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Abstract: In this age of globalization, the realization of production innovation and highly
stable operation is the chief objective of the process industry in Japan. Obviously, modern
advanced control plays an important role to achieve this target; but it is emphasized here that
a key to success is the maximum utilization of PID control and conventional advanced control.
This paper surveys how the three central pillars of process control – PID control, conventional
advanced control, and linear/nonlinear model predictive control – have been used and how they
have contributed toward increasing productivity. In addition to introducing eminently practical
methods, emerging methods, and their applications, the authors point out challenging problems.
In Japan, industry and academia are working in close cooperation to share their important
problems and develop new technologies for solving them. Several methods introduced in this
paper are results of such industry-academia collaboration among engineers and researchers in
various companies and universities. Furthermore, soft-sensor or virtual sensor design is treated
with emphasis on its maintenance, because soft-sensors must cope with changes in process
characteristics for their continuous utilization. Maintenance is a key issue not only for soft-
sensors but also for controllers. Finally, we will expand our scope and briefly introduce recent
activities in tracking simulation and alarm management. A part of the results of our recent
questionnaire survey of process control are also introduced; the results are extremely helpful in
clarifying the state of the art in process control in Japan.

Keywords: Advanced process control, Alarm management, Industrial application, Model-based
control, Model predictive control, PID control, Process control, Production innovation,
Soft-sensor, Tracking simulator.

1. INTRODUCTION

The Japanese chemical and petroleum refining industries
has focused on production innovation and highly stable
operation. The embodiment of these two concepts is be-
lieved to be indispensable. In fact, production innova-
tion and highly stable operation have led to remarkably
increased productivity at advanced chemical companies.
Daicel Chemical Industries, for example, has tripled the
productivity per plant employee since Intellectual and In-
tegrated Production System was established in the Aboshi
plant in 2000 (Daicel Chemical Industries, Ltd. (2008)).
This reputable activity was motivated by the effort in
Mitsubishi Chemical Corporation (MCC) in the 1990’s
(Shoda (1998)). MCC has developed Super-stable Opera-
tion Technologies (SSOTs) and Super-stable Maintenance
Technologies (SSMTs) to maintain production stability
and prevent facility accidents (Mitsubishi Chemical Cor-
poration (2005)). SSOTs aim to keep stable plant opera-
tion by prevention and prediction of various troubles such
as fouling, plugging, corrosion, and so on, and SSMTs
are facility management technologies used to ensure high
standards of stability.

In the 1990’s, Japanese companies realized that many
skilled operators were approaching retirement age. This

social problem was called ”year 2007 problem” in Japan.
We are in the middle of this. Since the achievement of
stable and efficient operation has largely depended on
skilled operators in Japan, the year 2007 problem has
heightened a sense of crisis and has motivated companies
to initiate production innovation. Production innovation
requires thorough review of personnel training, organiza-
tions, production methods as well as operation control
systems.

To realize highly stable operation, process control plays
an important role. In Japan, a task force was launched in
2007 to sift through problems regarding process control
and investigate solutions. The task force, named ”Work-
shop No.27 Process Control Technology,” consists of 32
engineers from industry and 12 researchers from univer-
sities. It is supported by the 143rd committee on process
systems engineering, the Japan Society for the Promotion
of Science (JSPS). Currently, the following topics are being
investigated by the members.

• Practical closed-loop system identification
• Practical tuning techniques of PID controllers
• Systematization of the control performance improve-

ment activity based on control performance assess-
ment
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Fig. 1. Chronology of project execution in MCC

• Control system design from the viewpoint of plant-
wide control

• Evaluation and maintenance of model predictive con-
trol

• Design and maintenance of soft-sensors

Most of these topics are also covered by the status report
of the IFAC Coordinating Committee 6 (Dochain et al.
(2008)). These are key issues not only in the Japanese
chemical industry but also internationally.

This paper aims to reveal the state of the art in advanced
chemical process control in Japan. First, the projects that
process control sections of a general chemical corporation
of Japan have executed in the last two decades are de-
scribed in section 2. Then, several key technologies are
investigated in more detail: PID control in section 3, con-
ventional advanced control in section 4, model predictive
control (MPC) in section 5, soft-sensor or virtual sensor
in section 6, and other issues including an operation sup-
port system based on an on-line process simulator and
alarm management in section 7. In each section, eminently
practical techniques with successful application results are
introduced, and challenges are clarified. Furthermore, this
paper introduces results of a questionnaire to member
companies of the JSPS 143rd committee on their process
control applications including MPC and soft-sensors. The
results will be extremely useful for grasping the state of
the art in process control.

2. MILESTONE IN THE HISTORY OF PROCESS
CONTROL APPLICATION

There are three phases in process control application
projects in Mitsubishi Chemical Corporation (MCC), to
which the second author had belonged for many years,
as shown in Fig. 1: the advanced process control (APC)
projects for large-scale continuous processes, the improve-
ment activity of the control performance of basic control
systems for small-to-medium-scale processes, and the ad-
vancement of polymer and batch process control.

2.1 Project Chronology

In the first phase in the early 1990’s, multivariable MPC
was applied to large-scale continuous processes such as

olefin production units for generating a large profit. The
APC project was conducted for 15 production units of 5
production sites by using DMCplus R© as a standard tool,
and satisfactory results were achieved. The key to success
is nurturing process control engineers who can accomplish
the projects independently on their own. They learned pro-
cedures and methods of planning, control system design,
plant tests, tuning, and operation. In addition, they joined
seminars on advanced control theory given by prominent
researchers and professors. By accumulating experience on
the projects, they grew into capable engineers who under-
stood theory and had business acumen. These 15 process
control engineers took a leading part and accomplished
APC projects in MCC.

In the second phase, the performance of PID control
systems was assessed and improved. All production units
which APC projects did not cover were targeted. Both
the operation section and the instrumentation section
jointly carried out this project as a daily improvement
activity in cooperation with the process control section.
As a result, the operator workload was reduced through
the improvement in service factors of PID control systems
and a reduction in frequency of alarms and operator inter-
ventions. In addition, the improvement in control perfor-
mance contributed toward the economic profit because it
made operations energy-efficient through optimally chang-
ing set-points. It was also the perfect opportunity for
finding applications of conventional advanced control such
as override control and valve position control (VPC).

In the third phase, the advancement of polymer process
control was investigated. It is important to achieve rapid
grade transition while satisfying quality specification in
polymer plants, because transitions among a wide variety
of products are made frequently. Therefore, an original
control algorithm that is based on precise first-principle
models of polymerization reactions and quality models
relating polymerization reaction conditions and product
quality has been used since the 1980’s. In this phase,
process models such as catalyst activity were reviewed,
and a new nonlinear MPC algorithm was developed and
applied. As a result, the control performance was signifi-
cantly improved, off-specification products were reduced,
and quality was stabilized.

The focus of the process control section has shifted to
problem-solving regarding process control of small-to-
medium-scale processes and the maintenance of APC sys-
tems. The targets include 1) accumulating energy-saving
effects by applying an in-house linear MPC algorithm
to distillation, reforming furnace, and air separation pro-
cesses, 2) developing soft-sensors, which are substituted
for process gas chromatographs, for shortening the con-
trol interval and improving control performance, and 3)
adapting APC systems for reinforcement of process units.

