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Abstract: Kalman filter and its variants have been used for state estimation of systems
described by ordinary differential equation (ODE) models. Moving Horizon Estimation (MHE)
has been a popular approach in chemical engineering community for the estimation of both
ODE and differential algebraic equation (DAE) systems but is computationally demanding.
There has been some work on applying Extended Kalman filter for state estimation of DAE
systems with measurements as functions of only the differential states. This work describes the
estimation of nonlinear DAE systems with measurements being a function of both the differential
and algebraic states. An Unscented Kalman filter (UKF) formulation is also derived for semi-
explicit index 1 DAE systems. The utility of these formulations are demonstrated through a
case study.

1. INTRODUCTION

Differential algebraic equation (DAE) models naturally
arise in several chemical/physical systems, where some
rate processes are much faster than the others and admit
quasi steady-state approximations. Common examples of
these can be found in separation and reaction systems.
Many chemical engineering systems can be modeled as
DAE systems. Examples of algebraic equations include
mole fraction summations, vapor-liquid equilibrium rela-
tionships and so on. The algebraic equations can be either
linear or nonlinear. Other areas where DAE models arise
are mechanical systems, electrical systems and biological
systems. A DAE system is characterized by the index of
the system. The index of a DAE system is defined as the
number of differentiations that are required to convert the
DAE system into an explicit ODE system. It is not al-
ways possible and easy to convert DAE into ODE systems
[Petzold, 1988]. In this paper. the focus is on estimation
of nonlinear index one DAE systems that are common in
chemical engineering.

The Kalman filter (KF) is an optimal estimator for linear
dynamical systems in the presence of state and measure-
ment uncertainties [Gelb, 1988, Sorenson, 1985]. Extended
Kalman filter (EKF) is an extension of the Kalman filter
for nonlinear systems described by a class of ordinary
differential equations. Simultaneous parameter and state
estimation is achieved in KF and EKF by augmenting the
states [Jazwinski, 1970].

The KF has been used by several researchers for state
estimation of systems describing linear DAE models

[Nikoukhah et al., 1992, Chisci and Zappa, 1992]. The state
estimation of nonlinear DAEs has already been studied
by Albuquerque and Biegler [1997] using Moving -horizon
estimation technique. Moving-horizon estimation (MHE)
is considered as an efficient optimization based method
for state estimation. Moving-horizon estimation can also
be extended to parameter estimation of nonlinear DAEs
[Tjoa and Biegler, 1991].

Moving-horizon estimator can handle constraints and
bounds at every sampling instant [Rao et al., 2003]. How-
ever, questions remain about the computational complex-
ity for on-line implementation of MHE estimators. The
main advantage of the EKF lies in their predictor-corrector
recursive form that has the potential for online deployment
[Muske and Edgar, 1997].

There has been some work on the application of EKF for
nonlinear DAE systems. One of the first attempts at this
can be found in Becerra et al. [1999]. Becerra et al. [2001]
extend this work further and demonstrate their approach
on an experimental case study. They also explore the use
of square root formulation of the EKF which has better
numerical stability than the standard EKF [Park and
Kailath, 1995]. However, the measurements available to
the estimator are all assumed to be functions of differential
states. In this paper, we extend Becerra et al. [2001]
approach to cases where the measurements are functions
of both the differential and algebraic states. Further, we
develop an approach for the use of Unscented Kalman filter
(UKF) for estimation in index 1 nonlinear DAE systems.

The paper is organized as follows. Section 2 provides an
introduction to DAE systems. EKF and UKF algorithms



for DAE systems are discussed in section 3 and section
4 respectively. Simulation results with discussions are
presented in section 5 followed by conclusions in section
6.

2. DIFFERENTIAL ALGEBRAIC SYSTEMS

As discussed in the previous section, DAE systems consist
of both differential and algebraic equations. DAE systems
are characterized by the index of the system. The index
of the DAE system is defined as the number of differen-
tiations required to convert the DAE into an ODE. As a
simple example, consider

ẏ2(t) = y1(t) + λ1(t) (1)

0 = y2(t) + λ2(t) (2)

Differentiating the algebraic equation 2 once, we get
0 = ẏ2(t) + λ̇2(t) (3)

Differentiating the algebraic equation 3 once more yields
0 = ÿ2(t) + λ̈2(t) (4)

Putting these equations together we now get an ODE as
shown in equation .

