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Abstract: This paper demonstrates how feedforward control can assist in stabilizing unstable
systems. Feedback control is necessary for stabilization, but feedforward can be used to avoid
input constraints which would otherwise cause the system to go unstable. Thus, if disturbances
can be measured, feedforward from disturbances can be a simple and low cost way of avoiding
loss of stability due to input constraints.
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1. INTRODUCTION

Fundamental limitations in achievable control perfor-
mance have received a lot of attention in the control
literature. A number of important results in this area is
covered in Skogestad and Postlethwaite (2005). One such
fundamental limitation for unstable systems is that the
range of actuation for the inputs must be sufficiently large
to avoid saturation. If the inputs saturate, feedback is
broken, and hence the stabilizing effect of the controller
is lost. Ensuring that the inputs do not saturate is there-
fore important in order to guarantee closed loop stability,
although an unstable system may remain stable despite
the inputs being saturated for a limited period, as shown
in Favez et al. (2006). If input saturation is avoided, local
(linear) stability of the closed loop system is sufficient for
stability.

Feedforward is normally used to improve control perfor-
mance at high frequencies, beyond the achievable band-
width for stable closed loop control. In this paper, feed-
forward is instead used to reduce the magnitude of the
plant input moves, and therefore to avoid instability due
to input constraints.

2. BACKGROUND

Consider a controlled system such as the one illustrated
in Fig. 1. For the linear, unconstrained case with only
feedback control (Kf = 0), we get

u = KSr − KSGdd (1)

where S = (I + GK)−1. The dependence on the Laplace
variable s is suppressed for notational convenience, when-
ever it is not needed for clarity.

Glover (1986) has shown that for unstable systems, the
minimal achievable H∞ norm of KS is given by

‖KS‖∞ ≥ 1/σH(U(G)∗) (2)

where σH denotes the smallest Hankel singular value, and
U(G)∗) denotes the anti-stable part of the plant G, with
its unstable pole(s) mirrored into the left half plane.

Observe that for relationships like (2) to have any rele-
vance for evaluating the likelihood of input saturation -
with subsequent loss of stabilizing feedback - the plant
model G needs to be appropriately scaled. Skogestad and
Postlethwaite (2005) recommend scaling plant inputs such
that |u| < 1 corresponds to inputs within the range of
actuation, and scaling outputs such that |y| < 1 means
that the control offset is acceptable. Similarly, the inputs
of the disturbance model Gd should be scaled to get |d| < 1
for the expected range of disturbances, and outputs scaled
in the same way as for G. In scaled variables, the references
are then scaled to give |r| < R(ω) for the expected range
of reference changes. Such scaling is implicitly assumed
throughout this paper, and consequently the input satu-
ration limits are assumed to be at ±1.

Thus, with variables appropriately scaled, sinusoidal ref-
erence changes will not cause input saturation provided

‖KS‖∞ < 1/R(ω)∀ω (3)

Although reference signals may contain more than a single
frequency, and input saturation due to reference changes
may therefore occur even if this relationship is fulfilled,
this relationship is nevertheless useful in assessing whether
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Fig. 1. Feedback and feedforward control, with limited
input actuation range.



input saturation is a problem. However, it is also clear from
the above that input saturation due to reference changes
is not a fundamental problem - one may simply reduce the
magnitude of the reference changes to avoid saturation.

On the other hand, it is typically not possible to control
the magnitude of external disturbances d. Karivala et al.
(2005) extended Glover’s result to find that when using
feedback only

‖KSGd‖∞ ≥ 1/σH(U(G−1

d,msG)∗) (4)

where Gd,ms is the minimum phase and stable version of
Gd, i.e., with both RHP poles and RHP zeros mirrored
into the left half plane.

Accounting for the feedforward term Kf (but still assum-
ing the saturation element to be inactive), we get

u = KSr + SI(Kf − KGd)d (5)

where SI = (I + KG)−1. Note that S = SI for SISO
systems, but this need not be the case for multivariable
systems. From (5) we observe that introducing feedforward
gives a new degree of freedom for minimizing input usage
in the face of disturbances. Below, we will investigate in
what situations this allows for a significant reduction of
input usage, thus enabling closed loop stability.