Since the 1990’s, the movement to reform the whole pro-
duction activity has started at advanced chemical com-
panies as mentioned in the introduction. In addition to
integration of control rooms, such production innovation
requires the review of operation management, alarm man-
agement, emergency shutdown system, maintenance man-
agement, etc., and also it requires modernizing the control
information system. Such an activity is triggered by the



Table 1. Classification of process control
methodologies and the numbers of applications

in the MCC Mizushima plant

classification methodology application

modern linear MPC 54
advanced nonlinear MPC 2
control LQI with preview action 2

feed-forward control
conventional override control

advanced control valve position control 500+
analyzer feedback control
model-based control etc

regulatory control PID/I-PD control 5006

opportunity for DCS introduced in the 1980’s to enter a
renewal period as well as the year 2007 problem. Process
control engineers are or will be involved in this movement.

2.2 Process Control Methodology

Control methodologies which bear the central role in
process control systems can be classified into regulatory
control such as PID control, conventional advanced con-
trol such as feedforward control and override control, and
modern advanced control such as MPC. The number of
applications of these control methodologies in the MCC
Mizushima plant is summarized in Table 1. The ratio of
applications of PID control, conventional advanced con-
trol, and MPC is 100:10:1. PID control is used in 5006
loops in 24 production units. The number of control loops
repeatedly increases and decreases corresponding to new
establishment, reinforcement, or stopping of production
units. Conventional advanced control is effective in many
cases, but the number of its applications is not as many
as expected. MPC has become established as a standard
technique for multivariable control which realizes econom-
ical operation of large-scale processes.

2.3 Survey Result of Control Methodology

A part of the questionnaire survey results of process
control application is summarized in Table 2. This ques-
tionnaire asked control engineers to evaluate the level of
their application of conventional advanced control, model-
based control, adaptive control, modern-control-theory-
based control, knowledge-based control, statistical process
control, and soft-sensor in four grades.

This survey result clarifies the state of the art of pro-
cess control application in Japan. As expected, linear
MPC is the only methodology of modern advanced control
that has been applied practically. Most companies have
not used nonlinear MPC, adaptive control including self-
tuning control, state feedback control, preview control,
H∞ control, or knowledge-based control including neural-
network-based control. These control techniques have not
been used because they are not available as a practical,
easy-to-use tool and in-house development is troublesome.
In particular, self-tuning control is a black box and has
incurred a vague distrust of engineers and operators. In
addition, it is not superior to gain scheduling control or
robust PID tuning, which is more intuitive and under-
standable. On the other hand, the modern control theory
has not been accepted in the chemical and petroleum re-
fining industries. This situation is in stark contrast to that

Table 2. Level of control application (from the
survey JSPS143 WS27 2009)

control methodology level of application
A B C D

conventional advanced control
feedforward control 3 9 6 2
override control 2 6 5 7
valve position control 4 5 6 5
sampled-data control 1 5 9 5
dead-time compensation 0 2 11 7
gain-scheduled PID control 1 1 9 9

model-based control
internal model control 2 5 3 9
linear model predictive control 4 6 6 3
nonlinear model predictive control 0 1 2 16

adaptive control
self-tuning PID control 0 1 1 17
model reference adaptive control 0 0 1 18

modern-control-theory-based control
state feedback control 0 0 4 15
preview control 0 0 1 18
H∞ control 0 0 0 19

knowledge-based control
fuzzy control 0 0 5 14
artificial-intelligence-based control 0 0 2 17
neural-network-based control 0 0 4 15

statistical process control 0 1 3 15
soft-sensor 3 7 4 5

Explanation of level of application:
A: standardized and always applied if necessary.
B: applied, but not standardized.
C: applied sometimes.
D: not applied.
The numbers in this table show the numbers of answers.

in the steel industry, for example, where there are many
applications of modern control such as H∞ control. This
is because there have already been a number of successful
MPC applications in the chemical and petroleum refining
industries; thus control engineers are not motivated to
use more theoretical control algorithms. Knowledge-based
control is useful for complementing PID control and MPC,
but it is difficult to generalize knowledge-based control so
that it can be applied to a variety of processes.

3. PID CONTROL

In Japanese chemical companies, KAIZEN activities aimed
at safe and stable operation are actively continuing. One
important activity is improvement in the control perfor-
mance of PID control systems. The aims of this improve-
ment activity, in which controllers are retuned appropri-
ately, are 1) to realize stable operation by reducing the
influence of disturbances, 2) to realize automatic rapid
transition of operating conditions such as production rate,
3) to gain the ability to achieve economical operation, and
4) to allow operators to be released from taking care of
PID controllers. Additional effects are to find out problems
with sensors and actuators, and to clarify possible targets
of advanced control application.

In the KAIZEN activities, improving the control per-
formance with retuning should be stressed, rather than
spending time and effort to strictly assess the control
performance of PID control loops. The following simple
indexes are sufficient to determine good or bad control
performance: 1) Is the controller in auto mode at all



times? 2) Are PID parameters in the proper range? 3) Is
fluctuation of the controlled variable and the manipulated
variable sufficiently small? 4) Is the PID tuning agreeable
to the control purpose such as flow-averaging level control?
Other than these, it is necessary to check the range pro-
priety of sensors and actuators, the necessity of filtering
of measurement noise, the presence of stiction of control
valves, and so on.

Experience leads us to believe that 80% of PID control
loops can be successfully tuned with a method based on
rule of thumb and trial and error. For example, initial
settings for PID parameters should be ”wide proportional
band and fast reset time” for flow control and ”narrow
proportional band and slow reset time” for level control.
After the initial PID setting, PID parameters are tuned
gradually to strengthen control action while the control
performance is verified.

The control performance improvement activity introduced
in this section has attracted the attention of many enter-
prises in the chemical and petroleum refining industries in
Japan, and the number of enterprises starting this activity
has increased rapidly. Such a movement seems to be the
result of the process control section not directly recogniz-
ing the reality that the operation section had an awareness
of control performance issues and was dissatisfied with the
control performance.

3.1 Actual Project Examples

The result of a project on a large-scale monomer plant,
which has 190 PID control loops, is introduced here.
In this plant, 90% of the PID controllers were in auto
mode for 30 days. This value outperforms the average
of 70% in the literatures (Desborough and Miller (2001);
Ender (1993)). Operators had adjusted PID parameters to
realize very loose control action. As a result, the process
was easily affected by disturbances and a long time was
required for production rate changes, thus the operators
made frequent adjustments such as set-point changes and
manual operation.

In all, 112 loops having a margin of improvement in control
performance were retuned in 12 days. The standard devi-
ations of controlled variables (CVs), σe, and manipulated
variables (MVs), σu, were reduced by an average of 37%
and 28%, respectively, as shown in Fig. 2. Here σ̃ denotes
the standard deviation before the retuning. The reduction
is almost the same as the value reported by Shah et al.
(2004). A pronounced effect was achieved in tray temper-
ature control loops of distillation columns. Temperature
fluctuation was reduced to one-fourth up to one-seventh,
and composition was also stabilized.