ẏ2(t) = y1(t) + λ1(t)

ẏ1(t) =−λ̇1(t) − λ̈2(t) (5)

Since the equations had to be differentiated twice this is
an index 2 DAE system. While there are DAE systems of
orders higher than 1 in chemical engineering, index 1 DAE
systems are common as seen in electrochemistry, reactive
distillation and biochemical engineering applications. As
mentioned before, this work considers index 1 DAE sys-
tems.

3. EKF FOR DAE SYSTEMS

While EKF has been studied extensively for ODE systems,
the application of EKF approaches to DAE systems are not
many. Becerra et al. [2001] developed an EKF estimation
approach for for nonlinear index 1 DAEs. The EKF
approach follows the same predictor-corrector form with
some modifications. In the prediction step, a DAE solver
is used for propagating the prior state through the system
model. This is in contrast to the use of an ODE solver in
standard EKF. The covariance matrix of the differential
states are propagated by linearizing the system model. The
correction step is performed only for the differential states
through a linearization of the measurement model. This is
possible because it is assumed that the measurements are
functions of differential states alone. Once the corrected
differential states are available, the corrected algebraic
states are calculated using the algebraic portion of the
system model. The corrected covariance matrix for the
differential states is calculated using the standard EKF
procedure. The mathematical details of the algorithm are
explained below. The nonlinear DAE system is considered
with discrete measurements sampled at regular intervals
with sampling period Δt

xk+1 = xk +
∫ (k+1)Δt

(k)Δt

f(x(τ)), z(τ)) dτ + wk+1 (6)

g(xk+1, zk+1) = 0 (7)

yk+1 = h(xk+1) + vk+1 (8)

where wk+1 and vk+1 are assumed to be independent
Gaussian white noise processes with known covariance
matrix Qk+1 and Rk+1

For a fixed input, the linearized equation is given by

ẋ = Ax (9)
where

A = (J1 − J2J
−1
4 J3) (10)

[
J1 J2
J3 J4

]
=

⎡
⎢⎣

∂f

∂x

∂f

∂z
∂g

∂x

∂g

∂z

⎤
⎥⎦ (11)

Following are the steps involved in the algorithm

• The differential states are propagated by integrating
the DAE model from time tk to tk+1. The predicted
state estimate x̂k+1/k is obtained with uk, which is
the constant input between sampling intervals.

• The predicted covariance matrix in differential states
is propagated using

Pk+1/k = ĀkPk/kĀT
k + Qk (12)

where Ā = exp(AΔt)
• The kalman gain is computed using

Kk+1 = Pk+1/kGT
k+1(Gk+1Pk+1/kGT

k+1 + Rk+1)−1

(13)
where Gk+1 is the linearized measurement model and
the actual measurement model is a function of only
differential states.

• The updated differential estimates are obtained from
kalman update equation
x̂k+1/k+1 = x̂k+1/k + Kk+1(ymeas −h(x̂k+1/k)) (14)

• The updated estimate ẑk+1/k+1 is obtained from the
set of algebraic equations defining the DAE system
once differential state estimate x̂k+1/k+1 is obtained

• The updated covariance matrix is computed as
Pk+1/k+1 = (I − Kk+1Gk+1)Pk+1/k (15)

In this method, ẑ is computed only from the x̂
using algebraic equation and there is no dependence
or use of prior estimates of z (algebraic states). This
method cannot be applied to cases where there is an
availability of algebraic states measurements.

4. PROPOSED APPROACH: EXTENDED KALMAN
FILTER FOR DAE SYSTEMS

In DAE systems, the measurements can, in general, be a
function of both the differential and algebraic states. In
the proposed work, we extend the EKF approach to this
case. The algorithm deviates from the work of Becerra
et al. [2001] in that the EKF works with an augmented
system (with both the differential and algebraic states).
A linearized ODE model involving both differential and



