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Abstract: This paper’s aim is to present an analysis of the influence of the 2-DoF controllers
proportional set-point weight over the servo-control performance and to show that the removal
of the existing constraint for its selection (0 ≤ β ≤ 1.0) will allow to improve its performance
when a high robust regulatory control system is required. A concrete analysis is conducted by
using 2-DoF PID tuning approaches that explicitly take the desired robustness level as a design
parameter. It is seen that as the desired robustness increases the tuning methods suggest values
β > 1.0. Performance looses are evaluated if we are to be constrained to the case β ≤ 1.0.
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1. INTRODUCTION

Since their introduction in 1940 (Babb, 1990; Bennett,
2000) commercial Proportional - Integrative - Derivative
(PID) controllers have been with no doubt the most exten-
sive option found on industrial control applications. Their
success is mainly due to its simple structure and meaning
of the corresponding three parameters. This fact makes
PID control easier to understand by the control engineers
than other most advanced control techniques.

With regard to the design and tuning of PID controllers,
there are many methods that can be found in the liter-
ature over the last sixty years. Special attention is made
of the IFAC workshop PID’00 Past, Present and Future
of PID Control held in Terrassa, Spain, on April 2000,
where a glimpse of the state-of-the-art on PID control was
provided. It can be seen that most of them are concerned
with feedback controllers which are tuned either with a
view to the rejection of disturbances (Cohen and Coon,
1953; López et al., 1967; Ziegler and Nichols, 1942) or
for a well-damped fast response to a step change in the
controller set-point (Martin et al., 1975; Rivera et al., 1986;
Rovira et al., 1969). The Two-Degree-of-Freedom (2-DoF)
formulation is aimed at trying to met both objectives. This
second degree of freedom is aimed at providing additional
flexibility to the control system design. See for exam-
ple (Araki, 1984a,b, 1985) and its characteristics revised
and summarized in (Taguchi and Araki, 2000, 2002) and
(Taguchi et al., 2002), as well as different tuning methods
that have been formulated over the last years (Alfaro et al.,
2008; Åström et al., 1992; Åström and Hägglund, 2004;
Åström et al., 1998; Gorez, 2003; Hang and Cao, 1996;
Hägglund and Åström, 2002; Taguchi and Araki, 2000).

This second degree of freedom is found on the presented
literature as well as in commercial PID controllers under
the form of the well known set-point weighting factor
(usually called β) that ranges within 0 ≤ β ≤ 1.0, being
the main purpose of this parameter to avoid excessive
proportional control action when a set-point change takes
place. Therefore the use of just a fraction of the set-point.

There is however a shift of perspective with the introduc-
tion of Robustness considerations (Åström and Hägglund
(1995, 2004, 2006)). As a result, less aggressive control
actions are generated and smooth responses are achieved.
However, if the desired level of robustness is high, step re-
sponse performance can be seriously degraded. This is the
analysis conducted in this paper that leads us to conclude
that the use of values of β that are beyond the constraint,
are definitively needed in order to get better step response
performance. The analysis is conducted by using two ex-
isting tuning rules for 2-DoF PID controllers that include,
as an explicit design parameter, the desired robustness
level in terms of the Maximum Sensitivity value. This
allows to analyze the effect of going on increasing the
desired robustness level. The suggested value for β goes to
values β > 1.0 in many of the cases therefore constraining
the achievable performance if we are to be limited to a
maximum of β = 1.0.

It is worth to notice that even the suggestion of allowing
β > 1.0 seems quite common sense and natural, to the
knowledge of the authors it has not still been considered.
In this paper this proposal is raised within the motivation
of the increased use of robustness considerations on what
we could call modern control design approaches.



