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Abstract: A control strategy is proposed to control the internal fluid temperature at the outlet of a co-
current heat exchanger by manipulating the inlet external fluid temperature. The dynamic model of the
heat exchanger is given by two partial differential equations. Based on nonlinear geometric control, a
state-feedback law that ensures a desired performance of a measured output defined as spatial average
temperature of the internal fluid is derived. Then, in order to control the outlet internal fluid temperature,
a control strategy is proposed where an external controller is introduced to provide the set point of the
considered measured output by taking as input the error between the outlet internal fluid temperature and
its desired set point. The validity of the proposed control design and strategy is examined in simulation
by considering the tracking and perturbation rejection problems. Copyright c©2009 IFAC.
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1. INTRODUCTION

As a thermal device, heat exchangers are widely used in process
industries both for cooling and heating operations. The dynamic
behavior of the heat exchanger is modeled by a set of partial
differential equations (PDE) that describe the spatio-temporal
variation of the temperatures. Thus, the need to find the best
operating conditions for the heat exchangers and to improve
their effectiveness lead to take into account their distributed
nature. In this context, good performances can be attained using
more efficient control strategy based on the direct use of the
distributed parameter model rather than a reduced or a lumped
model (Ray, 1989; Christofides, 2001).

Heat exchangers can be classified into two major types accord-
ing to their flow arrangement: co-current and counter-current
heat exchangers. For the first one, the two fluids travel in the
same direction. By contrast, for the second one, the fluids move
in opposite directions.

In the control problem of tube heat exchangers, the variable
which is manipulated, theoretically, is the thermal power at
the inlet of the outer tube, i.e. grossly the product of a flow
rate and a difference of temperature. In practice, to control the
outlet temperature of a heat exchanger, two possible strategies
which are not equivalent exist. The first one is to use the
inlet temperature of the external fluid, while the second is to
manipulate its flow rate.

When the flow rate is considered as a manipulated variable,
if it becomes too low, the flow regime in the outer tube can
be laminar instead of turbulent, which affects the parameters
of the models, in particular the heat transfer coefficient (Xuan
and Roetzel, 1993). So the tuning of the controller should vary
with the flow rate, which is a difficult task (Abdelghani-Idrissi
� Corresponding author: corriou@ensic.inpl-nancy.fr

et al., 2001; Arbaoui et al., 2007). In addition, by manipulating
the flow rate, a minimum bound is to set on this input. With
the temperature as a manipulated input, it is possible to work
at a constant large flow rate and the hydrodynamic regime is
invariable. Physically, manipulating the temperature is almost
possible if this latter is the outlet of a process with fast dynamics
like plate heat exchangers. Potential flow rate variations will be
assumed as a disturbance that affects the system and needs to
be rejected by the designed controller.

Control of counter-current heat exchanger has attracted much
attention, and several strategies are proposed based either on
the PDE model or ODE model (see e.g. Maidi et al. (2008a) for
more references) compared to the co-current heat exchanger for
which few methods have been proposed in the literature. Derese
and Noldus (1980) addressed the problem of controlling of the
co-current heat exchanger using dynamical lumped parameter
controllers designed based on technical frequency domain spec-
ifications. Based on the conjugate gradient method (CGM) of
minimization, Huang and Yeh (2003) proposed an algorithm
for determining an optimal external distributed heat-flux of a
steady state co-current heat exchanger.

In this paper, a control strategy is proposed to control the outlet
internal fluid temperature of a co-current heat exchanger by
manipulating the inlet external fluid temperature. The designed
approach is based on the use of the PDE model that describes
the dynamic behavior. The idea is to design a state-feedback
control that allows controlling the average temperature of the
internal tube of the heat exchanger, assumed as the measured
output. As it will be demonstrated, the direct design of a control
law by considering the outlet temperature as the controlled
variable is a difficult task due to the fact that the process is
infinite-dimensional. Then, in order to control the outlet fluid
temperature, a control strategy is proposed where a PI con-
troller is introduced to provide the set point of the measured
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Fig. 1. co-current heat exchanger.
output (spatial average temperature). The design of the state-
feedback control law makes use of the concept of characteristic
index (Christofides and Daoutidis, 1996), which characterize
the spatiotemporal interactions between the controlled and ma-
nipulated variables.

