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Abstract: It is clear from worldwide research that micro chemical processes (MCPs) offer a unique 
approach to the spatial and temporal control of chemical reactions.  The well-known advantages of MCPs 
are often counterbalanced by serious faults such as channel blockage and catalyst deterioration.  To 
realize stable long-term operation of MCPs, it is necessary to develop a monitoring system that can detect 
and diagnose these faults.  In this work, a physical model-based process monitoring system for a tubular 
microreactor is developed.  A state space model is derived by using the orthogonal collocation method, 
and the extended Kalman filter is used as an observer.  The optimal sensor locations are determined so 
that unknown parameters such as catalyst effectiveness can be estimated most accurately.  In addition, the 
validity of the conventional observability measures in solving the sensor location problems of MCPs is 
assessed.   
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1. INTRODUCTION 

In microspaces, viscous force, surface tension, conduction 
heat transfer, and molecular diffusion become dominant.  In 
addition, the contact time and interfacial area between fluids 
are precisely controlled.  These features achievable in 
microspaces enable us to handle highly exothermic and rapid 
reactions and to produce fine particles with narrow size 
distribution (Hessel et al., 2005).  However, the above 
features are often counterbalanced by serious faults such as 
channel blockage and catalyst deterioration.  To realize stable 
long-term operation of micro chemical processes (MCPs), it 
is necessary to develop a monitoring and control system 
suitable for MCPs.  Such a system is usually based on the 
measurements available from installed sensors.  However, the 
existing miniaturized sensors are too expensive in terms of 
the initial as well as the maintenance costs.  In addition, the 
sensors connected to microreactors in series are not allowed 
to observe the internal states of microreactors, because they 
generate dead volume and affect the flow conditions.  
Therefore, it is important to develop a monitoring system that 
can estimate unmeasured variables and unknown parameters 
from a few indirect on-line measurements and quickly detect 
and diagnose faults.  Thus, our technical imperatives are to 
develop MCPs-oriented sensing devices, to develop a system 
that can estimate the internal states of MCPs, to propose an 
approach for effective fault detection and diagnosis in MCPs, 
etc.  So far, there are only few papers about fault detection 
and diagnosis of MCPs (Kano et al., 2007).  In this work, 
optimal sensor locations for effective fault diagnosis of a 
tubular microreactor (TMR) are investigated.  In addition, the 
validity of the conventional observability measures in solving 
the sensor location problems of the TMR is assessed.  Finally, 

operation policies and control structures for MCPs with an 
external numbering-up structure are investigated.  Two types 
of operation policies, total flow control and pressure drop 
control, are compared from the viewpoint of flow uniformity 
when blockage occurs.   

2. TUBULAR MICROREACTOR (TMR) 

Applications of TMRs can be found in nitration of aromatic 
compounds, radical polymerization reactions, etc. 

2.1  Concept of Fault Detection and Diagnosis 

The following method to detect and diagnose faults in TMRs 
is proposed.  A limited number of temperature sensors are 
embedded in walls of TMRs.  Wall temperatures are used to 
estimate unknown parameters such as catalyst effectiveness.  
At the same time, the optimal sensor location problems have 
to be solved so that unknown parameters can be estimated 
most accurately.  Previous similar researches on conventional 
reactors often neglect heat conduction inside walls when 
constructing their process models.  In case of TMRs, it is 
crucial to rigorously model the wall heat conduction due to 
high volume ratio of walls to channels.  In addition, there are 
two methods to formulate process models: empirical model-
based method and physical model-based method.  In this 
work, the latter method is adopted.   

2.2  Physical Model 

Figure 1 shows a schematic diagram of a TMR.  Premixed 
reactants, A and B, are fed into the inner tube, and a coolant 
is fed into the outer tube.  Each flow is assumed to be plug  
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Fig. 1. Schematic diagram of TMR. 

flow, and the inner wall surface is coated with a catalyst.  On 
the catalyst surface, the following exothermic reactions take 
place:   

A + B → P r1 = k1 CA    (1) 
A + B → Q r2 = k2 CA    (2) 
P + B → R r3 = k3 CP    (3) 

 
P is a desired product, and Q and R are by-products.  The 
temperature-dependent rate constant ki in each reaction is 
presented by Arrhenius form:   

( )exp 1 2 3, , ,ii i Sk A E RT i= − =  (4) 

 
Table 1 shows the reaction parameters.  A and P are treated 
as key components, and the TMR can be described by the 
following mass and energy balance equations:    
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where z and r are the axial and radial space coordinates [m], 
and other variables are summarized in Table 2.  Subscripts s, 
f, and w are catalyst surface, fluid, and wall, respectively.  
Catalyst thickness, δ, is set to 0.2 mm.   