Figure 1. Closed-loop Control System

The paper is organized as follows. Section 2 introduces the
control setup and the 2-DoF PID formulation. Discussion
about the selection of the β parameter is also introduced.
Section 3 analyzes the effects of constraining the set-point
weight on robustness based tuning rules and suggests to
relax that constraint in order to met a high demanding
robustness-performance tradeoff. On Section 4 an example
illustrates how performance increases if larger values of
β are allowed. The paper ends in Section 5 with some
conclusions.

2. 2-DOF PID FORMULATION

Consider the closed-loop control system of Fig. 1, where
P (s) is the controlled process transfer function, Cr(s) the
set-point controller transfer function, Cy(s) the feedback
controller transfer function, and r(s) the set-point, d(s) the
load-disturbance, and y(s) the controlled variable (process
output).
The output of the controller is given by

u(s) = Cr(s)r(s) − Cy(s)y(s) (1)

Without loss of generality we will use an error feedback
Ideal PID controller which equation is

u(s) = Kc

(
1 +

1

Tis

)
r(s)

−Kc

(
1 +

1

Tis
+

Tds

Td/Ns + 1

)
y(s) (2)

where Kc is the controller gain, Ti the integral time
constant, Td the derivative time constant and N the
derivative filter constant (usually N = 10 (Visioli, 2006)).
Then, the controllers’ transfer functions are

Cr(s) = Kc

(
1 +

1

Tis

)
(3)

and

Cy(s) = Kc

(
1 +

1

Tis
+

Tds

0.1Tds + 1

)
(4)

The closed-loop control system response to a change in
any of its inputs, will be given by

y(s) =
Cr(s)P (s)

1 + Cy(s)P (s)
r(s) +

P (s)

1 + Cy(s)P (s)
d(s) (5)

or in a compact form by

y(s) = Myr(s)r(s) + Myd(s)d(s) (6)

where Myr(s) is the transfer function from set-point to
controlled process variable: the servo-control closed-loop
transfer function or complementary sensitivity function;
T (s); and Myd(s) is the one from load-disturbance to
controlled process variable: the regulatory control closed-
loop transfer function or disturbance sensitivity function

S(s).
Since all parameters of Cr(s) are identical to the ones of
Cy(s) it is not possible to specify the dynamic performance
of the control system to set-point changes, independently
of the performance to load-disturbances changes.
If the degrees of freedom in control system are defined as
the number of closed-loop transfer functions that may be
selected independently (Horowitz, 1963), we have in this
case a One-Degree-of-Freedom (1-DoF) control system.
The above constraint forces the designer to use a tuning
rule developed for the specific required application (servo-
control o regulatory control) finding in the literature tun-
ing rules for regulatory control (Cohen and Coon, 1953;
López et al., 1967; Ziegler and Nichols, 1942), for servo-
control applications (Martin et al., 1975; Rivera et al.,
1986; Rovira et al., 1969) or separate tuning rules for both
applications (Chien et al., 1952; Kaya, 2004; Sung and
Lee, 1999) only to mention a few. Alternatively the 1-DoF
can be forced to operate in order to provide a balanced
performance with respect to both operation modes. This
is the so called implicit 2-DoF PID and has been presented
in (Arrieta and Vilanova (2007b,c); Arrieta et al. (2008)).
A collection of tuning methods may be found in O’Dwyer
(2003).
It has been widely reported elsewhere that a control
system with a controller optimized for load-disturbance
rejection, normally presents high overshoots to set-point
step inputs requiring a detuning with the consequential
reduction in its regulatory performance. In such case,
considerations about performance degradation of optimal
tunings have to be taken into account (Arrieta and Vi-
lanova (2007a)).
In order to provide additional flexibility for the control
system design, a second degree of freedom was introduced
into the PID algorithms in Araki (1984a,b, 1985) and its
characteristics revised and summarized in Taguchi and
Araki (2000, 2002) and Taguchi et al. (2002).
Consider now the PID controller equation (Åström and
Hägglund, 2006)

u(s) = Kc

(
β +

1

Tis
+

γTds

0.1Tds + 1

)
r(s)

