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Abstract: The exothermic continuous stirred tank reactor (CSTR) is a classical yet complex
case study of nonlinear dynamical systems. Power-shaping control is a recent approach for the
control of nonlinear systems based on the physics of the dynamical system. In this paper we
present a general methodology to apply the power-shaping control approach to the exothermic
CSTR study case. It results in a global Lyapunov function for the exothermic CSTR. This
Lyapunov function is then reshaped by the means of a controller in order to stabilize the
process at a desired temperature. Some considerations on the local and global convergence to
the desired state are presented.
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1. INTRODUCTION

Thermodynamic systems, and among them chemical re-
action systems, are usually nonlinear dynamical systems.
They can therefore have a complex behaviour and be
difficult to analyze and to control. Stability analysis of non-
linear systems requires the use of abstract mathematical
tools such as the two Lyapunov methods or the passivity
theory. Over the past years, several works have combined
those abstract concepts with the underlying physical phe-
nomena giving rise to the dynamical behaviour of the
system. These works include for instance the study of port-
Hamiltonian systems (Dalsmo and van der Schaft (1998),
Maschke and van der Schaft (2005), Eberard et al. (2006)),
energy-balancing passivity based control (PBC) (Ortega
et al. (2001), Jeltsema et al. (2004)) or the introduction
of the contact formalism for expressing the dynamics of
systems in which irreversible phenomena arise (Eberard
et al. (2005), Eberard (2006), Favache et al. (2007)).
The exothermic continuous stirred tank reactor (CSTR)
is a classical study case of nonlinear systems. Indeed,
the dynamical behaviour shows complex features, such as
multiple equilibrium points. Up to now no exact physical
interpretation of the complex behaviour of the exothermic
reactor has been found (Favache and Dochain (2009)).

Power-shaping control (Ortega et al. (2003)) has been
developed in the past years as an extension of energy-
balancing passivity-based control (Ortega et al. (2001),
Jeltsema et al. (2004)). In energy-balancing passivity
based control, the controller reshapes the energy function
of the system so that it has a minimum at the desired
equilibrium point. The controller provides to the system
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a finite amount of energy so as to drive the system to
the desired state. This concept has been widely applied to
electro-mechanical systems (Ortega et al. (1999), Maschke
et al. (2000), Ortega et al. (2002)) but also to thermody-
namic systems where the storage function is the entropy
instead of the energy (Alonso et al. (2002), Otero-Muras
et al. (2006)). Nevertheless energy-balancing passivity-
based control can only be applied to systems without per-
vasive dissipation, i.e. systems where the power provided
by the controller is equal to zero at the desired equilibrium
point. To overcome this difficulty the concept of power
shaping control was introduced firstly for the stabilization
of nonlinear RLC circuits (Ortega et al. (2003)). Contrary
to energy-balancing passivity-based control, the storage
function used for the control is related to the power and
not to the energy. Power-shaping control has subsequently
been applied to the control of mechanical and electro-
mechanical systems (Garcia-Canseco et al. (2008)). Power-
shaping control is based on a particular formulation of the
system dynamics, namely the Brayton-Moser equations
(Brayton and Moser (1964a), Brayton and Moser (1964b)).
Although the first systems which have been described
using this formalism are electrical circuits, it is shown
in Jeltsema and Scherpen (2003), Jeltsema and Scherpen
(2007) and Garcia-Canseco et al. (2008) that mechanical
systems can also been expressed in this form.

As the work of Alonso, Ydstie and coworkers (see e.g.
Alonso et al. (2002), Antelo et al. (2007), Farschman et al.
(1998)), the present research is basically motivated by the
objective to connect thermodynamics with process control
design (see also Favache and Dochain (2009)). In this paper
we apply power-shaping control to the exothermic CSTR
case study with the aim of bringing more physical insight
in its dynamical behaviour. After a brief presentation of



the main principles of power-shaping control in Section 2
and of the CSTR case study in Section 3, we shall apply
the power-shaping control theory to our example. First
we shall use the power-shaping approach to analyze the
open-loop behaviour (Section 4) and then to design a
control action (Section 5). Finally Section 6 presents some
general comments on the possibility of extending the
power-shaping approach to more complex systems, namely
systems with more than one reactant, and/or more than
one reaction.

2. POWER-SHAPING CONTROL

In this section, we briefly explain the principles of power-
shaping control. The statements are given without any
proof. For more details, the reader can refer to Jeltsema
and Scherpen (2003), Ortega et al. (2003), Jeltsema and
Scherpen (2007), Garcia-Canseco et al. (2008).

