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Abstract: This paper presents a quasi-decentralized output feedback control structure for
multi-unit plants with limited state measurements and distributed control systems that exchange
information over a resource-constrained wireless sensor network (WSN). The networked control
structure brings together model-based feedback control, state estimation and sensor scheduling
to enforce closed-loop stability while simultaneously minimizing the rate of communication over
the WSN. Initially, an observer-based output feedback controller is designed for each unit. To
conserve the resources of the wireless devices, communication between the local control systems
is suspended periodically for extended time periods during which each control system relies
on models of the plant units to generate the necessary control action. Communication is then
re-established at discrete time instances according to a certain schedule that determines the
order and times at which the wireless sensor suites transmit the state estimates needed to
update the states of the models embedded in the target units. By analyzing the combined
discrete-continuous behavior of the scheduled closed-loop plant, we explicitly characterize the
stability of the networked closed-loop system in terms of the communication rate, the sensor
transmission schedule, the accuracy of the models, as well as the controller and observer design
parameters. The results are illustrated using a chemical plant example where it is shown that
by judicious management of the interplays between the control, communication and scheduling
design parameters, it is possible to stabilize the plant while simultaneously enhancing the savings
in WSN resources beyond what is possible with concurrent transmission configurations.

Keywords: Quasi-decentralized control, wireless sensor networks, model-based control, state
estimation, scheduling algorithms, chemical plants.

1. INTRODUCTION

Chemical plants are large-scale dynamical systems that
consist of a large number of distributed units which are
tightly interconnected through mass and energy flows and
recycle. Traditionally, the controller synthesis problem for
such plants has been addressed within either the central-
ized or decentralized control frameworks. Both approaches
have been the subject of numerous research studies aimed
at understanding their advantages and limitations, as well
as the development of strategies to overcome some of those
limitations (e.g., see Siljak (1991); Lunze (1992); Sourlas
and Manousiouthakis (1995); Katebi and Johnson (1997);
Cui and Jacobsen (2002); Camponogara et al. (2002);
Huang and Huang (2004); Skogestad (2004); Venkat et al.
(2005); Goodwin et al. (2005); Kariwala (2007) and the ref-
erences therein). Other notable contributions on this prob-
lem include the development of plant-wide control strate-
gies based on passivity theory and concepts from thermo-
dynamics (Hangos et al. (1999); Antelo et al. (2007)), the
development of agent-based systems to control spatially-
distributed reactor networks (Tetiker et al. (2008)), and
the analysis and control of integrated process networks
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using time-scale decomposition and singular perturbations
(Baldea et al. (2006)).

An approach that provides a compromise between the
complexity of traditional centralized control schemes, on
the one hand, and the performance limitations of de-
centralized control approaches, on the other, is quasi-
decentralized control, which refers to a control strategy
in which most signals used for control are collected and
processed locally, while some signals are transferred be-
tween the local units and controllers to adequately ac-
count for the interactions and minimize the propagation
of process upsets from one unit to another. A key con-
sideration in the design and implementation of quasi-
decentralized control systems is the selection of the com-
munication medium over which the local control systems
must communicate. While dedicated point-to-point links
offer a reliable communication medium, the complexity
and costs of installation and maintenance associated with
this architecture, as well as the lack of flexibility for real-
time reconfiguration, represent major drawbacks especially
for large-scale plants with complex interconnections. An
alternative solution is the use of wireless communication
networks. The viability of this approach stems from the
convergence of recent advances in actuator/sensor manu-
facturing, wireless communications and digital electronics,



which has produced low-cost wireless sensors (e.g., Ku-
mar (2001); Song et al. (2006)) that can be installed for
a fraction of the cost of wired devices. Wireless sensor
networks (WSNs) offer unprecedented flexibility ranging
from high-density sensing capabilities to deployment in
areas where wired devices may be difficult or impossible
to deploy. Augmenting existing process control and mon-
itoring systems with WSNs has the potential to expand
the capabilities of the existing control technology beyond
what is feasible with wired architectures alone. These are
appealing goals that coincide with the recent calls for
expanding the traditional process control and operations
paradigm in the direction of smart plant operations (e.g.,
see Ydstie (2002); Christofides et al. (2007)).