The paper is organized as follows. In section 2, the studied
co-current heat exchanger is presented and its dynamic model
given as a system of two PDEs. Section 3 concerns the for-
mulation of the control problem and the design methodology.
Section 4 is dedicated to simulation results concerning tracking
and perturbation rejection problems. Finally, a conclusion ends
the article.

2. CO-CURRENT HEAT EXCHANGER DYNAMIC
MODEL

2.1 Description of the heat exchanger

The process studied in this work corresponds to a tubular co-
current heat exchanger (Fig. 1). A fluid of constant density ρi

and of heat capacity Cpi
flows through the internal tube of a

heat exchanger, of length L, with a constant velocity vi. This
fluid enters at temperature Ti0 and exchanges heat with the
an external fluid or non condensating vapor fluid, of constant
density ρe and of heat capacity Cpe

, which flows in the same
direction in the jacket with a velocity ve. This fluid enters at
temperature Te0

. At the outlet of the exchanger, the internal
fluid leaves at temperature TiL

. In the present study, the internal
and external cross sections Si and Se of the heat exchanger
are supposed to be uniform and the surface area used for the
heat transfer per unit length is A. Both temperatures Ti of the
internal fluid and Te of the external fluid depend on time and
spatial position along the tube.

The energy balance of the heat exchanger, after classical simpli-
fying hypotheses (Ray and Ogunnaike, 1994), gives the follow-
ing partial differential equation for the internal tube (internal
fluid)

∂Ti(z, t)

∂t
= −vi

∂Ti(z, t)

∂z
+ hi [Te(z, t) − Ti(z, t)] (1)

and the following partial differential equation for the jacket
(external fluid)

∂Te(z, t)

∂t
= −ve

∂Te(z, t)

∂z
+ he [Ti(z, t) − Te(z, t)] (2)

where hi =
Ui A

ρi Si Cpi

, he =
Ue A

ρe Se Cpe

.

Ti and Te are the temperatures of the internal and external
fluids, respectively, hi and he are the heat transfer coefficients,

vi and ve are the velocities, Ui and Ue are the overall heat
transfer coefficients, A is the surface area devoted to heat
transfer.

Each PDE requires an initial condition and a boundary con-
dition to be fully defined. The studied heat exchanger is of
co-current type. For Eq. (1) describing the temperature of the
internal fluid, the boundary condition is usually specified at
z = 0 as the temperature of the fluid entering the tube is in
general known and measurable. Thus, at z = 0, it gives

Ti(0, t) = Ti0(t) (3)

and most often the initial condition is some given temperature
profile at t = 0

Ti(z, 0) = T ∗

i (z) (4)

Similarly, for Eq. (2), describing the distribution of temperature
of the external fluid in the jacket, the boundary condition is
the temperature of the entering fluid Te0

, specified at z = 0,
consequently

Te(0, t) = Te0
(t) (5)

while the initial condition is some given temperature profile at
t = 0

Te(z, 0) = T ∗

e (z) (6)

Eqs. (1)-(6) constitute the dynamic model of the co-current heat
exchanger.

3. CONTROL OF THE CO-CURRENT HEAT
EXCHANGER

3.1 Control problem formulation

As indicated above, to control the outlet internal temperature
TiL
, two manipulated variables are possible, either the inlet ex-

ternal fluid temperature Te0
or the flow rate represented by the

velocity ve. In this work, the temperature Te0
, corresponding to

the boundary condition (5), is taken as a manipulated variable to
easily control the outlet internal fluid temperature TiL

since the
hydrodynamic regime remains invariable. Now, due to Eq. (2),
it is noticeable that by manipulating the boundary condition of
the jacket, given by Eq. (5), a variation of the temperature of the
external fluid Te along the jacket results. Thus, by denoting as
u the control variable and y the controlled variable, the model
of the heat exchanger (1)-(6) takes the following form