2.1 The Brayton-Moser formulation

Let us consider a dynamical system of dimension n
with m inputs. The state of the system is given by
the vector x ∈ R

n and the input is given by vector
u ∈ R

m. The power-shaping control theory is based on the
Brayton-Moser formulation of the system dynamics (Bray-
ton and Moser (1964a), Brayton and Moser (1964b)). In
this formulation the system dynamics are of the following
form:

Q (x)
dx

dt
= ∇P (x) + G (x) u (1)

where Q (x) : R
n → R

n × R
n is a non-singular square

matrix, P (x) : R
n → R is a scalar function of the state

and G (x) : R
n → R

n × R
m. Additionally the symmetric

part of the matrix Q (x) is negative semi-definite, i.e.:
Q (x) + Qt (x) � 0 (2)

The function P (x) is called the potential function. In
electrical and mechanical systems, the potential function
has the units of power. In electrical systems it is related
to the so-called content and co-content of the resistances
(Ortega et al. (2003), Jeltsema and Scherpen (2007))
while it is related to the Rayleigh dissipation function
(Jeltsema and Scherpen (2003)) in mechanical systems. In
both cases, the potential function P (x) is related to the
dissipated power in the system.

Let us now assume that the system dynamics are given by
the following relation:

dx

dt
= f (x) + g (x) u (3)

where f (x) : R
n → R

n and g (x) : R
n → R

n × R
m. The

system (3) can be written in the form (1) if there exists
a non-singular matrix Q (x) fulfilling (2) and that solves
following partial differential equation:

∇ (Q (x) f (x)) = ∇t (Q (x) f (x)) (4)
This condition is equivalent to the existence of the po-
tential function P (x) (i.e. if the potential function P (x)
exists, its Jacobian matrix must be symmetric). This one
is the solution of the following partial differential equation
system:

∇P (x) = Q (x) f (x) (5)

Finally the function G (x) is given by the following rela-
tion:

G (x) = Q (x) g (x)

2.2 Power-shaping control

Let us assume that the system dynamics can be expressed
using the Brayton-Moser equations presented above. The
desired equilibrium state is denoted by x∗. The rationale
of power-shaping control is to choose the input u (x) such
that in closed loop the system dynamics are given by the
following relation:

Q (x)
dx

dt
= ∇Pd (x)

where Pd (x) : R
n → R is the reshaped potential func-

tion. The desired equilibrium point x∗ must be a local
minimum of the potential function Pd (x) in order to be
locally asymptotically stable. The function Pd (x) cannot
be arbitrarily chosen since the following relation has to be
fulfilled:

g⊥ (x) Q−1 (x)∇Pa (x) = 0 (6)
where g⊥ (x) : R

n → R
n−m × R

n is a full-rank
left annihilator of g (x) (i.e. g⊥ (x) g (x) = 0 with
rank

(
g⊥ (x)

)
= n − m) and Pa (x) = Pd (x) − P (x). The

condition (6) ensures the existence of a function u (x) such
that:

Q (x) (f (x) + g (x) u (x)) = ∇P (x) + ∇Pa (x)
Under these conditions, the control input u (x) that
achieves to reshape P (x) into Pd (x) is the following one:

u (x) =
(
Gt (x) G (x)

)−1
Gt (x)∇Pa (x) (7)

where G (x) = Q (x) g (x)

3. THE EXOTHERMIC CONTINUOUS STIRRED
TANK REACTOR (CSTR)

In our research, we have applied the power-shaping
methodology to a classical process control case study:
the exothermic continuous stirred tank reactor (CSTR),
illustrated in Figure 1. The reaction that is taking place
is A → B. In order to simplify the model, the following
assumptions have been considered:

• the reactor is liquid phase and the volume V is
constant.

• the density ρ and the specific heat cp of the mixture
are constant (i.e. independent of the temperature or
of the composition).

• the reaction heat is independent of the temperature.
• the reaction is irreversible.
• the reaction kinetics obey to the mass action law,

i.e. r = k (T ) nA where k (T ) is the kinetic constant,
depending only on the temperature T and nA is the
number of moles of component A. The function k (T )
is assumed to be monotonically increasing. Moreover
let us assume that 1 lim

T→0
k (T ) = 0, lim

T→∞
k (T ) = k0

and
lim
T→0

dk

dT
= lim

T→∞
dk

dT
= 0

• the dynamics of the jacket can be neglected.
1 These assumptions on k (T ) are for instance fulfilled by the
commonly used Arrhenius law.
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Fig. 1. Schematic view of the CSTR

• the heat exchange between the reactor and the jacket
is proportional to the temperature difference between
them, with h the heat exchange coefficient.