3 PROCESS MODEL FORMULATION 

TMR’s physical model described in the previous section is 
regarded as a real process.  Fault diagnosis will be based on a 
state space model, which is derived from the distributed 
parameter model (5)-(10). 

3.1  Process Model 

Using the orthogonal collocation method, each state variable 
is approximated by the following:  

 

Table 1.  Reaction parameters. 

Reaction Ai [1/s] Ei [J/mol] ΔHi [kJ/mol] 
(1) 86760 71711.7 - 2980 
(2) 37260 71711.7 - 4622 
(3) 149.4 36026.3 - 1664 

 

Table 2.  Model parameters. 

Parameter Value  
Reactant velocity v 1 m/s 
Mass diffusion coefficient D 1 x 10-5 m2/s 
Heat diffusion coefficient kf 0.041 J/m K s 
Heat conductivity of wall kw 16.3 J/m K s 
Density of reactant ρf 1.01 kg/m3 
Density of wall ρw 8000 kg/m3 
Viscosity of fluid μ 2.92 x 10-5 Pa s 
Heat capacity of reactant Cpf 1090 J/kg K 
Heat capacity of wall Cpw 500 J/kg K 
Reactor length L 1 m 
Channel diameter d 1 mm 
Wall thickness dw 1 mm 
Inlet conc. of species A CA 4 mol/m3 
Inlet conc. of species P CP 0 mol/m3 
Inlet temp. of reactant Tf,in 733 K 
Coolant temp. Tc 733 K 
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where Xi,j (t) and Xi (t) are the value of X (t, z, r) at the axial 
collocation points z1 ~ zn (0 = z1<z2<…<zn = L) and the radial 
collocation points r1 ~ rm (0 = r1<r2<…<rm = d/2), 
respectively.  Li (z) and Lj (r) are Lagrange polynomials.  In 
this study, n and m are set to 30 and 5, respectively, and the 
collocation points are chosen as roots of a Chebyshev 
polynomial.  The above approximation is also applied to the 
states at boundaries.  Equations (5)-(10) are transformed into 
the following:  
 

( )intft uxx ),()( =  (13) 
 
where uin denotes the input vector and x the state vector:  
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3.2  Observer Design 

Nonlinear estimation problems in this research are solved 
with the extended Kalman filter (EKF), which is based upon 
the principle of linearization of the state transition matrix and 
the observation matrix with Taylor series expansions.  Wall 
temperature measurements are used as observed variables.  
To obtain the best estimates, the locations of the available 



 
 

     

 

sensors must be selected carefully.  The sensor location 
candidates in the axial direction of TMR are prepared 
according to the collocation points, and the optimal sensor 
locations are selected according to the following performance 
index, 
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where N is the number of iteration steps, θreal and θest the real 
and estimated values of parameters.  J means the rate of 
convergence towards real values.  As J becomes larger, the 
estimation performance becomes higher. 

4. SIMULATION RESULTS 

Three different examples of fault diagnosis of TMR are 
presented in this section.  In addition, the conventional 
observability measures are examined for the selection of 
optimal sensor locations in TMR.   

4.1  CASE 1: Catalyst Deterioration 

In CASE 1, an optimal sensor location problem for 
estimation of catalyst effectiveness α is investigated.  It is 
assumed that reaction rate constant k1 includes α: 

( )),(exp),( 111 ztRTEAztk S−= α  (16) 
 
An initial value of α = 1 is considered, followed by an abrupt 
change from 1 to 0.8 at time t = ts.  After catalyst 
deterioration, α is estimated from one temperature 
measurement by using EKF.  The normal steady state (α = 1) 
is used as the initial state of parameter estimation.  J is 
calculated at every candidate for sensor locations.  As shown 
in Fig. 2 (left), the largest value of J can be found near the 
inlet of TMR.  This result is well illustrated by Fig. 2 (right).  
The solid and dotted curves in Fig. 2 (right) correspond to the 
wall temperature profiles along TMR having α = 1 and 0.8, 
respectively.  The great differences between the solid and 
dotted curves mean the high responses of temperature to a 
parameter change.  This physical interpretation confirms that 
the optimal sensor location is near the inlet of TMR.   