One of the main challenges to be addressed when deploying
a low-cost WSN for control is that of handling the inherent
constraints on network resources, including the limitations
on the computation, processing and communication capa-
bilities. In an effort to address this problem, we devel-
oped in Sun and El-Farra (2008a) a quasi-decentralized
model-based networked control architecture that enforces
closed-loop stability with minimal cross communication
between the constituent subsystems. The minimum allow-
able communication rate was characterized in terms of
the plant-models’ mismatch for the case when all sensors
suites transmit their measurements concurrently and are
given simultaneous access to the network. The networked
control structure was subsequently generalized in Sun
and El-Farra (2008b) to address the problem when only
limited state measurements are available (for additional
results and references on the design of networked control
systems, the reader may refer to Walsh and Ye (2001);
Montestruque and Antsaklis (2003); Munoz de la Pena and
Christofides (2008) and the references therein).

In addition to transmitting the data at discrete time
instances, another important way of conserving the WSN
resources is to select and activate only a subset of the
deployed sensor suites at any given time to communicate
with the rest of the plant. Under this restriction, the
stability and performance characteristics of each unit in
the plant become dependent not only on the controller
design but also on the selection of the scheduling strategy
that, at any time, determines the order in which the sensor
suites of the neighboring units transmit their data. Forcing
the different subsystems to transmit their data at different
times creates opportunities for providing a more targeted
correction to the models’ estimation errors, such that the
models with the largest uncertainties can receive more
timely updates than is feasible under the simultaneous
transmissions configuration.

Motivated by these considerations, we present in this work
an integrated approach for model-based control, state esti-
mation and sensor scheduling in plants with limited state
measurements and interconnected processing units that
communicate over a resource-constrained WSN. The ob-
jective is to find a strategy for establishing and terminating
communication between the sensors suites of the WSN and
the local control systems in a way that minimizes the rate
at which each node in the WSN broadcasts data to the
rest of the plant without jeopardizing closed-loop stability.
The rest of the paper is organized as follows. Following
some preliminaries in Section 2, the networked control and

scheduling problem is formulated. Section 3 then presents
the quasi-decentralized output feedback control structure
and describes its implementation over a WSN with the
aid of appropriate local state observers, process models
and sensor transmission scheduling. The closed-loop sys-
tem is then formulated and analyzed in Section 4 where
precise conditions for closed-loop stability are provided in
terms of the communication rate over the WSN, the sensor
scheduling strategy, as well as the accuracy of the models
and the choice of controller and observer designs. We show
how the stability criteria provide systematic tools that can
guide the search for optimal transmission schedules that
achieve the biggest savings in WSN resource utilization.
Finally, the theoretical results are illustrated in Section 5
using a chemical plant example.

2. PRELIMINARIES
2.1 Plant description
We consider a large-scale distributed plant composed of
n interconnected processing units, represented by the
following state-space description:

ẋ1 = A1x1 + B1u1 +
n∑

j=2

A1jxj , y1 = C1x1

ẋ2 = A2x2 + B2u2 +
n∑

j=1,j �=2

A2jxj , y2 = C2x2

...
...

ẋn = Anxn + Bnun +
n−1∑
j=1

Anjxj , yn = Cnxn

(1)

where xi := [x(1)
i x

(2)
i · · · x

(pi)
i ]T ∈ IRpi denotes the

vector of process state variables associated with the i-
th processing unit, pi is the number of state variables
in the i-th unit, yi := [y(1)

i y
(2)
i · · · y

(qi)
i ]T ∈ IRqi and

ui := [u(1)
i u

(2)
i · · · u

(ri)
i ]T ∈ IRri denote the vector

of measured outputs and manipulated inputs associated
with the i-th processing unit, respectively, xT denotes the
transpose of a column vector x; Ai, Bi, Aij and Ci are
constant matrices. The interconnection term Aijxj , where
i �= j, describes how the dynamics of the i-th unit are
influenced by the j-th unit in the plant. Note from the
summation notation in Eq.1 that each processing unit can
in general be connected to all the other units in the plant.

