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Abstract: Control performance assessment or CPA is a useful tool to establish the quality
of industrial feedback control loops, but this requires establishing the minimum variance lower
bound. While reliable algorithms have been developed for linear systems, common nonlinearities
such as valve stiction require modifications to the basic strategy.
If the valve gets stuck due to stiction, for stable plants the output will reach steady state until
the valve again moves. During this time the nonlinearity due to stiction is essentially removed
from the system, and it is possible to compute performance assessment indices in the standard
manner.
This paper describes an automated strategy to reliably identify these linear steady-state periods
and subsequently compute the minimum variance lower bounds. The results of a simulation
example illustrate that the proposed methodology is efficient and accurate enough for the classes
of systems and nonlinearities considered to provide statistics for control performance assessment
for linear systems with nonlinearities caused by valves.
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1. INTRODUCTION

It is perhaps not surprising that instrument and control
engineers are overwhelmed by the sheer number of loops
that need attention on any typical industrial processing
plant. Many loops are mis-tuned, if tuned at all, as
noted by Bialkowski (1998) and other practitioners, and
many control valves are only maintained when something
catastrophic occurs. However the economic benefits from
improving the performance of control loops, even those
operating at a cursory glance acceptably, is often grossly
under estimated.

In this paper, we present a strategy to compute the mini-
mum variance lower bound, which is arguably the difficult
step in quantifying the performance improvement of a
typical control loop that suffers from the specific nonlinear
phenomena of valve stiction being a very common cause
for poor control performance.

Control performance assessment, or CPA, is a technology
to diagnose and maintain operational efficiency of con-
trol systems. CPA is routinely applied in the refining,
petrochemicals, pulp and paper and the mineral processing
industry as noted by Qin (1998), Harris (1999), Huang and
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Shah (1999), Jelali (2006), although these, and many other
publications, are mainly restricted to linear systems.

In the case of nonlinear systems, Harris and Yu (2007)
superimposes the nonlinear dynamic model to an additive
linear or partially nonlinear disturbance. It is shown that a
minimum variance feedback invariant exists and the mini-
mum variance performance can be estimated from routine
operating data. Continuing this idea, a semi-parametric
method was proposed in Yu et al. (2008) to find the min-
imum variance lower bound for linear systems with valve
stiction. In that work a local smoothing spline approxi-
mated the stiction nonlinearity, but given the complexity
of the nonlinearity, and the heuristic approach, it must be
expected that this strategy will fail for some cases.

In this paper, we will extend CPA to a important practical
nonlinear problem, that of control valve stiction. The
performance degradation due to stiction prompted Horch
(1999), Choudhury et al. (2005, 2006), Thornhill and
Horch (2007) to investigate ways to diagnose the issue,
while Jelali (2008) and the references therein, attempt
the estimation of parametric stiction models, but few
have continued the analysis to quantify the performance
loss. Consequently, rather than attempt to approximate
the nonlinearity, the approach taken here is to develop
an automated strategy that extracts the steady state
periods resultant once the valve is stuck fast. Based



on readily available input/output data collected during
these periods, the minimum variance lower performance
bound is computed in the standard manner. This gives an
indication of how the control loop, even one suffering from
stiction, would perform if it was serviced. Of course this
presupposes that one is not allowed the luxury of setting
the valve under consideration in manual, or one is charged
with assessing many hundreds of operating loops.

The incentive to compute this control performance index
is that it delivers a benchmark giving the engineer an
idea of the improvement potential if the valve was to be
serviced. For example, it could well be that of the hundreds
of valves on site that required maintenance, the expected
performance improvement, even if the stiction was entirely
removed, would not be worth the time and effort.

The layout of the paper is as follows. In Section 2, the
problem statement and model including valve stiction is
introduced. Section 3 describes the methodology proposed
in this paper to first extract, then check the validity of the
steady-state linear periods. Section 4 illustrates by way of
simulation the performance of the proposed methodology.
This is followed by a discussion and conclusions highlight-
ing both the limitations and potential of the method.

2. PROCESS DESCRIPTION

We assume the plant can be adequately modelled by

yt =
B(q−1)
A(q−1)

q−but + dt (1)

where A(q−1) and B(q−1) are polynomials in the backshift
operator q−1, and b is the time delay of the system.
The disturbance dt is modelled as the output of a lin-
ear Autoregressive-Integrated-Moving-Average (ARIMA)
filter driven by white noise at of zero mean and variance
σ2

a of the form

dt =
θ(q−1)

φ(q−1)∇d
at = ψ(q−1)at (2)

where ∇ def= (1 − q−1) is the difference operator and d is a
non-negative integer, typically less than 2. The polynomi-
als θ(q−1) and φ(q−1) are monic and stable.

