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Abstract: A new approach to nonlinear model predictive control (NMPC) is proposed in this paper. The 
multiple shooting method is used for discretizing the dynamic system, through which the optimal control 
problem is transformed to a nonlinear program (NLP). To solve this NLP problem state variables and 
their gradients at the end of each shooting need to be computed. Here we employ the method of 
collocation on finite elements to carry out this task. Due to its high numerical accuracy, the computation 
efficiency for the integration of model equations can be enhanced, in comparison to the existing multiple 
shooting method where an ODE solver is applied for the integration and the chain-rule for the gradient 
computation. The numerical solution framework is implemented in C++. Two examples are taken to 
demonstrate the effectiveness of the proposed NMPC algorithm. 
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1. INTRODUCTION 

Solving optimal control problem is highly motivated 
nowadays, since these solutions are very important in almost 
all industrial fields such as chemical, electrical, mechanical, 
and economical systems. One of the optimal control 
algorithms is MPC which refers to a class of computer 
control strategies that utilize an explicit process model to 
predict the future response of the plant (Qin and Badgwell, 
2003). MPC, also known as receding horizon control, has the 
ability to handle input as well as output constraints and 
transparent tuning capabilities (Gatlu and Zafiriou, 1992).  

The main goal of MPC is to find an optimal vector of control 
functions that minimize or maximize a performance index 
subject to a given process model (usually a nonlinear 
differential equation system) as equality constraints, and 
boundary conditions as inequality constraints on the states 
and controls. Simple problems can be solved by the so-called 
indirect method which is based on the first order optimality 
condition of variation (Diehl et al., 2006, Schäfer et al., 
2007). This leads to a two-point-boundary value problem in 
ordinary differential equations (ODE). For more details see 
e.g. Bryson and Ho (1975), Kirk (1970), and Lewis and 
Syrmos (1995). 

On the other hand, the direct method which follows the 
philosophy of “first discretize then optimize”, transforms the 
optimal control problem into a NLP problem which can then 
be solved by the method of sequential quadratic 
programming (SQP). In this way inequality constraints and 
equality path constraints can be easily treated, and we can 
also successfully deal with highly nonlinear complex optimal 
control problems (Diehl et al., 2006, Schäfer et al., 2007). 

In all direct methods, the control trajectory will be 
parameterized and the state trajectories computed using either 

sequential or simultaneous approaches. In the sequential 
approach, the state variables are considered as an implicit 
function of control trajectories, where the ODEs are 
addressed as an initial value problem using one of the 
dedicated integration methods like Runge-Kutta or Euler 
algorithms (Sargent and Sullivan, 1977; Kraft, 1985; Biegler 
et al., 2002). In the simultaneous approach, state trajectories 
are parameterized, too, and we deal with all of parameterized 
variables (states and controls) as optimization variables in the 
NLP. The ODEs will be represented as equality constraints, 
either with collocation on finite elements (Biegler et al., 
2002; Hong et al., 2006; Li, 2007) or with multiple shooting 
(Bock and Plitt, 1984; Leineweber, 1995; Diehl, 2001; Diehl 
et al., 2002a; Diehl et al., 2002b). 

In this work, we propose a new approach to the solution of 
nonlinear model predictive control (NMPC) problems. This 
control strategy is a combination of the multiple shooting and 
the collocation method. We use multiple shooting for 
discretizing the dynamic system, so that the optimal control 
problem is transformed to a NLP problem in which 
continuity conditions in each shooting are considered as 
equalities and state constraints at the end of each shooting as 
inequalities. To solve this NLP problem the values of state 
variables and their gradients at the end of each shooting have 
to be computed. Here we employ collocation on finite 
elements to carry out this task. Due to its high numerical 
accuracy, the computation efficiency for the integration of the 
ODEs can be enhanced, in comparison to the existing 
multiple shooting method where an ODE solver is applied for 
the integration and chain-rules for the gradient computation. 
We implement the proposed approach with a numerical 
solution framework in C++. Two examples are taken to 
demonstrate the effectiveness of the proposed NMPC 
algorithm. The results from our approach are compared with 



 
 

     

 

those achieved from the multiple shooting method (using the 
software MUSCOT II (Diehl et al., 2001)).  