• the system is controlled by the cooling fluid flow rate.
It acts directly on the heat transfer coefficient h.
Therefore we shall consider in the sequel that the
control input is the quantity h

ρcpV .

Under these assumptions the dynamic model of the system
is given by following equations:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dnA

dt
=

ql

V

(
Cin

A V − nA

)− k (T ) nA

dT

dt
=

ql

V
(Tin − T ) +

(−ΔrH)
ρcpV

k (T ) nA

+
h

ρcpV
(Tw − T )

(8)

where ql is the volumetric inlet and outlet flow rate, Cin
A is

the inlet concentration of A, Tin is the inlet temperature,
(−ΔrH) is the reaction heat and Tw is the temperature of
the cooling fluid. Using the notations of (3), we have:

f (x) =
(

δ
(
Cin

A V − nA

)− k (T ) nA

δ (Tin − T ) + γk (T ) nA

)

g (x) =
(

0
Tw − T

)
with x = [nA, T ]t, u = h

ρcpV , δ = ql

V and γ = (−ΔrH)
ρcpV .

It can be shown that this system can have up to three
equilibrium points in open loop (i.e. for u = 0), depending
on the numerical values of the parameters (see e.g. Aris
and Amundson (1958), Uppal et al. (1974)). Here we shall
consider the case with three equilibrium states, two being
stable and one being unstable.

4. THE OPEN LOOP BEHAVIOUR

The methodology described in Section 2.1 has been applied
to the system described in Section 3. The first step was
to find the square matrix Q (x) that meets the required
properties (2) and (4). The partial differential equation
(4) for the open-loop CSTR is written as follows:

− q11nA
dk

dT
− q12δ + q12γnA

dk

dT

+
∂q11

∂T

(
δ
(
Cin

A V − nA

)− knA

)
+

∂q12

∂T
(δ (Tin − T ) + γknA)

= −q21δ − q21k + q22γk +
∂q21

∂nA

(
δ
(
Cin

A V − nA

)− knA

)
+

∂q22

∂nA
(δ (Tin − T ) + γknA)

(9)

where qij is the entry in position (i, j) of the matrix
Q (nA, T ). We first transformed (9) into an algebraic
equation by restricting ourselves to a subset of possible
matrices Q (nA, T ). This algebraic equation then has been
solved and a possible matrix has been found 2 . In our
case, the symmetric part of matrix Q (x) was found to
be definite negative.
Remark 1. Indeed a family of possible matrices Q (nA, T )
has been found that both satisfy (2) and (4). But since
they all have a similar form apart from a constant pa-
rameter, we shall treat them in the sequel as one unique
matrix.

Next the potential function is found by integrating (5).
The general form of the potential form is given by the
following expression:

P (nA, T ) =
∫

p (T ) dT

+ ω
[
γ
(
Cin

A V − nA

)
+

(
T in − T

)]2
(10)

where ω is a positive constant and p (T ) : R → R is a non-
linear function of k (T ) and T . The quadratic term of (10)
is clearly linked to the convection phenomena, whereas the
integral term is related to the reaction kinetics.
Remark 2. Actually the function p (T ) is not unique. It
depends directly on the matrix Q (x). Since we have found
a family of matrices Q (x), there is a corresponding family
of functions p (T ) that are similar apart from a constant
parameter.

Let us now consider the equilibrium points x̄ =
(
n̄A, T̄

)
of

the open-loop CSTR:

Q (x̄)
dx

dt

∣∣∣∣
x̄

= ∇P (x̄) = 0

Since the matrix Q (x) is non-singular, the equilibrium
points x̄ are also critical points of the potential function
P (x) (i.e. ∇P (x̄) = 0) and conversely. The analysis of
the Hessian matrix of the obtained potential function (10)
at each of the equilibrium points shows that the stable
ones are local minima of the function P (x) whereas the
unstable one is a saddle point. The level curves of the
function P (x) are given in Figure 2.

The variation of function P (x) along the trajectories of
the system are given by the following relation:

2 Calculation details can be found in Favache and Dochain (2008).
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Fig. 2. Level curves of the potential function

dP

dt
=∇tP (x) f (x)

=∇tP (x) Q−1 (x)∇P (x)

=
1
2
∇tP (x)

(
Q−1 (x) +

(
Qt (x)

)−1
)
∇P (x)

Since the symmetric part of Q (nA, T ) is negative def-
inite, we have dP

dt ≤ 0 where the equality holds only
for ∇P (x) = 0, i.e. for the equilibrium points. As a
consequence P (nA, T ) is decreasing along the trajectories.
Moreover P (x) is radially unbounded. Therefore the po-
tential function P (nA, T ) is a global Lyapunov function
for the system (Khalil (2002)).