∂Ti(z, t)

∂t
=−vi

∂Ti(z, t)

∂z
+ hi [Te(z, t) − Ti(z, t)] (7)

∂Te(z, t)

∂t
=−ve

∂Te(z, t)

∂z
+ he [Ti(z, t) − Te(z, t)] (8)

Ti(0, t) = Ti0(t) (9)

Te(0, t) = Te0
(t) = u(t) (10)

Ti(z, 0) = T ∗

i (z) (11)

Te(z, 0) = T ∗

e (z) (12)

y(t) = C
(
Ti(z, t)

)
=

L∫
0

δ(z − L)Ti(z, t) dz (13)

where C( . ) is a bounded linear operator.



3.2 Design approach

Recently the nonlinear geometric control has proved to be
very successful as a control approach of the linear and quasi-
linear DSP (Christofides and Daoutidis, 1996; Gundepudi and
Friedly, 1998; Christofides, 2001; Wu and Liou, 2001; Maidi
et al., 2008a,b). The most important advantage of geometric
control is that the control law can be designed using directly the
PDE model, which leads to distributed control that increases
the performances (Christofides, 2001). Thus, this theoretical
approach will be used to derive a boundary control law for the
co-current heat exchanger.

The manipulated variable u(t) appears as an inhomogeneous
part in the boundary condition (10), so in order to obtain the
expression of the control law, we propose to insert the manip-
ulated variable u(t) through the use of Dirac delta function in
the state equation (7) as follows

∂Te(z, t)

∂t
=−ve

∂Te(z, t)

∂z
+ he [Ti(z, t) − Te(z, t)]

+ve δ(z)u(t) (14)
so that the model will be affine with respect to the input u(t).

Under these conditions, the boundary condition (10) becomes
homogeneous,

Te(0, t) = 0 (15)

Now, as the open-loop system u(t)-y(t) is infinite dimensional,
the characteristic index σ does not exist. This can be easily ver-
ified by calculating the successive derivatives of the output (13)
with respect to time. To overcome this problem, we propose to
consider another measured output given as the average of the
external fluid temperature, i.e.

ym(t) = Cm

(
Ti(z, t)

)
=

L∫
0

cm(z)Ti(z, t) dz (16)

where Cm( . ) is a bounded linear operator and cm(z) is a
smooth positive function (cm(z) > 0).

In this case, the derivative of the measured output (16) with
respect to time yields

dym(t)

dt
=

L∫
0

cm(z)
∂Ti(z, t)

∂t
dz

=

L∫
0

cm(z)

(
− vi

∂Ti(z, t)

∂z
+ hi

[
Te(z, t)

− Ti(z, t)
])

dz (17)

the characteristic index is greater than one. Performing one
more differentiation, we obtain:

d2ym(t)

dt2
=

L∫
0

cm(z)

(
− vi

∂

∂t

(
∂Ti(z, t)

∂z

)

+hi

[
∂Te(z, t)

∂t
−

∂Ti(z, t)

∂t

])
dz (18)

By substituting the term
∂Te(z, t)

∂t
by its expression given by

(14) and after arrangement, equation (18) takes the form

d2ym(t)

dt2
= I1 + hi ve

[ L∫
0

cm(z)δ(z) dz

︸ ︷︷ ︸
I2

]
u(t) (19)

where I1 is the remaining term of the integral in equation (18).
According to equation (19), it is clear that the input appears
linearly.

Now, in order to have the control law u(t) well-defined, the
integral term I2 must be different from zero. This condition
ensures that the characteristic index of the measured output
ym(t) with respect to the manipulated input u(t) is equal to
2. The calculus of I2 gives

I2 =

L∫
0

cm(z) δ(z) dz = cm(z)|z=0
(20)

The condition on the characteristic index being equal to 2 is
related to the choice of the function cm(z), i.e. the value of
cm(z) should not be zero at z = 0

I2 = cm(0) �= 0 (21)

Thus, by choosing a function cm(z) ≥ 0 that satisfies the
condition (21), the characteristic index will be σ = 2. In
summary, the modification of equation (14) by introduction of
the manipulated input and the consideration of the new output
(16) have ensured the existence of the characteristic index.