4.2  CASE 2: Channel Blockage 

In CASE 2, a blockage diagnosis problem in TMR is 
investigated.  Specifically, the inlet flow rate is constant, and 
one temperature sensor is used to estimate fluid velocity v.  
An initial value of v = 1 m/s is considered, followed by an 
abrupt change from 1 m/s to 1.2 m/s at time t = ts.  After 
channel blockage, v is estimated by using EKF.  The normal 
steady state (v = 1 m/s) is used as the initial state of 
parameter estimation.  J is plotted as a function of sensor 
position.  The relative large values of J can be found in the 
latter part of TMR, as seen in Fig. 3 (left).  This result is well 
illustrated by Fig. 3 (right).  As well as CASE 1, the large 
differences between both profiles mean the high responses of 
temperature to a fluid velocity change.  All things considered,  
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Fig. 2. Estimation results of CASE 1. 
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Fig. 3. Estimation results of CASE 2. 
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Fig. 4. Results of CASE 3.              Fig. 5. Rank of WO. 
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the optimal sensor location is in the latter part of TMR, which 
differs from CASE 1. 

4.3  CASE 3: Simultaneous Diagnosis of Multi-Faults  

This study is similar to the previous cases, but the two 
unknown parameters, α and v, are simultaneously estimated 
by using two temperature sensors.  The simulation conditions 
of the observer are the same as used in the previous cases.  
Figure 4 suggests that one sensor should be located near the 
inlet of TMR and the other in the latter part of TMR to 
realize successful fault diagnosis.   

4.4  Observability Measures  

Over the years, several studies on sensor locations for 
estimation in conventional processes have been reported.  
The representative approaches are to define optimal criteria 
based on the observability Gramian WO.  An overview of 
several criteria is summarized below.  Muller et al. (1972) 
examine the smallest singular value, the determinant, and the 
trace of WO as a measure for sensor location.  Dochain et al. 
(1997) present the condition number of WO, and van den 
Berg et al. (2000) use the trace of WO as a criterion for sensor 
location.  While the above presented WO is suitable only for 
linear systems, one alternative is to use the observability 
covariance matrix WO

cov if systems are nonlinear.  Singh et al. 
(2005) present the trace of WO

cov for sensor location.  The 
aim of this section is to assess the effectiveness of the 
existent sensor location criteria for parameter estimation 
problems in TMR.   

In the above presented TMR, observability analysis is 
performed by determining the rank of WO.  Figure 5 shows 
the rank of WO at every possible sensor location.  Since WO at 
every location is rank deficient, then the system is not 
observable.  In such a situation, the smallest singular value of 
WO is zero.  Accordingly, it is not suitable to use criteria such 
as the smallest singular value, the smallest eigenvalue, the 
determinant, and the condition number of WO.  Therefore, the 
trace of WO

cov is appropriate to the determination of the 
optimal sensor location for parameter estimation.  However, 
for this work, WO

cov is used instead of WO because the 
process is a time-variant system in case of parameter 
estimation problem.  WO

cov can be decomposed into (Singh et 
al., 2005):   

O, nn O, pn
O

O, np O, pp

cov cov

cov cov
cov W W

W W

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
W  (17) 

 
where cov

nnO, W  the observability covariance matrix of the 
system, cov

O, ppW  the covariance of the outputs caused by 
changes in the parameters, and cov

O, pnW  and cov
O, pnW  the 

covariance of the outputs resulting from changes in the states 
and parameters.  The optimal sensor location for parameter 
estimation is computed by maximizing the traces of cov

O, ppW .  
The traces of cov

O, ppW  in CASEs 1 and 2 are plotted for possible 
sensor locations in Figs. 6 and 7.  Figs. 6 and 7 are similar to 

Figs. 2 (left) and 3 (left), respectively.  That is, the trace of 
cov

O, ppW  is useful as a criterion for judging where the sensors 
should be located.  On the other hand, the trace and 
determinant of cov

O, ppW  in CASE 3 are plotted in Figs. 8 and 9, 
respectively.  As compared with Fig. 4, it is clarified that the 
determinant of cov

O, ppW  is effective as a criterion of optimal 
sensor locations for estimating multi-parameters.   
 

