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Abstract: This work proposes a robust control strategy for the optimizing control of fed-batch
cultures of S. cerevisae. The process dynamics is characterized by a nonlinear kinetic model based
on the bottleneck assumption and ethanol inhibition for a possible excess of substrate feeding.
The control strategy is based on the feedback linearization technique, where the resulting free
linear dynamics is designed so as to ensure a certain robustness to plant parameter variations.
A feedforward loop achieves the correct critical substrate value, which is a function of the
ethanol and oxygen in the culture medium. In addition, a robust Luenberger-like observer is
designed taking plant parameter variations into account. Numerical experiments demonstrate
the potential of the proposed approach as a tool for control design of fed-batch cultures.
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1. INTRODUCTION

The culture of host recombinant micro-organisms is proba-
bly the only economical way of producing pharmaceutical
biochemicals. The cell cultures or the culture of micro-
organisms are basically operated in three different modes –
batch, fed-batch and continuous. The fed-batch operation
is popular in industrial practice, because it is advantageous
from an operational and control point of view (Roeva and
Tzonkov, 2005). In this mode of operation, the bioreactor
is manipulated by controlling its feeding rate. The off line
design of the optimal feeding profile in general does not
give high productivity, since in open-loop an excess of sub-
strate leads to the accumulation of by-products (ethanol
for yeast and acetate for bacteria), which in turn yields an
inhibition of the cell respiratory capacity.

To avoid high concentrations of inhibitory by-product, a
closed-loop solution is in general applied leading to a wide
diversity of approaches (Chen et al., 1995; Boskovic and
Narendra, 1995; Hisbullah et al., 2002; Rocha et al., 2004;
Renard and Vande Wouwer, 2008; Ignatova et al., 2008).
Nevertheless, the closed-loop control optimization of yeast
fed-batch process is still a challenging task for two main
reasons. Firstly, the process kinetics is governed by highly
nonlinear functions with uncertain model parameters. Sec-
ondly, there is a lack of reliable and low cost online sensors
for the measurement of key state variables.

In the control context, many researchers are applying
online algorithms to cope with time-varying model un-
certainties by either adaptive control (Renard and Vande
Wouwer, 2008; Dewasme and Vande Wouwer, 2008; Ig-
natova et al., 2008) or computational intelligence based
algorithms (Rocha et al., 2004; Karakuzu et al., 2006).

However, the use of online adaption schemes may lead
to closed-loop instability in the presence of unmodeled
dynamics. In this paper, we follow a different direction by
applying the robust control theory to design a nonlinear
controller (with a fixed parametrization) taking model
uncertainties into account. The control strategy is based on
the classical feedback linearizing technique which is widely
applied in fermentation process (Bastin and Dochain,
1990). However, feedback linearizing control schemes are
very sensitive to model uncertainties. To handle the lack
of robustness, the resulting linear dynamics is designed in
order not only to improve the overall performance but also
to achieve robustness against model uncertainties.

On the other hand, complex control methods need in
general full state information which in most of the situ-
ations is not practical. In this case, many approaches have
been proposed in the process control literature to estimate
some unavailable key states based on Luenberger observer
(LO) and Kalman filter (KF) (Bastin and Dochain, 1990;
Klockow et al., 2008). However, these state estimators are
implemented iteratively (e.g., extended LO and KF) to
deal with the nonlinearities exhibited in the fermentation
dynamics making difficult the task of tuning the observer
gain in order to achieve a nice convergence behaviour.
In this paper, we propose a robust nonlinear observer
for which a nonlinear static gain is designed to improve
the estimation convergence as well as to cope with model
uncertainties. The rest of this paper is as follows. Section 2
introduces the problem to be addressed in this paper.
The control strategy is proposed in Section 3 and the
robust observer design is derived in Section 4. Numerical
experiments are carried out in Section 5 to validate the
approach and Section 6 ends the paper.



