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Abstract: Dynamics are inherent characteristics of batch processes, which can be divided into short time-
scale dynamics within a batch duration and long time-scale dynamics across several batches. The 
interactions between process variables make different types of dynamics confounded. Under such 
situations, it is difficult to perform efficient fault diagnosis. In this paper, a batch process monitoring 
scheme is proposed to separate different types of process variations for modeling and perform monitoring 
and fault diagnosis with multi-time-scale dynamic principal component analysis (PCA) models. 
Simulation results show that the fault diagnosis efficiency is enhanced. 
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1. INTRODUCTION 

In today’s industrial manufacturing, batch processes are 
widely applied to manufacture high-value-added products. To 
ensure operation safety and product quality, the multivariate 
statistical monitoring methods, such as multiway principal 
component analysis (MPCA) (Nomikos and MacGregor, 
1994; Nomikos and  MacGregor, 1995) which is an extension 
of principal component analysis (PCA), have been utilized in 
batch process monitoring and fault diagnosis. 

Dynamics are inherent characteristics of batch processes, 
including short time-scale dynamics within a batch duration 
and long time-scale dynamics across several batches. 
Different types of batch dynamics are usually caused by 
different values of variable response time which measures the 
time process variables take to react to given inputs. Fast-
response variables have small response time constant, while 
slow-response variables have large values which may be 
longer than a batch duration. To model batch process 
dynamics better, several multivariate statistical monitoring 
methods have been proposed. Batch dynamic principal 
component analysis (BDPCA) (Chen and Liu, 2002) captures 
within-batch dynamic information, while two-dimensional 
dynamic principal component analysis (2-D-DPCA) (Lu, et 
al., 2005) can model both long and short time-scale dynamics 
in a two-dimensional (2-D) model structure. 

In batch processes, variable correlations always exist. 
Especially, changes in slow-response variables can also affect 
fast-response variable trajectories. This makes different types 
of variable dynamics confounded, and causes difficulties in 
process fault diagnosis, as shown later. Therefore, it is 
desirable to have a method which can decouple process 
variation information according to dynamic time scales and 

monitor different types of variations separately. Thus, the 
fault diagnosis efficiency and accuracy can be enhanced. 

Several existing multivariate statistical methods can divide 
process variations into blocks, scales or levels, but none of 
them can be utilized directly to handle the situation 
mentioned above. Multiblock PCA or partial least squares 
(PLS) methods (Westerhuis et al., 1998) group process 
variables into meaningful blocks and concern both the inner 
relationship within each block and the inter relationship 
among blocks. Although the variables with different response 
time can be divided into different blocks, two kinds of 
dynamics information are not separated due to variable 
correlations. Multiscale PCA (Bakshi, 1998) makes use of 
wavelet analysis techniques to transform each variable signal 
from time domain to frequency domain, and performs PCA 
on wavelet coefficients at each scale. However, the different 
dynamics characteristics of each variable are not taken into 
consideration. Multilevel component analysis (MLCA) and 
multilevel simultaneous component analysis (MLSCA) 
(Timmerman, 2006) separate within-batch variations and 
between-batch variations. But only the static variations are 
extracted, while process dynamics are not modeled. Besides, 
none of the methods reviewed in this paragraph can deal with 
long time-scale dynamics across several batches. 

In this paper, a batch process monitoring scheme is 
developed. This scheme makes use of variable response time 
information which can be easily achieved, and separate 
process variations into different levels corresponding to 
dynamics time scales. 2-D-DPCA method is adopted to build 
multi-time-scale models. Thus, faults occurring to a certain 
level can be accordingly detected with the level model. Then, 
diagnosis can also be performed in the corresponding level, 
indicating the causing of the fault more clearly. 



     

The article is organized as following. In section 2, the 2-D-
DPCA method is reviewed. Then, a multi-time-scale batch 
process monitoring scheme is proposed and described detail 
in section 3. Simulation results are given in section 4. A 
batch process with both long time-scale and short time-scale 
dynamics is simulated to compare the monitoring and 
diagnosis efficiencies between the conventional 2-D-DPCA 
method and the proposed scheme. Finally, a conclusion is 
given in section 5 to summarize the paper. 