5. POWER-SHAPING CONTROL OF THE CSTR

5.1 Controller design

Let us denote by x∗ = [n∗
A, T ∗]t the desired equilibrium

state. Since the input has an effect only on the temperature
dynamics, the values of n∗

A and T ∗ cannot be chosen
independently. This is stated in the following lemma:
Lemma 1. Let us consider some control input u (x) such
that the closed loop system has at least one equilibrium
point. The equilibrium points of the closed loop system
are contained in the following set:

(n∗
A, T ∗) ∈

⎧⎨
⎩(nA, T )

∣∣∣∣∣∣nA =
δCin

A V

k (T ) + δ

T ∈ ]0, +∞[ \ {Tw}

⎫⎬
⎭ (11)

Proof. Let x∗ = (n∗
A, T ∗) be an equilibrium point of the

closed loop system for the control input u (x). By definition
of an equilibrium point, we have:⎧⎪⎪⎨

⎪⎪⎩
0 =

ql

V

(
Cin

A V − n∗
A

)− k (T ∗) n∗
A

0 =
ql

V
(Tin − T ∗) +

(−ΔrH)
ρcpV

k (T ∗) n∗
A

+u (x∗) (Tw − T ∗)

(12)

The first equation can be directly rewritten as follows:

n∗
A =

δCin
A V

k (T ∗) + δ

Let us now assume that T ∗ = Tw is a possible equilibrium
of the open loop system. If we replace in the second
equation of (12), we find the following relation:

0 =
ql

V
(Tin − Tw) +

(−ΔrH)
ρcpV

k (Tw)
δCin

A V

k (Tw) + δ

This relation implies that Tw is an equilibrium point of
the open-loop system. But, except an unlikely particular
case, there is no reason that the temperature of the cooling
fluid is exactly equal to an equilibrium temperature of
the open-loop CSTR. Hence Tw cannot be an equilibrium
temperature of the closed-loop system. �
Lemma 2. (11) is a necessary condition for x∗ = (n∗

A, T ∗)
to be a local minimum of Pd (x).

Proof. A necessary condition for x∗ to be a local minimum
of Pd (x) is the following one:

∇Pd (x∗) = ∇P (x∗) + ∇Pa (x∗) = 0
By replacing ∇P (x) and ∇Pa (x) by their expressions, the
following relation is obtained:

−∇P (x∗) =−Q (x∗) f (x∗)

= ∇Pa (x∗) = Q (x∗) g (x∗) u (x∗)

Since Q (x∗) is invertible, this can be rewritten as :
f (x∗) + g (x∗) u (x∗) = 0 (13)

When replacing f (x) and g (x) by their respective ex-
pression, (12) is obtained. Thus the rest of the proof of
Lemma 1 also applies here. �
The control action is then found by applying the method-
ology described in Section 2.2. First we solve (6) using the
previously found expression for the matrix Q (x). The left
annihilators of g (x) are given as follows:

g⊥ (x) = [ϕ 0]
with ϕ ∈ R

∗. (6) is thus written as follows:
ϕ

det Q (x)

(
q22 (nA, T )

∂Pa

∂nA
− q12 (nA, T )

∂Pa

∂T

)
= 0

where q12 (nA, T ) and q22 (nA, T ) are the elements of Q (x)
in position (1, 2) and (2, 2), respectively. With our matrix
Q (x) the solution of this partial differential equation is
given as follows:

Pa (nA, T ) = fa

(
nA +

∫
w (T ) dT

)
where w (k (T )) is a rational function of the kinetic co-
efficient k (T ). fa (z) : R → R can be any smooth real-
valued function. In our case we have chosen fa (z) to be a
second order polynomial. Using now (7), the control action
of the following form is obtained for stabilizing the desired
equilibrium point:

u (nA, T ) =
−μ (nA − n∗

A + WT∗ (T )) + u∗ (Tw − T ∗)
Tw − T

(14)
where WT∗ (T ) : R

∗+ → R is given by the following
expression:

WT∗ (T ) =
∫ T

T∗
w (k (τ)) dτ



Obviously WT∗ (T ∗) = 0. μ ∈ R is a parameter of
the controller and u∗ is the value of the input at the
equilibrium state:

u∗ (Tw − T ∗) = −δ (Tin − T ) − γδ
(
Cin

A V − n∗
A

)
In order to ensure that x∗ is a local minimum of Pd (x∗),
μ has to be lower bounded. The bounds are obtained by
imposing that the Jacobian matrix of Pd (x∗) is positive
definite at the desired closed-loop equilibrium point. The
control action u (x) acts in (8) via the term

g (x) u (x) =
(

0
−μ (nA − n∗

A + WT∗ (T )) + u∗ (Tw − T ∗)

)
which does not depend on (Tw − T ) anymore. This means
that the actual control input is the transferred heat which
is equal to:

−μ (nA − n∗
A + WT∗ (T )) + u∗ (Tw − T ∗)

5.2 Considerations on local and global convergence

The controller designed in the previous section only guar-
antees a local convergence to the desired set point, i.e. the
system will converge to desired point if and only if the ini-
tial conditions are close enough to it. Global convergence is
ensured if and only if the shaped potential function Pd (x)
does not have other local minima, i.e. if and only if x∗ is
a global minimum of the function Pd (x).

Let us assume that the point x# =
[
n#

A , T#
]t

is another
local minimum of the function Pd (x). For the same reasons
as stated before, the following relation has to be fulfilled:

n#
A =

δCin
A V

k (T#) + δ
(15)

Moreover, for x# to be a closed loop equilibrium of (8),
the following relation has to be fulfilled:

δ
(
Tin − T#

)
+ δγ

(
Cin

A V − n#
A

)
+ u∗ (Tw − T ∗) − μ

(
n#

A − n∗
A + WT∗

(
T#

))
= 0 (16)

By analogy with (15), let us define the function T̃# (nA)
by the following implicit relation:

k
(
T̃# (nA)

)
=

δCin
A V

nA
− δ

Consider the following function:

Δ (nA) = δ
(
Tin − T̃#

)
+ δγ

(
Cin

A V − nA

)
+u∗ (Tw − T ∗) − μ

(
nA − n∗

A + WT∗
(
T̃#

))
where the dependence of T̃# (nA) on nA has been omitted
for sake of clarity. The equilibrium points x∗ and x# are
zeros of the function Δ (nA). Therefore x∗ is the unique
convergence point if it is the unique zero of Δ (nA) .

The function Δ (nA) is linear in the parameter μ. There-
fore it can be written as follows:

Δ (nA) = Δ0 (nA) + μΔμ (nA)
Remark 3. In Favache and Dochain (2009), we have pre-
sented several old and new results that aim at linking
the thermodynamics and the system theory concepts via

0

Quantity of A [mol]

Δ (n
A
)

increasing μ

Δ0(nA)

x*

Fig. 3. Influence of μ on Δ (nA)

the CSTR study case 3 In this paper we have introduced
a function of the state, denoted Δeq (T ). By integrating
the notations and assumptions of the present paper, this
function is given by the following expression:

Δeq (T ) = k (T ) nAV (−ΔrH)
− ρcpV

[
u (nA, T ) (T − Tw) + δ

(
T − T in

)]
It can be seen directly that Δeq (T ) and Δ (nA) are linked
by the following relation:

Δ (nA) =
Δeq

(
T̃# (nA)

)
ρcpV

It can be shown that the assumptions on the form of k (T )
described in Section 3 and the existence of three open
loop equilibria implies that Δ0 (nA) is increasing for low
and high temperatures, but decreasing on one determined
interval 4 As a consequence, Δ (nA) can have several zeros,
depending on the term μΔμ (nA).

If the function w (T ) has been adequately chosen, then
Δμ (nA) > 0 for nA > n∗

A and Δμ (nA) < 0 for nA < n∗
A.

This means that if μ is chosen sufficiently large and
positive, then the term μΔμ (nA) reshapes the initial
function Δ0 (nA) so as to make the two undesired zeros
to vanish (see Figure 3). As a conclusion, there is a
lower bound on the parameter μ in order to ensure global
convergence.

5.3 Simulation results

In this section we present some simulation results of the
controlled system. First the performance of the controller
for reference tracking is shown in Figure 4. Then Figures
5 and 7 show the cases where only local convergence and
global convergence, respectively, to the desired equilibrium
point is ensured. These figures show the temperature evo-
lution for different initial conditions. The corresponding
level curves of the potential function Pd (x) are shown for
3 In Favache and Dochain (2009) we have considered a CSTR with
a reversible reaction, but the results can be applied directly for an
irreversible reaction by setting the kinetic reaction coefficient of the
reverse reaction equal to zero.
4 This can be deduced from the form of Δeq (T ) in Favache and
Dochain (2009) using the fact that T̃# (nA) is a strictly decreasing
function.
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both cases in Figures 6 and 8, respectively. It can be clearly
seen on Figure 5 that there exist two convergence points,
depending on the initial condition. This is confirmed by
the level curves of the function Pd (x) in Figure 6 where
two local minima can be distinguished.
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tions (global convergence)
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5.4 Robustness analysis