2. PRELIMINARIES

The yeast strain S. cerevisiae presents a metabolism that is
macroscopically described as follows (Bastin and Dochain,
1990):

Substrate oxidation: S + k5O
r1−→ k1X + k7P (1)

Substrate fermentation: S
r2−→ k2X + k4E + k8P (2)

Ethanol oxidation: E + k6O
r3−→ k3X + k9P (3)

where X , S, E, O and P are, respectively, the concentra-
tion in the culture medium of biomass, substrate (typically
glucose), ethanol, dissolved oxygen and carbon dioxide.
The ki, i = 1, . . . , 9, are the constant yield coefficients and
the ri, i = 1, 2, 3, are the specific growth rates. We model
these rates by the following discontinuous functions:

r1 = min{rS , k−1
5 rO} (4)

r2 = max{0, rS − k−1
5 rO} (5)

r3 = max

{
0,

rO − k5rS

k6
·

E

E + KE

}
(6)

where the kinetic terms related to the substrate consump-
tion rS , the oxidative or respiratory capacity rO and the
ethanol oxidative rate rE are represented as follows

rS = μS

S

S + KS

(7)

rO = μO

O

O + KO

·
KiE

KiE
+ E

(8)

rE = μE

E

E + KE

(9)

with the constants μS , μO and μE being the maximal
values of the specific growth rates and KS , KO and KE

expressing the saturation of the respective elements. Note
that we are taking the effect of ethanol on the cells growth
into account by considering the inhibition ethanol constant
KiE

in (8).

The component-wise mass balances of the above reaction
scheme lead to the following state-space representation
(Dewasme and Vande Wouwer, 2008)

ẋ = Kr(x)x1 + Ax − ux + B(u) (10)

where x = [ x1 x2 x3 x4 x5 x6 ]′ = [ X S E O P V ]′ is
the state vector with x6 = V being the culture medium
volume, r(x) = [ r1 r2 r3 ]′ is the vector of reaction rates,
and u = Fin/x6 is the control input (the dilution rate)
with Fin denoting the inlet feed rate. The matrices K and
A, and the vector function B(·) are given by:

K =

⎡
⎢⎢⎢⎢⎢⎣

k1 k2 k3

−1 −1 0
0 k4 −1

−k5 0 −k6

k7 k8 k9

0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , B(u) =

⎡
⎢⎢⎢⎢⎢⎣

0
Sin u

0
kLa Osat

kLa Psat

0

⎤
⎥⎥⎥⎥⎥⎦ , (11)

A =

[
03 03×2 03×1

0 −kLa I2 0
01×3 01×2 0

]
,

where kLa is the volumetric transfer coefficient, Sin is
the feeding substrate concentration, and Osat and Psat
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Fig. 1. Control Scheme for Optimal Operation Regime.

are respectively the saturations of dissolved oxygen and
carbon dioxide concentrations.

To analyze the biomass productivity, we recall the
Sonnleitner’s bottleneck assumption (Sonnleitner and
Käppeli, 1986) which states that during a culture the
yeast cells are likely to change their metabolism because of
limited respiratory capacity. When the substrate concen-
tration is large, the yeast cells produce ethanol (respiro-
fermentative regime). If the substrate concentration be-
comes small, the available substrate (and possibly the
ethanol) are oxidized (respirative regime). Thus, the opti-
mal operating point to maximize the biomass productivity
is at the boundary of the two regimes (Valentinotti et al.,
2004), i.e., when the fermentation and oxidation reaction
rates are equal to zero. Hence, the optimal operating point
can be easily computed through the equality rO = k5rS

leading to the following equation

x∗
2 =

KS rO

k5μS − rO

(12)

where x∗
2 refers to the substrate critical value.

In view of (8), we note that the operating point x∗
2 is

in fact a nonlinear function of x3 and x4. To simplify
the control problem, many references either consider a
constant set-point (Klockow et al., 2008) or alternatively
choose a sub-optimal solution by imposing a low-level of
ethanol concentration (Renard and Vande Wouwer, 2008).

3. CONTROL STRATEGY

In this paper, we aim at maintaining the system as close
as possible to its optimal operating condition. To this
end, we have to determine on-line the value of x∗

2 and
design a controller such that x2 tracks approximately x∗

2.
In addition, to simplify the analysis, we suppose in this
section that all states are available on-line for feedback.
For practical purposes, a nonlinear observer is proposed
in the next section to estimate some state variables which
are difficult to measure.

The proposed control scheme is illustrated in Figure 1. The
internal feedback loops correspond to a standard feedback
linearizing controller, where the free linear dynamics is
designed to give a good tracking response as well as to
assure a certain level of robustness against plant parameter
variations. The external feedforward loop is to compute
on-line the substrate critical level. We stress that instead
of computing an adaptive controller to handle plant pa-
rameter variations (as, e.g., Dewasme and Vande Wouwer
(2008)), we design a fixed controller that will have a guar-
anteed performance in the admissible parameter space.