3. STABLE DISTURBANCE MODELS

Consider the case where the plant is unstable from input
to output, and hence requires feedback control for sta-
bilization, but the unstable mode is not excited by the
disturbances. This is motivated by the following example
from Skogestad and Postlethwaite (2005):

Example:

G(s) =
5

(10s + 1)(s − 1)
(6)

Gd(s) =
kd

(s + 1)(0.2s + 1)
(7)

The transfer functions are assumed to be appropriately
scaled, as described above. From (4), we find that for
kd > 0.54, ‖KSGd‖∞ ≥ 1 for any feedback controller,
and hence sinusoidal disturbances can drive the inputs
to saturation. This is further illustrated in Skogestad
and Postlethwaite (2005), where a stabilizing feedback
controller is designed, but where saturation occurs for a
step disturbance of magnitude 1 with kd = 0.5. We seem
to be in the paradoxical situation where control is not
needed to counter the effect of disturbances (since a control
offset of 1 is acceptable), but the controller needed to
stabilize the system saturates due to the presence of the
disturbance. Clearly, it would be better to do nothing to
counteract the disturbance, but only manipulate the input
to provide stabilization. However, a standard feedback
controller does not distinguish the control offset caused
by the (stable) disturbance from the offset caused by the
unstable mode.

Equation (4) does not distinguish between stable and un-
stable disturbance models. For stable disturbance models,

the feedforward controller Kf can be used to counter the
effect of the disturbance on the input. That is, in stead of
the conventional (ideal) feedforward

Kf = −G−1Gd (8)

which cancels the effect of the disturbance on the output 1

, the ideal feedforward can from (5) be seen to be

Kf = KGd (9)

which cancels the effect of the disturbance on the input.

With this in mind, we revisit the example above, for the
case with kd = 1, meaning that feedback alone will not be
able to maintain stability in the face of disturbances. The
controller

K(s) =
(10s + 1)2

s(0.01s + 1)
(10)

will stabilize the unconstrained system. However, in Fig 2
we see that a unit step in the disturbance (applied at time
t = 1s) will drive the input to saturation. Figure 3 shows
that the system goes unstable as a result of the saturation.
This is exactly as expected. The feedback controller K(s)
in (10) contains an integrator, and hence direct application
of the ideal feedforward in (9) will mean that Kf will
contain an integrator that is not stabilized by feedback.
To avoid this problem, the controller is implemented as
illustrated in Fig. 4, with the integrator in the block K2.
The corresponding feedforward is Kf = K1Gd, with the
overall feedback controller given by K = K2K1.

With this slight modification, we obtain the results in Figs.
5 and 6. The solid lines represents the ’ideal’ feedforward
control according to (9), whereas the dash-dot line is con-
ventional feedforward according to (8). Clearly, the con-
ventional feedforward does not avoid the input saturation.
On the other hand, the modified feedforward according
to (9) simply does nothing to counter the effect of the
disturbance. Even though the control offset is acceptable
according to the scaling used, most people would probably
prefer the responses represented by the dashed line. This is
obtained by augmenting the feedforward in (9) with a high
pass filter, and results in offset-free control at steady state.
Clearly, the pass band of the high pass filter should include
frequencies significantly lower than that corresponding to
the RHP pole(s).

4. UNSTABLE DISTURBANCE MODELS

It was shown above that it is simple to use feedforward
from the disturbance to avoid input saturation and hence
loss of stabilizing feedback, when the plant is unstable but
the disturbance transfer function is stable. If the distur-
bance transfer function is unstable, the issue becomes more
complicated.

Note, that for stabilization of the unstable disturbance
transfer function to make sense, the unstable mode(s) must
also be a part of the plant transfer function. That is, it
must be possible to reformulate the plant and disturbance
transfer functions as indicated in Fig. 7, with G3(s) a

1 Neglecting for the moment the effects of possibly unknown initial
conditions for the disturbance dynamics.



stable transfer function. In this case, the disturbance will
obviously excite the unstable mode, and it therefore does
not make sense to avoid the use of the manipulated input
when a disturbance occurs.

Furthermore, the direct application of the ’ideal’ feedfor-
ward in (9) would mean using an unstable feedforward
element Kf , which would lead to an internally unstable
control system. Instead, we would like to find the stable
feedforward element Kf which minimizes the term (Kf −
KGd) in (5). The term KGd can be split into a stable and
an anti-stable part. The stable part can be used directly in
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Fig. 2. Response in the input to a unit step in the
disturbance as time t = 1s, using only feedback
control.
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Fig. 3. Response in the output to a unit step in the
disturbance as time t = 1s, using only feedback
control.
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Fig. 4. Implementation of overall feedback/feedforward
controller, with the integrator in the block K2.

