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Abstract: The control of a drinking-water treatment plant aims to produce the correct quantity
of water, with a constant quality. Achieving constant water quality is not an obvious task,
since the online water-quality measurements and possible control actions are limited. Applying
model-based control improves disturbance rejection and online process optimisation. For the
softening process step, the integral control scheme is shown with multiple controllers for different
time scales and process detail. The dosing control is elaborated and verified using simulation
experiments. The control is implemented and tested in the pilot plant of Weesperkarspel
(Amsterdam). It shows that in the case of accurate state estimation, quick changes in setpoint
can be tracked.
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INTRODUCTION

In the last decades, most drinking-water treatment plants
have been automated. During these first automation real-
isations, the goal was to operate the treatment plant in
the same way as the operators did before. Therefore the
control configurations consisted of a heuristic control strat-
egy, based on historical operator knowledge. The controls
are designed for the static situation, including extra safety
margins to take operator response into account. This was
a logical and practical solution. However, this heuristic
solution does not optimise the control of a treatment plant.

The heuristic control is based on static local control ob-
jectives, without taking the current state of the treatment
plant into account. Therefore it is necessary to adopt a
new control strategy, which can take into account quality-
related and economic criteria and optimise the overall
performance of the plant, based on the current state of
the processes.

Since the treatment steps are coupled, local changes affect
other treatment steps and therefore local optimisations
should be considered in a global context. It is necessary
that operational actions do not introduce new disturbances
to other processes. This must be considered in all levels of
control, from basic valve controllers to plant-wide quantity
control. At the same time, the control should consider the
actual state of the process and optimise plant operations.

The information density in the online measured data of
water treatment plants is limited and multiple measure-
ments have to be used to obtain a good view of the actual
treatment performance (van Schagen et al., 2006b). By

using white or grey models, the process knowledge is no
longer stored as historical heuristic rules of thumb or static
local control objectives. The local control objectives evolve
from applying the new criteria to the existing models
in the case of changes to the process, such as boundary
conditions, influent properties and desired treated water
quality.

The model-based dosing control is part of the new model-
based control configuration for the pellet-softening treat-
ment step, consisting of a number of pellet reactors
and a bypass. The pellet softening process step at the
Weesperkarspel treatment plant is described in the first
section. The model-based control configuration is elabo-
rated in the second section. Finally the model-based dos-
ing control scheme is validated in simulation experiments
and finally validated in the pilot plant of Weesperkarspel
(Amsterdam).

PROCESS DESCRIPTION

In the Netherlands, softening of drinking water in treat-
ment plants is mainly carried out with fluidised pellet
reactors. The pellet reactor consists of a cylindrical ves-
sel that is partly filled with seeding material (figure 1).
The diameter of the seeding grain is small, between 0.2
and 0.4 mm and consequently the crystallisation surface
is large. The water is pumped through the reactor in
an upward direction at high velocities, maintaining the
seeding material in a fluidised condition. In the bottom of
the reactor, chemicals are dosed (caustic soda, soda ash or
lime). Calcium carbonate then becomes super-saturated
and crystallises on the seeding material, resulting in the



formation of pellets. At regular intervals, pellets at the
bottom of the reactor are removed. These pellets can be
re-used in industry (van Dijk and Wilms, 1991).

Fig. 1. Fluidised bed reactor for water softening.

Softening in a reactor is normally deeper than the required
levels. Therefore, part of the water can be bypassed and
mixed with the effluent of the reactors. In general, several
identical parallel reactors are installed to increase the
reliability of the system and the flexibility in operation.
Reactors can be switched on and off in case of flow changes,
maintaining water velocities between 60 and 100 m/h.

The mixture of the effluent of the reactors and the bypass
water must be chemically stable to avoid crystallisation in
the filters after the softening step.

At Weesperkarspel caustic soda (NaOH) is dosed for soft-
ening. The seeding material is garnet sand. The dosing of
caustic soda in the pellet reactor is adjusted to realise the
mixed effluent hardness of 1.5 mmol/l. The pellet removal
is based on the hydraulic resistance of the fluidised bed
(head loss) and the goal was to keep the hydraulic resis-
tance constant. The garnet sand dosage was a manually set
percentage of the mass of discharged pellets. The pH, flow,
water temperature and hydraulic resistance were measured
every minute, while hardness, calcium, bicarbonate, super
saturation, pellet diameter and bed height were measured
at longer intervals (Rietveld, 2005).

The characteristics of the softening process at Weespekar-
spel are given in table 1.

Table 1. Characteristics of softening reactors
at Weesperkarspel.