To control the substrate level, consider the following
dynamics for x2 taken from (10)

ẋ2 = −(r1 + r2)x1 + (Sin − x2)u (13)

where r1 and r2 are nonlinear functions of x2, x3 and x4

as given by (4) and (5). With respect to the above system
dynamics, we assume that the values of x1, . . . , x6 are
bounded to a given polytopic region X with know vertices,
that is, x ∈ X ⊂ R

6.

A feedback linearizing control law can be easily derived:

u =
Fin

x6
=

1

Sin − x2
((r̃1 + r̃2)x1 + v) (14)

where r̃1 and r̃2 are respectively the nominal values of r1

and r2, which may vary due to parameter variations, and
v is the new input of the resulting linearized system.

In view of (13) and (14), we obtain the following dynamics
for x2

ẋ2 = v − (er1 + er2)x1 (15)
where er1 := r1 − r̃1 and er2 := r2 − r̃2 are nonlin-
ear functions of (x2, x3, x4) representing possible inexact
cancelations of nonlinear terms due to uncertain model
parameters.

Borrowing the ideas of the Quasi-LPV approach (Leith
and Leithead, 2000), we bound the term er1 + er2 by a
time-varying parameter δ = δ(t) which is supposed to
belong to a known set Δ := {δ : δ ≤ δ ≤ δ} with δ

and δ respectively representing the minimal and maximal
admissible uncertainty.

To approximately track the time-varying reference signal
x∗

2, we consider the following additional control loop

v = λ(x∗
2 − x2) (16)

where λ ∈ R is a free parameter to be designed.

In this paper, we design the parameter λ to ensure some
robustness and a certain tracking performance to the
overall closed loop system. To this end, we model the
closed loop system as follows

M :

{
ẋ2 = −λx2 + a(λ, δ)w
z = − x2 + c w , δ ∈ Δ

(17)

where w = [ x∗
2 x1 ]′ ⊂ L2,[0,T ] is a disturbance input to

the system M, z = x∗
2 − x2 the performance output and

a(λ, δ) = [ λ −δ ] , c = [ 1 0 ] .

Now, consider the following definition for the finite horizon
L2-gain of system M:

‖Mwz‖∞,[0,T ] = sup
δ∈Δ,0�=w⊂L2,[0,T ]

‖z‖2,[0,T ]

‖w‖2,[0,T ]
(18)

Thus, we design the parameter λ based on the H∞

control theory (Skogestad and Postlethwaite, 2001). In
other words, we solve the following optimization problem

min
λ,δ∈Δ

γ : ‖Mwz‖∞,[0,T ] ≤ γ (19)

while ensuring the robust stability of system (17).

Note 1. The parameter λ can be easily obtained through
the LMI framework either via a quadratic Lyapunov
function (Boyd et al., 1994) or a parameter dependent one

(de Souza et al., 2000) if we assume δ̇ is also bounded,
since we can easily perform a line search on λ. �

4. ROBUST OBSERVER

To implement the control law proposed in the latter
section, we have to measure several state variables such
as X , S, E and O. In spite of existing specific probes
to measure all these signals on-line, some sensors can be
quite expensive and are not always available in a practical
set-up. Particularly, in the proposed control strategy, we
are dealing with very low levels of substrate (glucose)
and ethanol concentrations making their measurements
expensive and inaccurate.

Alternatively, we propose a robust Luenberger-like nonlin-
ear observer to estimate the substrate and ethanol concen-
tration levels from the measurement of x1 = X , x4 = O,
x5 = P and the dilution rate u = Fin/x6. As we are dealing
with a nonlinear system, the exponential observability
property of the system is state dependent (Bastin and
Dochain, 1990). In other words, for large estimation errors,
the observer may diverge from the system operating point
since the exponential observability is lost. To overcome this
problem, we assume the initial conditions x2(0) and x3(0),
which are respectively the initial substrate and ethanol
concentration levels, are partially known (likely through
inaccurate off-line measurements).