2.2 Problem formulation and solution methodology

Referring to plant of Eq.1, we consider a quasi-decentralized
control structure in which each unit in the plant has a
local control system with its sensors and actuators con-
nected to the local controller through a dedicated wired
communication network. An additional suite of wireless
sensors is deployed within each unit to transfer data from
the local control system to the plant supervisor as well
as to the other distributed control systems in the plant.
The various sensor suites form a plant-wide WSN through
which the plant units and their controllers communicate.
The control objective is to stabilize all the plant units
at the zero steady-state while simultaneously: (a) keeping
the data dissemination and exchange over the WSN to
a minimum, and (b) accounting for the lack of full-state
measurements within each unit. To address the resource-
constraints problem, we develop in the next section an



integrated model-based quasi-decentralized output feed-
back control and scheduling strategy that reduces the
exchange of information between the plant units without
loss of stability. This is accomplished by: (a) designing for
each local control system an appropriate state observer
that generate estimates of the local state variables from
the measured outputs, (b) including models within each
control system to estimate the interaction terms when
measurements are not available through the WSN, and (c)
limiting the number of WSN nodes that, at any given time,
transmit their data to update the corresponding target
models. The problem is to find an optimal scheduling
strategy for establishing and terminating communication
between the sensor suites and the target controllers. To
illustrate the main ideas, we will consider as an example
the configuration where only one wireless sensor suite is
allowed to transmit its data to the appropriate units at any
given time, while the other nodes remain dormant until the
next suite is allowed to transmit its data.

3. QUASI-DECENTRALIZED STATE ESTIMATION
AND CONTROL WITH SCHEDULED SENSOR

TRANSMISSIONS
3.1 Synthesis of distributed output feedback controllers
Referring to the plant of Eq.1, we begin by synthesizing
for each unit an output feedback controller of the form:

ui = Kix̄i +
n∑

j=1,j �=i

Kij x̄j

˙̄xi = (Ai − LiCi)x̄i +
n∑

j=1,j �=i

Aij x̄j + Biui + Liyi,
(2)

where x̄i is an estimate of the state of the i-th unit gen-
erated by an observer embedded within the local control
system of the i-th unit, Ki is the local feedback gain re-
sponsible for stabilizing the i-th subsystem in the absence
of interconnections, Kij is a gain that compensates for the
effect of the j-th neighboring subsystem on the dynamics
of the i-th unit, and Li is the observer gain (chosen such
that Ai − LiCi is Hurwitz). Note that, in addition to
x̄i which is supplied continuously by the local observer,
the implementation of the controller of Eq.2 requires the
availability of observer-generated state estimates from the
other units in the plant, x̄j , which can be transmitted
only through the WSN. A copy of the local observer must
therefore be included within the wireless sensor suite of
each unit in order to generate the state estimates which
are then broadcast to the rest of the plant. This setup is
possible given the computational capabilities of wireless
sensors. An alternative approach, which avoids having
the wireless sensors carry the computational load of the
observer, is to have the WSN nodes transmit only the
output measurements, but include within each control
system an observer of the full plant instead (not just an
observer of the local subsystem) which then generates the
required state estimates of the full plant state. In addition
to the complexity of designing a centralized observer for
the entire plant, another difficulty with this approach is
that the observer must be designed to have hybrid dynam-
ics since the WSN data are transmitted only at discrete
time instances while the local measurements are supplied
continuously (or at least more frequently).

It should also be noted that the choice to use a Luen-
berger observer is made only to illustrate the design and

implementation of the quasi-decentralized output feedback
control architecture. This choice, however, is not unique
and any other explicit observer design can be used instead.
The only requirement is that the observer possess an
explicit evolution equation that relates the dynamics of
the state estimate explicitly to the plant matrices, the
output and the observer design parameters. As we will
see in the next section, this feature permits the derivation
of explicit closed-loop stability conditions that depend in
a transparent way on the observer design parameters.
3.2 Design of model-based networked control structure
To conserve battery power in the plant-wide WSN, we
initially reduce the rate at which the information (i.e., x̄j)
is transferred from the wireless sensor suite of each unit
to the target control systems in the neighboring units as
much as possible without sacrificing closed-loop stability.
To this end, and following the idea presented in (Sun and
El-Farra (2008b)), we embed in each unit (both in the
local controller and in the wireless sensor suite) a set of
dynamic models that provide estimates of the evolution of
the states of the neighboring units when communication
over the WSN is suspended. The model estimates are
used to generate both the local state estimates and the
local control action. The state of each model is then re-
set using the state estimate generated by the observer of
the corresponding unit when the wireless sensor suite of
the latter is allowed to transmit its data at discrete time
instances. In mathematical terms, the local control and
update laws for unit i are implemented as follows:

ui(t) =Kix̄i(t) +
n∑

j=1,j �=i

Kij x̂
i
j(t), t �= tjk, i = 1, 2, · · · , n

˙̄xi(t)=(Ai − LiCi)x̄i(t) +
n∑

j=1,j �=i

Aij x̂
i
j(t) + Biui(t) + Liyi(t)

