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Abstract: A nonlinear control strategy based on Interconnection Damping Assignment Passivity Based 
Control (IDA-PBC) is proposed for a process with bidirectional flow. The bidirectional flow condition 
introduces singularities in the control action under certain operation conditions. A solution to this problem 
is proposed such that operation through the singular points is possible and the stability conditions around 
the desired operation point are exactly preserved. In addition, a passivity based integral action is included 
in order to take into account the effects of model uncertainties and unknown step like disturbances. A 
description of the process and the controller design methodology is presented along with some numerical 
simulations illustrating the closed-loop behavior of the proposed controller. 
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1. INTRODUCTION 

There are many applications where the characteristic of the 
process changes and there is the possibility of having singular 
points associated to the control variable. This condition 
means that the states of the process are not controllable at the 
singular point and the control variable became unbounded. 
This condition can be found for instance in chemical reactors 
(E.J. McColm and M. T. Tham, 1995) and in 
electromechanical systems (F. Zhang and B. Fernandez, 
2006). In most cases this problem is overcome by modifying 
the control law such that the singular point is eliminated. 
There are two approaches for dealing with this problem: the 
first one is based on differentiation (E. J. McColm and Ming 
T. Tham, 1995), and the second one on a modification of the 
control law (H. Xu and P.A. Ioannou, 2004). In this work, the 
second option is used to design an IDA-PB controller that can 
deal with singular points without affecting the closed loop 
stability when the system is outside the set of singular points. 

Port-Hamiltonian (PH) systems and Interconnection 
Damping Assignment Passivity Based Control (IDA-PBC) 
are two powerful approaches for modeling and control of 
nonlinear systems. PH representations are physical 
motivated, since they are based on models representing mass 
and energy balances; where the structure of the model takes 
into account the interaction between the system and it 
environment. 

IDA-PBC control approach relies on the notions of 
interconnections, dissipation and energy balance, (Ortega et 
al., 2001, 2002). The capability to define precisely the 
interconnections and energy dissipations of non-linear 
processes makes the use of PH representation an attractive 
modeling tool and hence, IDA-PBC an effective alternative to 
design high performance non-linear controllers for complex 
processes.  

The IDA-PBC approach has been shown to be very effective 
when the system characteristics changes from one operation 

mode to another. For instance, in (Ramírez et al., 2008) the 
same IDA-PB controller is used to stabilize a minimum and a 
non-minimum phase system, and in (Batlle et al., 2005) this 
approach is used to stabilize a bidirectional power systems, 
where the direction of power is reversed depending on the 
operation mode of a power converter. In this work, a 
nonlinear bidirectional flow process with singular points 
operation is used as an application example. The process 
consists of three serials tanks at same height; hence flow 
inversion between tanks is possible. The process also 
considers an unknown disturbance. 

This paper is organized as follows: Section 2 describes a 
process comprising three tanks in series with the possibility 
of having reversing flow, and the model of this system. 
Section 3 presents the design of a IDA-PBC plus integral 
action. In section 4, a solution to the singular point operation 
is proposed and the system stability is analyzed. Some 
simulations results are presented in section 5 and finally, in 
section 6, some closing remarks are given. 

2. THE THREE TANKS CONTROL PROBLEM 

The multi tank serial circuit is a multivariable system, fully 
actuated and minimum phase. This process has three tanks of 
the same height in a serial arrangement, as depicted in Fig. 1. 

 

Fig. 1. Proposed system of serial tanks 



 
 

     

 

In Fig. 1 the control valves are u11, u21 and u31. The remaining 
valves, u12, u22 and u32 are manual valves, whose openings 
remain constant during the entire operation. On other hand, 
the feed flow rate into the first tank is measurable and the 
feed flow rate into the second tank is unknown. The last tank 
does not have any independent feed flow rate. 

The control objective is to operate the tanks at different 
heights by allowing flow reversing operations. 

The tanks are at the same height so the flow direction 
between tanks depends on the bottom pressure on each of 
them; i.e. the flow will go from the tank with higher water 
level  to the tank with lower one. This reversing flow 
phenomenon occurs only in the first and second tanks 
because they are the only ones with an independent feed flow 
rate, fo and f1 respectively. The maximum water level in the 
third tank is the level of the second tank, because it does not 
have an independent water flow rate. Another phenomenon, 
that arises during the flow reversing process, is the lack of 
controllability, this occurs when the water level in the first 
and second tank are the same. 

