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Abstract: Although soft-sensors have been widely used for estimating product quality or
other key variables, they do not always function well in practice due to changes in process
characteristics. The Correlation-based Just-In-Time (CoJIT) modeling has been proposed to
cope with changes in process characteristics. In the CoJIT modeling, the samples used for
local modeling are selected on the basis of correlation together with distance, since changes
in process characteristics are expressed as the difference of the correlation. In addition, the
individuality of production devices should be considered when they are operated in parallel.
However, the CoJIT modeling cannot cope with the individuality of production devices because
it is only applicable to time-series data. In the present work, a new pattern recognition method,
referred to as the Nearest Correlation (NC) method is proposed, and it selects samples whose
correlations are similar to the query. In addition, the proposed NC method is integrated with
the CoJIT modeling. The advantages of the proposed CoJIT modeling with the NC method are
demonstrated through a case study of a parallelized CSTR process.
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1. INTRODUCTION

A soft-sensor, or a virtual sensor, is a key technology for
estimating product quality or other important variables
when on-line analyzers are not available. Partial least
squares (PLS) regression and artificial neural network
(ANN) have been widely accepted as useful techniques for
soft-sensor design (Kano and Nakagawa (2008), Mejdell
and Skogestad (1991), Kresta et al. (1994), Kano et
al. (2000), Kamohara et al. (2004) and Radhakrishnan
and Mohamed (2000)). In addition, the application of
subspace identification (SSID) to soft-sensor design has
been reported in Amirthalingam and Lee (1999) and Kano
et al. (2008) for achieving higher estimation performance.

Generally, building a high performance soft-sensor is very
laborious, since input variables and samples for model
construction have to be selected carefully and parameters
have to be tuned appropriately. In addition, even if a
good soft-sensor is developed successfully, its estimation
performance deteriorates as process characteristics change.
In chemical processes, for example, process characteristics
are changed by catalyst deactivation or fouling. Such
a situation may deteriorate product quality. Therefore,
maintenance of soft-sensors is very important in practice
to keep their estimation performance. Ogawa and Kano
(2008) indicate that soft-sensors should be updated as the
process characteristics change, and also manual, repeated
construction of them should be avoided due to its heavy
workload.

To update statistical models automatically when process
characteristics change, recursive methods such as recur-
sive PLS (Qin (1998)) were developed. These methods
can adapt models to new operating conditions recursively.
However, when a process is operated within a narrow range
for a certain period of time, the model will adapt exces-
sively and will not function in a sufficiently wide range of
operating conditions. In addition, recursive methods can-
not cope with abrupt changes in process characteristics.

On the other hand, the individuality of production devices
should be taken into account. In semiconductor processes,
for example, parallelized production devices are used, and
they have different characteristics even if their catalog
specifications are the same. Therefore, a soft-sensor de-
veloped for one device is not always applicable to another
device, and it is very laborious to customize soft-sensors
according to their individuality.

The Just-In-Time (JIT) modeling has been proposed to
cope with process nonlinearity (Bontempi et al. (1999) and
Atkeson et al. (1997)) and changes in process character-
istics (Cheng and Chiu (2004)). In the JIT modeling, a
local model is built from past data around the query only
when an estimate is required. The JIT modeling is useful
when global modeling does not function well. However,
its estimation performance is not always high because
the samples used for local modeling are selected on the
basis of the distance from the query and the correlation
among variables is not taken into account. How should we
determine the samples used for local modeling to build



a highly accurate statistical model? Distance is not the
most important. A good model cannot be developed when
correlation among input-output variables is weak, even if
the distance between samples is very small. Conversely, a
very accurate model can be developed when the correlation
is strong even if the distance is large.

Recently, a new JIT modeling method based on the corre-
lation among variables, referred to as the correlation-based
JIT (CoJIT) modeling, has been proposed by Fujiwara
et al. (2008). In the CoJIT modeling, the samples used
for local modeling are selected on the basis of correlation
together with distance. The CoJIT modeling can cope with
abrupt changes of process characteristics and also achieve
high estimation performance. However, it is applicable to
only time-series data because it uses moving windows to
generate data sets for local modeling. In other words,
the original CoJIT modeling cannot generate a data set
consisting of such data that represent characteristics of
a query sample and are obtained from various devices
operated in parallel.

To make the CoJIT modeling applicable to soft-sensor de-
sign for parallelized production devices, samples obtained
from various devices have to be discriminated on the basis
of the correlation among variables. This discrimination
problem is one of the unsupervised pattern recognition
problems because the teacher signal is not used for sample
classification.