˙̂xi
j(t) = Âj x̂

i
j(t) + B̂j û

i
j(t) + Âjix̄i(t) +

n∑
l=1,l �=i,l �=j

Âjlx̂
i
l(t), t �= tjk

ûi
j(t) =Kj x̂

i
j(t) + Kjix̄i(t) +

n∑
l=1,l �=i,l �=j

Kjlx̂
i
l(t), t �= tjk

x̂i
j(t

j
k)= x̄j(t

j
k), j = 1, · · · , n, j �= i, k = 0, 1, 2, · · ·

(3)

where x̂i
j is the estimate of xj provided by a model of

unit j embedded in unit i; Âj , B̂j and Âjl are constant
matrices; tjk indicates the k-th transmission time for the
j-th sensor suite in the WSN. The fact that x̄i appears
directly in the model of the j-th unit follows from: (1) the
structure of the plant and the way the i-th and j-th units
are interconnected, and (2) the fact that the observer-
generated estimates of xi are assumed to be available
continuously to the local control system of the i-th unit.
Note that the models used by the i-th controller to recreate
the behavior of the neighboring units do not necessarily
match the actual dynamics of those processes, i.e., in
general Âj �= Aj , B̂j �= Bj , Âjl �= Ajl.
3.3 Scheduling WSN transmissions and model updates
A key measure of the extent of WSN utilization is the
update period for each sensor suite, hj := tjk+1− tjk, which
determines the frequency at which the j-th node sends ob-
server estimates to the other units through the network to
update the corresponding model states. A larger h implies



larger savings in WSN resource utilization. To simplify the
analysis, we consider in what follows only the case when
the update period is constant and the same for all the
units, so that tjk+1 − tjk := h, j = 1, 2, · · · , n. To further
reduce network utilization, we perform sensor scheduling
whereby only one wireless sensor suite is allowed to trans-
mit its observer estimates to the appropriate units at any
one time, while the other suites remain dormant until the
next suite is allowed to transmit its data (the analysis
can be generalized to cases where multiple suites transmit
at the same time). The transmission schedule is defined
by: (1) the sequence (or order) of transmitting nodes:
{sj , j = 1, 2, · · · , n}, sj ∈ N := {1, 2, · · · , n}, where
sj is a discrete variable that denotes the j-th transmitting
entity in the sequence, and (2) the time at which each node
in the sequence transmits observer estimates. To charac-
terize the transmission times, we introduce the variable:
Δtj := t

sj+1
k −t

sj

k , j = 1, 2, · · · , n−1, which is the time in-
terval between the transmissions of two consecutive nodes
in the sequence. Fig.1 is a schematic representation of how

t0s 1 t0s 2 t0s 3 

Δt1 Δt2

t0s n - 1 t0s n 

Δtn - 1 Δt1 Δt2 Δtn - 1 

h 

h 

t1s 1 t1s 2 t1s 3 t1s n - 1 t1s n t2s 1 

Fig. 1. A schematic showing the time-line for the transmission of
each sensor suite in an h-periodic schedule.

sensor scheduling is performed. Note that the schedule is
h-periodic in that the same sequence of transmitting nodes
is executed repeatedly every h seconds (equivalently, each
node transmits its data every h seconds). Note also from
the definitions of both h and Δtj that we always have the
constraint

∑n−1
j=1 Δtj < h. Since the update periods for all

units are the same, the intervals between the transmission
times of two specific units are constant, and within any
single execution of the schedule (which lasts less than h
seconds), each sensor suite can only transmit its observer
estimates through the WSN and update its target models
in the local control systems of its neighbors once. This can
be represented mathematically by the condition: si �= sj

when i �= j. By manipulating the time intervals Δtj (i.e.,
the transmission times) and the order in which the nodes
transmit, one can systematically search for the optimal
sensor transmission schedule that leads to the largest up-
date period (or smallest communication rate between each
sensor suite and its target units).