5. OPERATION POLICY FOR MCPs 

The production capacity of MCPs is usually increased by 
numbering-up, which means the repetition of a microdevice. 
One of the critical operational issues of MCPs with 
numbering-up structure is to keep a uniform flow distribution 
among parallelized microdevices even when blockage occurs 
in one or more microdevice.  Since it is not practical to install 
flow controllers in all the microdevices, a simple and 
effective operation policy against blockage occurrence needs 
to be developed.  In this work, two types of operation policies, 
total flow control and pressure drop control, are compared 
from the viewpoint of flow uniformity when blockage occurs. 

5.1  Total Flow Control and Pressure Drop Control 

To maintain the desired product quality, it is important to 
keep a uniform flow rate in each microdevice of the micro 
chemical plant when blockage occurs, because flow 
maldistribution worsens the performance of the micro 
chemical plant. In this research, pressure drop control is 
proposed to achieve the uniform flow distribution.   

 

 

Fig. 10. Parallelized microdevices under two operation 
policies: (A) total flow control and (B) pressure drop control.   
 

 

Fig. 11. Mass flow rate of each microdevice under blockage 
occurrence: (A) total flow control and (B) pressure drop 
control.   



 
 

     

 

A micro chemical plant consisting of four parallelized 
microdevices in Fig. 10 is used to demonstrate the difference 
of two operation policies, total flow control and pressure drop 
control.  When blockage occurs in microdevice 2, the flow 
distribution under the pressure drop control is derived by 
simulation and compared with that under the total flow 
control.  In Fig. 10, reactant is fed to the parallelized 
microdevices at 0.1 m/s in the normal condition.  The 
physical properties of the reactant are assumed to be the same 
as water (293 K).  The results are shown in Fig. 11.  In the 
case of blockage occurrence, mass flow rates of unblocked 
microdevices are significantly increased under the total flow 
control (Fig. 11 left), while they are kept constant at the value 
in a normal condition under pressure drop control (Fig. 11 
right).  These results show that the proposed pressure drop 
control is effective in making flow distribution uniform even 
when blockage occurs.   

5.2  Comparison of Control Structures in Pressure Drop 
Control 

In the previous section, it was confirmed that pressure drop 
control is superior to total flow control in realizing uniform 
flow distribution among unblocked microdevices when 
blockage occurs.  In this section, two different control 
structures based on pressure drop control, pumping pressure 
control and pressure drop control over the parallelized section, 
are investigated.   

5.2.1  Experimental Apparatus  

Micro chemical plants having four or eight parallelized 
microdevices are used to grasp the distinction between two 
control structures.  A schematic drawing of a micro chemical 
plant having four parallelized microdevices is shown in Fig. 
12.  Reactant is fed with a double plunger pump.  The 
product line is open to the atmosphere.  The flow rate of each 
microdevice is measured by using an in-line mass flow meter, 
and blockage in each microdevice is artificially realized by 
closing the valve located between the pump and each 
microdevice.  Each microdevice consists of an SUS tube 
having 0.3 mm inner diameter and 2 m in length.  In addition, 
an SUS tube with 0.5 mm in inner diameter and various 
lengths is installed after the parallelized microdevices to 
represent units that are not necessary to be parallelized.  
Hereafter, this section is referred to as a residence time 
section.  The pressure drops over the parallelized section and 

the residence time section are denoted by ΔPa and ΔPb, 
respectively.  The ratio of ΔPa to ΔPb is changed by 
adjusting the length of the residence time section.   

5.2.2  Pumping Pressure Control  

Under pumping pressure control, the double plunger pump is 
operated at constant pumping pressure. In experiments, 
pumping pressure is kept at a gauge pressure of 500 kPa – 1 
MPa.  Pressure drop over the whole micro chemical plant is 
kept constant under pumping pressure control, because the 
product line is open to the atmosphere.   

The influence of blockage on flow distribution under 
pumping pressure control is investigated through both 
simulations and experiments with changing the ratio ΔPa/Δ 
Pb in the range of one-fifth to seven.  The first step in the 
experimental procedure is to adjust the pumping pressure to 
realize a total flow rate of 12 mL/min.  This operating 
condition is regarded as the normal condition.  Then, 
microdevice 1 is artificially blocked by closing the valve.  In 
300 s, the micro chemical plant is returned to the normal 
condition by opening the valve.  These procedures are 
repeated for the other valves to imitate blockage in the other 
microdevices.   