The Nearest Neighbor (NN) method and k-means method
are well-known conventional unsupervised pattern recogni-
tion algorithms. The NN method can detect samples that
are similar to the query, and k-means method can cluster
samples without the teacher signal. However, they are
distance-based methods and do not take into account the
correlation among variables. Self organizing map (SOM)
also has been used as an unsupervised pattern recognition
method (Kohonen (2001)). SOM is a machine learning
process that imitates the brain ’s learning process, and
it not only can classify samples but also can visualize high
dimensional data. However, it requires high computational
load, and the preprocessing data are complicated.

In the present work, to cope with the individuality of
production devices as well as changes in process charac-
teristics, a new unsupervised pattern recognition method
based on the correlation among variables, referred to as
the Nearest Correlation (NC) method, is proposed. The
proposed NC method can detect samples that have corre-
lation similar to the query on the basis of sample geometry.
In addition, the proposed NC method is integrated with
the CoJIT modeling. The usefulness of the integration is
demonstrated through a case study of a parallelized CSTR
process.

2. INDICES OF CORRELATION

In this section, several measures for quantifying correlation
among variables are briefly explained.

2.1 Correlation coefficient

The correlation coefficient Ci,j can be used as an index of
the similarity between two vectors xi and xj ∈ �M .
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Fig. 1. An example of vector geometry in 3-dimensional
space

Ci,j =
xT

i xj

||xi||||xj || = cos θ (1)

where, θ is the angle between two vectors.

Suppose that the samples in the three-dimensional data
consist of two classes K1 and K2, and samples belonging
to classes K1 and K2 span the two-dimensional linear
subspaces V1 and V2, respectively, as shown in Fig. 1.

Now, the query xq is newly measured, and its class should
be identified as K1 or K2. The correlation coefficients
can be used as the index of sample discrimination. For
example, x1 ∈ K1 and x2 ∈ K2 are selected from each
class in a random manner, and the correlation coefficients
between xq and them are calculated respectively, and the
class including the sample with the largest correlation
coefficient can be identified as the class of xq.

In many cases, however, this method is inappropriate.
In Fig. 1, the selected sample x1 and the query xq are
orthogonal to each other even though both vectors belong
to K1. In such a case, xq is identified as an element of K2

because the correlation coefficient between xq and x2 is
larger than the correlation coefficient between xq and x1.

2.2 The Q statistic

In this work, the Q statistic is used as an index of sample
discrimination.

The Q statistic is derived by principal component analysis
(PCA), and it expresses the distance between the sample
and the subspace spanned by principal components (Jack-
son and Mudholkar, 1979). The Q statistic is defined as

Q =
M∑

m=1

(xm − x̂m)2 (2)

where xm and x̂m are the mth measurement and its
estimate by the PCA model, respectively. The Q statistic
is a measure of dissimilarity between the sample and the
modeling data from the viewpoint of the correlation among
variables.

In addition, to take into account the distance between the
sample and the origin, Hotelling’s T 2 statistic can be used.
The T 2 statistic is defined as

T 2 =
R∑

r=1

t2r
σ2

tr

(3)



where σtr denotes the standard deviation of the rth score
tr. The T 2 statistic expresses the normalized distance
from the origin in the subspace spanned by principal
components. The Q and T 2 statistics can be integrated
into a single index for sample selection as proposed by
Raich and Cinar (1994):

J = λT 2 + (1 − λ)Q (4)
where 0 ≤ λ ≤ 1.

3. NEAREST CORRELATION METHOD

The NN method and the k-means method can discriminate
or cluster samples on the basis of the distance without a
teacher signal. However, they do not take into account
the correlation among variables. In this section, a new
unsupervised pattern recognition method based on the
correlation among variables, referred to as the nearest
correlation (NC) method, is proposed. In the proposed NC
method, sample geometry is used for sample discrimina-
tion.

3.1 Concept of the NC method

Suppose that the hyper-plane P in Fig. 2 (left) expresses
the correlation among variables and the samples on P have
the same correlation. Although samples x1 to x5 have the
same correlation and they are on P , samples x6 and x7

have different correlation from the others. The NC method
aims to detect samples whose correlation is similar to the
newly measured query xq. In this example, x1 to x5 on P
should be detected.

At first, the whole space is translated so that the query
becomes the origin. That is, xq is subtracted from all
samples xi(i = 1, 2, · · · , 7). Since the hyper-plane P is
translated to the plane containing the origin, it becomes
the linear subspace V .