4. NETWORKED CLOSED-LOOP STABILITY
ANALYSIS

4.1 Characterizing the scheduled closed-loop response
In order to derive conditions for closed-loop stability, we
need first to express the plant response as a function of
the update period and the sensor transmission schedule.
To this end, we define the model estimation errors by ei

j =
x̄j−x̂i

j , for j �= i, and ei
j = 0, for j = i, where ei

j represents
the difference between the state of the observer of unit j
(embedded in unit j) and the state of the model of unit j
(embedded in unit i). Introducing the augmented vectors:
ej := [(e1

j )
T (e2

j )
T · · · (en

j )T ]T , e := [eT
1 eT

2 · · · eT
n ]T ,

x := [xT
1 xT

2 · · · xT
n ]T , x̄ := [x̄T

1 x̄T
2 · · · x̄T

n ]T , it can
be shown that the overall closed-loop plant of Eq.1 and
Eq.3 can be formulated as a combined discrete-continuous
system of the form:

ẋ(t) = Λ11x(t) + Λ12x̄(t) + Λ13e(t)
˙̄x(t) = Λ21x(t) + Λ22x̄(t) + Λ23e(t)
ė(t) = Λ31x(t) + Λ32x̄(t) + Λ33e(t), t �= tjk

ej(t
j
k) = 0, j = 1, 2, · · · , n, k = 0, 1, 2, · · · ,

(4)

where Λij ’s are constant matrices whose explicit forms
are omitted for brevity but can be obtained by sub-
stituting Eq.3 into Eq.1. Note that, unlike the case of
simultaneous sensor transmissions (where no scheduling
takes place) which was investigated in Sun and El-Farra
(2008b), not all models within a given unit are updated
(and hence not all estimation errors are re-set to zero)
at each transmission time. Instead, only the model of the
transmitting unit is updated using the observer-generated
estimates provided by the wireless sensor suite of that par-
ticular unit. Defining the augmented state vector ξ(t) :=
[xT (t) x̄T (t) eT (t)]T , the dynamics of the overall closed-
loop system can be cast in the following form:
ξ̇(t) = Λoξ(t), t �= tjk

ξ(tjk) =
[
xT (tjk) x̄T (tjk) eT (tjk)

]T

, k = 0, 1, 2, · · ·
eT (tjk) =

[
eT
1 (tjk) · · · eT

j−1(t
j
k) 0 eT

j+1(t
j
k) · · · eT

n (tjk)
]T

Λo =

[ Λ11 Λ12 Λ13

Λ21 Λ22 Λ23

Λ31 Λ32 Λ33

] (5)

The following proposition provides an explicit characteri-
zation of the scheduled closed-loop response in terms of the
update period and the transmission schedule. The proof
can be obtained by solving the system of Eq.5 within each
sub-interval in Fig.1, and is omitted for brevity.
Proposition 1. Consider the closed-loop system described
by Eq.5 with a transmission schedule {s1, s2, · · · , sn} and
the initial condition ξ(ts1

0 ) = [xT (ts1
0 ) x̄T (ts1

0 ) eT (ts1
0 )]T =

ξ0, with es1(t
s1
0 ) = 0. Then, for k = 0, 1, 2, · · ·,

ξ(t) =

{
eΛo(t−t

sj
k

)Γj(Δtj , I
sj
o )Mk

o ξ0, t ∈ [tsj

k , t
sj+1
k )

eΛo(t−tsn
k

)ΓnMk
o ξ0, t ∈ [tsn

k , ts1
k+1)

(6)

where j = 1, 2, · · · , n − 1, and

Γj =
j−2∏

j−1−μ=0

Isμ+1
o eΛoΔtμ , for j ≥ 2, and Γj = I, for j = 1(7)

Mo = Is1
o e

Λo(h−
∑n−1

j=1
Δtj)Γn (8)

Isj
o =

⎡⎢⎢⎣
I O · · · O
O H1 · · · O
...

...
...

O O · · · Hn

⎤⎥⎥⎦ , Hi=
{

I, i �= sj

O, i = sj
(9)

for j = 1, 2, · · · , n, t
sj

k+1 − t
sj

k = h and Δtj = t
sj+1
k −

t
sj

k , j = 1, 2, · · · , n − 1.