Figure 13 shows the normalized average mass flow rate, 
which is defined as the ratio of average mass flow rate of 
unblocked microdevices under blockage occurrence to that 
under the normal condition at each  ΔPa/ ΔPb.  There is little 
difference between the results of experiments and those of 
CFD simulations.  The normalized average mass flow rate 
becomes closer to the flow rate under the normal condition as  
ΔPa/ΔPb becomes larger.  In other words, ΔPa should be 
significantly larger than ΔPb to keep the flowrate of 
unblocked microdevices unchanged when blockage occurs.  
It is concluded that pumping pressure control is effective to 
realize uniform flow distribution when the pressure drop over 
the parallelized section is dominant.   

5.2.3  Pressure Drop Control Over the Parallelized Section 

The flow uniformity achieved by pumping pressure control 
depends on ΔPa/ΔPb, which is the ratio of the pressure drop 
over the parallelized section to that over the residence time 
section.  The flow uniformity in the parallelized microdevices 
deteriorates when ΔPa/ΔPb is small.  In this subsection, 

Plunger pump 
uf-3020SZB2 

Flow rate [mL/min] : 0.1~20.0
Accuracy : ±0.3%
Reproducibility: 1% or less
Volume/Stroke [µL] : 308
Setting press. Range [MPa] : 0.1~8.0  

Fig. 12. Micro chemical plant under pumping pressure control. 



 
 

     

 

 

Fig. 13. Influence of blockage on the mass flow rate.   

another pressure drop control structure where ΔPa is directly 
controlled by manipulating the flow rate of the bypass line is 
proposed.   

The performance of the proposed control structure is 
evaluated experimentally by using the micro chemical plants 
with four (Type A) and eight (Type B) parallelized 
microdevices.  The plunger pump is operated so that the total 
flow rate is kept constant. The other conditions are the same 
as those in the previous subsection.   

The experimental results for a Type A plant are shown in Fig. 
14.  The top and bottom figures correspond to the case where 
ΔPa/ΔPb = 50 and ΔPa/ΔPb = 1, respectively.  In the range 
of 0–300 s, the micro chemical plant is operated under the 
normal condition.  The difference in flow rate between 
microdevices 1 and 2 is due to the degree of precision in the 
fabrication.  When blockage occurs in microdevice 1 at 300 s, 
the flow rate of microdevice 1 goes to zero instantaneously 
and the flow rate of microdevice 2 deviates from its set-point.  
However, the flow rate of microdevice 2 returns to the 
normal level in a few tens of seconds.  Flow rate deviation 
becomes small when blockage occurs gradually.  The 
transient responses of microdevices 3 and 4 are similar to that 
of microdevice 2; they are not shown in Fig. 14 to identify 
the transient response of each microdevice easier.  The top 
and bottom figures in Fig. 14 show almost the same profiles.  
This result shows that the efficiency of the proposed control 
structure does not depend on ΔPa/ΔPb.   

The experimental result of a Type B plant is almost the same 
as that of the Type A plant.  These results show that the 
proposed control structure has the function of keeping the 
flow rate of the unblocked devices constant regardless of the 
changes in ΔPa/ΔPb and the number of parallelized 
microdevices.   

6. CONCLUSIONS 

In this study, sensor locations for effective fault diagnosis of 
TMR are investigated.  It is clarified that two different faults 
are accurately diagnosed by using only two wall temperature 
sensors, which are optimally located in the axial direction of 
TMR.  In addition, the optimality criteria for sensor locations 
in TMRs are investigated.  The results obtained from case 
studies demonstrate that the criteria based on observability 
covariance matrix are effective and their maximization allows  

 

Fig. 14. The time series of mass flow rate in each 
microdevice in Type A: (A) ΔPa/ΔPb = 50, (B) ΔPa/ΔPb = 1.   

one to determine where the sensors should be located.  
Finally, we have discussed operation policies and control 
structures for micro chemical plants with an external 
numbering-up structure.  Two operation policies, total flow 
control and pressure drop control, were compared.  The 
simulation result shows that the pressure drop control is 
effective to keep a uniform flow distribution among the 
parallelized microdevices even when blockage occurs.  In 
addition, two control structures based on pressure drop 
control, pumping pressure control and pressure drop control 
over the parallelized section, were investigated 
experimentally.  The former control structure is simple.  
However, this structure functions only when the ratio of the 
pressure drop over the parallelized section to that over the 
residence time section, ΔPa/ΔPb, is large.  On the other hand, 
the latter control structure can make the flow distribution 
uniform for any ΔPa/ΔPb.   
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