2. TWO-DIMENSIONAL DYNAMIC PCA (2-D-DPCA) 

2-D-DPCA method proposed by the authors can model both 
long and short time-scale batch process dynamics with a 
parsimonious two-dimensional (2-D) time series model 
structure together with PCA technique (Lu, et al., 2005). 

Process dynamics can be indicated by the correlations 
between current measurements and lagged measurements. 
Long time-scale dynamics often behave as a kind of two-
dimensional (2-D) dynamics, which means the current 
measurements are dependent not only on lagged 
measurements in the past time direction in the same batch, 
but also on lagged measurements in some past batches. These 
lagged variables form a region called the support region or 
the region of support (ROS). In 2-D-DPCA, an expanded 
data matrix X�  is formed by including all the lagged 
measurements in ROS, together with current measurements. 
For more details about ROS determination, please refer to 
Yao et al.’s work (2008). 

Suppose X�  has been normalized to have unit variances and 
zero means. PCA algorithm is performed on it: 

TTP E� �X� .                                 (1) 

where T and P are score matrix and loading matrix 
respectively, and E is the residual matrix. The number of 
scores retained in the score space can be determined using 
cross-validation (Wold, 1978). Thus, the original process data 
are divided into two subspaces. Score space extracts 
systematic variation information, including both 2-D 
dynamics and cross-correlation information among variables, 
while normal distributed noises are retained in residual space. 
Therefore, SPE statistic and corresponding control limits can 
be calculated for process monitoring in residual space. After 
a fault is detected by the SPE control plot, contribution plots 
with control limits (Westerhuis et al., 2000) are used in fault 
diagnosis to find the causes of the faults. 

When a batch process only has short time-scale dynamics, its 
ROS is selected as a region containing several steps of lagged 
measurements in current batch. In such a case, 2-D-DPCA 
model is similar to BDPCA model (Chen and Liu, 2002). 

3. MULTI-TIME-SCALE MONITORING SCHEME 

3.1 Motivations 

As mentioned in introduction section, in batch processes, 
fast-response variable trajectories are often affected by 

disturbances in slow-response variables. Take injection 
molding process as an example. In that process, temperature 
variables’ response time constants are often longer than a 
batch duration, while pressure variables response fast. 
Suppose a disturbance occurs to barrel temperature. It takes a 
long time for barrel temperature to recover. During this 
period, the material properties, such as viscosity and density, 
change gradually due to the temperature change. This further 
causes slow drifts in pressure variable trajectories, although 
pressures are fast-response variables. From this example, it 
can be seen that both short and long time-scale dynamics are 
confounded in fast-response variable trajectories. 

As shown in the simulation example in section 4, such 
confounding leads to difficulties in fault diagnosis results. 
Therefore, it is desirable to decouple process variation 
information into several levels according to dynamic time 
scales. Then, level models can be built and different types of 
variations can be monitored and diagnosed separately, so that 
the fault diagnosis efficiency and accuracy can be enhanced. 

3.2  Variable classification 

As a kind of external information, variable response time is 
easy to be estimated from process open-loop tests which are 
regular steps in controller designs. Such information is used 
to classify variables into groups. It is the first step of multi-
time-scale modeling and monitoring. 

In many cases, the variables can be simply divided into two 
groups. One contains fast-response variables, while the other 
contains slow-response variables which can cause long time-
scale dynamics beyond a batch. In some other situations, it 
may be desired to further divide the above two groups into 
sub-groups. Suppose there are M number of variable divided 
into the fast-response variable group. Take each variable’s 
response time constant as a pattern. The k-means clustering 
algorithm (Jain et al., 1999) is adopted for partitioning the M
number of patterns. The final cluster number is determined 
automatically with a specified threshold of the minimal 
distance between two cluster centers or the maximal radius of 
a cluster. A larger threshold results in fewer variable groups; 
vice versa. The slow-response variable group can also be 
further divided in the same way. By doing so, the process 
variables with similar response time constants are clustered 
into the same group. 