algebraic states (augmented) is derived. This linearized
ODE model is used for the covariance propagation of
augmented state as opposed to just the differential states
as in Becerra et al. [2001]. The gain matrix is calculated
form the augmented predicted covariance matrix and the
linearized measurement model which is a function of both
the differential and algebraic measurements. The corrected
augmented state is computed. From these corrected aug-
mented states, only the differential states are retained.
As the algebraic constraints are to be met, the algebraic
states are calculated from the corrected differential states
using algebraic equations. The details of the algorithm are
explained below. The nonlinear DAE system is considered
with discrete measurements sampled at regular intervals
with sampling period Δt

xk+1 = xk +
∫ (k+1)Δt

(k)Δt

f(x(τ)), z(τ)) dτ + wk+1 (16)

g(xk+1, zk+1) = 0 (17)

yk+1 = h(xk+1) + vk+1 (18)

where wk+1 and vk+1 are assumed to be independent
Gaussian white noise processes with known covariance
matrix Qk+1 and Rk+1

Linearizing the differential equations and algebraic equa-
tions of index 1 DAE system, we get

ẋ = Ax + Bz

0 = Cx + Dz (19)

where

[
A B
C D

]
=

⎡
⎢⎣

∂f

∂x

∂f

∂z
∂g

∂x

∂g

∂z

⎤
⎥⎦ (20)

Differentiating the linearized algebraic equation once , we
get

0 = Cẋ + Dż (21)
Then

ż = −D−1Cẋ (22)
ż = −D−1CAx − D−1CBx (23)

Writing in matrix form[
ẋ
ż

]
=

[
A B

−D−1CA −D−1CB

] [
x
z

]
(24)

The augmented form is

Ẋaug = AaugXaug (25)

The transition matrix is evaluated as
φ = exp(AaugΔt) (26)

The algorithm consists of following steps

• Both differential and algebraic states are propagated
using a DAE solver from tk to tk+1 starting from the
latest updated estimate X̂aug

k and the latest input uk.

• The predicted covariance matrix of the augmented
states is computed as

P aug
k+1/k = φP aug

k/k φT + ΓQk+1ΓT (27)

where

Γ =
[

I
−D−1C

]
(28)

• The augmented Kalman gain is computed as
Kaug

k+1 = P aug
k+1/kGT

k+1(Gk+1P
aug
k+1/kGT

k+1 + Rk+1)−1

(29)
where Gk+1 is the linearised measurement model.

• The updated state estimate is given by
Xaug

k+1/k+1 = Xaug
k+1/k +Kaug

k+1(ymeas−h(Xaug
k+1/k) (30)

• As the algebraic constraints are to be met, differential
terms (x) of the updated estimate are retained and
the updated estimates of the algebraic states (z)
are calculated from the algebraic equation of DAE
system.

• The updated covariance matrix is calculated as
P aug

k+1/k+1 = (I − Kaug
k+1Gk+1)P

aug
k+1/k (31)

5. UNSCENTED KALMAN FILTER FOR DAE
SYSTEMS

Unscented Kalman filter (UKF) is an approach that was
developed to improve on EKF. The UKF approach uses
the idea of unscented transforms for predicting the mean
and covariance when a random variable passes through
a nonlinear transformation. In EKF, linearization of the
nonlinear transformation is used to predict the mean
and covariance of the transformed variable. Unscented
transformation is a sampling technique where a small
number of deterministic samples are chosen such that their
weighted mean and covariance exactly equal the mean
and covariance of the random variable undergoing the
nonlinear transformation. The transformed sample points
are used to calculate the a posteriori mean and covariance.
This results in much better accuracy than the linearization
approach [Julier et al., 2000].

UKF estimation for ODE systems is well developed and
several application studies have appeared [Romanenko and
Castro, 2004, Romanenko et al., 2004, van der Merwe
et al., 2000, Julier, 2002, Wan et al., 2000, Wan and
van der Merwe, 2000]. In this paper, we extend the UKF
approach for semi-explicit index 1 DAE systems. The pro-
posed approach also follows the predictor-corrector form.
First, unscented samples are chosen for the differential
states. The unscented samples for the algebraic states
are generated from the algebraic equations. This makes
all the sigma points consistent. These sigma points are
propagated through the system through a DAE solver. Un-
scented samples for the differential and algebraic states are
again generated using the propagated covariance matrix.
The sample points for the measurements are calculated
by passing the unscented differential and algebraic state
samples through the measurement function. The sample
covariances are used to calculate the Kalman gain. Us-
ing the Kalman gain, the corrected differential states are
obtained. The corrected algebraic states are calculated
using the algebraic equations in the system model. This
algorithm of unscented Kalman filter for DAE systems is