4.2 Characterizing the maximum allowable update period
Having expressed the overall closed-loop response in terms
of the update period, the transmission times (which are
determined by Δtj) and the sequence of transmitting
nodes (which determines the structure of I

sj
o ), we are

in a position to state the main result of this section.
The following theorem provides a necessary and sufficient
condition for stability of the scheduled closed-loop plant
under the quasi-decentralized networked output feedback
control structure. The proof is omitted for brevity.



Theorem 2. Referring to the scheduled closed-loop system
of Eq.5 whose solution is given by Eqs.6-9, the zero solu-
tion, ξ = [xT x̄T eT ]T = [0 0 0]T , is globally exponentially
stable if and only if the eigenvalues of the matrix in Eq.8
are strictly inside the unit circle.
By examining the structure of the test matrix Mo in Eq.8,
it can be seen that its eigenvalues depend on the update
period h, the closed-loop matrix Λo (which in turn depends
on the plant-model mismatch as well as the controller and
observer gains for all the units), the time intervals between
sensor transmissions Δt1,Δt2, · · · , Δtn−1, as well as the
sensor transmission sequence {s1, s2, · · · , sn}. The stability
criteria in Theorem 2 can therefore be used to compare
different schedules (by varying the transmission sequence
as well as the transmission times) to determine the ones
that require the least communication rate between the
sensors and the target controllers and therefore produce
the biggest savings in WSN battery power utilization.
For a fixed schedule, the stability criteria can also be
used to compare different models, as well as different
controllers and state observers in terms of their robustness
with respect to communication suspension (i.e., which ones
require measurement updates less frequently than others).
Note that choosing Δt1 = Δt2 = · · · = Δtn−1 = 0
reduces the problem to one where all the nodes in the
WSN transmit their observer estimates simultaneously. As
expected, in this case stability of the networked closed-loop
system depends only on Λo and h.

5. SIMULATION STUDY: APPLICATION TO
CHEMICAL REACTORS WITH RECYCLE

We consider a plant composed of three non-isothermal con-
tinuous stirred-tank reactors (CSTRs) in a cascade. The
reactant species A is consumed in each reactor by three
parallel irreversible exothermic reactions. The output of
the third CSTR is passed through a separator that removes
the products and recycles unreacted A to the first CSTR.
Under standard modeling assumptions, a plant model of
the following form can be derived from conservation laws:

dTj

dt
=

F 0
j

Vj
(T 0

j − Tj) +
Fj−1

Vj
(Tj−1 − Tj)

+
3∑

i=1

(−ΔHi)
ρcp

Ri(CAj , Tj) +
Qj

ρcpVj

dCAj

dt
=

F 0
j

Vj
(C0

Aj − CAj) +
Fj−1

Vj
(CA(j−1) − CAj)

−
3∑

i=1

Ri(CAj , Tj), j = 1, 2, 3

where Tj , CAj , Qj , and Vj denote the temperature, the
reactant concentration, the rate of heat input, and the
volume of the j-th reactor, respectively, Ri(CAj , Tj) =

ki0 exp
(

−Ei

RTj

)
CAj is the rate of the i-th reaction, F 0

j

denotes the flow rate of a fresh feed stream associated
with the j-th reactor, Fj is the flow rate of the outlet
stream of the j-th reactor, with F0 = Fr, T0 = T3, CA0 =
CA3 denoting the flow rate, temperature and reactant
concentration of the recycle stream, ΔHi, ki, Ei, i =
1, 2, 3, denote the enthalpies, pre-exponential constants
and activation energies of the three reactions, respectively,
cp and ρ denote the heat capacity and density of fluid in
the reactor. Using typical values for the process parameters

(see Sun and El-Farra (2008a)), the plant with Qj = 0,
C0

Aj = C0s
Aj and a recycle ratio of r = 0.5, has three

steady-states (two locally asymptotically stable and one
unstable). The control objective is to stabilize the plant at
the (open-loop) unstable steady-state by manipulating Qj

and C0
Aj , j = 1, 2, 3. Only the temperatures of the three

reactors are assumed to be available as measurements.
A plant-wide WSN composed of 3 wireless sensor suites
is deployed. Each sensor suite collects estimates of the
local process state variables provided by a state observer
embedded within the unit and broadcasts it to the rest of
the plant. It is desired to stabilize the plant with minimal
data exchange over the WSN to conserve battery power
for the wireless devices.