Kf , whereas we need a stable approximation to the anti-
stable part of KGd.

Approximation of an anti-stable transfer function by a
stable transfer function (or vice versa) is known as a Nehari
extension problem. That is, we want to find the optimal
stable Q(s) such that ‖Q(s)+R(s)‖∞ is minimized, where
R(s) is ant-stable. A solution to this problem can be found
in Glover (1984). In Glover (1984), it is also shown that
the optimal error is given by ‖R∗‖H , where ‖ · ‖H denotes
the Hankel norm, and R∗ is the ’stable version of R’,
with the unstable poles mirrored into the left half plane.
Thus, we would like to design a feedback controller K that
not only stabilizes the plant, but also makes the Hankel
norm of the unstable part of KGd small. However, with

0 20 40 60 80 100
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

In
pu

t

Modified feedforward
Mod. feedforward w/high pass
Conv. feedforward

Fig. 5. Response in the input to a unit step in the
disturbance as time t = 1s, using combined feedback
and feedforward control.
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Fig. 6. Response in the output to a unit step in the
disturbance as time t = 1s, using combined feedback
and feedforward control.
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a simple reformulation of the feedforward arrangement,
this complication is easily avoided. This rearrangement
is illustrated in Fig. 8, and may be regarded more as
a ’reference governor’ approach than feedforward in the
ordinary sense.
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Fig. 8. ’Feedforward’ arrangement for an unstable distur-
bance transfer function.

With the rearranged ’feedforward’, the transfer function
from the disturbance d to e, the input to the feedback
controller K (assuming the saturation element is inactive),
is given by

e = S(Kf − Gd)d (11)

where S = (I+GK)−1. Thus, for a given controller K, the
controller input (and therefore also the controller output)
will be small if the term (Kf − Gd) is small. Next, the
validity of the bound (4) and the design of the feedforward
controller will be illustrated for two different cases:

• A disturbance transfer function Gd whose only non-
minimum phase term is an unstable pole.

• A disturbance transfer function Gd with non-minimum
phase terms in addition to the unstable pole.

The benefit of feedforward will be found to be different
in these two cases. However, first the H∞ problem for-
mulation will be briefly explained. For the case with a
stable disturbance transfer function, this was not needed,
since the design of the feedforward controller was done
separately from the design of the feedback controller.

4.1 H∞ problem formulation

Using feedforward in combination with feedback means
that we are using a controller with two degrees of freedom
(2-DOF controller)). We wish to investigate the benefit
of using a 2-DOF controller for stabilizing the system
while minimizing the use of inputs in the face of measured
disturbances. However, the resulting H∞ control synthesis
problem violates the standard assumptions. Assumptions
A2 and A4 of Zhou et al. (1996), p. 450 are violated.

A small measurement noise n is therefore added, and the
magnitude of that measurement noise is reduced until
further reduction does not significantly affect the H∞

norm achieved. The block diagram corresponding to the
resulting controller synthesis problem is shown in 9.

4.2 The unstable pole as the only non-minimum phase
term in Gd

The same plant transfer function as in (6) is used, whereas
the disturbance transfer function is modified to

Gd(s) =
kd

(s − 1)(0.2s + 1)
(12)

The parameter value kd = 1 is still used. First, a realiza-
tion of [Gd G] with only one unstable mode is found.
Then a 2-DOF controller is designed according to Fig.
9, and compared to a 1-DOF controller (feedback only)
designed to minimize KSGd. For both cases, a H∞ norm of
1.83 is achieved. This also corresponds to the bound in (4).
In this case, there is thus no advantage derived from using
a 2-DOF controller with feedforward from disturbances 2 .

However, if the feedback controller is designed for some
other criterion than minimising ‖KSGd‖∞, there may be
a possible advantage in designing the feedforward using the
idea of approximating Gd with a stable transfer function.
To illustrate, we first design a feedback controller for
minimizing ‖KS‖∞, achieving a H∞ norm of 4.40 - which
agrees with the bound in (2). Using this controller, we
would also get ‖KSGd‖∞ = 4.40. Instead, we augment
the controller with feedforward as illustrated in Fig. 8. The
transfer function Gd can be split into stable and unstable
parts, giving

Gd,stable =
−5kd

6(s + 5)

Gd,unstable =
5kd

6(s − 1)

The task is this to find a stable approximation to
Gd,unstable. The formulae in Glover (1984) for doing so are
not directly applicable, since Gd,unstable has only one state.
However, it is easily verified that a stable approximation
which achieves the minimum bound on the approximation
error is given by

G̃d,unstable = −
5kd

12
(13)

With the feedforward Kf = Gd,stable + G̃d,unstable used as
illustrated in Fig. 8, and the feedback controller K which
minimizes ‖KS‖∞, we achieve an H∞ norm of 1.83 from
disturbance d to input u, while maintaining closed loop
stability.