explained below. The nonlinear DAE system is considered
with discrete measurements sampled at regular intervals
with sampling period Δt

xk+1 = xk +
∫ (k+1)Δt

(k)Δt

f(x(τ)), z(τ)) dτ + wk+1 (32)

g(xk+1, zk+1) = 0 (33)

yk+1 = h(xk+1, zk+1) + vk+1 (34)

where wk+1 and vk+1 are assumed to be independent
Gaussian white noise processes with known covariance
matrix Qk+1 and Rk+1

• The first step is the generation of sigma points. At the
kth instant, x̂k/k is the filtered estimate of differential
states and Pk/k is the covariance matrix associated
with it. A set of 2n+1 sigma points X̂k/k,i with
associated weights are chosen symmetrically about
x̂k/k where n is the dimension of the state.

X̂k/k,0 = x̂k/k; W0 =
κ

(n + κ)
(35)

X̂k/k,i = x̂k/k + (
√

(n + κ)Pk/k)i; Wi =
1

2(n + κ)
(36)

X̂k/k,i+n = x̂k/k−(
√

(n + κ)Pk/k)i; Wi+n =
1

2(n + κ)
(37)

where (
√

Pk/k)i is the ith column of matrix square
root of Pk/k and Wi is the weight associated with
the corresponding point. The parameter κ is a tuning
parameter. The weights Wi add to one and the
weighted mean of the set X is same as x̂k/k . The
weighted covariance matrix of the sample is equal to
Pk/k.

Pk/k =
2n∑
i=0

Wi(X̂k/k,i − x̂k/k)(X̂k/k,i − x̂k/k)T (38)

• Calculate Ẑk/k,i from g(X̂k/k,i, Ẑk/k,i) = 0
• Propagate X̂k/k,i and Ẑk/k,i through DAE system to

get X̂k+1/k,i and Ẑk+1/k,i

The predicted differential state estimate x̂k+1/k is
given by

x̂k+1/k =
2n∑
i=0

WiX̂k+1/k,i (39)

• Calculate P xx
k+1/k

P xx
k+1/k =

2n∑
i=0

Wi(X̂k+1/k,i − x̂k+1/k)

(X̂k+1/k,i − x̂k+1/k)T + Qk+1

(40)

• Do unscented sampling with x̂k+1/k as mean and
P xx

k+1/k as covariance matrix

• Recalculate Ẑk+1/k,i from g(X̂k+1/k,i, Ẑk+1/k,i) = 0
• Form X̂aug

k+1/k,i by augmenting X̂k+1/k,i with Ẑk+1/k,i

• Calculate x̂aug
k+1/k

x̂aug
k+1/k =

2n∑
i=0

WiX̂
aug
k+1/k,i (41)

• The predicted sigma points are propagated through
the nonlinear measurement equation to obtain the
predicted measurement as

Yk+1,i = h(X̂aug
k+1/k,i) (42)

Using the set of predicted measurements, the covari-
ance matrix of innovations and the cross covariance
between predicted state estimate errors and innova-
tions are computed as

Pνν,k+1 =
2n∑
i=0

Wi(Yk+1,i − ŷk+1)

(Yk+1,i − ŷk+1)T + Rk+1

(43)

Pxν,k+1 =
2n∑
i=0

Wi(X̂
aug
k+1,i − x̂aug

k+1/k)(Yk+1,i − ŷk+1)T

(44)
where

ŷk+1 =
2n∑
i=0

WiYk+1,i (45)

• The Kalman gain matrix is computed as
Kk+1 = Pxν,k+1(Pνν,k+1)−1 (46)

• The Kalman gain corresponding to differential states
is Kdiff

k+1• The updated differential estimates are obtained using
the linear update equation as in Kalman filter

x̂k+1/k+1 = x̂k+1/k + Kdiff
k+1 (yk+1 − ŷk+1) (47)

• The updated estimate ẑk+1/k+1is obtained from the
set of algebraic equations defining the DAE system
once differential state x̂k+1/k+1 is obtained

• The covariance matrix of error in the updated differ-
ential estimates is computed using