Number of reactors 8 -
Surface area of reactor 5.3 m2

Maximum bed height 5 m
Typical water velocity 60-100 m/h
Grain size of seeding material 0.25 10−3 m
Density of the seeding material 4114 kg/m3

CONTROL CONFIGURATION

The aim of the control of the softening process is to achieve
a desired calcium concentration and, at the same time,
minimise the use of dosage material (caustic soda, seeding
grains and acid). The available control inputs are the
water flow through the bypass and for each reactor the
water flow through the reactor, the grain supply rate, the
pellet discharge rate, the caustic soda dosage and the acid
dosage.

To control the complete treatment step, a modular control
setup is chosen. In this way, the controller complexity
is minimised, maximising operator understanding of the
control structure. Due to the diverse time constants in
the process, these controllers are implemented on dif-
ferent platforms, with appropriate performance for the
controllers. Figure 2 shows the control modules that are
related to the softening process step. On the vertical axis
represents the typical time constant of the controller and
the horizontal axis shows the process level of the controller.

Fig. 2. Control setup for the pellet-softening treatment
step. Modular controllers for different time constants
and control levels.

The Strategic Quantity Control determines the amount of
water, which has to be produced at the treatment plant.
This is based on yearly consumption patterns, available
resources at this plant and, in a multiple plants setup, the
other treatment plants. The amount of water to be treated,
is then passed to the Model-Based Quantity controller and
the Model-Based Lane Optimisation.

The Model-Based Quantity Control determines the actual
production rate of the entire plant, based on expected daily
consumption pattern and the available water in the storage
tanks. Restrictions in production rate, due to short-term
maintenance, are taken into account and fluctuations of
production rate are minimised (DHV, 2008).

The Model-Based Lane Optimisation determines the ideal
pellet size, bypass ratio and the optimal number of reactors
in operation, based on the expected production rate from
the Stategic Quantity Control and the expected tempera-
ture variations. Changing bed configurations is a long term
optimisation, due to the retention time of seeding material
in the reactor of approximately 100 days. An extensive
description of this optimisation scheme can be found in
(van Schagen et al., 2008c).



The Model-Based Bed Control achieves the optimal bed
composition as found with the Model-Based Lane Opti-
misation by determining the required pellet discharge and
seeding material rates (van Schagen et al., 2008c). It uses
the estimation of the current bed composition, determined
by the Model-Based Monitor. This can be the model-based
monitor of the complete reactor as shown in van Schagen
et al. (2006b).

The Model-Based Monitor estimates the accuracy of the
measurement devices and determines the actual state of
the softening process. This monitor is used to verify the
measurements that are used by the other controllers. In the
case of unexpected differences between measurement and
model outcome, operators are notified to take appropriate
action. If measurement accuracy is sufficient, the model
can be used to estimate unmeasured quality parameters
using online measurements and historical laboratory re-
sults. Finally the actual state of the process can be esti-
mated, such as the diameters of the pellets in the softening
reactor at different heights. An extensive description of
this monitoring scheme can be found in van Schagen et al.
(2006b).

The Model-Based Lane Control determines the current
flow and quality setpoints for each lane. It uses the
estimated bed composition from the Model-Based Monitor
and the actual production rate from the Model-Based
Quantity Control. This controller is introduced, since the
fluidised bed has limited control possibilities and it is
expected that the actual bed composition is different
for each reactor. The Model-Based Bed Control strives
for the optimal bed composition, while the Model-Based
Lane Control adapts to the current bed composition. The
Model-Based Lane Control is elaborated in van Schagen
et al. (2006a).

The Model-Based Dosing Control determines the actual
dosing of caustic soda in the reactor to achieve the desired
calcium concentration after the reactor, while respect-
ing the constraints of the reactor. The objective of this
controller is to follow the setpoint for the Model-Based
Lane Control smoothly. The Model-Based Dosing control
is shown in this article.

The Pellet Discharge, Seeding Dosage, Dosing Control and
Flow Control follow the setpoints from the model-based
controllers, by adjusting the physical devices such as valves
and pumps. These local controllers are implemented in the
process automation system of the plant.

MODEL-BASED DOSING CONTROL

The control of water flow and base dosage in the softening
reactor is not straightforward. The dosing control and
flow control are strongly interrelated. The retention time
in the reactor is at least five minutes and response to
control actions can only be detected after this time, since
water quality can only be measured in the effluent of
the reactor. The measurement of the total hardness (the
main controlled variable), is a semi-online measurement
and has a delay of at least ten minutes. The online pH
measurement is inaccurate and has a tendency to drift.
Changes in flow and dosing must be gentle, to prevent
introduction of process disturbances and fast-changing

water quality parameters, which cannot be compensated
in consecutive treatment steps. Since the water production
rate is predicted, setpoint changes can be predicted as well.
Ideally the control should take these predicted changes
into account. Finally, the constraints of the reactor, such
as maximal height and maximal dosing must never be
violated.