Figure 3 shows PID parameters for 29 level control loops
before and after the retuning. Here PB and Ti denote
proportional band and reset time, respectively. With the
exception of a part such as six loops for a heat recovery
boiler, the purpose of these control loops is flow-averaging
level control (FALC). Operators made the proportional
gain small (wide proportional band) in order for the ma-
nipulated variable not to change. However, the manip-
ulated variable had been oscillatory due to small reset
time. To solve this problem, Ogawa et al. (1998) developed
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a design method of flow-averaging level controllers and
applied it to those loops. As a result, it became possible
to suppress the oscillation of the manipulated variable by
allowing the fluctuation of the level, utilizing the capacity
of the drum, and absorbing flow disturbances. This FALC,
explained in section 3.3, was very effective for decreasing
changes in feed/product flow rate to distillation columns
and lightening the burden of tray temperature control.

The above-mentioned example is the result for MCC.
Generally, each company has its own in-house tool for
assessing and improving PID control performance. In Sum-
itomo Chemical, for example, Kugemoto (2005) developed
a control loop diagnostic tool ”LoopDiag” that can execute
control performance assessment, valve stiction detection,
as well as time series data analysis. LoopDiag is a re-
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sult of industry-academia collaboration in the task force
”Workshop No.25 Control Performance Monitoring” sup-
ported by the JSPS 143rd committee. In LoopDiag, control
performance is evaluated on the basis of the minimum
variance control benchmark concept (Harris (1989)), and
valve stiction is detected by using the methods developed
by Maruta et al. (2005) and Yamashita (2006). By the
year 2005, control performance assessment was carried
out for 300 PID control loops by using LoopDiag, and
performance improvement was achieved. In addition, 12
valve failures were diagnosed in 118 control loops, and four
of 12 valves had actually developed trouble.

Mitsui Chemicals has utilized ”Plant Control Estimation
& Tuning System (PCETS)” (Nishimura and Ootakara
(2007)). The functions of PCETS include 1) control per-
formance assessment based on operation data of controlled
variables, set-points, and manipulated variables, 2) plant
performance assessment, and 3) optimal PID tuning sup-
port. The function of control performance assessment has
been applied to more than 5000 control loops, and more
than 250 control loops whose performance was identified as
poor were retuned by the function of optimal PID tuning
support. The control performance was greatly improved in
most control loops.

In Idemitsu Kosan, one-parameter tuning PID control
has been used (Fujii and Yamamoto (2008)). This unique
technique was developed to integrate control performance
assessment and controller design and to make PID tuning
easier and more intuitive for plant operators. It allows
PID parameters to be tuned by adjusting just one user-
specified parameter that corresponds to control strength
or robustness. So far, one-parameter tuning PID control
has been successfully applied to hundreds of control loops.
This technique clarifies when controllers should be retuned
and enables operators who do not have controller design
experience to tune PID parameters effectively.

These examples would reveal the state of the art in PID
control, which still plays a very important role in chemical
process control. In the following part of this section, a few
practical control techniques are introduced.

3.2 Robust I-PD Controller Tuning

Since most PID controllers have the I-PD algorithm at
least in Japan, Ogawa and Katayama (2001) derived a
robust model-based PID tuning method for the I-PD
controller shown in Fig. 4. This method is suitable for
specific control loops such as temperature and composition
control, which are required a proper control performance
in the presence of plant-model mismatch.

The advantage of I-PD control over conventional PID con-
trol is that I-PD control can realize milder response to set-
point changes than PID control, while both control algo-
rithms achieve the same performance against disturbances.
When the set-point is changed stepwise in PID control
systems, an abrupt change of the manipulated variable is
unavoidable due to derivative and proportional actions.
In practice, such an abrupt change is undesirable. On the
other hand, in I-PD control systems, both derivative and
proportional terms act only on the controlled variable; thus
milder changes in the manipulated variable can be realized.

Here, the I-PD controller tuning method for a first-order
plus time-delay (FOPTD) model is explained. The desired
response Wr(s) of the controlled variable y for the set-
point r is specified by

Wr(s) ≡ y(s)
r(s)

=
1

(1 + TF s)n e−TLs (1)

where TF denotes a tuning parameter and n = r + 1 = 2
for the relative order r = 1 of the process model. TL,
Tp, and Kp denote time-delay, time constant, and steady-
state gain of the process model, respectively. By using the
1/1 Pade approximation and ignoring the derivative filter,
the partial model matching method (Kitamori (1981))
provides the following PID setting rule.

Kc =
p − 2q + 4
Kp (p + 2q)

(2)

Ti =
(p + 2q) (p − 2q + 4)

2p + 4
Tp (3)

Td =
p

(
p + 4q − 2q2

)
(p + 2q) (p − 2q + 4)

Tp (4)

where p ≡ TL/Tp represents the difficulty of control
and q ≡ TF /Tp is a tuning parameter. Although the
parameter q can be tuned so that ISE (Integral of Squared
Error) is minimized, such tuning is not preferable in
practice. To realize robust PID control that is intuitive
and practical, a constraint on the maximum change of
the manipulated variable u(t) against a stepwise set-point
change is introduced. Given Umax(%), the parameter q is
determined by solving the following equation.

max
q

‖u(t)/u(∞)‖∞ ≤ Umax/100 (5)

where u(∞) is the steady-state value of u(t) after the set-
point change. The relationship among q, p, and Umax is
shown in Fig. 5.

This robust I-PD controller tuning method is derived not
only for FOPTD models but for integral plus FOPTD
models and second-order plus time-delay (SOPTD) models
with/without an unstable pole.

3.3 Flow-Averaging Level Control

Consider a process described by

P (s) =
y(s)
u(s)

=
1

Tps
, Tp =

KmA

Ku
(6)

where Tp (h) denotes reset time constant, Km (m/%)
sensor gain, Ku (m3/h/%) actuator gain, and A (m2)
sectional area.
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I-P control is used for FALC. Its block diagram is shown
in Fig. 4 and derivative time Td is set equal to 0. The
control response to set-point r (%) and disturbance d (%)
becomes the following second-order standard form.

y(s) =
1

1 + 2ζTns + T 2
ns2

(
r(s) +

Tis

Kc
d(s)

)
(7)

The damping coefficient ζ and the natural frequency Tn

are given by

ζ =

√
KcTi

4Tp
, Tn =

√
TpTi

Kc
(8)

By defining the performance index of FALC under a step-
wise disturbance as

min J =
1
2

∫ ∞

0

(
q2y2(t) + r2u̇2(t)

)
dt (9)

and solving the optimization problem similar to the LQI
problem, the control parameters can be related to the
process parameter.

KcTi = 2Tp (10)

As a result, the damping coefficient becomes ζ = 1/
√

2
and the second-order standard form becomes Butterworth-
type.