Pk+1/k+1 = Pk+1/k − Kdiff
k+1 Pνν,k+1K

diff
k+1

T
(48)

6. CASE STUDY

The utility of the proposed approaches is tested on an
electrochemical case study. The case study considers the
galvanostatic charge /open-circuit/ discharge processes of
a thin film nickel hydroxide electrode [Celik et al., 2002].
The modeling equations are

ρV

W

dy1

dt
=

j1
F

(49)

j1 + j2 − iapp = 0 (50)

where

j1 = i01[2(1 − y1)exp(
0.5F

RT
(y2 − φeq,1))

−2y1 × exp(
−0.5F

RT
(y2 − φeq,1))]

(51)

j2 = i02[exp(
F

RT
(y2−φeq,2))−exp(

−F

RT
(y2−φeq,2))] (52)



The first equation is the species balance equation, the
second equation is the charge balance equation and j1
and j2 are derived using the Butler-Volmer kinetics. For
the purpose of demonstrating the utility of the proposed
approaches we assume that the differential state is cor-
rupted with process noise wk+1 and the algebraic equation
is exact. The values of parameters used are F = 96487,
R = 8.314, T = 298.15, φeq,1 = 0.420, φeq,2 = 0.303,
ρ = 3.4, W = 92.7, V = 1 × 10−5, iapp = 1 × 10−5,
i01 = 1 × 10−04, i02 = 1 × 10−08. The units of parameters
and variables are omitted for the simplicity. y1 is the mole
fraction of Nickel hydroxide and y2 is potential difference
between at the solid-liquid interface.The initial guess to
the estimator is [x0, z0] = [0.5322, 0.4254] and the actual
value is [0.35024, 0.4071]. The tuning parameters used in
EKF are

The following parameters are used

Δt = 15

P0 =
[

0.005 0
0 0.005

]

Qk+1 = 0.00001

Rk+1 = 0.0001

where Δt is the sampling time , P0 is the error covariance
matrix of differential and algebraic states, Qk+1 is the
process noise associated with differential states and Rk+1

is the measurement covariance matrix. The measurement
in this case study is y2, which is the potential difference
at the solid-liquid interface. The important point to note
is that the augmented covariance matrix should be taken
into consideration if the measurement model is a function
of differential and algebraic states. Figure 1 and Figure
2 show the estimates for the mole fraction and potential
difference.
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Fig. 1. EKF estimates of mole fraction for case study

The same differential algebraic system is considered and
the UKF approach proposed in this paper is tested. The
main advantage of UKF lies in the fact that it does not
require linearization to compute covariance matrices. The
UKF estimator gives very good estimates of mole fraction
and potential difference as shown in Figure 3 and Figure
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Fig. 2. EKF estimates of potential difference for case study

4. The tuning parameters for the UKF are same as used
in EKF implementation. Figure 5 shows the comparison
of UKF and EKF estimates and the their performances
are compared by computing the root mean square error
(RMSE) of the two states. Table 6 shows the RMSE values
of estimates of UKF and EKF. It can clearly be seen
that the UKF performs better than the EKF for this case
study. Further, the UKF also avoids linearization in the
computation of the covariance matrices.

RMSE values of EKF and UKF
Method RMSE y1 RMSE y2

EKF 0.0305 0.0035
UKF 0.0035 0.0035
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Fig. 3. UKF estimates of mole fraction for case study

7. CONCLUSIONS

In this paper, EKF and UKF formulations for nonlin-
ear DAEs were proposed. The proposed EKF approach
handles the case where the measurement functions are a
function of both the differential and algebraic states. While
UKF for ODE systems are well studied, there is very little
work on the application of the UKF approach to DAE



0 50 100 150 200 250 300
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

Sampling instant

P
ot

en
tia

l d
iff

er
en

ce

Actual
Estimated

Fig. 4. UKF estimates of potential difference for case study
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Fig. 5. Comparison of UKF and EKF estimates

systems. One possible approach to use unscented trans-
formation in the estimation of DAE systems is proposed
in this work. A case study is presented to demonstrate
both the approaches. In this case study, the algebraic
state is directly measured. It is shown that while both
the proposed approaches provide satisfactory estimation,
the UKF approach outperforms the EKF approach.
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