Controller Configuration

A model-based multivariable controller is used to meet
all requirements. A linear Model Predictive Controller
(linear MPC) is used, since in this case calculation time
is limited and valid solutions must be guaranteed. The
information density in the process is insufficient to use
a data-based model. The controller model is therefore
obtained through numerical lineralisation of the white
nonlinear model described in van Schagen et al. (2008a).
The nonlinear model is linearised using the current bed
composition found by the Model-Based Lane Control for
the given reactor, and the current influent water quality
parameters, water flow and caustic soda dosage.

Model predictive control is an online model-based optimal
control technique based on the receding horizon principle.
An online optimisation algorithm (normally a linear or
quadratic programming algorithm) is applied to compute
a series of control actions that minimizes a pre-defined
cost function or ’performance index’, subject to certain
constraints. Applying the receding horizon principle means
that only the first control sample is implemented and the
horizon is shifted one time-step. Then the optimisation
starts all over again. Figure 3 shows the principle of
receding horizons graphically: r(k), y(k) and u(k) are the
reference, output and control (or manipulated) signals, Nm

is the ’Minimum cost horizon’, Nc is the ’Control horizon’
and N the ’Prediction horizon’.
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Fig. 3. The principle of linear model predictive control

At time instant k the system output is predicted from time
step k until k+N as a function of the control actions. Then
the performance index is minimized resulting in an optimal
control trajectory {u(k|k), ..., u(k+Nc−1|k)}.The outputs



from k until k + Nm − 1 are left out of the optimisation
(to ignore minimum-phase and dead-time behaviour of the
system) and the control actions are not allowed to change
after time step k + Nc − 1.

Many different varieties of model predictive control config-
urations exist. The one chosen to implement for the pellet
reactor controller is the so called ’Standard Predictive
Control’ (SPC) configuration (van den Boom and Backx,
2001). The advantage of this configuration is its flexibility
and its state-space formulation.

The control objectives are to follow the current and future
setpoints of the Model-Based Lane Control under smooth
variation of the manipulated inputs, as formulated in the
following cost function:

J =

N∑
j=Nm

‖y(k + j|k) − ry(k + j)‖2
P

+

N∑
j=1

‖Δu(k + j|k)‖2
QΔu

+

N∑
j=1

‖u(k + j|k) − ru(k + j)‖2
Qu

(1)

where N and Nm are the prediction horizon and the
minimum costing horizon, and ru and ry are the references
for the inputs and the outputs. In this way the control can
use the setpoint predictions from the Model-Based Lane
Control, due to predicted production rate changes.

The inputs are the caustic soda dosage and the water
flow through the reactor. The outputs are the fluidised
bed height in the reactor and the following water quality
parameters in the effluent of the reactor: calcium concen-
tration, pH, M-alkalinity and conductivity.

To meet the physical constraints in the process the linear
MPC takes these constraints into account:

umin < uk < umax

ymin < yk < ymax (2)

To introduce extra integration action in the MPC con-
troller, the model is modified to an IIO model. The new
state vector consists of the previous output and the differ-
ence of the sate vector of the linearised model. The state
update equation is now given by:

[
yk

xk+1 − xk

]
=

[
I C
0 A

] [
yk−1

xk − xk−1

]
+

[
D
B

]
(uk − uk−1) (3)

with the corresponding output function:

yk = [ I C ]

[
yk−1

xk − xk−1

]
+ D (uk − uk−1) (4)

where A, B, C and D are the system matrices of the
linearised model.

To compensate for plant-model mismatch an observer is
used, to estimate the offset in ŷk. The state update in the
MPC controller is therefore given by:

[
ŷk

x̂k+1 − x̂k

]
=

[
I C
0 A

] [
ŷk−1

x̂k − x̂k−1

]
+

[
D
B

]
(uk − uk−1) +

[
L
0

]
(yk−m − ŷk−m) (5)

where yk−m is the measurement result of m samples ago,
due to the measurement delay.

A detailed explanation of the linear MPC algorithm is
given in van den Boom and Backx (2001).

Simulation Results

To evaluate the performance of the controller, simulations
were performed for the full-scale plant. The sample time
for the controller was chosen to be 1 minute. The minimum
cost horizon Nm, the control horizon Nc and the prediction
horizon N are chosen to be 3,10,20 respectively, since the
hydraulic retention time of the reactor is about 3 to 5
minutes. The setpoint for reactor flow and calcium concen-
tration were taken from the lane controller. The simulation
is started with a lane flow of 400 m3/h, increasing the lane
flow to 570 m3/h, due to a production rate change after
1 hour. The reactor flow is kept constant and the bypass
flow is increased. As a result from this flow change, the
calcium concentration has to change from 50 to 35 mg/l.
This is a regular change in calcium setpoint to produce
constant water quality in the mixed effluent of reactor and
bypass:

[Ca2+]l =
[Ca2+]inFBP + [Ca2+]rFw,r

Fw,l

(6)

Finally, if all lanes are operated at maximum capacity, the
lane controller can increase the reactor flow for all reactors
that are not yet limited by fluidised bed height. Therefore,
in the simulation, the reactor flow is increased to 450 m3/h
(the maximum flow for this reactor). The lane flow in this
case is 640 m3/h.