Next, a line connecting each sample and the origin is
drawn. Suppose another sample can be found on this line.
In this case, x1-x4 and x2-x3 satisfy such a relationship
as shown in Fig. 2 (right). The correlation coefficients of
these pairs of samples must be 1 or −1. On the other
hand, x6 and x7 that are not the elements of V cannot
make such pairs. Therefore, the samples of the pairs whose
correlation coefficients are ±1 are thought to have the
same correlation as xq.

However, x5 that does not make a pair cannot be detected
by this method even though it is on V . To detect x5, a
linear subspace is derived from the selected pairs by using
PCA, and the derived linear subspace corresponds to V .

Finally, the Q statistics for all samples xi (i = 1, 2, · · · , 7)
are calculated by using the PCA model expressing V .
The samples with small Q statistics are located close to
the linear subspace V , and such samples have correlation
similar to the query. Although x5 cannot be detected in
the previous step, it can be detected in this step because
its Q statistic is 0. On the other hand, x6 and x7 are not
detected in this step since they have large Q statistics.

In addition, the T 2 statistic can be used to take into
account the distance from the origin. In the present work,
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Fig. 2. An example of the procedure of the NC method

J in Eq. (4) is used as the index for sample selection. The
samples with small J are selected as the samples similar
to the query.

In the implementation of the above procedure, the thresh-
old of the correlation coefficient γ (1 ≥ γ > 0) has to be
used since there are no pairs whose correlation coefficient is
strictly ±1. That is, the pairs should be selected when the
absolute values of their correlation coefficients are larger
than γ.

3.2 Algorithm of the NC method

Assume that the samples stored in the database are xn ∈
�M (n = 1, 2, · · · , N) and the query is xq ∈ P (dim(P ) =
R). The samples belonging to P should be detected in a
manner similar to xq. The algorithm of the proposed NC
method is as follows:

(1) Set R, γ(1 ≥ γ > 0), δ(δ > 0) and K or J̄ .
(2) x′

n = xn − xq for n = 1, 2, · · · , N .
(3) Calculate the correlation coefficients Ck,l between all

possible pairs of x′
k and x′

l (k �= l).
(4) Select the pairs satisfying |Ck,l| ≥ γ, and set the

number of the selected pairs S.
(5) If S < R, then γ = γ − δ (δ > 0) and return to step

4. If S ≥ R, then go to the next step.
(6) Arrange the samples of the pairs selected in step 4 as

the rows of the matrix X ′.
(7) Derive the linear subspace V from X ′ by using PCA.

The number of principal components is R.
(8) Calculate the index J of x′

n, and Jn = J for n =
1, 2, · · · , N .

(9) Detect the first K samples in ascending order of Jn

or the samples whose Jn is smaller than J̄ as samples
similar to the query xq, where J̄ is the threshold.

In step 5, when S is smaller than R, the threshold γ has to
be relaxed to increase the number of selected pairs since
the linear subspace V is not spanned by the samples of the
selected pairs. R can be used as the tuning parameter.

3.3 Numerical example

The discrimination performance of the proposed NC
method is compared with that of the NN method through
a numerical example. In this example, data consist of three
classes that have different correlations, and the samples be-
longing to the same class as the query should be detected.
The discrimination rate is defined as

Discrimination Rate [%] =
L

K
× 100 (5)



where K is the number of detected samples and L (L ≤ K)
is the number of samples that belong to the same class as
the query among the detected samples. Samples in each of
three classes are generated by using the following equation.

xi = Ais + n (i = 1, 2, 3) (6)

s = [s1 s2 s3]T (7)

n = [n1 n2 n3]T (8)
where Ai is a coefficient matrix, si ∼ N(0, 10) and
ni ∼ N(0, 0.1). N(m, σ) is the random number following
the normal distribution whose mean is m and standard
deviation is σ. The coefficient matrices are as follows:

A1 =

⎡
⎢⎢⎢⎣

1 2
1 4
1 1
2 3
1 3

⎤
⎥⎥⎥⎦ , A2 =

⎡
⎢⎢⎢⎣

3 3
2 1
3 1
3 2
2 0

⎤
⎥⎥⎥⎦ , A3 =

⎡
⎢⎢⎢⎣

2 1
3 4
1 3
0 4
3 1

⎤
⎥⎥⎥⎦ . (9)

100 samples are generated in each of three classes. In
addition, a query belonging to each class is prepared. The
number of detected samples K is fixed at 20.