Given the size of the step-wise disturbance ds and the
maximum allowable level change ys, the proportional gain
and the reset time can be determined as follows:

Kc =

√
2e−π/4

ys/ds
≈ 0.645

η
, Ti =

2Tp

Kc
(11)

Here, η ≡ ys/ds is the disturbance rejection ratio.

This tuning method has been widely used in industry to
improve the performance of level control, in particular, to
achieve FALC with the specified characteristics, because
the calculation of PI parameters is very easy.

3.4 Direct PID Controller Tuning

Discussions with control engineers in the Japanese process
industries confirm that PID controller tuning is still a key
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Fig. 6. Feedback control system

issue. A typical chemical plant has thousands of control
loops whose maintenance is vital to efficient operation
of the entire plant. The conventional approach to tack-
ling this problem is to use an efficient open/closed-loop
identification method and reduce the burden of modeling.
However, any control system based on an identified model
suffers from modeling errors and requires retuning of con-
trol parameters. In addition, identification is still one of the
critical tasks in control system design. Control engineers
and operators would prefer to avoid identification and
manual tuning of PID controllers.

Extended fictitious reference iterative tuning (E-FRIT)
is a new direct tuning method, which can optimize PID
or I-PD control parameters directly from operation data
without a process model (Tasaka et al. (2009); Kano et al.
(2009b)). E-FRIT is a kind of extension of other direct
tuning methods such as iterative feedback tuning (IFT)
proposed by Hjalmarsson et al. (1998), virtual reference
feedback tuning (VRFT) by Campi et al. (2002), and
fictitious reference iterative tuning (FRIT) by Soma et al.
(2004).

E-FRIT is briefly explained here. Figure 6 shows a block
diagram of a feedback control system, where P denotes a
process, C(θ) a controller with parameters θ, r set-point,
and u and y are a manipulated variable and a controlled
variable, respectively. When PID control is used,

C(θ) = KP

(
1 +

1
TIs

+ TDs

)
(12)

θ = (KP, TI, TD) . (13)
In E-FRIT, a virtual output variable is formulated as a
function of PID parameters by using input and output
data together with a reference model. PID parameters are
determined so that the difference between the real and
virtual output variables is minimized. The following is the
PID tuning procedure based on E-FRIT. Here, G(s)x(t) or
Gx(t) is defined by L−1

{
G(s)L{x(t)}}, which represents

the discrete time series data collected at certain sampling
intervals.

[Step 1] After the control system is stabilized with initial
PID parameters θ0, change the set-point and collect
input and output data, u0(t) and y0(t)(t = 1, 2, · · · , N).

[Step 2] Derive the fictitious reference (virtual set-point)
r̃(θ, t) that generates u0(t) and y0(t) even when θ �= θ0.

r̃(θ, t) = C(θ)−1u0(t) + y0(t) (14)
[Step 3] Formulate the reference output ỹ(θ, t) by using

a reference model M as shown in Fig. 7.
ỹ(θ, t) = Mr̃(θ, t) (15)

The closed-loop system is close to the reference model
when ỹ(θ, t) is close to y0(t).

[Step 4] Solve the following optimization problem and
determine the optimal control parameters θ∗.
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θ∗ = arg min
θ

Jext(θ) (16)

Jext(θ) =
1
N

N∑
t=1

{
(y0(t)−ỹ(θ, t))2+λΔũ(θ, t)2

}
(17)

Δũ(θ, t) = ũ(θ, t)−ũ(θ, t−1) (18)
ũ(θ, t) = C(θ) (r0(t)−Mr0(t)) (19)

where λ is a weighting coefficient.

A reference model plays an important role in defining
the desirable control response. It is difficult, however,
to determine an appropriate reference model in advance
without information on the process. Therefore, parameters
in the reference model are optimized together with the
control parameters in E-FRIT. For example, when the
reference model M is defined as the second-order binomial
coefficient standard form given by

M =
ω2

0

s2 + 2ω0s + ω2
0

e−LMs (20)

the optimization variables are
φ = (KP, TI, TD, LM) (21)

instead of θ. This extension makes it possible to determine
the reference model that is more suitable for the process.

Kano et al. (2009b) proposed useful guidelines for applying
E-FRIT to industrial processes: 1) use the fourth-order
binomial coefficient standard form with dead time as a
reference model, 2) set a parameter ω0 of the reference
model on the basis of the rise time of the closed-loop
response, 3) optimize the dead time of the reference model
together with control parameters, and 4) use a fixed value
as a weighting coefficient λ for a penalty term for varia-
tion of the manipulated variable. A recommended value
is λ = 0.01 for tight control and λ = 1 for mild con-
trol. E-FRIT with these guidelines was validated through
industrial applications. The results have clearly shown
the usefulness of E-FRIT for chemical process control. A
software tool that can execute E-FRIT was developed as a
result of industry-academia collaboration in the task force
”Workshop No.27 Process Control Technology,” and it has
been used in industry.

4. CONVENTIONAL ADVANCED CONTROL

The status report of the IFAC Coordinating Committee
6 (Dochain et al. (2008)) stated that high performance
multivariable control is key to achieving the desired high
profits and that the technology for the design and realiza-
tion of high performance model-based constrained control
systems at reasonable engineering effort is one of the key
challenges faced by industrial practice. In fact, MPC has
contributed toward achieving high profitability for many
years. However, the profit can also be realized by utilizing
conventional advanced control such as valve position con-
trol and override control in particular. The following ques-
tion arises here: do we make the most use of conventional
advanced control? In this section, let us introduce one
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example showing the potential of conventional advanced
control.

Conventional advanced control is effective for various
processes and easy to implement on DCS. However, there
has been a trend for control engineers to take little account
of its application. This is the result that MPC became
a standard tool for the advancement of process control.
However, there is no doubt that production cost can
be decreased by accumulating the effect of conventional
advanced control.

The application of energy-saving control of the compressor
with VPC is described here. As shown in Fig. 8, the feed
gas is pressurized with the turbo compressor and supplied
to three different stages of the reactor. Each flow rate of
the feed gas is controlled. The discharge pressure of the
compressor is controlled by using guide vane opening as
the manipulated variable. To reduce compressor power, the
discharge pressure is lowered gradually with VPC, until
the largest valve opening among three feed flow control
valves reaches the upper limit, while feed flow rate is kept
constant. In this application, the discharge pressure was
decreased from 4.6 MPa to 4.0 MPa by increasing the
largest valve opening from 67% to 80%. As a result, motor
electric power consumption was saved by 16%.

Shinsky (1977) listed the following objects in which there
is an opportunity of the energy conservation by applying
conventional advanced control: 1) excessive reflux of dis-
tillation column, 2) excessive combustion air of furnace,
3) high steam to oil ratio of reactor, and 4) fouled heat
exchanger. In addition to these, excessive compression
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ratio provides an opportunity for the energy conservation
as illustrated.

In the enterprise, it is important to find any loss that
usually has been overlooked, to make the most use of
conventional advance control, and to continue the effort at
minimizing the loss. In comparison with the APC project
of using MPC, profitable results can be obtained much
more quickly without any further expense.