Physically, given a set of feed flow rates the processes always 
operate in one of these modes. In order to model the process 
using mass balance equations, the following variables are 
defined: 

i
x ���  is the volume inside of a tank i, iA  the 

cross section (they are constant and the same for all tanks) 
and kij(uij) = uij  linear valve opening functions. Thus, the 
equations representing the system are: 
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In order to invert the flow rate direction, between the first and 
second tank, the feed flow rate in the first tank must 
satisfy 1of b� . This can be obtained by calculating the 
operation point for u11 
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Thus,  in order to have 11 0ou � , for a operation 

point 1 2o ox x� with 1 2,o ox x ��� ,  the following 

inequality has to be satisfied that 1 0of b� � . To get a flow 

from the first to the second tank we need 1 0of b� � . 

We will also define the set of singular points as all the 

1 2,x x ��� , such that 1 2x x� . 

From the knowledge of the process and given a set of 
possible combinations of feed flow rates, the following 
operating modes can be identified: 

Operation Mode 1: The feed flows are: 1 1, 0of b f� � , the 

initial state 0 0 0

1 2 3x x x� � , with 0 0 0

1 2 3, ,x x x
�

�� � �  and 

references  * * *

1 2 3x x x� � , with  * * *

1 2 3, ,x x x
�

�� . The set 
� represents the physical admissible levels.  The flow goes 
from the first to the second tank.  

Operation Mode 2: The feed flows are: 1 1, 0of b f� � , the 

initial state 0 0 0

1 2 3x x x� � , with 0 0 0

1 2 3, ,x x x
�

�� � �  and 

references * *

1 2x x�  and * *

3 2x x� , with  * * *

1 2 3, ,x x x
�

�� . The 
flow is inverted and goes from the second to the first tank. 

Operation Mode 3: The feed flows are: 1 1, 0of b f� � , the 

initial state 0 0

1 2x x�  and 0 0

3 2x x� , with 0 0 0

1 2 3, ,x x x
�

�� � �  

and references * *

1 2x x�  and * *

3 2x x� , with  * * *
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�

�� . 
The flow goes from the second to the first tank.  

Operation Mode 4: The feed flows are: 1 1, 0of b f� � , the 

initial state 0 0

1 2x x�  and 0 0

3 2x x� , with 0 0 0

1 2 3, ,x x x
�

�� � �  

and references * * *

1 2 3x x x� � , with  * * *

1 2 3, ,x x x
�

�� .  The flow 
is inverted and goes from the first to the second tank. 

3. CONTROLLER DESIGN USING IDA-PBC 

It is convenient to represent the system in a PH form, to 
simplify the application of the IDA-PBC.  

Consider a process described by a PH system of the form 

� �( ) ( ) ( ) ( ) ( )
H

x J x x x g x u q x f
x
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�
�                   (5) 

Where nx��  and mu��  are the mass (volume) variables 
and the control, respectively. The smooth function ( )H x  
typically represents the total stored mass, 

1
mT

f f fo� � �� � �� represents constant disturbances and 
( )q x  defines the interaction between the system and f. the 

skew-symmetric matrix ( ) ( )TJ x J x� �  represents the 
interconnection between the different system’s components, 
and ( ) ( ) 0Tx x� � � �  is the dissipation matrix, while ( )g x  
defines the interconnection of the system with its 



 
 

     

 

environment. A detailed overview of PH systems can be 
found in (van der Shaft, 2004). 

To represent the tank processes as PH model, the following 
storage function is selected, which represents the total mass 
(volume) in the system 

1 2 3( ) 0H x x x x� � � � .            (6) 

The IDA-PBC methodology allows to find a static control 
feedback u = ß(x) such that the desired performance is 
specified by a closed loop dynamic as 
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where ( )dH x  is the desired total mass function fixed by the 
designer and which has a strict minimum in x*. The matrices 

( ) ( )T
d dJ x J x� �  and ( ) ( ) 0T

d dx x� � � �  are the desired 
interconnection and damping matrices respectively. In order 
to get decoupled outputs, the closed loop port Hamiltonian 
system has to have a null interconnection matrix and a 
diagonal damping matrix. For accomplishing this objective, it 
is possible to define the open-loop PH system such that it 
satisfies these characteristics. The PH matrixes are 

( ) ( ) 0TJ x J x� � � ,                         (8) 
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The closed loop interconnection and damping matrices have 
to be equal to the open loop matrices; i.e. ( ) ( )dJ x J x�  

and ( ) ( )d x x� � � . If this is satisfied, the closed-loop 
process has decoupled outputs. The references levels are 
constant, so the following desired storage function (Ramírez 
et al, 2008) can be used, 
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For the given desired storage function and for previously 
defined open and closed loop PH matrices, by matching (5) 
and (7) the following control law, where 1̂f  is an estimation 

of 1f , is obtained 
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If the control inputs (13), (14) and (15) are replaced in (5), 
then the time derivate of the desired storage function, will be 
negative, thereby the closed-loop system is asymptotically 
stable. 