4.3 Gd with non-minimum phase terms in addition to the
unstable pole

Consider next the case when the unstable disturbance
transfer function is augmented with an all-pass term,
giving
2 And, in order to achieve |u| < 1 we would need kd < 0.54, as in
the original example in Skogestad and Postlethwaite (2005).
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Fig. 9. H∞ controller synthesis setup for 2-DOF controller.



Gd(s) =
kd(−10s + 1)

(s − 1)(0.2s + 1)(10s + 1)
(14)

The all-pass part of Gd cancels in the calculation of the
bound in (4), and thus the minimum that can be achieved
with feedback control alone is still ‖KSGd‖∞ = 1.83. On
the other hand, with a 2-DOF controller we achieve an
H∞ norm from d to u of 1.50. The same is achieved when
designing a 1-DOF H∞ controller minimizing ‖KS‖∞ and
subsequently adding feedforward to this controller in a
manner similar to the preceding section.

Looking at the unstable part of Gd(s) in (14), the reason
for the improvement in input usage when adding the
feedforward becomes apparent. One now finds that

Gd,unstable =
−5kd

6(s − 1)

9

11

The reduction in the unstable part of the disturbance
transfer function by the factor 9/11 is a direct result of
the all-pass term (−10s + 1)/(10s + 1), since it modifies
the residue at s = 1 by that same factor in the partial
factor expansion of Gd(s). Note that the improvement
in H∞ norm due to the introduction of feedforward also
corresponds to the factor 9/11.

Stable all-pass terms will always reduce all residues in the
RHP, and hence always reduce the size of the anti-stable
part of Gd(s) if there is a single unstable pole or a single
pair of unstable complex conjugate poles. This covers a
large fraction of the unstable system dynamics met in
engineering practice. However, in general the unstable part
of Gd(s) may consist of several terms. The effect of all-pass
terms will be different for the different unstable terms in
Gd(s), and it may therefore be possible for the unstable
part of Gd(s) to increase due to the presence of all-pass
terms in the disturbance transfer function.

5. CONCLUSIONS

This paper illustrates how feedforward may be applied to
reduce the input usage necessary for stabilizing unstable
plants. If the disturbance transfer function is stable, one
can thus easily remove the problem that disturbances may
cause input saturation - with resulting loss of stabilizing
feedback.

For the case of an unstable disturbance transfer function,
it is clearly necessary to assume that the unstable mode
is shared with the plant transfer function - otherwise it
cannot be stabilized by feedback around the plant.

If the unstable pole is the only non-minimum phase
term in the disturbance transfer function, feedforward has
not been shown to improve on the optimal H∞ norm
achievable by feedback only. The bound on the H∞ norm
from d to u was found to apply for both 1-DOF and 2-DOF
controllers in the example studied. However, if the 1-DOF
controller is designed according to some other criterion
than that of minimizing ‖KSGd‖∞, feedforward may be
used to reduce the usage of inputs.

It is also found in an example that if the disturbance
transfer function includes other non-minimum phase terms
than the unstable pole, a 2-DOF controller can improve
upon the optimal H∞ norm achievable with feedback only.

Feedforward may also in this case be added to a previously
designed 1-DOF controller to reduce the usage of inputs.

Further work is necessary to quantify the optimal H∞

norm from disturbance to plant input that is achievable
when using a 2-DOF controller. Also, to simplify the anal-
ysis, the factor S has been ignored in (11), focusing instead
on keeping (Kf − Gd) small. Accounting for the factor S
would lead to a frequency weighted Nehari extension prob-
lem. The possible benefit in accounting for this frequency
weighting is not clear. In the examples studied, the optimal
H∞ norm for the 2-DOF problem has been achieved by
appending feedforward (designed without accounting for
the frequency weighting) to a 1-DOF controller design.

For the practising engineer, this paper points to the use of
feedforward from disturbances to reduce input usage for
stabilization. This may be an attractive alternative com-
pared to alternative plant modifications in order to avoid
input saturation (leading to loss of stabilizing feedback) in
the face of disturbances.
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