−Kc

(
1 +

1

Tis
+

Tds

0.1Tss + 1

)
y(s) (7)

where β and γ are the set-point weights.
The γ parameter is more frequently applied as a derivative
mode switch (0 or 1) for the signal reference r. To avoid
extreme instantaneous change in the controller output
signal when a set-point step change occurs normally γ is
set to zero. In this case the new set-point controller transfer
function is

Cr(s) = Kc

(
β +

1

Tis

)
(8)

and the one for the feedback controller

Cy(s) = Kc

(
1 +

1

Tis
+

Tds

0.1Tds + 1

)
(9)

which is the same as (4) above.
In commercial controllers the proportional set-point weight
β may be selected only in the 0 ≤ β ≤ 1.0 range.
Given a controlled process P (s), the feedback controller
Cy(s) parameters (Kc, Ti, Td) may be selected to achieve
a target performance for the regulatory control Myd(s),



and then using the proportional set-point weight (β), in
the set-point controller Cr(s), to modify the servo-control
performance Myr(s).
Under the above degree of freedom definition, we have now
a Two-Degree-of-Freedom (2-DoF) control system. This
option allowed the development of sets of tuning methods
for the 2-DoF controllers as the ones found in (Alfaro et al.,
2008; Åström et al., 1992; Åström and Hägglund, 2004;
Åström et al., 1998; Gorez, 2003; Hang and Cao, 1996;
Hägglund and Åström, 2002; Taguchi and Araki, 2000).
With regard to the commercial implementation of the PID
algorithms, it is usually to find that most of them are of 1-
DoF type like the ones described in (ABB ((n.d.); Foxboro
(1998); Fuji (2001); Honeywell (2007); Rockwell (2003,
2005)) a few include a set-point filter ((Omron, 2007;
Yokogawa, (n.d.)) and very few have 2-DoF capabilities
((Emerson, 2008; Mitsubishi, 2002)). In particular, the
2-DoF PID controller in (Emerson (2008)) allows both
weights in (7) (β and γ) to be selected in the full 0 to
1 range.

3. PROPORTIONAL SET-POINT WEIGHTING
ANALYSIS

From (5) and (6) the servo-control closed-loop transfer
function is

Myr(s) =
Cr(s)P (s)

1 + Cy(s)P (s)
(10)

and the one for the regulatory control

Myd(s) =
P (s)

1 + Cy(s)P (s)
(11)

which are related by

Myd(s) = Cr(s)Myr(s) (12)

Using (8) in (12) we have

Myd(s) = Kc

(
βTis + 1

Tis

)
Myr(s) (13)

On the other hand, the characteristic polynomial of the
closed-loop control system is

p(s) = 1 + Cy(s)P (s) (14)

from where it can be obtained the closed-loop poles
location; therefore the closed-loop stability; depends only
on the Cy(s) parameters, hence not affected by β.
This fact makes possible to design first the feedback
controller considering the regulatory control performance
and the closed-loop control system robustness and, on a
second step to modify the set-point controller considering
only the servo-control performance (by the introduction of
β).
Although, the instant change in the controller output
signal to a step set-point change is given by

Δyr = KcβΔer = KcβΔr (15)

Since the performance optimization of a regulatory control
system requires controllers’ gains higher than the opti-
mization of the same loop for servo-control operation, the
use of a proportional set-point weight β < 1 allows to shift
to the left the controller integral mode zero to a desired
position to reduce the controlled signal overshoot and also
to decrease the instant change in the controller output.
From the above presented analysis, it is clear that the
use of a 2-DoF controller improves the servo-control per-
formance and no questions arise about the manufactures

