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Abstract:  A process model satisfies the integral controllability (IC) condition if the model can be 
used in a model-based controller that can be arbitrarily detuned without jeopardizing closed-loop 
stability.  For decoupling multivariable control this requirement is equivalent to the inequality 

� �1ˆRe 0� �� � �	 
GG  for the actual and estimated process steady-state gain matrices G  and Ĝ . This 
necessitates experiments for identification of Ĝ  that satisfies the IC inequality.  In this work we explore, via 
computer simulations, computational issues related to the design of such experiments for an FCC process.  The 
proposed approach is based on a general mathematical optimization framework we presented in prior work.
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1. INTRODUCTION 

A process model satisfies the integral controllability (IC) 
condition if the model can be used in a model-based 
controller that can be arbitrarily detuned without 
jeopardizing closed-loop stability.  For decoupling 
multivariable control this requirement is equivalent to the 
inequality  

� �1ˆRe 0� �� � �	 
GG (1) 

for the actual and estimated process steady-state gain 
matrices G  and Ĝ  (Garcia and Morari 1985). The problem 
is acute for ill-conditioned processes.  This necessitates 
experiments for identification of a model Ĝ  that satisfies 
the IC inequality.  "The main weakness of the eigenvalue 
conditions [eqn. (1)] is that they consist of a coupling 
between the plant model and the true plant which is highly 
cumbersome for use in robust control analysis and design." 
(Featherstone and Braatz 1998b).  A number of attempts 
have been made to address this weakness.  Featherstone and 
Braatz (1998a) showed that for processes with constant 
rotation matrices in the singular-value decomposition (svd) 
of their transfer matrix the problem reduces to D-optimal 
design of experiments.  Using insightful geometric 
reasoning to ensure IC for general linear 2 2�  systems, 
Koung and MacGregor (1993) introduced experiment 
designs in terms of rotated PRBS input vectors, with power 
of each component of the rotated input vector reciprocally 
proportional to the corresponding singular value of Ĝ .
Koung & MacGregor (1994) heuristically extended these 
design rules to n n�  multivariable systems.  The same rules 
were also used by Bruwer & MacGregor (2006) for the 
design of identification experiments subject to input and 

output bounds in the time domain.  Darby and Nikolaou 
(2008) showed that the design rules proposed by Koung and 
MacGregor (1993; 1994) accept the same deep theoretical 
justification for both 2 2�  and n n�  systems in a number 
of cases. However, Darby and Nikolaou (2008) also showed 
that these design rules are not optimal for a number of 
typical cases, such as when outputs and/or inputs are 
constrained or when input rather than output variance alone 
must be maintained at a minimum.  Furthermore, the same 
authors provided rigorous design rules for optimal inputs in 
a number of such cases.  These design rules from solution 
of corresponding optimization problems.  The purpose of 
this article is to explore the nature of the optimal input 
designs produced by the mathematical framework 
introduced by Darby and Nikolaou (2008) when applied to a 
realistic system, such as a 5 5�  fluid catalytic cracking 
(FCC) unit.   

2. BACKGROUND: EXPERIMENT DESIGN FOR IC 

Consider a stable, linear, time-invariant, multivariable 
system with steady-state input-output relationship 

�y Gm  (2) 

where , ny m � , G  and 1
ˆ ˆ ˆ[ ,..., ]ˆ T n n

n
�� G g g � .  Because 

the IC condition, eqn. (1), involves the real process G  and 
identified model Ĝ , it cannot directly guide input design 
for an n n�  system.  The following results (Darby and 
Nikolaou 2008) avoid that difficulty and can be used 
directly to design experiments pursuing IC. 



Theorem 1.  Experiment design for IC.  Let the model 
uncertainty matrix ˆ n n�� � D G G �  belong to the 
ellipsoidal uncertainty set  

� �2
1[ ... ] , 1ˆ T n n T T

n k kD c k n��  � � �d d d M Md� . (3) 

Then, an experiment design guarantees IC if the resulting 
information matrix TM M  and identified model Ĝ  satisfy 
the inequality 
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�� v M M v . (4) 

where

1
ˆ ˆˆk k ka c �� u , 1,...,k n� (5) 

and 1ˆ ˆn� �� �� , ˆ ku , ˆ kv  are defined through the svd  
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 Eqn. (4) clearly suggests that IC can be satisfied if the 
information matrix TM M  is "large enough".  Given bounds 
on the input vector m , a large enough TM M  can be 
achieved if (a) the identification experiment is run long 
enough, or (b) m  is shaped appropriately.  While the first 
alternative is straightforward, it is far less desirable than the 
second one.  Therefore, the essence of experiment design 
for IC is how to shape process inputs that satisfy eqn. (4) 
subject to relevant constraints.  Darby and Nikolaou (2008) 
showed that numerical or analytical solutions can be 
developed for a number of cases.  While for some of these 
cases the resulting designs are similar to designs that have 
appeared in literature, for others the resulting designs are 
entirely different. 