A common process nonlinearity afflicting control valves is
known as ‘stiction’ which exhibits a range of of nonlinear
behaviour including hysteresis, backslash and deadzones,
both dynamic and static, and is summarised in de Wit
et al. (1995), Lampaert et al. (2004).

Fig. 1 illustrates the typical sawtooth characteristic be-
haviour of a poorly maintained valve suffering from
stick/slip friction using the stiction model developed in
Choudhury et al. (2004). It is important to note that under
normal industrial operations, the manipulated variable
(MV) signal injected into the plant, here denoted as uv, is
unobservable.

We include the nonlinear stiction function f(·) (which rep-
resents the relationship between the manipulated variable
and the actual valve output), into Eqn. 1 giving

yt =
B(q−1)
A(q−1)

q−bf(ut) + dt (3)
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Fig. 1. The output of the controller, u, and the subse-
quent output of the control valve, uv, suffering from
slip/stick stiction.

Fig. 2 summarises the system considered in this paper.
The intended controller output, u, (sometimes referred to
as OP), is typically different from the actual valve position,
uv, due to the stiction. In the ideal case however, we can
simply assume uv

t = f(ut) = ut.
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Fig. 2. Closed loop system with valve stiction under
consideration

3. MINIMUM VARIANCE PERFORMANCE
BOUNDS: VALVE STICTION CASES

The basis for minimum variance performance bounds
was developed by Harris (1989) where it was was shown
that the minimum variance performance bound for linear
systems could be estimated from routine closed-loop data
provided the process delay is known in advance. For
the system described by Eqn. 1, the minimum variance
performance lower bound is simply

σ2
MV = (1 + ϕ2

1 + · · · + ϕ2
b−1)σ

2
a (4)

where the ϕ weights are the first b− 1 impulse coefficients
of the disturbance transfer function in Eqn. 2.

The minimum variance performance bounds for a class
of nonlinear systems described by Eqn. 3 have been re-
ported in Harris and Yu (2007) which used a nonlinear
polynomial-AR or polynomial-ARX model to estimate the
b-step ahead prediction. The drawback for this application
is that it is difficult to find a general function to adequately
approximate the valve stiction. Notwithstanding, the non-
parametric spline method to approximate the nonlinearity
proposed in Yu et al. (2008) partially overcomes the issue
of modelling valve stiction/friction, but it too will fail for
some cases.



In this paper, we propose a method to find the mini-
mum variance performance bounds for valve stiction cases.
Rather than trying to find a parametric or non-parametric
function to approximate the nonlinear function as sug-
gested in Yu et al. (2008), we will focus solely on the
periods when we know, or at least suspect, that the system
is operating in a linear regime. That way, we can simply
ignore the now non-existent nonlinearity, and compute the
minimum variance lower bound in the standard manner.
The success of this strategy depends on how well we can
establish that the system is behaving essentially as a linear
system.

We can potentially ignore the effects of the nonlinearity
by exploiting a unique characteristic of valve stiction. Due
to the stick/slip friction, the times that the valve is stuck
gives the system a chance to reach steady state and during
these periods, we can use linear ARMA techniques to
estimate the lower performance bound.

The key problem is how to identify the steady state periods
from the closed loop output data. Our approach includes
two parts. First we use a heuristic pattern method to select
the periods of steady state in the observable time series y,
and we validate this by employing a linearity test. Second,
given possibly multiple segments of a linear time series,
not necessarily contiguous, we can now fit a linear ARMA
model and subsequently compute the minimum variance
performance bound. The details of the methodology are
discussed in the following sections.

3.1 Identifying steady-state periods

The presence of valve stiction induces a limit cycle with
a characteristic triangular shape in the controller output
as is shown in Fig. 1. This cycling is exacerbated by
the integral component of the controller which eventually
increases to such an extent that the stuck valve again
moves. Unfortunately the valve moves too far, and the
cycle begins again as demonstrated in Fig. 3.

Since the information of the actual valve output position,
uv, is not available for most industrial implementations,
(if it was, we could simply use this series for the compu-
tation), the steady state periods must be identified from
the data consisting solely of the process output y and
controller output u.