 

2. NONLINEAR MODEL PREDICTIVE CONTROL 

2.1 Optimal control problem  

We will consider the following optimal control problem 
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where ��	
� ��	
 are the state and control variables, 
respectively, 	�"$�%"	� are initial and final time of the 
receding horizon, and constraint (i) is the initial value 
condition, (ii) the nonlinear ODE model, (iii) the path 
constraint, and (iv) the terminal constraint.  

2.2 Direct multiple shooting scheme 

The direct multiple shooting algorithm proposed by Bock and 
Plitt (1984) for solving problem (1) can be summarized in the 
following steps: 

1) Discretize the time horizon �	�� 	�� into equal subintervals &	'� 	'()*, such that 	� + 	) + , + 	- � 	�     (2) 

where n is the total number of subintervals.  

2) Parameterize the control function ��	
 for each 
subinterval: ��	
 � .'"""�/#"""	 � &	'� 	'()*    (3) 

      "0 � ��1� 2 � 3 4 1 

3) Parameterize the initial condition of the state vector for 
each subinterval:  ��	'
 � 5'     (4) "0 � ��1� 2 � 3 4 1 

4) Evaluate the state trajectories in each subintervals and the 
value of 5' from the final state subinterval considering the 
parameterized state initial value in the previous step:  ��'�	
 � ���'�	
� .'� 	
� 	 � &	'� 	'()*  (5a) 

       �'�	'
 � 5'     (5b) 

5) Define the continuity constraints:  5'() 4 �'�	'()6 5'� .'
 � �    (6) 

6) Compute the objective function for each subinterval, so we 
need to solve the following NLP 
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Eq. (7) can be described as 
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We can use the spars nonlinear optimizer (SNOPT) to solve 
the above NLP problem. In SNOPT equality constrains will 
be transformed into inequality constraints by introducing a 
set of slack variables, i.e. ���F G�?
"""" 
s.t.       (9) 
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where J � �J��, � J-=)� J-�, JC-=C
M. For more information 
on SNOPT see Gill et al. (2005) and Gill et al. (2008). 
Consequently, problem (8) can now be rewritten as: ���F G�?
" 
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2.3 SQP iteration 

Fig. 1 shows all of the information needed for each SQP 
iteration. 

 
Fig. 1: Inputs and outputs of each SQP iteration. 

In Fig. 1, WG�?
 and XYXF are the gradient of the objective 
function and Jacobian of the equality constraints in (7), 
respectively. G�?Z
""U3""?Z are the objective function value 
and the optimization variables at the solution. WC[ denotes 
the Hessian of the Lagrangian. The sensitivity information, 
i.e. WG�?
 and XYXF, plays the most important role in the SQP 
iteration and its computation requires much CPU-time. In the 
existing multiple shooting algorithm it is done by integrating 
the ODEs with an ODE solver and then using the chain-rule 
for the sensitivity computation. In this work we employ the 
method of collocation on finite elements to carry out the 
ODE integration and compute these sensitivities for each 
shooting. This proposed method is described in the next 
section. 
 

3. SOLVING ODE AND SENSITIVITIES 

To solve NLP (9) we have to solve the set of ODEs (5a). If 
we use piece-wise constant parameters for .', we can rewrite 
the ODE in each subinterval as 
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.�' I � ����'�	
� .'� 	
� � "\"H ]�' � ��]'�	
� 	
]'�	'
 � &�'".'*MI   (11) 

Using collocation method the state variables ]'�	
" will be 
approximated by the following Lagrangian polynomials 
(Finlayson, 1980) 
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where M is the number of the collocation points. Using the 
three-point-collocation to compute the vector z, we yield ]�	
 � e�]� � e)]) � eC]C � ef]f   (13) 

where ea � g �=�h�i=�hf̀>�`ca . 

To define the end time point of a subinterval to be the 
beginning point of the next one, we yield inside each 
shooting 	� � 	'� 	) � j)�	'() 4 	'
� "	C � jC�	'() 4 	'
"�"""$�%""	f � 	'()  (14) 
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We solve the nonlinear equations (15) on the collocation 
points by using the Newton-Raphson method to find p'�` 
and"]'. The first Taylor-expansion of (15) leads to e�'�` Xu8�hXv8�� � e�'�� 4 X�8�h�v8��
��
Xv8�� � �    (16) 

We define""Xu8�hXv8�� � w'�`, then 

e�'�`w'�` � e�'�� 4 X�8�h�v8��
��
Xv8�h w'�` � �  (17) 

or  

w'�` � 4 xe�'�` 4 X�8�h�v8��
��
Xv8�h y=) e�'��   (18) 

In fact, equation (18) is a linear equation system and thus can 
be solved by a LU factorization using forward and backward 
substitution, for more details see Golub and van Loan (1996). 
From the computed value of "�'�f we receive the 
Jacobian""XYXF, since 
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where I is a unit matrix. In the same way, we can calculate 
the gradient vector of WG�?
. 
 