The control law given in (14) requires the complete state
feedback. Moreover it also requires the knowledge of the
temperature dependence of the kinetic coefficient k (T )
that appears in the expression of WT∗ (T ). In most prac-
tical applications, the kinetic coefficient is determined
experimentally and the on-line measurement of the con-
centration is not always achievable. In this section we
shall analyze the effect on the closed-loop convergence and
stability of modeling errors in the kinetic coefficient k (T ).

Let us assume that there is a modeling error on the kinetic
coefficient. The aim is to stabilize the state (n∗

A, T ∗). The
controller is designed using the function k̂ (T ) instead of
the real kinetic coefficient k (T ):

k̂ (T ) = (1 + ξ (T )) k (T ) (17)
with ξ (T ) > −1.
Assumption 1. Despite the error on k (T ), the equilibrium
value of nA is known:

n∗
A = neq

A (T ∗) = δ
Cin

A V

δ + k (T )
�= δ

Cin
A V

δ + k̂ (T )
Assumption 2. Despite the error on k (T ), the equilibrium
value of the control input u∗ is known:



u∗
c =−δ (Tin − T ∗) − γk (T ∗) n∗

A

�=−δ (Tin − T ∗) − γk̂ (T ∗) n∗
A

Assumption 3. The control input has been designed such
that, based on the estimated value of the kinetic coeffi-
cient, the desired equilibrium is asymptotically stable.

From (14), the control input applied to the system is given
by the following expression:

uc (Tw − T )

= μ

(
n∗

A − nA −
∫ T

T∗
ŵ (τ) dτ

)
+ u∗

c (Tw − T ∗)

where we have introduced the following notation, for the
sake of clarity: ŵ (T ) = w

(
k̂ (T )

)
. Assumptions 1 and 2

imply that (n∗
A, T ∗) is still an equilibrium of the closed-

loop system. Assumption 3 implies that the function w (y)
and the parameter μ have been chosen such that the
following matrix is negative definite:

Λ̂ =

⎛
⎜⎜⎜⎜⎝

−
(
δ + k̂∗

)
−n∗

A

dk̂

dT

∣∣∣∣∣
T∗

γk̂∗ − μ −δ + γn∗
A

dk̂

dT

∣∣∣∣∣
T∗

− μŵ (T )

⎞
⎟⎟⎟⎟⎠

Λ̂ is the matrix of the linearized system around the desired
equilibrium state if the kinetics was indeed equal to k̂ (T ).
As a consequence we have:

tr Λ̂ < 0 and det Λ̂ > 0

The actual matrix of the linearized system around (n∗
A, T ∗)

is written as follows:

Λ =

⎛
⎜⎜⎝− (δ + k∗) −n∗

A

dk

dT

∣∣∣∣
T∗

γk∗ − μ −δ + γn∗
A

dk

dT

∣∣∣∣
T∗

− μŵ (T )

⎞
⎟⎟⎠

The trace and the determinant of Λ are given by the
following relations:

tr Λ = Ψ∗ − δ − μŵ (T ∗)

det Λ =−δΨ∗ + μ

[
(δ + k∗) ŵ (T ∗) − nA

dk

dT

∣∣∣∣
T∗

]
with

Ψ∗ = − (k∗ + δ) +
dk

dT

∣∣∣∣
T∗

γn∗
A (18)

Using (17), we can define the following quantity Ψ̂∗ by
analogy with (18):

Ψ̂∗ = γn∗
A

dk̂

dT

∣∣∣∣∣
T∗

−
(
k̂∗ + δ

)

= Ψ∗ (1 + ξ∗) + γn∗
Ak∗ dξ

dT

∣∣∣∣
T∗

+ δξ∗

where ξ∗ = ξ (T ∗). As a consequence the trace and the
determinant of Λ(cl) can be rewritten as follows:
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Fig. 9. Influence of the modelling error on k (T ) for
different values of μ

(1 + ξ∗) tr Λ = Ψ̂∗ − δ − μŵ (T ∗)︸ ︷︷ ︸
tr Λ̂(cl)<0

−
[

dξ

dT

∣∣∣∣
T∗

γk∗n∗
A + 2ξ∗δ + μξ∗ŵ (T ∗)