Equations (13) and (14) require to know the system 
parameters and flow rates  fo and f1 . In order to compensate 
the lack of knowledge about the values of these flow rates, an 
integral action is considered in the final control law. The 
solution used in this paper was presented in (Ortega and 
García-Canseco, 2004) and consists in adding an integral 
term of the passive output to the control.  

Let’s consider the system presented in (5) in closed loop with 
u= �(x) + �, where � is an integral action added to the system 
trough a state variable and defined as 

( ) ( )T
I dK g x H x� � �  �                 (16) 

With KI = KI
T > 0. Then, all stability properties of x* are 

preserved. In fact the closed loop clearly takes the PCH form  
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where 

11
( , ) ( )

2
T

d IW x H x K� � ��� �          (17) 

is the new total storage function which now qualifies as 
Lyapunov function. For this application it is convenient to 
use a diagonal gain matrix, i.e. KI = diag {kI1, kI2, kI3}, g(x) 
like in (10) and Hd(x) like in (12). 

4. SINGULAR POINT REGULARIZATION 

The control action (13), (14) and (15), have singulars points 
arising when two tanks have the same level. In this case, the 
flow between these tanks becomes null and the control action 
becomes inexistent. Operating the system on this singulars 
point is not required in this application. However, if the 
controller attempts to invert the flow between two contiguous 
tanks, it is necessary to pass from a state x1>x2 to a state 



 
 

     

 

x1<x2.  Along the trajectory is necessary to pass trough x1=x2, 
which make the control law unfeasible. This only happens 
between the first and second tank, hence, the solution is only 
used in the first control input. 

Based on the work of Haojian and Ioannou (2004), a singular 
point solution is proposed. Assume a function �(x)��  such 
that �(0) = 0. The inverse of �(x) is undetermined at zero. To 
avoid this, the following solution is proposed: 

2

1

( )

( )

( ) ( )x

x
x x!

!

! "
#

�
,                (18) 

where �(x)  is defined as follows: 
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where ksp, c1 and c2 are real positive constants and  they are 
considered as tuning parameters. Equations (19) means that 
�(x) will be zero if x is at the reference x*. Of course, the 
references x1* and x2* must be different, otherwise (18) will 
be unbounded. 

The control input (13) including the singular point solution 
becomes: 
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The control variables u21 and u31 do not require changes since 
they do not have singular points.  

4.1 Stability Analysis  

In this section a brief and simple stability analysis is carried 
out. Replacing (20), (14) and (15) in (1), (2) and (3), 
respectively, the closed loop system takes the form: 
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where 1 1 1̂f f f& � �  is the estimation error of the unknown 
disturbance in the second tank.  

 

Fig. 2. Right hand terms of equation (22) 

 

Fig. 3. Right hand terms of equation (21) for a constant �   

Then stability of the closed-loop system can be analyzed as 
follows: Since equation (23) only depends on x3 and the term 
b3k3 is positive, x3

* will be an asymptotically stable 
equilibrium point. From equation (22) we have that the 
dynamic only depends on x2. The stability analysis can be 
carried out by  analyzing the right hand terms, as they are 
depicted in Fig. 2., where �f1 and the term                
'((x) ��b2k2(1-x2

*/x2) have been drawn in terms of x2. From 
this plot can be seen that the system will converge to a unique 
equilibrium point x2’’, so that ||x2’’ – x2

*|| < �, where �(�f1)> 
0 is a real positive constant that depends on �f1. If �f1 = 0, 
then x2

* will be asymptotically stable equilibrium point, as  
x3

*. The analysis for x1 consider the perturbation term (fo – 
b1)�/(a1

2+�(x)),  which vanishes at the equilibrium, hence x1 
could converge asymptotically to x1

*. In fact, the expression 
for the equilibrium point is: 
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Equation (24) can be verified at the desired operation point 
x1