5. MODEL PREDICTIVE CONTROL

In this section, the present state of linear and nonlinear
MPC is described through the typical applications and
the survey results.

5.1 Linear MPC

The process that MPC is applied to most is distillation. A
simple example of MPC for a distillation process is shown
in Fig. 9(a). The controlled variables are the purity of
products extracted from the column top and bottom, and
the manipulated variables are the set-points of temper-
ature PID control at the column top and bottom. The
disturbance variables are flow rate and composition of
feed. The constraints are upper and lower limits of the
manipulated variables and the controlled variables and
upper limits of changes in the manipulated variables.

The economic benefit that MPC brings is illustrated in
Fig. 9(b). Since the achievable performance of PID control
is limited due to interaction, which is a feature of multi-
variable processes, it is assumed that the current operating
region corresponds to region A in the figure. In such a
situation, the operating condition bound has to be set far
from the real constraints to ensure a sufficient margin of
safety. Using MPC can improve control performance and
reduce variation. As a result, the operating region becomes
small from A to B. This improvement makes it possible to
move the operating region from B to C, which is close
to the bound of operating conditions. Furthermore, more
economical operation D can be realized by optimizing set-
points to minimize operational costs. MPC takes on the
responsibility of this set of functions. The benefit is not
only the improvement of the control performance by using
model-based control, but also the realization of stable
operation close to the optimal point under disturbances
by using optimization.

Implementation of MPC releases operators from most of
the adjustment work they had to do in the past because the
optimal operating condition is automatically determined
and maintained under disturbances. In addition, MPC
makes it possible to maximize production rate by making
the most use of the capability of the process and to
minimize cost through energy conservation by moving
the operating condition toward the control limit. Both
the energy conservation and the productive capacity were
improved by an average of 3 to 5% as the result of APC
projects centered on MPC at MCC.

The control performance of MPC depends on the accuracy
of the process model and the appropriateness of tuning,
but MPC has outstanding robustness. For example, stable
operation is realized by MPC in spite of large model
parameter errors of about 50%. However, it is difficult
to assess the control performance of MPC due to a large
number of variables. A plant test for modeling sometimes
requires two weeks. The engineers who have experienced it
can readily understand that the implementation of MPC
including modeling and tuning is a demanding job.

MPC is highly effective, but it has several weak points
(Hugo (2000)). First, it is not good at level control when
the process has an integrator. For such a case, PI control
is easy to design and superior to MPC in control perfor-
mance. Second, the control performance of MPC deteri-
orates against ramp-wise disturbances because the MPC
algorithm is developed by assuming step-wise disturbances
(Lundstrom et al. (1995); Hugo (2000)). In addition, lin-
ear programming (LP) is usually used for optimizing set-
points under constraints, and the optimal point is located
at one of the extreme points of a polyhedron consisting
of linear constraints. When the gradient of the objective
function and that of constraints are similar to each other,
the optimal point jumps from one extreme point to another
and the set-points change suddenly (Forbes and Marlin
(1994); Hugo (2000)). Research and development are con-
tinuing to solve these problems.

Ohshima et al. (1995), who wrote about the state of MPC
application in the petroleum and chemical enterprises
in Japan, reported that 154 MPC controllers were in
operation and 43 under implementation. The total number
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of 197 was 2.5 times as much as the number of 75 in 1990.
At present, the number of MPC controllers is 169 only at
MCC (Ogawa (2006)).

At the very end of this subsection, the MPC application for
energy conservation and production maximization of the
olefins unit at MCC Mizushima plant is briefly explained
(Emoto et al. (1994)). Qin and Badgwell (2003) reported
that this application was the largest MPC application in
the world, consisting of 283 manipulated variables and 603
controlled variables. The process was operated in energy
conservation mode for the first four days in Fig. 10. Since
the productive capacity was beyond the demand, the tem-
perature difference between vapor and coolant in the over-
head condenser was increased by making the column pres-
sure higher. As a result, an amount of heat exchanged was
increased, and the amount of coolant used was decreased.
This operation made it possible to reduce the refrigerator
power. On the other hand, the process was operated in
production maximization mode for the last five days. To
maximize the production rate for fulfilling the demand, the
separation performance was improved by decreasing the
column pressure and increasing the relative volatility. The
feed flow rate to the cracking furnace was increased until
the tray delta-pressure reached its upper limit, that is,
the flooding limit. In this production maximization mode,
the MPC system is large because MPC controllers for
many cracking furnaces and distillation columns function
in cooperation.

A skilled operator made the following comment on this
MPC application: ”We had operated the Ethylene frac-
tionator in constant pressure mode for more than 20
years. I was speechless with surprise that we had made an
enormous loss for many years, when I watched the MPC
decreased the column pressure, improved the distillation
efficiency, and maximized the production rate.” Another
process control engineer said ”I had misunderstood that
set-points were determined by operation section and pro-
cess control section took the responsibility only for control.
I realized MPC for the first time; it makes the most use
of the capability of equipments, determines set-points for
economical operation, and maintains both controlled vari-
ables and manipulated variables close to the set-points.”

Table 3. Statistics of MPC applications (from
the survey JSPS143 WS27 2009)

in-house vs vendor
in-house development 6 %
introduction from vendor 94 %

targeted process
distillation 32 %
reaction 23 %
others 45 %

product
DMCplusR© 46 %
RMPCTR© 36 %
ConnoisseurR© 5 %
SMOCR© 4 %
others 9 %

number of MV, CV, and DV
MV DV CV

0 0 28 0
1 40 45 24
2 57 50 33
3-5 83 103 58
6-9 47 40 59
10-19 59 27 48
20-29 12 5 25
30-39 1 3 29
40-49 1 3 16
50 or more 5 1 13

MV: manipulated variable
CV: controlled variable
DV: disturbance variable

5.2 Nonlinear MPC

Nonlinear MPC has attracted attention in recent years
(Qin and Badgwell (2003)). It is suitable for control of
a nonlinear process operated in a wide range, e.g. poly-
merization reaction processes. In MCC, an independently
developed nonlinear MPC has been applied to polymeriza-
tion reactors at the polyolefin production units, and it has
been put successfully to practical use (Seki et al. (2001)).

However, application of nonlinear MPC has not spread as
well as was expected. It is difficult to build a nonlinear
model of a process, or process control engineers have
slackened their efforts at modeling nonlinear processes. On
the other hand, most polymer production processes are
operated without any quality problem by existing control
systems supported with operators’ suitable manual inter-
vention. Therefore, it is difficult to justify any benefit of
using nonlinear MPC. These obstacles should be overcome
to expand nonlinear MPC application.

5.3 Survey Result of MPC

A part of the questionnaire survey results, related to MPC,
is introduced here. The total number of MPC applications
answered is 305, which is 1.5 times as much as the number
of 197 in 1995. The statistics of 305 MPC applications
are summarized in Table 3. Most of them are introduced
from vendors; DMCplus R© and RMPCT R© are dominant
tools. Distillation and reaction processes cover half the
applications.