3.3 Multi-time-scale level separation 

Without losing generality, first, suppose the process variables 
are divided into two groups. As discussed in section 3.1, two 
types of dynamics may confound in the trajectories of the 
variable in the fast-response variable group. To solve this 
problem, the operation data in this group should be 
decomposed into two parts: one part can be explained by the 
variable measurements in the slow-response variable group, 
and the other part can not be explained by them and only 
contains short time-scale dynamics. The level separation is 
based on the idea of external analysis, which was originally 
proposed by Takane and Shibayama (1991) and further 



     

discussed by Yoon and MacGregor (2001). Kano et al. (2004) 
made use of this idea to distinguish faults from normal 
changes in operating conditions. 

Consider a batch process data matrix ˆ ( )X I J K� � , where I,
J, K are the number of batches, variables and time intervals 
respectively. Unfold this three-way data matrix into a two-
way matrix ( )X IK J�  by keeping the variable dimension 
and merging the other two dimensions. Suppose X have been 
normalized. After variable classification, X can be described 
as X = [F  S], where F consists of JF number of fast-response 
variables and S consists of JS = J- JF number of slow-response 
variables. To decompose F, regression analysis is performed 
by regarding S and F as inputs and outputs respectively. If 
variables in S are independent of each other, the ordinary 
least square (OLS) regression can be used: 

1( )T TS S S F� �� ,                              (2) 

where � is the regression coefficient matrix. The significance 
of regression can be tested (Montgomery, 2005) to show 
whether there are correlations between S and F. If there is no 
correlation, the levels are naturally seperated. The short time-
scale level consists of DS = F, while the long time-scale level 
consists of DL = S. Otherwise, calculate (3). 

E F S�� � ,                                 (3) 

where S� contains a part of information in F which is 
explained by slow-response variable, while the filtered data 
matrix E dose not contains long time-scale dynamics. When 
the slow-response variables are not independent, PLS or 
principal component regression (PCR) can be utilized to 
avoid the collinearity problem. Thus, the process variation 
information is separated into two levels according to different 
time scales of dynamics: DS = E and DL = [S�   S].  

When there are more than two groups, the time-scale level 
separation is performed in an iterative way. Unfolded data 
matrix X is described as 0 0 0

1 2 CX X X X� � 	
 �� , where 
j

iX  is the filtered data matrix of the ith variable group after 
the jth iteration run in time-scale level separation, consisting 
of Ji number of variables. When j = 0, j

iX  represents the data 
before performing iteration steps. C is the total number of 
variable groups, and the variables in j

iX  response faster than 

the variables in 1

j

iX
�

. In the jth run, let 1

1

j j

C jS X �

� �
�  and 

1 1 1
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�
� � 	
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similar way as (2), and the data are filtered as 
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. (4) 

After C-1 cycles of iteration, all levels are separated. The 
shortest time-scale level consists of D1 = EC-1. The second 
shortest time-scale level consists of D2 = [SC-1�C-1  SC-1]. … 
The longest time-scale level consists of DC = [S1�1  S1].

3.4  Multi-time-scale dynamic PCA modeling, monitoring 
and fault diagnosis 

After level separation, 2-D-DPCA is adopted to construct 
level models for online monitoring and fault diagnosis. 

Take a C level separation as an example. In level j (j>1), 
Dj=[SC-j+1�C-j+1  SC-j+1]. Since 1 1C j C jS �� � � �  is completely 
dependent on 1C jS � � , it only represents redundant 
information in a process monitoring context. Therefore, the 
variation information in each level is reorganized as 

1 1CG E �� , 2 1CG S �� ,  …, 1CG S�  with matrix dimensions 
of (IK J1), (IK J2), …, (IK JC) respectively. These 
matrices are rearranged into three-dimensional arrays with 
dimensions of (I J1 K), (I J2 K), …, (I JC K). Then, 
following ordinary procedures, 2-D-DPCA models can be 
established for each level. The SPE control limits are 
calculated for online monitoring. For a level belonging to 
short time-scale dynamics, the 2-D-DPCA model reduces to a 
BDPCA model. For these levels, the T2 control limits can 
also be calculated, since there is no batch-wise dynamics. 