* or if (fo – b1) = 0 and a1 = 0. The last case can only be 
possible if the system is at the singular point; i.e.  if  x1

* = x2
* 

and fo = b1 =(2gx1)1/2. Fig. 3 depicts the right hand terms of 
(21); ')(x) defined as: 

*
2 1

1 1 1 1 1

1

( ) ( ) 1
x

x b x a b k
x

' "� � �
� 	

 �
� 

,          (25) 



 
 

     

 

and for both condition  (fo – b1) >0 and (fo – b1) <0. From this 
figure can be seen that there exist only one asymptotically 
stable equilibrium point x1

*, which is not the desired 
reference value, the steady state error will depend on � and fo. 
Fig. 5, shows the effect of making � dependant on the 
variable x, as in (20). In this case, the desired reference value 
is an asymptotically stable equilibrium point. 

 

Fig. 4. Right hand terms of equation (21) for a variable � (x) 

5. NUMERICAL SIMULATIONS 

In this section, some simulation results illustrating the 
controller characteristics are presented. The tuning 
parameters were selected to obtain a closed loop response 
with overshoots smaller than 15% and small settling times 
according with the open loop dynamics.  

This simulation considers the following: linear control 
valves, i.e. kij(x) = uij and the cross section of all tanks are the 
same and constant, i.e. A1 = A2 = A3 = 1731.3. The tuning 
parameters for the singular points solution where selected as 
C1 = 500 y C2 = 0.0004. The feed flows rates have their 
maximum value at 4000 cm3/s and are represented in 
percentage values. 

If the flow direction, between the first and second tank, is 
inverted, then the system go through a singular point. The 
following simulations show the performance of the system 
with a flow rate inversion. The parameters were k1=4, k2=2, 
k3=1 and the integrator parameter were set at kI1=0.0001, 
kI2=0.01, kI3=0.01.  

In the first part, the system is working with a level of 10cm in 
the first tank and 5 cm in the second one, and the flow 
between the tanks goes from the first to the second.  Fig.5 
depicts the closed loop behavior. At 4250 the both set points 
were increased at the same time. to 35cm  and 25cm  
respectively. At 5000 sec. the level reference of the first tank 
is set to 15cm and for the second one is kept at 25cm, leading 
to an inversion of the flow direction. From Fig. 5 can be seen 
that while the level in the first tank changes, the control tries 
to maintain the level in the second tank constant, and it invert 
the flow direction without discontinuities in the control 

inputs. The coupling between the outputs is due to the 
integrator compensation, since the static feedback was 
designed considering a null interconnection matrix. These 
good results are achieved due to the joint action of the 
integral action and the methodology used to deal with the 
singular point. 

 

Fig. 5. Levels in first and second tank. Integral action and 
flow rate inversion  

From Fig. 6, can be seen that the control input, in both tanks 
(1 and 2), are smooth, continuous and bounded. Beside,  Fig. 
7 shows the flow rate inversion (5070 seconds approx.), and 
the sudden changes of the flow rate when the control inputs 
changes their values due to references changes. 

 

Fig. 6. Control input of the first and second tank. Integral 
action and flow rate inversion  

 

Fig. 7. Flow rate between the first and second tank. Integral 
action and flow rate inversion 



 
 

     

 

A simple PI controller can not deal with reversing flows, 
since the process open-loop gain changes sign when the flow 
changes direction.  

6. CONCLUDING REMARKS 

This paper presents a novel nonlinear control strategy based 
on IDA-PBC for a non-linear process with bidirectional flow. 
The process was modeled as PH model, and by a proper 
selection of the process closed-loop matrices. A passivity 
based strategy was designed, and in order to deal with model 
uncertainties and unknown disturbances, integral action was 
also considered in the control law. Since the process exhibits 
uncontrollable operation conditions; i.e. singular points in the 
control law, a singular point solution was proposed without 
compromising the stability conditions of the closed-loop 
process.  A nice  feature of the proposed singular point 
solution is that outside the set of singular points the desired 
closed-loop interconnection and damping specifications are 
preserved, hence no special considerations must be taken into 
account when selecting the desired closed-loop PH system in 
the IDA-PBC design. The closed-loop behavior of the 
proposed controller has been illustrated by numerical 
simulations. 

Future works will consider a more detailed stability analysis 
for the general case, including integral actions.  
Implementation of the controller in a laboratory application is 
also part of the future work to be carried out. 
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