2.1. Analytical solutions 

Suppose that the quantity 1 1/ 2
1

ˆ ˆ[ ( ) ]n T T
k k kk

a �
�� v M M v  in 

eqn. (4) is to be minimized with respect to the zero-mean 
random input m , subject to the total weighted variance 
inequality 

2var( ) (1 ) var( )x x W� � �y m  (7) 

where 0 1x� �  and 10 ... na a� � � .  Then it can be shown 
that the optimal input vector m  is

ˆ�m V� , (8) 

where �  is a zero-mean multivariable PRBS with 
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2 2 1ˆk kb x x�� � � , 1,...,k n� . (10) 

and 1 ... 0nb b� � � .  Reversing the role of the above 
objectives and constraints, the minimum of the cost function 

var( ) (1 ) var( )x x� �y m  subject to eqn. (4) can be shown to 
be attained at an optimal m  satisfying eqn. (8) with 
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 Note that for 1x �  (all cost on output variance, as is 
desirable in early stages of an identification experiment) 
both eqns. (9) and (11) result in the well known design rule 
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where 1/ 3
1 1ˆ ˆ(|| || / || || ) 1ˆkj k js � �u u  for most cases of 

practical interest, and 1/ 6 1/ 61/ kjn s n� �  when ˆ ku , ˆ ju  are 

any orthonormal vectors in n� .  However, for 0x �  (all 
cost on input variance) we get the new input design 
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The above design would keep inputs small to avoid 
inadvertent loss of IC by failure to excite the process by 
inputs along directions corresponding to small singular 
values. 

 Finally, a D-optimal design subject to eqns. (4) and (7) 
can be shown to be attained, if feasible, at an optimal m  as 
in eqn. (8) with  

� �2 2 2
k kE W nb�� � �	 
 , 1,...,k n� , (14) 

if eqn. (4) is satisfied by the above k� , or each 2
kE �� �	 


equal to the unique positive solution of the equation 
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for a value of 0 �  such that eqn. (4) is satisfied.  It has 
been shown that eqn. (15) guarantees that 

2 2
1k kE E� ��� � � ��	 
 	 
  and that D-optimality is compatible with 

IC by Cauchy's inequality (Darby and Nikolaou 2008).    
Note that as t !"  eqns. (14) and (15) coincide 
asymptotically. 

2.2. Numerical solutions 

The preceding section 2.1 summarized analytical solutions 
for simple cases, offering insight into the nature of 
corresponding solutions.  However, in many practical 
situations individual constraints on im  and iy  may be 
present, such as 
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corresponding to bounds on the variance of individual 
inputs km  or outputs ky .  In such cases a numerical 
solution is required.  To obtain a numerical solution, assume 
a zero-mean input vector m , approximate the information 
matrix as ( 1)T

mt� �M M C , parametrize the input 
covariance matrix mC  in terms of the triangular matrix Q
through the Cholesky factorization T

m �C QQ , and 
substitute TM M  into eqn. (4), to get 
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(Other parametrizations of a symmetric matrix in terms of 
corresponding basis matrices could be used.  This is subject 
of ongoing investigation.)  We can then design experiments 
for IC using eqn. (18) as a constraint or by minimizing $
with respect to Q  subject to input and output constraints 
such as in eqns. (16) and (17).  Then, the corresponding 
optimal input m  is

opt�m Q z  (19) 

where z  is a zero-mean PRBS with cov( ) �z I .  Even 
though $  is not convex, resulting design problems are not 
prohibitively large for realistic systems, as demonstrated in 
section 4.  It should be stressed that minimizing $  may 
result to neither uncorrelated rotated inputs � , nor 
magnitudes of rotated input components reciprocally 
proportional to corresponding singular values of the steady-
state gain matrix, eqn. (12).  In fact, the advantage of the 
above numerical formulation is that no such underlying 
assumptions on the nature of optimal inputs are necessary.  
Rather, the numerical optimization determines the nature of 
optimal input designs. 

3. SUMMARY OF PROPOSED APPROACH 

a. Establish constraints commensurate with time t
available for identification experiments. 

b. Obtain preliminary estimates of Ĝ  and 2c .

c. Compute the svd of Ĝ  to get Û , �̂ , ˆ TV , eqn. (6). 

Case I 

d. Compute ,optk�  via eqns. (9) or similar 

e. Design ˆ�m V�  with �  zero-mean PRBS and 

1

2 2
,opt ,optcov( ) diag( ,..., ) ( 1)

n
t� �� �� � �

Case II 

d. Compute opt arg min $�Q  subject to constraints. 

e. Design opt�m Q z  with z  zero-mean PRBS and 
cov( ) �z I  (eqn. (19)). 

f. Implement m  and collect data, to update Ĝ  and 2c .

g. If Ĝ  is adequate, stop.  Otherwise go to step c. 