In online monitoring, the new data are firstly filtered based 
on (4) using coefficient matrices �1, �2, …, �C-1 in turns. 
Thus, the variations contained in the new data are separated 
into different time-scale levels. The corresponding 2-D-
DPCA model is utilized to monitor each level. After faults 
are detected in some levels, the contribution plots can be used 
for fault diagnosis in these levels accordingly. 

4. SIMULATION EXAMPLE 

4.1  Batch process modeling 

In this section, a simulated batch process with both long and 
short time-scale dynamics is utilized to compare the 
monitoring and fault diagnosis efficiency of the proposed 
multi-time-scale dynamic PCA models with the conventional 
2-D-DPCA model. The process model is given as below, 

1 1 1 1

2 2 2 2

3 3 1 2

4 4 1 2

( , ) 0.5* ( , 1) 0.8* ( 1, ) 0.3* ( 1, 1)
( , ) 0.44* ( 1, ) 0.67* ( , 1) 0.11* ( 1, 1)
( , ) 0.4* ( , 1) 0.25* ( , ) 0.35* ( , )
( , ) 0.8* ( , 1) 0.53* ( , ) 0.33* ( , )

x i k x i k x i k x i k
x i k x i k x i k x i k
x i k x i k x i k x i k
x i k x i k x i k x i k

� � � � � � �
� � � � � � �
� � � �
� � � �

, (5) 

where i is the batch index; k is the time index; x1 and x2 are 
two independent slow-response variables with long time-
scale dynamics described in a 2-D structure; x3 and x4 are 
fast-response variables correlated to their own values at one 
step before in the current batch, which are also affected by x1,
x2. Gaussian noises with variance 0.01 are added into the data. 

For conventional 2-D-DPCA modeling, the ROS is 
determined as ( , 1), ( 1, ), ( 1, 1)i k i k i k� � � �x x x , where 

� 1 2 3 4( , 1) ( , ) ( , ) ( , ) ( , )i k x i k x i k x i k x i k� �x . So that, 

there are totally 16 variables in the augmented data matrix X� ,
including 4 current variables and 12 lagged variables in the 
ROS.
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Fig. 1. Monitoring and diagnosis results of fault 1 based on 2-
D-DPCA: (a) monitoring result; (b) fault diagnosis result. 
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Fig. 2. Filtered variable trajectories in fault 1: (a) e3; (b) e4.

For multi-time-scale dynamic PCA modeling, x1 and x2
belong to the slow-response variable group S, while x3 and x4
are divided into the fast-response variable group F. The 
regression model between F and S is built to remove the 
effects of x1 and x2 from x3 and x4, as described in (2) and (3). 
Supposing e3 and e4 are the filtered values of x3 and x4, the 
variation information is separated into � 3 4

SG e e�  as the 

short time-scale level and � 1 2

LG x x�  as the long time-
scale level. Then, 2-D-DPCA is performed on each level to 
model  the  two d i f fe rent  types  of  dynamics .  Le t 

� 1 2( , 1) ( , ) ( , )i k x i k x i k� �x� . In the long time-scale level, 
the ROS is selected as ( , 1), ( 1, ), ( 1, 1)i k i k i k� � � �x x x� � � .
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Fig. 3. Monitoring results of fault 1 based on short time-scale 
level model: (a) SPE plot; (b) T2 plot. 

The 2-D-DPCA model is calculated based on 2 current 
variables in ( , )i kx� and 6 lagged variables in the ROS. In the 
short time-scale level, the algorithm is performed on 4 
variables including 3 4 3 4( , ), ( , ), ( , 1), ( , 1)e i k e i k e i k e i k� � .