Table 4 clarifies objectives and effects of MPC. In addition
to disturbance rejection and set-point tracking, the time
to achieve the optimal condition and the realization of



Table 4. Effects of MPC applications (from the
survey JSPS143 WS27 2009)

objective of tuning
disturbance rejection 56 %
set-point tracking 38 %
time to optimal condition 6 %

major effect on control performance
disturbance rejection 43 %
automatic operation 36 %
set-point tracking 18 %
others 3 %

major effect on productivity
saving resources and energy 38 %
increasing production capacity 31 %
reducing operators’ load 17 %
improving product quality 10 %
increasing flexibility toward changes 4 %

major key to success
careful modeling 37 %
suitability for objective 33 %
education of operators and engineers 15 %
suitability for process characteristics 11 %
hardware/software environment 4 %

automatic operation are important. Saving resources and
energy, increasing production capacity, reducing operators’
load, and improving product quality are major effects
achieved by MPC. Furthermore, process control engineers
have identified the following major keys to success: 1) a
process model should be developed with care, 2) MPC
should be suitable for objectives, 3) operators and engi-
neers should be adequately educated, and 4) MPC should
be suitable for process characteristics.

Although MPC has been widely and successfully applied in
the chemical and petroleum refining industries, problems
still remain to be solved as summarized in Table 5. The
major problem would be described as follows. To achieve
desirable performance, it is necessary to build an accu-
rate model and to tune control parameters appropriately.
However, both of them are difficult in practice due to
process nonlinearity and changes in process characteristics.
To keep sufficient control performance and to prevent or
at least cope with performance deterioration, the mainte-
nance of MPC is crucial. Control engineers need to know
the reason of performance deterioration and the effective
countermeasure. In addition, they would like to know
the relationship between model accuracy and achievable
control performance. Modeling of a multivariable process
is an exceedingly laborious engineering task; thus it needs
to be clarified how accurate a model should be to achieve
the goal. Of course, not only clarifying the relationship but
also improving modeling and tuning methods is necessary.
In addition, the implementation of MPC should be easier.
As for the maintenance of MPC, very recently, Badwe
et al. (2008) proposed a model-plant mismatch detection
method by using partial correlation analysis, and Huang
(2008) proposed the used of Bayesian methods. Another
problem is how to transfer engineering technology from
skilled engineers to others. Unfortunately, a lack of process
control engineers aggravates the situation. Furthermore,
it is also crucial in practice to answer the question: how
can we estimate the economical benefit of installing MPC
to justify the project? Most APC suppliers and users are
required to report the benefit to management. Bauer and

Table 5. Problems of MPC applications (from
the survey JSPS143 WS27 2009)

problem: general
low robustness against model error 26 %
difficulty in tuning 23 %
inability to cope with specific objective 15 %
difficulty in modeling 12 %
others 24 %

problem: maintenance
transfer of engineering technology 44 %
response to performance deterioration 33 %
education of operators 7 %
difficulty in tuning 7 %
others 9 %

need for improvement: general
to improve modeling technology 28 %
to clarify method of estimating effect 25 %
to simplify implementation 22 %
to increase process control engineers 14 %
others 11 %

need for improvement: theory
to cope with changes in process characteristics 26 %
to clarify relations between model accuracy 24 %

and control performance
to cope with unsteady operation (SU/SD) 16 %
to incorporate know-how in control system 16 %
to cope with nonlinearity 13 %
others 5 %

need for improvement: response to changes/nonlinearity
to switch multiple linear models 28 %
to improve robustness of linear MPC 25 %
to use time-varying/nonlinear model 18 %
to add adaptive function to linear MPC 18 %
to integrate other technique with MPC 11 %

(e.g. knowledge-based control)

Craig (2008) reported that benefit estimation methods
based on variance reduction are still carried out, but they
are sometimes rudimentary and based on experience.

6. SOFT-SENSOR

A soft-sensor, or a virtual sensor, is a key technology for
estimating product quality or other important variables
when on-line analyzers are not available. In chemical pro-
cesses, for example, soft-sensors have been widely used to
estimate product quality of distillation columns, reactors,
and so on. Artificial neural network (ANN) has been
dominant in the literature since the middle 1990’s, while
partial least squares (PLS) is popular in industry (Kano
and Nakagawa (2008)). ANN is a useful tool for building
nonlinear models and supposed to be suitable for industrial
processes. However, linear models have produced satisfac-
tory results in many cases because industrial processes
are operated within certain range to produce the required
products and linear approximation functions well. In addi-
tion, collinearity has to be taken into account for develop-
ing reliable soft-sensors. Thus, PLS has been very popular
as a tool for soft-sensor design (Mejdell and Skogestad
(1991); Kresta et al. (1994); Kano et al. (2000)). In re-
cent years, support vector machine (SVM), support vector
regression (SVR), and other kernel-based methods have
emerged (Boser et al. (1992); Cortes and Vapnik (1995)).
These methods have attracted researchers’ and engineers’
attention and have been used for soft-sensor design (Yan
et al. (2004); Desai et al. (2006)). Another method for



developing soft-sensors is subspace identification (SSID),
which can build a state space model from input and output
data (Verhaegen and Dewilde (1992); Overschee and Moor
(1994)). SSID is a useful tool to build a dynamic inferential
model of a multivariable process, and it is suitable for soft-
sensor design because the performance of soft-sensors can
be greatly improved by taking process dynamics into ac-
count (Kano et al. (2000)). Amirthalingam and Lee (1999)
used SSID for inferential control of a continuous pulp
digester. Amirthalingam et al. (2000) developed a two-step
procedure to build SSID-based inferential control models,
in which the stochastic part was idetified from historical
data and the deterministic part was identified from plant
test data. Kano et al. (2009a) proposed two-stage SSID
to develop highly accurate soft-sensors that can estimate
unmeasured disturbances without assumptions that the
conventional Kalman filtering technique must make. Thus
it can outperform the Kalman filtering technique when
innovations are not Gaussian white noises or the properties
of disturbances do not stay constant with time. The superi-
ority of the two-stage SSID over conventional methods was
demonstrated through their application to an industrial
ethylene fractionator.

6.1 Reliability of Soft-sensor

A great deal of research has been conducted to develop
data-based soft-sensors for various processes. A data-based
soft-sensor, however, does not always function well, be-
cause a black-box model is not valid when a process is
operated outside certain conditions where operation data
used for modeling were obtained. The product quality
and process performance will deteriorate if estimates of
the soft-sensor are blindly believed by operators and used
in a control system. On-line monitoring of the validity
of the soft-sensor will avoid such a dangerous situation.
The simplest approach is to check whether an estimation
error exceeds its control limit when a measurement be-
comes available. This approach enables us to detect the
inconsistency between the analyzer and the soft-sensor,
but the cause of the inconsistency cannot be identified.
In industry practice, it is assumed that an estimation
error is caused by inaccurate estimation; however, this
assumption is not always true because analyzers are not
always reliable. For example, when blockage occurs within
a sampling line, a hardware sensor cannot provide accu-
rate measurements. To address such practical problems,
Kamohara et al. (2004) proposed a PLS-based framework
for developing a soft-sensor and monitoring its validity
on-line. The on-line monitoring system was based on the
multivariate statistical process control (MSPC) technique
(Jackson and Mudholkar (1979); Kresta et al. (1991)) in
which the dynamic PLS model designed for estimating
the product quality is used. In addition, simple rules were
established for checking the performance of a process gas
chromatograph by combining the soft-sensor and the sta-
tistical monitoring system. The effectiveness of the devel-
oped system was demonstrated through its application to
an ethylene production plant.