Linearizing the plant around the unstable steady-state
yields a system of the form of Eq.1 to which the networked
output feedback control and scheduling architecture de-
scribed in the previous sections is applied. The synthesis
details are omitted due to space limitations. In the re-
mainder of this section, we will investigate the interplay
between the communication rate and the sensor transmis-
sion schedule, and its impact on closed-loop stability. Since
closed-loop stability requires all eigenvalues of Mo to lie
within the unit circle, it is sufficient to consider only the
maximum eigenvalue magnitude, denoted by λmax(Mo).

Table 1. Sensor transmission schedules

Schedule s1, s2, s3, s1, s2, s3, · · ·
1 1, 2, 3, 1, 2, 3, · · ·
2 1, 3, 2, 1, 3, 2, · · ·
3 2, 1, 3, 2, 1, 3, · · ·
4 2, 3, 1, 2, 3, 1, · · ·
5 3, 1, 2, 3, 1, 2, · · ·
6 3, 2, 1, 3, 2, 1, · · ·

We consider first the case when Δt1 = Δt2 = Δt.
Fig.2(a) is a contour plot showing the dependence of
λmax(Mo) on both the interval between transmissions, Δt,
and the update period, h, under the six possible sensor
transmission schedules listed in Table 1 when imperfect
models are embedded in the local control systems (each
model has 10% parametric uncertainty in the heat of
reaction). For each schedule, the area enclosed by the unit
contour line is the stability region of the plant. It can
be seen that, for sufficiently small Δt (below 0.03 hr),
the maximum allowable update periods obtained under
sequences 2 and 6 are larger than the one obtained when
no scheduling takes place (i.e., with Δt = 0). As Δt
is increased, however, the trend is reversed, indicating
that the benefits of scheduling can be limited by a poor
choice of the transmission times. For sequences 3 and 5,
scheduling yields larger update periods (compared with
the concurrent transmission configuration) only when the
transmission times are chosen such that Δt > 0.04 hr. In
general, allowing the different sensor suites to transmit
their data and update their target models at different
times (rather than simultaneously) can help provide a
more targeted and timely (though only partial) correction
to model estimation errors which in turn helps reduce
the rate at which each node in the WSN must transmit
its data. These predictions are further confirmed by the
closed-loop state profile shown in Fig.2(b), which shows
that the linearized plant is stable under sequence 6 but
unstable under sequence 2, when Δt = 0.02 hr and
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Fig. 2. (a) Dependence of λmax(Mo) on Δt and h for different
sensor transmission sequences under a model-based control
scheme. (b) Closed-loop temperature profile for CSTR3 under
the model-based quasi-decentralized output feedback control
strategy using two different sensor transmission schedules with
the same update period.

h = 0.13 hr (for brevity, only the temperature profile for
CSTR 3 is shown; the state and input profiles for the other
reactors exhibit similar behavior).

We consider next the more general case where Δt1 �=
Δt2. Fig.3(a) is a contour plot showing the dependence
of λmax(Mo) on Δt1 and h for different values of Δt2,
when the WSN nodes transmit according to sequence 2
and an uncertain model is used (nominal value of the
heat of reaction is 10% higher than the actual value).
It can be seen that a larger update period (and hence
larger reduction in WSN utilization) can be obtained by
carefully choosing the transmission times for the sensor
suites of different units than in the case when Δt1 = Δt2.
For example, consider the case when Δt2 = 0.02 hr and
h = 0.13 hr. This point lies outside the stability region of
schedule 2 when Δt2 = Δt1 = 0.02 hr (see Fig.2(a)). If we
choose Δt1 = 0.08 hr, however, the same update period
becomes stabilizing under schedule 2 (the point now lies
inside the stability region). These observations are further
confirmed by the temperature profiles in Fig.3(b).
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Fig. 3. (a) Dependence of λmax(Mo) on Δt1 and h for different

values of Δt2 under schedule 2 with a fixed model, and (b)
Closed-loop temperature profile for CSTR 3 when Δt2 = 0.02
hr and h = 0.13 hr for two different values of Δt1.
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