imposed constraint on the proportional set-point weight
selection range. It is along this framework that the above
indicated tuning rules for 2-DoF PI and PID controllers;
including the ones that take into consideration the con-
trol system robustness; constraint the set-point weight to
0 ≤ β ≤ 1 respecting the allowed range in commercial
controllers (see for example (Alfaro et al., 2008; Åström
and Hägglund, 2004; Åström et al., 1998; Gorez, 2003;
Hägglund and Åström, 2002; Taguchi and Araki, 2000)).
However, within a more modern framework robustness
considerations are an integral part of practically every
design approach. In such cases, as it will be explicitly
shown in next section, extending the allowed range for
the set-point weight will be definitively needed in order to
be able to improve the servo-control performance. When
a highly robust control system is required due to the ex-
pected variations in the controlled process characteristics,
a significant reduction in the controller gain is needed
and the performance of the control-loop will decrease.
The system responses to load-disturbance and set-point
changes will be slower.
This situation motivates the analysis of the proportional
set-point weighting effect over the control system per-
formance when the set-point changes, using two of the
available tuning rules for 2-DoF controllers. The choice
of the presented tuning rules is based on the fact that
they include, as an explicit design parameter, the desired
robustness level for the closed-loop control system. This
setup allows for a more concrete and objective analysis.
However the analysis can be easily extended to other
tuning rules as the effect of getting a more robust feedback
system is by sure to generate more conservative responses.

3.1 ART2 PI Controller Tuning

The Analytical Robust Tuning for 2-DoF PI controllers
(ART2) follows (Alfaro et al., 2008) and is outlined here:

• Controlled Process Model:

P (s) =
Kpe

−Ls

Ts + 1
(16)

where Kp is the process gain, T is the time constant,
and L is the dead-time. It will be referred to τo =
L/T ≤ 1.0 as the controlled process normalized dead-
time.

• Controller’s Parameters: The ART2 tuning equations
are

κc = KcKp =
2τc − τ2

c + τo

(τc + τo)2
(17)

τi =
Ti

T
=

2τc − τ2
c + τo

1 + τo

(18)

where κc and τi are the controller normalized param-
eters and τc = Tc/T the design parameter (Tc is the
target regulatory control closed-loop time constant).

• Set-point Weighting: The proportional set-point weight
selection criteria is

β = min

{
1

Kc

,
τcT

Ti

, 1

}
(19)

• Design Parameter: The design parameter τc may be
selected within the range

max(0.50, τcmin) ≤ τc ≤ 1.50 + 0.3τo (20)

where τcmin is given by



τcmin = k11(Ms) +

[
k21(Ms)

k22(Ms)

]
τo (21)

k11(Ms) = 1.384 − 1.063Ms + 0.262M2
s

k21(Ms) =−1.915 + 1.415Ms − 0.077M2
s

k22(Ms) = 4.382 − 7.396Ms + 3.0M2
s

allowing to design the control system with a robust-
ness higher than the minimum required (give it by
the maximum sensitivity Ms).

Using (20) and (21), the lower limits for the design param-
eter τc may be estimated. These are shown in Table 1 for
robustness 1.2 ≤ Ms ≤ 2.0 and controlled process model
normalized dead-time 0.1 ≤ τo ≤ 1.0.
As it can be seen in Table 1 the lower and higher recom-
mended limits in (20) were reached for the extreme cases
(low normalized dead-time and robustness and high nor-
malized dead-time and robustness). For the first case this
means that, slow responses with high robustness system
requirements will be obtained, and for the second one,
that it is not possible to obtain a system with the high
robustness specified.
The controller’s proportional set-point weight may be ob-
tained with (19) and they are shown in Table 2. As can
be seen in this Table the existing upper limit constraint of
1.0 for β was intentionally relaxed (bold).