Firstly, we model the reaction rates by the following
uncertain functions:

ri(x) ∼= ri(θi) = αi(1 + βiθi) , θi ∈ [−1, 1] (20)

where, for i = 1, 2, 3, αi is the steady-state value of ri, θi

is an uncertain time-varying parameter which models the
displacement of ri from its steady-state regime and also a
possible inaccuracy on the system parameters, and βi is a
given constant added in light of the unitary normalization
of the uncertain parameter space. Then, we propose the
following state space representation for the observer⎧⎨

⎩
˙̂x = Kr̂x̂1+Â(u)x̂+B̂(u, y)+L(y, u)(y−ŷ)
ŷ = Cyx̂
ẑ = Cz x̂

(21)

where x̂ ∈ R
6 is the state estimation, y = Cyx is the on-

line measurement, ŷ is the measurement estimation, ẑ is
the signal to be estimate, K is as in (11), L(y, u) ∈ R

6×4 is
a nonlinear matrix function of y and u to be determined,
r̂ is as defined in (24), and

Â(u) = −diag{0, u, u, kLa, kLa, 0}

B̂(u, y) = [−x1u Sinu 0 (kLaOsat−x4u)

(kLaPsat−x5u) −x6u ]
′ (22)

Cy =

⎡
⎢⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎦ , Cz =

[
0 1 0 0 0 0
0 0 1 0 0 0

]
.

Accordingly to (20), we define the estimates of ri(θi) as
follows

r̂i := αi (23)

where, for i = 1, 2, 3, r̂i is the estimate of the approximate
reaction rates.

Now, considering the following notation

r(θ) =

[
α1(1+β1θ1)
α2(1+β2θ2)
α3(1+β3θ3)

]
, θ =

[
θ1

θ2

θ3

]
, r̂ =

[
α1

α2

α3

]
, (24)



we can approximate the error dynamics as follows

ė ∼= (Kr̂Nr + Â(u) − L(y, u)Cy)e + K(r(θ) − r̂)x1
∼= (Kr̂Nr + Â(u) − L(y, u)Cy)e + KΩ(x1)θ

where Nr = [ 1 0 · · · 0 ], θ ∈ Θ := {θ ∈ R
3 : |θi| ≤ 1 , i =

1, 2, 3} and Ω(x1) = x1 · diag{α1β1, α2β2, α3β3}.

In light of the above developments, we can pose the
problem of determining L(y, u) in an �1 optimal control
setting (Dahleh and Diaz-Bobillo, 1995). To this end,
consider the following error dynamics representation:

E :

{
ė = Aee + Beθ
ze = Cze , ‖θ‖∞ ≤ 1

(25)

where θ is an energy-peak bounded disturbance signal, ze

the estimation error to be minimized and

Ae = Kr̂Nr + Â(u) − L(y, u)Cy , Be = KΩ(x1) .

In this paper, we consider the following definition for the
�1-norm of system (25):

‖Eθze
‖1 = sup

e ∈ E, e(0) = 0
‖θ‖∞ ≤ 1

‖ze‖∞ (26)

where E := {e : V (e) ≤ 1} is an estimate of the reachable
set and V (e) is a Lyapunov function for system E , which
guarantees the system internal stability.

An upper-bound σ on ‖Eθ ez
‖2
1 can be determined via the

following optimization problem (Nagpal et al., 1994)

min
V (e), η
e ∈ E

σ :

⎧⎪⎨
⎪⎩

V (e) > 0 , η > 0

V̇ (e) + η(V (e) − θ′θ) < 0

V (e) −
z′eze

σ
≥ 0

(27)

Notice the set invariance property of E is guaranteed for
zero initial conditions and the constraints on (27) may
not hold when e(0) 	= 0. As a result, the error state
trajectory may leave E and do not return since the state
observer is nonlinear and the stability properties are not
necessarily global. In this paper, we assume the initial error
is sufficiently close to zero such that E is attractive.

5. NUMERICAL EXPERIMENTS

In this section, we perform several numerical experiments
considering small-scale culture conditions. In particular,
we borrow the 20 [l] bioreactor studied in (Dewasme and
Vande Wouwer, 2008), where the initial and operating
conditions are:

x1(0) = 0.4 [g/l] , x2(0) = 0.5 [g/l] , x3(0) = 3 [g/l] ,

x4(0) = Osat = 0.035 [g/l] , x5(0) = Psat = 1.286 [g/l] ,

x6(0) = 6.8 [l] and Sin = 350 [g/l] .

We study two different scenarios. Firstly, supposing the
state variables are available online for feedback, we de-
sign the robust linearizing feedback controller proposed
in Section 3 aiming for tracking as close as possible the
estimation of the substrate critical value. In this setup, we
consider a noisy ethanol measurement, since the level of
ethanol is likely to be very close to zero making difficult
its measurement. Secondly, we design a robust observer to
estimate the substrate and ethanol concentration levels,
which in the proposed strategy are very low and difficult
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Fig. 2. Biomass concentration – state feedback case.

to measure in current practice, applying the result pro-
posed in Section 4. In this case, we analyze the observer
robustness and verify the set of initial conditions in which
the convergence properties hold.