4.2 Online modeling and fault diagnosis 

Two faults are introduced into the process. Fault 1 occurs to 
the slow-response variable x2. From batch 61, x2 is 
formulated as (6) to simulate a fault: 

2 2 2 2( , ) 0.6* ( 1, ) 0.3* ( , 1) 0.2* ( 1, 1)x i k x i k x i k x i k� � � � � � � . (6) 

Fig. 1 shows the monitoring and the fault diagnosis results 
based on conventional 2-D-DPCA, respectively. The SPE
control chart shows that the fault can be detected from the 
beginning of batch 61. However, from the contribution plot 
of batch 61, Fig. 1(b), it is hard to say which variable is faulty. 
Due to the variable correlations, many variables (including 
the lagged variables) are outside the control limits. 

In multi-time-scale monitoring, variable x1 and x2 are filtered 
to get short time-scale dynamic signals e3 and e4. Since the 
fault occurs to the slow-response variable x2, and the effects  
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Fig. 4. Monitoring results of fault 1 based on long time-scale 
level model: (a) monitoring; (b) diagnosis. 

of x1 and x2 have been removed from the short time-scale 
level, there is no significant difference between the 
trajectories of e3 and e4 in a normal cycle and those in the 
faulty cycles, as shown in Fig. 2.  The monitoring results in 
Fig. 3 confirm this. Neither SPE nor T2 plot in this level is 
affected by the fault significantly. At the same time, the SPE
control plot in the other level detects the fault efficiently, as 
Fig. 4(a) shows. This points out that the fault happens in the 
long time-scale level. Then, contribution plot in this level is 
plotted to find out the reason of the fault. From Fig. 4(b), it is 
very easy to conclude that x2 is the faulty variable. 

Fault 2 is about the fast-response variable x3. From batch 61, 
the formulation of x3 becomes: 

3 3 1 2( , ) 0.5 * ( 1, ) 0.25* ( , ) 0.35* ( , )x i k x i k x i k x i k� � � � .     (7) 

As shown in Fig. 5, again, the conventional 2-D-DPCA 
detects the fault very quickly, but the contribution plot can 
not give a clear indication about the reason of the fault. 

Fig. 6 shows the trajectories of e3 and e4. Obviously, 
significant magnitude differences exist between the trajectory 
of e3 in a normal batch and that in faulty batches. So that, this 
fault is hopefully to be detected by the T2 control chart in the 
short time-scale level, which is confirmed by Fig. 7(a). The 
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Fig. 5. Monitoring and diagnosis results of fault 2 based on 2-
D-DPCA: (a) monitoring; (b) diagnosis. 
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Fig. 6. Filtered variable trajectories in fault 2: (a) e3; (b) e4.

monitoring in the other level, as shown in Fig. 8, dose not 
show the fault, as it only occurs to a fast-response variable 
and dose not affect the long time-scale dynamics. The fault 
diagnosis is only needed to be performed in the short time-
scale level. The contribution plot diagnoses the reason of the 
fault clearly and correctly, as Fig. 7(b) shows. 

5. CONCLUSIONS 

Batch process variables have various response time constants, 
causing dynamics with different time scales. The trajectories 
of the fast-response variables are often affected by the slow- 
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Fig. 7. Monitoring and diagnosis results of fault 2 based on 
short time-scale level model: (a) monitoring; (b) diagnosis. 
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response variables, confounding different types of dynamics 
and causing trouble in fault diagnosis. 

A multi-time-scale dynamic PCA monitoring scheme is 
proposed in this paper. The process variations are separated 
into different levels according to the dynamics time scales. 
Then 2-D-DPCA method is adopted to model each level for 

online monitoring. The simulation results show that the fault 
diagnosis accuracy is largely improved. 

In this paper, variable response time constants are assumed to 
be known as a kind of external information. It is better if such 
information can be achieved from the analysis of the 
operation data. This issue will be studied in the future 
researches to make the method completely data-based. 
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