According to the ART2 tuning rules, when the normalized
dead-time is in the upper side of the range (τo ≈ 1) and
the required system robustness is high, the recommended
proportional weight would be higher than 1.0. As it can
be seen in the last column of Table 2, this is the situation
for practically all values of τo when a robustness Ms = 1.2
is specified. Therefore, the imposed constraint for the β
value selection, in the available commercial Two-Degree-

Table 1. Higher Close-loop Speed Allowed
τcmin

Ms

τo 2.0 1.8 1.6 1.4 1.2

0.1 0.500 0.500 0.500 0.501 0.675
0.2 0.500 0.500 0.500 0.593 0.864
0.3 0.500 0.500 0.553 0.685 1.054
0.4 0.500 0.513 0.620 0.777 1.243
0.5 0.500 0.562 0.686 0.869 1.432
0.6 0.535 0.610 0.753 0.961 1.622
0.7 0.573 0.659 0.819 1.053 1.710
0.8 0.611 0.707 0.886 1.145 1.740
0.9 0.650 0.756 0.952 1.236 1.770
1.0 0.688 0.804 1.019 1.328 1.800

Table 2. Proportional Set-Point Weight Factor
β

Ms

τo 2.0 1.8 1.6 1.4 1.2

0.1 0.424 0.424 0.424 0.425 0.604
0.2 0.516 0.516 0.516 0.608 0.878
0.3 0.609 0.609 0.654 0.742 1.056

0.4 0.609 0.618 0.691 0.806 1.298

0.5 0.600 0.644 0.735 0.879 1.636

0.6 0.619 0.674 0.783 0.962 2.138

0.7 0.642 0.707 0.835 1.054 2.431

0.8 0.667 0.743 0.892 1.158 2.501

0.9 0.694 0.780 0.954 1.274 2.573

1.0 0.723 0.820 1.019 1.404 2.647

of-Freedom PID controllers, does not allow the designer to
use the full capabilities of these controllers.

3.2 Integrated Absolute Error (IAE) Optimized PID Tuning

A tuning method for 2-DoF PI and PID controllers that
optimizes their performance under a IAE cost functional
ensuring at the same time a minimum closed-loop ro-
bustness (Ms) is described in Méndez (2008). Bellow are
presented the controller parameters for one particular ro-
bustness level, say Ms = 1.4.

• Controlled Process Model:

P (s) =
Kpe

−Ls

(Ts + 1)(aTs + 1)
(22)

where Kp is the process gain, T is the dominant time
constant, a is the time constants ratio and L is the
dead-time (τo = L/T ).

• Controller’s Set-Point Weight: Table 3 shows the
PID2 controller’s set-point weighting factor for the
Ms = 1.4 case corresponding to different values of τo

and a. As shown in this table for this robustness most
of the recommended proportional set-point weights
exceed the 1.0 upper limit (bold).

Table 3. IAE−Ms PID2 Controller Set-Point
Weight β

τo

a 0.1 0.25 0.50 0.75 1.0 1.50 2.0

0.25 0.636 0.819 1.073 1.256 1.413 1.665 1.839

0.50 0.585 0.731 0.992 1.189 1.338 1.630 1.778

0.75 0.588 0.695 0.921 1.104 1.261 1.550 1.755

1.0 0.567 0.662 0.871 1.052 1.210 1.412 1.663

4. EXAMPLE

This section provides an example to show the effect of
the proportional set-point weighting over the servo-control
system performance.
In order to have simulation results more close to industrial
practice, in the example it is assumed that all variables can
vary in the 0 to 100% normalized range and that in the
normal operation point, the controlled variable, the set-
point and the control signal, have all values close to 70%.
For the tests a 20% change in set-point followed by a 10%
change in load-disturbance will be used in all cases.
Performance: Performance will be evaluated for a set-
point change and under the presence of a load-disturbance.
The Integrated-Absolute-Error (IAE) that is defined as

JIAE
.
=

∫
∞

0

|r(t) − y(t)| dt (23)

and provides a measure for control system output perfor-
mance.
Control input usage: On the other hand to evaluate the
manipulated input usage, the total variation of the control
effort u(t) (TVu) is computed. This value is defined, for a
discrete signal as the sum of the size of its increments

TVu
.
=

∞∑
k=1

|uk+1 − uk| (24)

This quantity should be as small as possible and provides
a measure of the smoothness of the control signal.
Robustness: The maximum sensitivity value
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Figure 2. PI Control System Responses

Table 4. ART2 PI Controller Parameters

Mt
s τc Kc Ti β

2.0 0.611 0.828 0.916 0.667
1.2 1.740 0.194 0.988 2.501

Ms = max
ω

|S(jω)| = max
ω

1

|1 + Cy(jω)P (jω)|
(25)

is used as a measure of the control system robustness.
Recommended values for Ms are typically within the range
1.2 - 2.0.