In this example, the number of principal components is
R = 2, the threshold is γ = 1 − 10−4, the parameters are
λ = 0 and δ = 0.9999. Sample generation and sample
detection by the NN method and the NC method are
repeated 100 times and the average discrimination rates
[%] and the average CPU time [ms] are calculated. The
computer configuration used in this numerical example
is as follows: OS: Windows Vista Business (64bit), CPU:
Intel Core2 Duo 6300 (1.86GHz×2), RAM: 2G byte, and
MATLABR© 7.5.0 (2008a).

Table 1 shows the discrimination results of the NN method
and the NC method. The proposed NC method can achieve
higher discrimination performance than the NN method.
On the other hand, the computational load of the NC
method is relatively heavy since singular value decompo-
sition (SVD) is used for calculating the correlation among
variables. In fact, the computation of SVD occupies most
of the computation time of the NC method.

4. CORRELATION-BASED JUST-IN-TIME
MODELING

The conventional JIT modeling uses the distance for sam-
ple selection when a temporary local model is constructed.
However, its estimation performance is not always high
since it does not take into account the correlation among
variables. Recently, The Correlation-based JIT (CoJIT)
modeling that selects samples for local modeling on the
basis of the correlation among variables has been proposed
by Fujiwara et al. (2008).

Figure 3 shows the difference of sample selection for local
modeling between the JIT modeling and the CoJIT mod-
eling. The samples are classified into two groups that have

Table 1. Discrimination performance of the NC
method and the NN method

Discrimination rate [%] CPU time [ms]
Class 1 Class 2 Class 3

NC method 97.5 95.9 96.9 13.9
NN method 78.7 68.0 51.1 1.1

neighbor
region 

JIT modeling CoJIT modeling

selected
dataset 

query
query

Fig. 3. Sample selection in the JIT modeling (left) and the
CoJIT modeling (right)

different correlations. In conventional JIT modeling, sam-
ples are selected regardless of the difference of correlation
as shown in Fig. 3 (left), since a neighbor region around the
query point is defined only by distance. On the other hand,
the CoJIT modeling can select samples whose correlation
is best fit for the query as shown in Fig. 3 (right).

The procedure of the CoJIT modeling is as follows: 1)
several data sets are generated from data stored in the
database. 2) The index J is calculated from the query and
each data set. 3) The data set whose J is the smallest
is selected. 4) A temporary local model is constructed
from the selected data set. In the above procedure, each
data set is generated so that it consists of successive
samples included in a certain period of time, because the
correlation in such a data set is expected to be very similar
(Fujiwara et al. (2008)).

However, the NC method can detect samples that have
correlation similar to the query regardless of whether
the objective data is time-series data or not. This is the
motivation for integrating the proposed NC method with
the CoJIT modeling.

Assume that the sampling interval of the output is longer
than that of the input, and the output at time t, yt, should
be estimated. Now, the input and the output measured
at the same time are stored in the database, and the
sth input-output sample x{s} ∈ �M (s = 1, 2, · · · , S)
and y{s} ∈ �L are stored as matrices XS ∈ �S×M and
YS ∈ �S×L, respectively. To cope with process dynamics,
measurements at different sampling times can be included
in x{s}. The algorithm of the proposed CoJIT modeling
with the NC method is as follows:

(1) When the input at time t, xt, is measured, the index
J is calculated from xt and Xt−1 that was used for
building the previous local model ft−1, and JI = J .

(2) If JI ≤ J̄I , ft = ft−1, Xt = Xt−1, and ft is used for
estimating the output yt. Then, return to step 1. If
JI > J̄I , go to the next step. Here, J̄I is the threshold.

(3) K input samples whose correlation is similar to the
query are detected from XS by the NC method,
and they are arranged as the rows of Xt ∈ �K×M .
In addition, K output samples corresponding to the
detected input samples are selected from YS , and they
are arranged as the rows of Yt ∈ �K×L, where K is
the number of the detected samples.

(4) A new local model ft whose input is Xt and output
is Yt is built.

(5) The output yt is estimated by using ft.



(6) The above steps 1 through 5 are repeated until the
next output sample yS+1 is measured. When yS+1 is
measured, yS+1 and its corresponding input xS+1 are
stored in the database, and return to step 1.

In the above algorithm, any modeling method can be used
for building a local model f . In the present work, partial
least squares regression (PLS) is used to cope with the
colinearity problem. In addition, steps 1 and 2 control
the model update frequency. When the threshold J̄I is
large, the update frequency becomes low. The local model
is updated every time when new input measurements are
available in the case where J̄I = 0.