5.1 State Feedback

We refer to state feedback the control law proposed in (14)
and (16), where x1, x2, x3, x4 and u are available online.
To design the parameter λ in (16) via the optimization
problem (19), we suppose the parameters KS, KE , KO and
KiE

may vary ±20% from their nominal values. Simulating
the operating conditions of the control strategy in (14), we

may infer that δ = −δ = 1.0, which in light of (17) and
(19) yields λ = 44.8511.

Figures 2 to 4 show the closed-loop response of biomass
x1, substrate x2 and ethanol x3 concentrations, for five
different values of KS, KE , KO and KiE

(which were
randomly chosen). In all simulations, we have added a
white noise on the ethanol concentration measurement
with a maximal amplitude of ±0.25 [g/l]. Notice in all
cases the biomass productivity does not significantly vary
against parameter uncertainty and noise measurement.

5.2 Output Feedback

In order to design the state observer as proposed in
Section 4, we have considered

α1 =3.2 × 10−5 , α2 =1.3 × 10−6 , α3 =4 × 10−7 ,

β1 = β2 = β3 = 1 , x1 ∈ [0.4, 180] , Fin ∈ [10−7, 10−4] ,

which are obtained from the noiseless simulations of the
state-feedback case.

We can compute the observer gain through the LMI frame-
work, see for instance (Coutinho et al., 2005). Assuming
that u is available online, we have chosen an observer gain
as follows:

L(y, u) = L(u) = L0 + uL1 ,

where L0 and L1 are constant matrices to be determined.
In addition, to simplify the computations, we constraint
the Lyapunov function to be quadratic, i.e., V (e) = e′Pe
with P = P ′ > 0.
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Fig. 3. Substrate concentration – state feedback case.
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Fig. 4. Ethanol concentration – state feedback case.

Thus, solving (27) for all (x1, u) ∈ V([0.4, 180] ×
[10−7, 10−4]) with the parametrization Q(u) = PL(u) and
a line search on η, we obtain the following matrices

L0 = 106 ×

⎡
⎢⎢⎢⎢⎢⎣

0.267 −0.380 1.006 0.000
−0.208 1.421 −3.759 0.000

0.058 −0.341 0.903 0.000
−0.041 0.283 −0.747 0.000

0.109 −0.747 1.978 0.000
0.000 0.000 0.000 −2×10−7

⎤
⎥⎥⎥⎥⎥⎦

L1 = 102 ×

⎡
⎢⎢⎢⎢⎢⎣

0.143 −0.256 0.679 0.000
−0.172 1.217 −3.220 0.000

0.045 −0.290 0.768 0.000
−0.034 0.241 −0.639 0.000

0.090 −0.639 1.690 0.000
0.000 0.000 0.000 0.000

⎤
⎥⎥⎥⎥⎥⎦

where V(·) stands for the set of vertices of (·).

From several simulations, the observer initial conditions
that guarantee the stability of the error system are as
follows

x̂2(0) = x2(0) ± 50% , x̂3(0) = x3(0) ± 50% . (28)
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Fig. 5. Biomass concentration – output feedback case.
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Fig. 6. Substrate concentration – output feedback case.

To test the output feedback closed-loop performance, we
carried out several simulations for randomly chosen values
of KS , KE, KO, KiE

and x̂2(0), x̂3(0) from the admissible
parameter space leading to the results detailed in Figures
5, 6 and 7.

5.3 Remarks and Future Research

The simulations indicate that the overall performance of
the biomass concentration productivity is robust against
uncertainties on model parameters and some initial con-
dition estimates. The biomass productivity is similar to
the one obtained in (Dewasme and Vande Wouwer, 2008),
where an adaptive control is applied for a similar setup,
but the proposed approach achieved a better transient per-
formance. However, the ethanol concentration level does
not always converge to zero indicating an error on the
estimation of x∗

2. Notice we determine x∗
2 from (12) which

is a function of some partially known parameters. Further
developments are needed to improve the estimation of the
substrate concentration critical level.
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6. CONCLUSION

This paper has proposed a robust control strategy to opti-
mize the production of yeast cultures in fed-batch opera-
tion. Firstly, assuming full state information, a robust con-
troller is designed for ensuring a guaranteed performance
in spite of parameter uncertainty. Then, a nonlinear robust
observer is derived in order to estimate the states that are
not available online for feedback. Numerical examples have
demonstrated the applicability of the proposed approach
to control yeast fed-batch fermentation processes.
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