4. CASE STUDY 

A steady-state gain matrix is obtained from a linear 
empirical dynamic model of an industrial reactor-
regenerator from a FCC unit, identified from plant testing 
(Harmse 2007).  Note that the specific inputs and outputs 
are not indicated.  Scaling is performed according to the 
inverse of the typical operating ranges of the inputs and 
outputs.  The resulting gain matrix is 

0.3866 0.0 0.1192 0.0 0.0630
0.0 -0.6935 1.5463 -0.1311 -0.2462
0.0 0.0 0.5225 -0.1298 0.0
0.0 0.0 0.0 0.1058 0.0
0.0 -0.5803 -0.3669 -0.2057 -0.4435

� �
� �
� �
� ��
� �
� �
� �	 


G  (20) 

We tested the designs shown in Table 1.  The constraints shown in  
Table 2 were considered. 

Table 1.  Summary of experimental designs tested 
Design Objective Constraints 

ICmin min $
Q Q  triangular 

KM (Koung and MacGregor 1994) 

PRBSmax � �min log det
m

m�
C

C diag( )ˆm iv�C 0	

Table 2.  Constraints considered for experiment design 
Design case Bounds 
A 1

2

3

4

5

var( ) var( ) 0.50
1,...,5 var( ) 0.47

var( ) 0.44
var( ) 0.41
var( ) 0.38

im y
i y

y
y
y

� " �
� �

�
�
�

B var( ) 0.5 var( ) 0.5
1,...,5

i im y
i

� �
�

In all simulations, parameter estimation is initiated at time 
step 5 and is performed at each subsequent time step.  The 
IC condition, eqn. (1), is calculated based on the true gain 
matrix and the inverse of the gain estimate at each time 
step.  For simulations of case A, independent Gaussian 
noise of zero-mean and unit variance is added to all outputs.  



Realizations of the inputs and outputs for each design are 
shown in Figure 1.  We see that due to the high noise levels, 
the actual output variances are significantly higher than the 
optimal output variances (which are based on the model 
without noise).  Note that the relatively low signal-to-noise 
ratio allows us to observe the evolution of gains over a 
longer period of time. 
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Figure 1 – Example realization of reactor regenerator 
for the three designs of case A (Table 1).  The dotted 
lines represent opt 1/ 2(var( ) )im%  and opt 1/ 2(var( ) )iy%
values. 

Trends of the gain errors and an indicator of the IC 
condition are shown in Figure 2  For this realization, we see 
that IC is achieved first by ICmin at time step 7, followed 
by KM at time step 8, and finally PRBSopt at time step 13.  
The evolution of the gain errors is similar for ICmin and 
KM, whereas the PRBSopt results show higher gain errors 
and slower error reduction over time, consistent with the 
lower value of det(cov( ))m  for PRBSopt. 

Figure 2 – Gain errors and IC condition for example 
realization of design case A (Table 1).  Satisfaction or 
violation of the IC condition corresponds to shading 
above or below 0, respectively. 

For the simulations of case B, independent, Gaussian noise 
of zero mean and variance (0.152) is added to all outputs.  
Realizations of the inputs and outputs for each design are 
shown in Figure 3.  Note that the smaller signals for the KM 
design, compared to the other two designs, are due to the 



fact that inputs must satisfy all inequality constraints, as 
well as equality constraints on rotated input ratios.  The 
latter are clearly not optimal for case B. 
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Figure 3 – Example realization of reactor regenerator 
case B (Table 1).  The dotted lines represent 

optvar( )im%  and optvar( )iy%  values. 

Trends of the gain errors and an indicator of the IC 
condition are shown in Figure 4.  We see that the 
parameters estimates for the KM design are significantly 

inferior to the ICmin and PRBSopt designs, reflecting the 
much smaller value of det(cov( ))m  for KM.  Further, while 
IC is achieved by ICmin at time step 6 and by PRBSopt at 
time step 5, the KM design does not satisfy the IC condition 
by time step 20 (it is actually achieved at time step 22 – not 
shown – more then 3 times longer than required for either 
ICmin or PRBSopt).    

Figure 4 – Gain errors and IC condition for example 
realization of design case B (Table 1).  Satisfaction or 
violation of the IC condition corresponds to shading 
above or below 0, respectively. 

To develop these designs we used the Matlab routine 
fmincon with multiple starting points, to reduce the 
possibility of missing a global optimum for non-convex 
optimization problems.  Run time for all simulations was, 
on the average, of the order of 0.25 seconds when using the 
Yalmip interface, and of the order of 0.1 seconds without it. 



5. CONCLUSIONS 

The purpose of this paper was to explore numerical aspects 
of a numerical optimization approach proposed in prior 
work for the design of experiments targeting IC.  Given that 
analytical solutions for this approach are available only for 
some cases, it is natural to ask how well numerical 
optimization can work, given that the proposed problems 
are non-convex.  In this work, we develop what appear to be 
useful designs for a 5 5�  multivariable FCC unit.  
Convergence time appeared not to be an issue.  These 
results suggest that the proposed approach can work 
reasonably well for problems of that size.  Clearly, other 
optimization methods (either deterministic or probabilistic) 
can be explored. 
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