5. CASE STUDY

In this section, the estimation performance of the proposed
CoJIT modeling with the NC method is compared with
that of the conventional JIT modeling through their ap-
plications to product composition estimation for a paral-
lelized CSTR process. The detailed CSTR model used in
this case study is described in Johannesmeyer and Seborg
(1999).

5.1 Problem setting

In this process, CSTR1 and CSTR2 are operated in
parallel. Although these CSTRs have the same structure
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Fig. 4. Schematic diagram of CSTR with cascade control
systems

Table 2. Process variables of the CSTR pro-
cesses

Variable Caption

CA Reactant concentration [mol/m3]
T Reactor temperature [K]
TC Coolant temperature [K]
h Reactor level [m]
Q Reactor exit flow rate [m3/min]
QC Coolant flow rate [m3/min]
QF Reactor feed flow rate [m3/min]
CAF Feed concentration [mol/m3]
TF Feed temperature [K]
TCF Coolant feed temperature [K]
hC Level controller instruction
QC Outlet flow rate controller instruction
TC Temperature controller instruction
QCC Colorant flow rate controller instruction
Tset Reactor temperature set point [K]
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Fig. 5. Changes of overall heat transfer coefficients and
frequency factors of the CSTRs

as shown in Fig. 4, they have different characteristics.
In each CSTR, an irreversible reaction A −→ B takes
place. The set point of the reactor temperature T [d](d =
1, 2) is independently changed between ±2K every ten
days. Although 15 process variables listed in Table 2 are
calculated in the simulations, measurements of only five
variables T [d], h[d], Q[d], Q

[d]
C , Q

[d]
F are used for analysis,

and their sampling interval is one minute. In addition,
reactant concentration C

[d]
A is measured in a laboratory

once a day.

In this case study, to take into account catalyst deacti-
vation and fouling as changes in process characteristics
and individuality of each CSTR, the frequency factor k

[d]
0

and the heat transfer coefficient UAc[d] are assumed to
decrease with time. In addition, each CSTR is maintained
every half year (180 days). Figure 5 shows changes of the
frequency factors k

[d]
0 and heat transfer coefficients UAc[d].

The operation data of each CSTR for the half years (180
days) were stored in the database.

The soft-sensor for estimating reactant concentration of
the newly developed CSTR3 is designed. The estimation of
CSTR3 starts the 90th day after the start of its operation,
and the soft-sensor is updated in the next half year.
Although CSTR3 has only a small amount of data due
to its short operation term, the soft-sensor is updated
searching samples similar to the current operation of
CSTR3 from the other CSTR operation data in the past.

5.2 Estimation result

The reactant concentration C
[3]
A is estimated by the JIT

modeling and the proposed CoJIT modeling with the
NC method. To take into account process dynamics, the
input data consist of the present sample and the sample
measured one minute before.

In the JIT modeling, linear local models are built and
Euclidean distance is used as the measure for selecting
samples to build local models. The MATLAB Lazy Learn-
ing Toolbox developed by Bontempi et al. (1999) is used.

In the CoJIT modeling, samples for local modeling are
selected by the NC method, and PLS is used for model
building. The parameters of the NC method are deter-
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mined by trial and error, the threshold is γ = 1 − 10
4
,

the parameter is λ = 0.01, and the parameter for update
frequency J̄I = 0.

The soft-sensor design results are shown in Fig. 6. Al-
though C

[3]
A is estimated every minute, only estimates cor-

responding to the measurements are plotted. In this figure,
r denotes the correlation coefficient between measurements
and estimates, and RMSE is the root-mean-squares error.

This result shows that the JIT modeling does not function
well. On the other hand, the estimation performance of
the proposed CoJIT modeling with the NC method is
very high. With the proposed CoJIT modeling, RMSE
is improved by about 35% in comparison with the JIT
modeling. These results of this case study clearly show
that the proposed CoJIT modeling can cope with not
only abrupt changes in process characteristics but also
the individuality of production devices. In addition, it
can construct a high performance soft-sensor for a newly
develop device, even if only a small amount of operation
data is available.

6. CONCLUSION

A new unsupervised pattern recognition method that can
detect samples whose correlation is similar to the query
is proposed. In addition, the JIT modeling is integrated
with the proposed the NC method. The proposed CoJIT
modeling with the NC method can cope with not only
changes in process characteristics but also the individu-
ality of production devices and improve the estimation
performance of a soft-sensor since it can select samples for
local modeling by appropriately accounting for the cor-
relation among variables. The proposed CoJIT modeling
has the potential for realizing efficient maintenance of soft-
sensors.
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