
reduce the number of node evaluations by 5 to 6 orders of
magnitude, as compared to the brute force search method.
For example, to select 20 measurements from 41 candi-
dates, evaluation of a single alternative requires about 0.15
ms on the specified notebook computer. Thus, a brute
force search methods would take more than one year to
evaluate all possible alternatives. However, both PB3 and
DOWN algorithms are able to solve this problem within
100 seconds. Hence, without algorithms developed here, it



5 10 15 20 25 30 35 40
0

0.02

0.04

Lo
ss

(a)

5 10 15 20 25 30 35 40
0

200

400

600

C
P

U
 ti

m
e,

 s

(b)

5 10 15 20 25 30 35 40
100

105

1010

N
um

be
r o

f e
va

lu
at

io
ns

Number of measurments seleted

(c)

PB3

DOWN

PB3 DOWN BRUTE FORCE

Fig. 3. (a) Average losses of 10-best measurement com-
binations against the number of measurements, (b)
Comparison of computation time, and (c) Comparison
of number of node evaluations

would be practically impossible to generate of the trade-off
curve shown in Figure 3(a).

Due to the conservativeness of the pruning condition (24),
the PB3 algorithm is only able to reduce the number
of node evaluations and hence computation time up to
a factor of 2 for selection problems involving selection
of a few measurements from a large candidate set. It is
expected that a less conservative or fully upwards pruning
rule would improve the efficiency, but the derivation of
such a rule is currently an open problem.

6. CONCLUSIONS

In this paper, the concept of bidirectional branch and
bound (BAB) proposed in Cao and Kariwala (2008) has
been further developed for selection of controlled variables
(CVs) using the local average loss minimization criterion
for self-optimizing control (Kariwala et al., 2008). The
numerical tests using randomly generated matrices and bi-
nary distillation column case study show that the number
of evaluations for proposed algorithms is 4 to 5 orders of
magnitude lower than the current practice of CV selection
using brute force search.

The computational efficiency of the algorithms developed
in this paper based on bidirectional pruning and branching
principles and fast pruning algorithms is compatible to
the BAB approach for CV selection based on minimum
singular value (MSV) rule (Cao and Kariwala, 2008) and
the local worst-case criterion (Kariwala and Cao, 2009).
Despite the availability of the exact local criteria (the
worst case and average loss), one of the apparent reasons
for continued use of the approximate MSV rule is its
computational efficiency. This work makes CV selection
using the local average loss criterion computationally
tractable so that it can be adopted as a standard tool
for CV selection in the self-optimizing control framework.

While the algorithm for selection of individual measure-
ments as CVs is fully bidirectional, the algorithm for
selection of subset of measurements, whose combinations
can be used as CVs, is only partially bidirectional. It is
expected that the development of a fully bidirectional
BAB algorithm for the latter problem would improve
the computational efficiency further. Furthermore, the
combination matrix H that minimizes average loss also
minimizes worst-case loss (Kariwala et al., 2008). This
super-optimality, however, only holds for a given subset
of measurements and in general, different measurement
subsets can be optimal for these two criteria. An extension
of the bidirectional BAB algorithm to select CVs based
on the bi-objective minimization of local worst-case and
average losses for self-optimizing control is currently under
consideration.
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