6.2 Changes in Process Characteristics

Generally, building a high performance soft-sensor is very
laborious, since input variables and samples for model con-

struction have to be selected carefully and parameters have
to be tuned appropriately. Even if a good soft-sensor is
developed successfully, its estimation performance deterio-
rates when process characteristics change. In chemical pro-
cesses, for example, equipment characteristics are changed
by catalyst deactivation or scale adhesion. Such a situation
may lead to a decline of product quality. Therefore, from
the practical viewpoint, maintenance of soft-sensors is
very important to keep their estimation performance. Soft-
sensors should be updated as the process characteristics
change, and manual and repeating construction of them
should be avoided due to its heavy workload.

To cope with changes in process characteristics and to
update statistical models automatically, recursive methods
such as recursive PLS were developed (Qin (1998)). These
methods can adapt models to new operating conditions
recursively. However, the prediction performance would
deteriorate if the model is updated with an abnormal
sample. Kaneko et al. (2009) used independent component
analysis (ICA) to detect abnormal situations and improve
the prediction accuracy. Recently, ICA is recognized as a
useful technique for fault detection and diagnosis (Kano
et al. (2003, 2004); Lee et al. (2004)). The combination
between soft-sensors and fault detection is effective to a
certain extent. But, as far as a recursive method is used,
the model will adapt excessively and will not function in
a sufficiently wide range of operating condition when a
process is operated within a narrow range for a certain
period of time. In addition, recursive methods cannot cope
with abrupt changes in process characteristics.

Just-In-Time (JIT) modeling or lazy learning was pro-
posed to cope with changes in process characteristics as
well as nonlinearity, and it has been used for nonlinear
process monitoring as well as soft-sensing (Atkeson et al.
(1997); Bontempi et al. (1999)). In JIT modeling, a lo-
cal model is built from past data around a query point
only when an estimated value is requested. JIT modeling
is useful when global modeling does not function well.
However, its estimation performance is not always high
because the samples used for local modeling are selected
on the basis of the distance from the query point and the
correlation among variables is not taken into account. A
good model cannot be developed when correlation among
input and output variables is weak even if the distance
between samples is small. Conversely, a very accurate
model can be developed when the correlation is strong even
if the distance is large. On the basis of this idea, recently,
correlation-based JIT (CoJIT) modeling was proposed by
Fujiwara et al. (2009). In this technique, the samples used
for local modeling are selected on the basis of correlation
together with distance, and the Q statistic is used as an
index of the correlation dissimilarity. The Q statistic is
derived from principal component analysis (PCA), and
it is a measure of dissimilarity between the sample and
the modeling data from the viewpoint of the correlation
among variables (Jackson and Mudholkar (1979)). CoJIT
can cope with abrupt changes of process characteristics
and also achieve high estimation performance. It can also
cope with process nonlinearity.
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Fig. 11. Schematic diagram of the cracked gasoline frac-
tionator of the ethylene production process at the
Showa Denko K.K. (SDK) Oita plant

6.3 Industrial Case Study of CoJIT

Here, an application of CoJIT to an industrial chemical
process is introduced (Fujiwara et al. (2009)). A soft-
sensor for estimating the aroma concentration was con-
structed to realize highly efficient operation of the cracked
gasoline fractionator of the ethylene production process
at the Showa Denko K.K. (SDK) Oita plant in Japan. A
schematic diagram of the cracked gasoline (CGL) fraction-
ator of the ethylene production process is shown in Fig. 11.
The CGL fractionator is controlled by applying multivari-
able MPC with an optimizer, and the aroma concentration
in the CGL (aroma denotes the generic name for benzene,
toluene, xylene and styrene, etc.) is used as one of the
constraints in the optimizer. Although the operation data
of the CGL fractionator are stored in the database every
hour, the aroma concentration is analyzed in a laboratory
usually once a day because of its long analysis time. For
safety, the process must be operated in a condition that
has a wide margin and is far from constraints. Therefore,
a soft-sensor that can estimate the aroma concentration
accurately in real time needs to be developed for realizing
efficient operation.

In addition to eight variables measured in the CGL frac-
tionator, the coil outlet temperature of the cracking fur-
nace, measured four hours before, was used as an input
variable, since the product composition is affected by the
operating condition of the cracking furnace which is lo-
cated in the upstream of the ethylene production process,
and it takes about four hours for materials to reach the
CGL fractionator from the cracking furnace. The selected
input variables of the soft-sensor are listed in Table 6 and
Fig. 11.

First, the aroma concentration was estimated with recur-
sive PLS. The model was updated every 24 hours when
the aroma concentration was analyzed in the laboratory.
The estimation result is shown in Fig. 12(top). There is
a bias between the measurements and the estimates after
the 100th day when the pressure of the compressor was
changed.

Next, the aroma concentration was estimated with CoJIT.
In the initial state, the operation data obtained from April
30, 2006 to February 23, 2007 were stored in the database.

Table 6. Input variables of the soft-sensor for
the CGL fractionator

No. variable

1 Feed flow rate
2 Tower top temperature
3 Reflux volume
4 Outlet cracked gasoline temperature
5 Outlet cracked gasoline flow rate
6 Outlet cracked kerosene flow rate
7 Tray #4 differential pressure
8 Reboiler flow rate
9 Cracked furnace coil outlet temperature
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Fig. 12. Prediction results of aroma concentration: recur-
sive PLS (top) and CoJIT modeling (bottom)

Then, the soft-sensor was updated and the aroma concen-
tration was estimated for the next 300 days, February 24,
2007 to December 25, 2007. The estimation result is shown
in Fig. 12(bottom). The estimation performance of CoJIT
is high and RMSE (root mean squared error) is improved
by about 28% in comparison with recursive PLS. CoJIT
would have a potential for realizing efficient maintenance
of soft-sensors in the real world.

6.4 Survey Result of Soft-sensor

A part of the questionnaire survey results related to
soft-sensors is introduced here. This questionnaire asked
control engineers the number of soft-sensor applications,
targeted processes, methods for designing soft-sensors, and
problems to be solved. The total number of soft-sensor
applications answered was 439. The number is rapidly
increasing. The survey result is summarized in Table 7.