4. THE PROPOSED ALGORITHM  

As we have seen above, the multiple shooting method 
depends mainly on the SQP iteration. Inside each SQP 
iteration the gradient values of the objective function and 
Jacobian of the constraints as well as the approximated 
Hessian need to be computed. Based on the theoretical 
development in Sections 2 and 3, we propose the following 
algorithm to solve the nonlinear optimal control problem. 
 
Algorithm 1: 

1. Initialize SQP  
1.1. Time horizon. 
1.2. Subintervals. 
1.3. Upper and lower bounds for states, controls 

and constraints. 
1.4. Fixed initial value constraint.  
1.5. Initial guess. 

WC� 

|N|? 

WG�?
 N�?
 G�?Z

?Z

G�?
 
SQP 

Intial guess 
of  w 



 
 

     

 

2. Define the continuity constraints B�?
 (8). 
3. Define the continuity constraints C�?
 (8). 
4. Initialize the three collocation points for each 

subinterval (14). 
5. Compute the constraint equations and their 

sensitivities  
5.1. Define collocation equations (15). 
5.2. Solve (15) using Newton-Raphson. 
5.3. Define sensitivity equations (1). 
5.4. Solve (17) using LU factorization. 

6. Compute objective function and its sensitivity.
7. Solve SQP iteration 

7.1. If KKT is not satisfied go to 4. 
8. End  

 
 
This algorithm is realized in the framework of the numerical 
algorithm group (NAG) library Mark 8 (Numerical 
Algorithms Group Ltd, 2005) and IPOPT (Wächter, 2008 ) 
for SQP and in C/C++ for the rest of computations. 
 

5. A CASE STUDEIS 

We consider the following optimal control problems to 
demonstrate the performance of the proposed algorithm.  
 
Example 1: Batch reactor - temperature profile. Maximize 
yield of "�C after one hour’s operation by manipulating a 
transformed temperature"��	
. This example is taken from 
Diehl et al. (2001). 
 �$}~��)��C """�C�	�
 
s.t.       (20) ��)�	
 � 4���	
 � �C�	
d 
�)�	
 ��C�	
 � ��	
�)"�	
�"""""""""	 � &��1* �)��
 � 1, �C��
 � �. � L �)�	
� �C�	
 L 1 � L ��	
 L m 
 
We discretize the dynamic system with 20 subintervals. The 
computation was done using a PC with an intel processor 
“Pentium 4”, 3 GHz and 1G Byte RAM. The solution took 
350 ms and provides the final value of objective function 
with ""�C�	�� � �kmlod�. Fig. 2 shows the optimal control 
trajectory and Fig. 3 the corresponding state trajectory �) 
while �C is shown in Fig. 4. These profiles of states ��)"$�%"�C
 and optimal control trajectory are identical, by 
using both MSCOD II and the proposed algorithm. 
 
If we solve this problem with different number of 
subintervals, e.g. 5, 10, 20, 40, 80 and 160 subintervals, we 
can note from the results, as shown in Table 1, that the 
number of optimization variables (z) and the number of 
constrains will be increased when the number of subintervals 
increases. The CPU-time will increase exponentially. 
However, if we compare the CPU-time taken by MUSCOD II 
with that of the proposed algorithm, it can be seen at a large 

number of subintervals (i.e. a high dimension of the NMPC), 
the proposed algorithm will be more effective. 
 

 
Fig. 2: The optimal control trajectory ��	
 
 

 
Fig. 3: The optimal state trajectory �)�	
 
 

 
Fig. 4: The optimal state trajectory �C�	
 
Table 1: Results of using different number of subintervals 

n z’s Co. 
eq. 

MUSCOD II Algorithm 1 
CPU-
Time 
(ms) 

J
CPU-
Time 
(ms) 

J

5 18 12 43 0.573117 188 0.568171 
10 33 22 53 0.573080 290 0.572162 
20 63 42 146 0.573527 350 0.573290 
40 123 82 940 0.573544 480 0.573478 
80 243 162 3620 0.573545 547 0.573528 

160 483 322 21612 0.573545 735 0.573541 

n: number of subintervals; z’s: total number of variables; Co. eq.: total 
number of constraints; J: value of objective function. 
 