Under the cycling conditions due to stiction, the scaled
difference between u and y will describe a sawtooth trend
as given in Fig. 4. The discontinuous turning points of the
triangle wave indicate when the valve actually moves and
it is these instances, (depicted as the vertical dashed and
dotted lines) that we need to identify.

Given that most industrial plants have a stable low-pass
frequency response that attenuates high frequency noise,
and that the plant measurement is disturbed by d, it may
be necessary to weight the subtraction to better highlight
the trend. Fig. 4 actually trends cu − y where the scale
factor c is in this case 10.

After the periods of steady state are identified, an initial
segment in each period will be discarded so that the
previous input effects will be removed. Then subsequently
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Fig. 3. The plant output, y, the controller output u, and
the output of the valve suffering from stiction, uv.

we can derive a minimum variance controller performance
lower bound using these periods of data.
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Fig. 4. Establishing the steady-state periods by computing
cu − y.

An automated procedure to establish the stuck periods
relies on reliably identifying the maxima and minima of
the sawtooth shaped cu − y trend in Fig. 4. First the
times of the zero-crossings and their directions (falling, or
raising edges) are established. Then, between each crossing
instance, a search is made for the corresponding maximum
or minimum.

Of course using such a heuristic approach, this simple algo-
rithm is suspectable to false positives and correspondingly
derives estimates of the steady-state periods shorter than
the actual period. In cases of excessive suspected false
crossings, standard techniques such as data smoothing
or a Fourier identification of the dominant period could
be applied to the noisy data series. However since these
erroneous short periods will not be used for the minimum
variance calculation anyway, they do not overly deteriorate
the quality of the computed result. They do however, lower
the efficiency of the data use.

3.2 Ensuring the removal of any nonlinearities

Notwithstanding the expectation that the valve stiction
nonlinearity exhibits little memory, we need to be assured



that the selected period is in fact linear. One way is to
do this is to apply a statistical test of linearity proposed
by Subba and Gabar (1980), Hinich (1982) and previously
used in this context by Choudhury et al. (2004) and Yu
et al. (2008). This test, known as the Hinich test, is both
nonparametric and reasonably robust.

In the simulations subsequently presented in section 4 it
was obvious that the periods were linear so the nonlinear
test was not actually employed. However if one is still in
doubt, Yu et al. (2008) illustrates how such a validation
could be performed.

3.3 Establishing the limit cycle

The proposed strategy works best when the valve is
stuck for relatively long periods allowing the system to
reach steady state. That is, periods larger than about 10
dominant time constants since we discard the first 3–4
to allow the system to reach steady-state, and then use
the remaining data for the ARMAX model identification.
Consequently we desire that the period of oscillation due
to the valve nonlinearity is long compared to the settling
time of the compensated loop and therefore we need to a
priori establish reasonable conditions when that is likely
to occur.

From the literature, and our simulation experience detailed
further in section 4, it is found that there are three main
factors which will affect the period of oscillation, namely
the tuning of the PI controller, the magnitude of the
disturbance, and the valve characteristics of the valve
stiction.

4. SIMULATION EXPERIMENTS

The purpose of this section is to demonstrate the proposed
method for the minimum variance performance assessment
for valve stiction cases. A second order single-input, single-
output (SISO) system with time constants 10 and 2, and
steady-state gain of 3 is sampled at Ts = 1 to give

Gp =
B

A
=

0.04338 + 0.03755q−1

1 − 1.621q−1 + 0.6483q−2
(5)

with time delay b = 4 under feedback control with
controller

Gc =
0.11 − 0.1q−1

1 − q−1
(6)

was used for generating simulated data. An additive dis-
turbance of

dt =
0.2at

1 − 0.8q−1
(7)

where at is a sequence of independent and identically
distributed Gaussian random variables with zero mean and
nominal variance σ2

a = 0.1.

A data-driven model for valve stiction proposed by Choud-
hury et al. (2004) is used to simulate the valve stiction. The
model is characterised by two parameters, s for the valve
stickiness and j for the magnitude of the valve jump. The
closed loop behaviour with various combinations of s and
j are plotted in Fig. 5. Pure deadband occurs when j = 0,

(b) represents the undershoot case of a sticky valve, s < j,
(c) illustrates the pure stick-slip situation, s = j and (d)
shows the valve output overshooting case, s < j. Note that
the oscillation period decreases while the j value increases.
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Fig. 5. The closed-loop behavior for s = 3 and with various
values of j: (a) j = 0 (b) j = 1 (c) j = 3 (d) j = 4.