Consider the particular case of controlled process (16) with
Kp = 1.0, T = 1.0 and L = 0.80 (τo = 0.80). The PI2

controller’s parameters obtained with the ART2 tuning
method in Section 3.1, in order to have a low robustness
(M t

s = 2.0) and a high robustness (M t
s = 1.2) control

system, are shown in Table 4 (the upper limit constraint
for β was not taken into account).
System responses are shown in Fig. 2. The figure includes
also the responses obtained with β = 1.0 in both cases.
The servo-control performance (JIAEr) and control effort
smoothness (TVur) as well as the obtained control system
robustness (Mr

s ) are shown in Table 5.
For the low robustness case (M t

s = 2.0) the use of a
proportional set-point weight lower than 1.0 (β = 0.667)
allows to reduce: the servo-control controlled variable
overshoot, the control effort upper value and helps to made
it smoother compared with the β = 1.0 case. This last case
is equivalent to the use of a 1-DoF PI controller.
In the high robustness case (M t

s = 1.2) the use of a
proportional set-point weight higher than 1.0 (β = 2.501)
allows to improve the servo-control performance reducing
JIAEr without deterioration of the control effort behavior
TVur compared with the case of β = 1.0. This is when the
use of the set-point weight, in the 2-DoF PI controller, is
setted to the upper limit allowed by the manufacturer.

Table 5. PI Control Performance and Robust-
ness

Mt
s (β) JIAEr JIAEr(%) TVur TVur(%) Mr

s

2.0 (0.667) 0.363 100% 0.398 81% 2.009
2.0 (1.0) 0.363 100% 0.489 100% 2.009

1.2 (2.501) 0.471 66% 0.201 101% 1.239
1.2 (1.0) 0.717 100% 0.200 100% 1.239

5. CONCLUSIONS

The use of a Two-Degree-of-Freedom (2-DoF) PID con-
troller must allow the control-loop designer to take into
consideration the regulatory control performance and con-
trol effort requirements in conjunction with the control
system robustness and then improve the servo-control per-
formance.
However the analysis of the recommended tuning for its
proportional set-point weight has shown that the estab-
lished constraint by controller’s manufactures for its values
to the 0 ≤ β ≤ 1.0 range, avoids the designer to exploit
the full potential of these controllers.
The allowed range for the proportional set-point weight
could make sense when the controller design main objec-
tives were only to optimize its performance but nowa-
days, the performance-robustness trade-off is taken into
account within the modern control design formulations.
Even included explicitly into the tuning equations as it
has been shown in the concrete tuning rules analyzed in
this paper. It has been shown that this constraint reduces
the performance of the control-loop responses, to a set-
point step change, when a high robustness control system
is required.
The control system designer will be able to use the full
inherent capabilities of the Two-Degree-of-Freedom PID
controllers, only when the existing constraint in the set-
point weight selection will be removed by the manufactur-
ers.
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López, A.M., Miller, J.A., Smith, C.L., and Murrill, P.W.
(1967). Tuning Controllers with Error-Integral Criteria.
Instrumentation Technology, 14, 57–62.

Martin, J., Smith, C.L., and Corripio, A.B. (1975). Con-
troller Tuning from Simple Process Models. Instrumen-
tation Technology, 22(12), 39–44.

Méndez, V. (2008). Performance and Robustness of PID
Control Loops. Licenciatura Thesis, Escuela de Inge-
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