]
By applying the same development on the determinant,
the following expression is obtained:

(1 + ξ∗) det Λ = det Λ̂ + ξ∗δ (δ + μŵ (T ∗))

+ n∗
Ak∗ dξ

dT

∣∣∣∣
T∗

(γδ + μ)

The closed-loop equilibrium is asymptotically stable if and
only if the trace is strictly negative and the determinant
is strictly positive. Using the inequalities of Assumption
3, this means that if ξ∗ > 0 and dξ

dT

∣∣∣
T∗

≥ 0, the
closed-loop equilibrium is asymptotically stable. But if
these two conditions are not fulfilled, then the closed-
loop equilibrium can become unstable. Nevertheless, if the
function w (y) has been taken sufficiently large such that:

(δ + k∗) ŵ (T ∗) − nA
dk

dT

∣∣∣∣
T∗

> 0

then det Λ(cl) is increasing with μ such that there is a lower
bound on μ that ensures the local asymptotic convergence
(see Figure 9).

6. EXTENSION TO MORE COMPLEX SYSTEMS

The power-shaping approach has given interesting results
on the simplified CSTR case study. It is therefore of
major interest to see if this approach can be extended to
more complex systems, and more particularly to systems
with more than one reacting chemical species and/or with
multiple reactions.

We keep the same assumptions as before, but we consider
more complex kinetics. Under these assumptions, the
general form of the dynamics of a non-isothermal CSTR
can be deduced from (8).

Let us now consider a CSTR with Nr independent re-
actions. From all the chemical species in the mixture, it
is only necessary to consider those that intervene in the



kinetics of the reactions. Let Nc be the number of chemical
species which intervene in the expression of the reaction
kinetics. For each species i the time evolution is given by
the following differential equation (with i = 1, . . . , Nc):

dni

dt
= δ

(
Cin

i V − ni

)
+

Nr∑
l=1

Γilrl (T, n) (19)

where Γil is the stoichiometric coefficient of species i in the
reaction l. The temperature dynamical equation becomes
as follows:

dT

dt
= δ

(
T in − T

)
+

Nr∑
l=1

γlrl (T, n)

where γl = (−ΔrH)l

ρcpV and (−ΔrH)l is the reaction heat of
the reaction l. The time evolution equations of nA and T
have a similar form and the dynamics of the system can
be written as follows (see Dochain et al. (1992)):

dx

dt
= δ

(
xin − x

)
+ Γr (x) (20)

where x = [nA, . . . , nNc
, T ]t, . Γ ∈ R

Nc+1×R
Nr is a matrix

that contains the stoichiometric coefficient of species i in
the reaction l in position (i, l) if 1 ≤ i ≤ Nc and that
contains γl in the lth column if i = Nc + 1.

We shall now apply the same approach as in Section 4,
i.e. we shall first look for a matrix Q (x) that fulfills the
conditions (2) and (4). By using (20), we have the following
relations (i, j = 1, . . . , Nc + 1):

(Q (x) f (x))i =
Nc+1∑
k=1

qik

(
δ
(
xin

k − xk

)
+ Γklrl (x)

)
and thus:

(∇ (Q (x) f (x)))ij = −δqij +
Nc+1∑
k=1

[
qik

Nr∑
l=1

Γkl
∂rl

∂xj

]

+
Nc+1∑
k=1

∂qik

∂xj

(
δ
(
xin

k − xk

)
+ Γklrl (x)

)
Consequently, condition (4) can be rewritten as follows:

− δqij +
Nc+1∑
k=1

[
qik

Nr∑
l=1

Γkl
∂rl

∂xj

]

+
Nc+1∑
k=1

∂qik

∂xj

(
δ
(
xin

k − xk

)
+ Γklrl (x)

)

= −δqji +
Nc+1∑
k=1

[
qjk

Nr∑
l=1

Γkl
∂rl

∂xi

]

+
Nc+1∑
k=1

∂qjk

∂xi

(
δ
(
xin

k − xk

)
+ Γklrl (x)

)

(21)

for all i, j = 1, . . . , Nc + 1.

In the simplified CSTR case, we have first restricted the
set of possible matrices Q(x) to find a solution for (4)
by transforming the partial differential equation into an
algebraic one which is simpler to solve. The same can be
done in the more complex case by adequately restricting
the set of possible solutions.