The operating point for the linearised model is the steady-
state of the dissolved components in the nonlinear model
with current estimated bed composition and the current
influent flow and dosage. The states, which describe the
bed composition (mg and mc) are kept constant during
numerical linearisation. The weighting matrices in equa-
tion 1 are diagonal, and the non-zero diagonal elements
are given by:

P (Ca2+) = 0.1

Qu(Fw) = 1

QΔu(Fw) = 1 (7)

QΔu(Fs) = 0.1

The non-zero weights in P and Qu penalise the deviation
of the calcium concentration and water flow from their
reference values. Change in the manipulated variables
are penalised to achieve a smooth transition between
operation points. In addition, level constraints are defined
for all outputs and inputs, based on their physical ranges.
To make the simulation more realistic, noise was added to



the simulated outputs. For the measurements of calcium
and M-alkalinity the measurement noise was set at 2%, for
bed height, pH and conductivity 1%.

The observer gain was chosen to be diagonal and the same
for all measurements, since it is used to estimate model
offset. The change in offset is expected to be equal for all
measurements.

L = diag ([0.2 0.2 0.2 0.2 0.2]) (8)

The simulation results using the nonlinear process model
are shown in figures 4 and 5. In figure 4 the dashed-dot
line is the setpoint for the calcium concentration, changing
from 50 to 35 mg/l, due to a lane flow increase. The solid
line is the simulated process values without measurement
noise, while the dots are the actual measurement values
available for the MPC controller. For calcium, M-alkalinity
and conductivity, these measurements are only taken every
10 minutes, with a 10 minute delay. In the graph the
measurements are therefore shifted by 10 minutes. The
pH measurement and bed height measurements are online
measurements and available every minute. The dashed line
is output estimation ŷ)k of the MPC controller. In figure
5 the dashed-dot line is the setpoint for the reactor flow
from the lane controller and the solid lines are the actual
setpoints from the MPC controller.
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Fig. 4. Simulation results outputs. dashed-dot: Reference,
dashed: Estimate, solid: Process, dots: Measurements
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Fig. 5. Simulation results control inputs. dashed-dot: Ref-
erence, solid: MPC.

It can be observed, that the tracking of the reference signal
is appropriate, including the desired smooth transition.
The calcium concentration and the flow change starts
before the actual setpoint change, as expected, to get a
smooth transition close to the desired setpoint. Another
interesting observation is that the water flow through
the reactor and the caustic soda dosage are not strictly
linked (as opposed to the current heuristic strategy).
A flow reference change shows a rapid flow response,
but a relatively slow dosage response, which results in
a negligible change of the calcium concentration. Finally
it can be seen that the MPC controller prevents a flow
increase to the setpoint of 450 m3/h, due to the limitation
in bed height.

Pilot plant Results

The MPC controller is also implemented on the pilot
plant of Weesperkarspel. The setpoints for the calcium
concentration and reactor flow follow a similar pattern as
in the full-scale reactor simulation. In this experiment the
weighting matrices in equation 1 are diagonal, and the
non-zero diagonal elements are given by:

P (Ca2+) = 3

Qu(Fw) = 1

QΔu(Fw) = 0.01 (9)

QΔu(Fs) = 0.01

The matrices are selected to focus on setpoint achievement
and less on smooth transition. The non linear model is the
model from a validation experiment. The bed composition
in this experiment is determined using the pressure drop
measurement with different flows in the reactor. In the
pilot-scale plant the pH measurement is not available as
online measurement, and is determined semi-online during
the M-alkalinity titration. The results from the pilot plant
experiments are shown in figures 6 and 7.

The MPC controller in the pilot plant is performing
as expected. The relatively small weighting matrix for
control variations in equation 10 cause more variation in
the caustic soda dosage and flow than for the full-scale
simulation experiment.
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CONCLUSIONS

The performance of the softening process step can be
improved by applying a model-based control scheme. The
control configuration is split in separate controllers for
different control levels and time constants. To achieve
smooth but quick responses to changing setpoints, a linear
MPC is shown to be an effective controller.

A linear MPC controller shows a smooth transition be-
tween sudden changes of setpoints, while using a limited
number of online and semi-online measurements. The con-
troller is shown to function appropriately in the pilot-scale
plant of Weesperkarspel.
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