Example 2: Optimal control of a continuous stirred tank 
reactor (CSTR): We consider a CSTR as shown in Fig. 5.  
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 Fig. 5: CSTR example 
 
An exothermic, irreversible, first order reaction A B 
occurs in the liquid phase and the temperature is regulated 
with external cooling. This highly nonlinear example is taken 
form Henson and Seborg (1997) or Pannocchia and Rawlings 
(2003) with the assumption that the level liquid is not 
constant. The constrained optimal control problem is 
formulated as follows: �����~ � &��) 4 �)�
C � 1����C 4 �C�
C��

�  """""""""""""""""""""""""""""""""""""""""""��k1��) 4 �)�
C � �k1��C 4 �C�
C*	 
s.t.                                                                 (21) ��) � �� 4 �)�#C  

��C � ����� 4 �C
�#C�) 4 ���C�=� �M�  

��f � ���e� 4 �f
�#C�) � 4���E� ���C�=� �M� � d�#�E� ��C4�f
 �)��
 � �knm�� �C��
 � �k�ll"$�%""�)��
 � od�km"" �km L �) L dkm�"""""""""""""""""""�k� L �C L 1k� �m L �) L 11m�"""""""""""""""""""d�� L �C L o�1 
 
where �) is the level of the tank in meter, �C the product 
concentration in mol and �f the reaction temperature in (K), 
and the controls are �)"$�%"�C the outlet flow rate in (L/min) 
and  coolant liquid temperature, respectively. In addition the 
inlet flow rate �� or the inlet concentration �� is acting as a 
disturbance to CSTR. The desired steady-state operating 
points: �)�, �C�, �)� and �C� are 0.659 meter, 0.877 mol/L, 
100L/min and 300K, respectively. The model parameters in 
nominal conditions are shown in Table 2. We consider the 
operation case that at the tenth minute a disturbance enters 
the plant at a level of 0.05 mol/L on the inlet molar 
concentration"""��. A time horizon of 	� � m�"min is 
considered.  
 
Table 2: Parameters of the CSTR �� 100 L/min � ��  8750 K e� 305 K U 915.6 ��=C�=)"�� 1.0 mol/L � 1 kg/L 
R 0.219 E� 0.239 � =)�=) �� 0.219 �� 4m � 1�� J/mol
  

To solve problem (21) using the proposed algorithm we 
divide the time horizon into 50 subintervals and so that the 
number of resulted NLP will be 306 variables with 204 
constraints, and the same PC is used to make the 
optimization. We used the IPOPT 3.4.0 to solve the NLP and  
NAG mark 8 to solve the Newton-Raphson equations and 
linear equation systems. 

 
Fig. 6: The optimal output flow �)�	
 and coolant 
temperature"�C�	
. 
 

 
Fig. 7: The optimal outlet temperature �f�	
. 
 

 
Fig. 8: The optimal control profiles �)�	
 and �C�	
. 
 
Figures 6 and 7 show the optimal control profiles of the states �)�	
, �)�	
""$�% �f�	
� respectively and Fig. 8 shows the 
optimal control profiles �)�	
 and �C�	
. The objective 
function value at the optimum is 0.9015886. Moreover, the 
algorithm was converged in 35 iterations and with the CPU-
time in 0.954s. In comparison, this problem was also solved 
by Hong et al. (2006) using a quasi-sequential approach and 
it was converged in 16 iterations and 5.56 s of CPU time of 
SUN Ultra 10 Station with identical solutions.  
 

 



 
 

     

 

6. CONCLUSIONS 

In this paper we proposed a novel algorithm for NMPC. It is 
a combination of the multiple shooting, where the NLP 
problem will be handled, with the collocation method, where 
function values and gradients required in the NLP will be 
computed. We use piecewise constant for controls and the 
three-point collocation for states to parameterize the vector of 
optimization variables. The proposed algorithm has been 
realized in the framework of the numerical algorithm group 
(NAG) and IPOPT in the C/C++ environment. In addition, 
two demonstrative examples have been taken as case studies 
to show and compare the results from our algorithm and the 
well known MUSCOD II code. From these results it can be 
seen that the proposed algorithm is more efficient when a 
large-scale NMPC problem is to be solved. Stability and error 
control issues as well as practical applications of this 
algorithm will be considered in our future work. 
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