As σ = 2, this suggests requesting the following input-output
response of the closed-loop system

τ2

d2ym(t)

dt2
+ τ1

dym(t)

dt
+ ym(t) = v(t) (22)

Substituting (19) into equation (22), we obtain the following
state-feedback control law

u(t) =
1

hi ve τ2 I2

[
v(t) − ym(t) − τ1 ẏm(t) − τ2 I1

]
(23)

where τ1, τ2 are adjustable controller parameters chosen to
guarantee the input-output stability and to enforce the desired
performance specifications for the output ym(t) (Christofides,
2001), and v(t) is an external input.

The control robustness dealing with problems of model and
parameter uncertainty and unmodeled dynamics, is provided
in (23) through application of the linear control theory to
the resulting linear [input v(t)-output ym(t)] linear system
to define the external input v(t) by a robust controller. In
this work, in order to ensure the robustness, i.e. to handle
uncertainties and unmodeled dynamics, the external input v(t)
is defined by means of a PI controller (Kravaris and Kantor,
1990) as follows

v(t) = Kcm

⎡
⎣(

yd
m(t) − ym(t)

)
+

1

τIm

t∫
0

(yd
m(ξ) − ym(ξ)) dξ

⎤
⎦

(24)



whereKcm
, τIm

are respectively the proportional gain, integral
time constant of the PI controller, respectively. yd

m(t) is the set-
point of the measured variable ym(t).

Thus, the transfer function of the closed loop system is the
following
Ym(s)

Y d
m(s)

=
Kcm

(
τIm

+ 1
)

τIm
τ2 s3 + τIm

τ1 s2 +
(
τIm

+ Kcm
τ1

)
+ Kcm

(25)

The scalar parameters Kcm
, τIm

and τ are tuned in order
for the denominator to approach a polynomial minimizing an
ITAE criterion (Corriou, 2004) and it can be verified that the
following polynomial is Hurwitz (the poles have a negative real
part) to ensure the closed loop stability related to the roots of
the characteristic equation

τ2τIm
s3 + τ1τIm

s2 +
(
τIm

+ τ1Kcm

)
s + Kcm

= 0 (26)

At this point, it is clear that the control law (23) ensures the
desired performances of the introduced measured output ym(t)
rather the controlled output y(t). Actually, the output ym(t) is
introduced only in order to avoid the problem of non-existence
of the characteristic index. In order to solve the formulated
boundary control problem, i.e. controlling the output y(t), we
propose to keep the control law (23) derived for the measured
output (16) with c(z) satisfying the condition (21). Then, define
the set point of the measured output ym(t), denoted by yd

m(t),
by means of a PI controller taking as input the error e(t) =
yd(t) − y(t), where yd(t) is the corresponding set point of the
controlled variable y(t). Note that another control technique
can be adopted to provide the set point yd

m(t). The proposed
global control strategy is summarized in Fig. 2.

The control law (23) requires that the complete state Ti(z, t)
must be available especially to evaluate the integral term I1

and the measured output ym(t). From a practical point of view,
this is impossible since the state Ti(z, t) is infinite. Ray (1989)
discusses some way that can provide the complete state of
a distributed parameter system. The design of Kalman filter
that estimates the whole state variables vector in the case of a
counter-current heat exchanger has been studied by Maidi et al.
(2008a). In this work, it is considered that the vector of state
variables is fully available to clearly show the effectiveness and
the contribution of the proposed control strategy.

Note that the choice of the function cm(z) is not unique. Nev-
ertheless, the relation (21) shows that the function cm(z) is
involved in the evaluation of the integral term I1 and in cal-
culating the measured output ym(t) and its derivative ẏm(t),
so it is suggested to choose a simple function for example
cm(z) = L − z. From a practical point of view, these calcu-
lations can be provided simply by a computer by processing
the data measurements Ti(z, t) and Te(z, t).