This survey result clarifies the state of the art of soft-sensor
application in Japan. First, a major targeted process
is distillation (331/439), followed by reaction (86/439)
and polymerization (20/439). Second, a major modeling
method is multiple regression analysis (MRA) (293/439),
followed by PLS (93/439). Nonlinear modeling methods
are rarely used in the Japanese chemical and petroleum
refining industries. It is confirmed that linear regression
such as MRA and PLS can achieve sufficient estimation
accuracy for most distillation and reaction processes. On
the other hand, polymerization reaction processes are more
difficult to model by linear regression than distillation and



Table 7. Statistics of soft-sensor applications (from the survey JSPS143 WS27 2009)

methodology
process Phys MRA PLS O.L. ANN JIT Gray total

distillation 20 256 41 6 0 5 3 331
reaction 5 32 43 0 0 5 1 86
polymerization 0 4 8 0 3 0 5 20
others 0 1 1 0 0 0 0 2
total 25 293 93 6 3 10 9 439

Phys: physical model
MRA: multiple regression analysis
PLS: partial least squares regression
O.L.: other linear regression
ANN: artificial neural network
JIT: just-in-time model
Gray: gray-box model or hybrid model between

physical model and statistical model

Table 8. Problems of soft-sensor applications
(from the survey JSPS143 WS27 2009)

accuracy deterioration due to changes 29 %
in process characteristics

burden (time/cost) of data acquisition 22 %
burden of modeling itself 14 %
burden of data preprocessing 7 %
inadequate accuracy since installation 7 %
inadequate accuracy due to changes 7 %

in operating conditions
difficulty in evaluating reliability 7 %
unjustifiable cost performance 7 %

other reaction processes. Thus, some companies have used
gray-box models (5/20) or ANN models (3/20).

In addition, we have asked engineers what are problems
related with applications of soft-sensors. The answers
are summarized in Table 8. This result confirms that
the maintenance of models is the most important issue
concerning soft-sensors.

7. RELATED ISSUES

In this section, other important issues related to process
operation are described: tracking simulator and alarm
management.

7.1 Tracking Simulator

As process engineers, we have a dream that one day a
plant simulator based on a rigorous first-principle model is
realized and it provides functions such as 1) estimation and
visualization of all states and parameters, 2) prediction of
plant behavior in the future, 3) optimization of operating
conditions, and 4) detection and diagnosis of abnormal
situations. This plant simulation technology will become
the core of future operation support system and lead to
production innovation.

As mentioned before, the achievement of stable and effi-
cient operation has largely depended on skilled operators
in Japan, and many skilled operators are approaching re-
tirement age. Thus, an advanced operation support system
and an efficient operator training system are required.
A training simulator for teaching operators to cope with
start-up, shut-down, and other operations under abnor-
mal situation has been developed and widely used in the
process industry. The training simulator aims at faithful
reproduction of real plant behavior. On the basis of the
training simulator, a tracking simulator is now under devel-
opment to realize the above-mentioned functions (Fukano
et al. (2007)). The tracking simulator works simultane-
ously with an actual plant, adjusts parameters, estimates
states, analyzes the plant, and optimizes operation by

using plant models and measurements. The tracking simu-
lator consists of a mirror model for visualizing plant states,
an identification model for parameter estimation, and an
analysis model for realizing the other necessary functions.

Such a tracking simulator has been developed by a few
companies and introduced and tested in real plants in
Japan. Further development is required to realize our
dream, and various challenging problems confront us.

7.2 Alarm Management

Recently, alarm management has attracted considerable
attention to achieve highly stable operation in the process
industry. General recognition for current alarm systems in
Japan is as follows (Higuchi et al. (2009)). With the ad-
vance of distributed control systems (DCS) in the chemical
industry, it has become possible to install many alarms
cheaply and easily. While most alarms help operators
detect and identify faults, some are unnecessary. A poor
alarm system may cause alarm floods and nuisance alarms,
which reduce the ability of operators to cope with plant
abnormalities because critical alarms are buried in many
unnecessary alarms.

If an alarm system does not work as designed, the effects
can be very serious. The explosion and fires at the Texaco
Milford Haven refinery in 1994 injured 26 people and
caused around £48 million of damage and a significant loss
in production. The Health and Safety Executive’s (HSE)
investigation (1997) mentions that there were too many
alarms and these were poorly prioritized and the control
room displays did not help operators understand what was
happening.

To improve the quality and safety of industrial plants,
and to reduce cost of the design and maintenance of plant
alarm systems, the Engineering Equipment and Materials
Users Association (EEMUA) provided the general design
and evaluation principles of plant alarm systems (The
Enginnering and Equipment Materials Users’ Association
(EEMUA) (2007)). While this guide gathered many valu-
able plant engineers’ experiences, it is only a general guide,
and some of the design methods are only conceptual, such
as the selection of alarm source signals and the decisions
on alarm limits (Yan et al. (2007)). In addition, the role
of operators in Japan is far different from that in other
countries; thus, it is recognized that direct application
of the EEMUA 191 Guide is not appropriate in Japan.
In fact, a bottom-up approach has succeeded in reducing
the number of alarms, average alarm frequency standards
proposed by EEMUA are achieved in some plants, and
further improvement is required. Generally, Japanese com-
panies are excellent at such a bottom-up approach as TPM
（total productive maintenance), which combines preven-



tive maintenance with Japanese concepts of total quality
control (TQC) and total employee involvement (TEI). It
is true, however, the alarm management in Japan has
been short of a viewpoint of such a top-down approach
as EEMUA suggested. In Japan, the industry-academia
collaboration task force ”Workshop No.28 Alarm Man-
agement” supported by the JSPS 143rd committee was
established in 2007. This task force aims at developing
new methodologies and standardizing alarm management
by emphasizing distinctive culture in Japanese industries.

8. CONCLUSIONS

The state of the art in process control in Japan was
described in this paper on the basis of the authors’ experi-
ence and the questionnaire survey results. The realization
of production innovation and highly stable operation is
the chief objective of the process industry in Japan. To
achieve this objective and solve the year 2007 problem,
i.e., retirement of skilled operators, process control and
operation need to be further improved. This improvement
does not necessarily mean the adoption of novel advanced
technologies. Rather, it is important to reform the whole
production activity through reviewing it as leading chemi-
cal companies have done and consequently have increased
productivity remarkably.

In Japan, several industry-academia collaboration task
forces have been organized to sift through problems related
to process operation and solve them. Such task forces
include Workshop No.25 Control Performance Monitoring,
Workshop No.27 Process Control Technology, Workshop
No.28 Alarm Management, and so on; they are supported
by the JSPS 143rd committee. More than a few methods
and tools have been developed by task forces and utilized
in various companies. Several examples were introduced
in this paper together with practical methods developed
outside task forces. The topics discussed here include PID
control, advanced conventional control, model predictive
control, soft-sensor, tracking simulator, and alarm man-
agement. The current situation and the problems were
clarified.

In recent years, there has been a strong trend to pro-
duce polymer products having special functions in a small
amount in a batch process. At the forefront of produc-
tion, the necessity of practical technological development
is being recognized: for example, precise control of reaction
temperature, estimation of reaction state, and batch-to-
batch control. Process control engineers have been com-
mitted to continuous process control so far. In the future,
however, they need to open their eyes to batch process
control and to meeting the challenges to its advancement.

This paper has surveyed what process control engineers
have done in the last two decades and what they might
do in the future, especially focusing on the projects at
a Japanese chemical company. The authors expect that
engineers share practical methods and best practice and
also that they spare no effort in developing their own
methods to solve their own problems.
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