A general solution of the algebraic form of (21) has not
been found yet. Despite of this, some characteristics of the

solution (if it exists) have already been derived in Favache
and Dochain (2008). We shall now look at some particular
cases of more complex reactions to get a first intuition of
the existence of non-singular and negative semi-definite
solutions of the algebraic form of (21). The detailed
solution for the three particular cases (namely parallel
reactions, reactions with two reactants and consecutive
reactions) is given in Favache and Dochain (2008). In the
three cases it has been assumed that the kinetic functions
can be expressed as powers of the concentration of the
reactants, i.e.:

rl (n, T ) = kl (T )
∏
i∈Θl

(ni)
ζil

where Θl is the set of reactants of reaction l and ζil is some
positive constant.

6.1 Parallel reactions and reactions with two reactants

In this case a solution has been found, but the obtained
matrix has not a negative semi-definite symmetric part.
Thus the corresponding potential function cannot be used
as a Lyapunov function for the open-loop system because
they are not decreasing along the system trajectories.

As shown in Garcia-Canseco et al. (2008), given a matrix
Q (x) that fulfills (4), other solutions to (4) can be built
departing from the first one. Applying this methodology on
the matrices that have been found could lead to another
matrix Q (x) that would be negative-definite and hence
give a Lyapunov function for the open-loop system.
Remark 4. In the particular case of parallel reactions with
first order kinetics, another solution for the matrix Q (x)
has been found. This solution does not exist for higher
order kinetics. This particular solution has a very similar
form of that of the matrix proposed for the case with one
reaction. This seems to indicate that the matrix Q (nA, T )
that has been used in Section 4 is a particular solution of
(9) that exists only in the case of first-order kinetics.

6.2 Consecutive reactions

In this case the algebraic form of (21) has no non-
singular solution. This does not mean that the dynamics
cannot be put into the Brayton-Moser form. But if the
Brayton-Moser form exists, then the partial differential
equation (21) has to be solved.

7. CONCLUSION

A general description of the power-shaping control ap-
proach of the CSTR has been given in this paper. The
main results that were obtained by this approach have
been presented and illustrated by some simulation results.
A detailed mathematical analysis is provided in Favache
and Dochain (2008). Contrary to previous works and ap-
proaches, a global Lyapunov function for the exothermic
CSTR has been found using the power-shaping approach.
This Lyapunov function could then be used to design a
controller for stabilizing the reactor at a desired tempera-
ture. Some results about the local and global convergence
of the controller have also been shown.

The Lyapunov function that was found is the potential
function of the Brayton-Moser formulation of the CSTR



dynamics. Although the potential function has a physical
meaning for the Brayton-Moser formulation of electrical
or mechanical systems, a precise physical interpretation of
the potential function of the CSTR has still to be found.
This interpretation should give more physical insight on
the reasons of the existence of multiple open loop equilib-
ria, and also on the action of the controller.

The controller obtained by the power-shaping control ap-
proach depends on the on-line measurements of the con-
centration and of the knowledge on the reaction kinetics.
Both quantities are usually not exactly known. We have
shown, that if the parameters of the controller are ade-
quately chosen, the control action is robust with respect
to modeling errors on the kinetics. But a robustness study
on the influence of the concentration measurement errors
should also be of great interest before applying it to a real
reactor.

Finally we studied the possibility of extending the previous
work to more complex systems, and more precisely to
CSTRs with multiple reactions and/or multiple reactants.
The extension seems to be rather complex, even for simple
cases such as two parallel reactions or two consecutive
reactions with mass action law kinetics. Indeed, in the
simple CSTR case with a single first-order kinetics re-
action, the solution of the partial differential equation
needed to write the system dynamics in the Brayton-Moser
form has been found by transforming it into an algebraic
one. For the three considered particular cases the corre-
sponding algebraic equation system has either no non-
singular solution (consecutive reactions) or an indefinite
solution (parallel reactions, reaction with two reactants).
The study presented here is only embryonic since it does
not imply that the power-shaping control approach cannot
been applied. But the Brayton-Moser form of the dynamics
(if it exists) actually needs the solution of the partial
differential equation, and not of its simplified version which
is the algebraic equation. Nevertheless in the cases where
an indefinite matrix has been found, the work presented
in Garcia-Canseco et al. (2008) offers the possibility of
finding an alternative negative semi-definite matrix with-
out having to solve the partial differential equation. Also
in this study we have only considered a particular form of
the kinetics, namely we have assumed that the kinetics can
be written as a product of powers of the concentration (i.e.
a more general form of the mass action law) and a kinetic
term. This is only a restricted class of the possible kinetic
laws. Indeed it could also be interesting to apply the
power-shaping control to other forms of kinetics such as
the Monod kinetics (biological systems) or the Michaelis-
Menten kinetics (enzymatic reactions), for instance.
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