4. SIMULATION RESULTS

In this section, the performance of the proposed control strategy
will be illustrated through application examples. For simula-
tion purpose of the closed-loop system, the method of lines
(Wouwer et al., 2004) is used by considering a number of
discretization points N = 100. The control is held constant
over the sampling period equal to 0.02 s in all simulation runs.
The integral term I1, the measured output ym(t) and its deriva-
tive ẏm(t) involved in the control law (23) are evaluated nu-
merically using the trapezoidal method. The terms involving

differentiation according to the space variable z are evaluated
by means of finite differences.

The heat exchanger parameters (Friedly, 1972) are ve =
2m . s−1, vi = 1m . s−1, he = 1 s−1, hi = 1 s−1 and L = 1m.
For the internal PI controller, the tuning parameters obtained
following the tuning procedure described at the end of the
section 3.2 are Kcm

= 0.0240, τIm
= 0.0469 s. The tuning

parameters Kc and τI of the external PI controller that provide
the set point yd

m(t) have been achieved by trial and error and
observation of the obtained performance, so that the retained
parameters are Kc = 0.02 and Ti = 0.3 s.

The initial conditions Ti(z, 0) and Te(z, 0) are the steady state
profiles (Fig. 3) defined by Ti0(t) = 25◦C and Te0

(t) = 50◦C.
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Fig. 3. Profiles of the temperatures of the internal and external
fluids at steady state.

4.1 Tracking problem

In the first simulation run, the reference input tracking capa-
bilities of the controller are studied. Thus, two step set points
have been specified at times t = 1 s and t = 30 s corresponding
respectively to yd(t) = 60 ◦C and yd(t) = 30 ◦C. On Fig. 4,
it is clear that the output y(t) (Fig. 4b) follows perfectly the
imposed set point whereas the control moves of u(t) are phys-
ically acceptable (Fig. 4c). In addition, the spatial profiles of
temperature obtained at time t = 60 s is also realistic (Fig. 4d).

4.2 Disturbance rejection

The second performed test concerns the problem of disturbance
rejection. The performances of the control strategy are thus
evaluated with respect to changes of the internal fluid tempera-
ture at the inlet of the heat exchanger which is a disturbance for
the process. For that reason, a step of −10% of the temperature
of the entering internal fluid (at z = 0) is imposed as a distur-
bance at time t = 30 s, after having imposed a step set point
at time t = 1 s corresponding to yd(t) = 60 ◦C. From Fig. 5,
it is clear that the controller behaves adequately to reject the
disturbance effect and achieve perfectly the set point tracking
(Fig. 5b). The dynamic behavior of the manipulated variable
u(t) (Fig. 5c) remains also physically admissible. Again, the
profiles of temperatures at t = 60 s, after successively the step
set point and the step disturbance, are typical of the behavior of
a co-current heat exchanger (Fig. 5d).

5. CONCLUSION

In this paper, the geometric control of a co-current heat ex-
changer is investigated, and a control strategy is proposed to
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control the outlet internal fluid temperature. The main idea con-
sists in inserting the manipulated variable, i.e. the inlet external
fluid temperature, in the state equations of the heat exchanger
by means of a Dirac function. Furthermore, the spatial average
temperature of the internal fluid has been introduced, as mea-
sured output, in order to ensure the existence of the characteris-
tic index. Then, to achieve a desired performance of the outlet
internal fluid temperature, a control strategy is proposed where
a PI external controller is introduced to provide the set point
of the introduced measured output by taking as input the error
between the outlet internal fluid temperature and its desired
set point. The effectiveness of the proposed design and con-
trol strategy is demonstrated through numerical experiments.
The simulation results show that the control strategy behaves
correctly and ensures a satisfactory tracking and disturbance
rejection.
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Fig. 4. Set point tracking.
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Fig. 5. Disturbance rejection.