As noted in the pervious section, this strategy is reliant
on relatively long periods when the valve is stuck. Given
a fixed PI controller, we can vary the magnitude of the
disturbance and the stiction jump/slip parameters, j, s
and use a Monte-Carlo simulation to establish the largest
period on average of the oscillation for each (σ2

a, s, j)
triplet. The resultant contour plots of periods are shown
in Fig. 6.

In all cases we are most interested in the ‘islands’ of high
periods apparent in all three examples given in Fig. 6.

Areas with periods less than about 100 are not interesting
and are not plotted in Fig. 6. This is because since
the plant in Fig. 6 has a dominant time constant of 10
sampled at 1, ten dominant time constants correspond
to about 100 samples. We discard 30 to 40 samples to
allow time for the system to reach steady-state, leaving
a minimum of 60 samples in which to do the ARMA
model identification. This data series length is about at
the minimum recommended by Ljung (1987).

As expected the ‘islands’ of large periods occur when both
the noise, σ2

a, and jump parameters are not too big. This
makes sense because if both s and j are zero, there is
no stiction, and there is no self sustained oscillation due
to the nonlinearity. Also for a given stiction, as the noise
variance increases beyond the deadband limit, the valve
will continually move, lowering, or completely eliminating,
the potential steady-state periods.
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Due to the intractable nature of the nonlinearity, a Monte
Carlo method is used to estimate the performance of
the proposed strategy to estimate the minimum variance,
σ2

MV . 1000 observations generated from the valve stiction
simulation are passed to the automated steady-state pe-
riod identifier described in section 3.1 from which suitable
periods are extracted. An ARMA model is fitted to the
longest period from which σ2

MV is directly computed from
the parametric model. This procedure is repeated 500
times.

The estimates of σ2
MV and associated uncertainties for

different valve slip/jump conditions are shown in the
comparative box plot in Fig. 7 again as in Fig. 5 for the
case where s = 3 and various values for j. The true value
of the minimum performance lower bound for this example
is σ2

MV = 9.2 × 10−3.
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Fig. 7. Comparative box plots of the quality estimates
of σ2

MV for s = 3 and for different j models. The
horizontal dashed line is the true value of σ2

MV = 9.2 ·
10−3.

5. DISCUSSION

The results from the numerical experiments to establish
the minimum variance performance lower bound from nor-
mal operating data given in Fig. 7 show that the proposed
strategy does reconstruct the correct σ2

MV . Furthermore it
is interesting to note that the quality of the estimate is best
for the jump parameter j ≈ 1, while for values smaller,
and particularly larger, it begins to deteriorate. This is
consistent with the results presented in Fig. 6 reinforcing
the requirement to have reasonably long periods of steady-
state to extract statistically significant results.

In the cases where the jump parameter j is larger than
the slip s, we experience short periods of the stuck valve
coupled with a comparatively large nonlinearity that con-
tributes to the obvious deterioration in the confidence of
the estimated minimum variance lower bound.

Similarly, if the zero-crossings are too frequent (and there-
fore the period available for steady-state consideration
is too short compared to the anticipated dominant time
constant), then we suggest that the strategy proposed in
Yu et al. (2008) which uses smoothing splines to remove
the nonlinearity might be more appropriate.

The proposed strategy has some limitations. First of all,
as developed, we assume that the plant is stable, and
reasonably well-damped. For type 1 plants with integra-
tors, it is of course possible to differentiate the output.
Furthermore, we assume that the dominant time constant
is approximately known in order to discard the appropri-
ate amount of data while waiting for steady-state. This
is unlikely to be an overly onerous requirement for any
processing plant. Finally we restrict our attention to those
cases with moderate extent of stiction, since of course
excessive stiction must be addressed, and minimal stiction
would probably not be noticed anyway.

6. CONCLUSIONS

Valve stiction is a debilitating feature of many control
loops that cannot, nor should not, be corrected by con-



troller tuning. However given the time and energy required
to service the valve, it may be prudent for the instrument
engineer to first establish what the best controlled perfor-
mance would be if the valve was serviced.

The strategy proposed in this paper establishes the min-
imum performance lower bound in the case of excessive
valve stiction using only observable signals and estimates
of the plant dominant time constants and plant delay. In
the case of rapid oscillation in the limit cycle, it is possible
to stitch the short periods together to build up enough
input/output data to make a reasonable identification.

While the examples considered only nonlinearities intro-
duced by valve stiction, this strategy will work for any
system which reaches steady states and stays there for a
while.
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