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Abstract: Performance monitoring of model predictive control systems (MPC) has received
a great interest from both academia and industry. In recent years some novel approaches for
multivariate control performance monitoring have been developed without the requirement of
process models or interactor matrices. Among them the prediction error approach has been
shown to be a promising one, but it is k-step prediction based and may not be fully comparable
with the MPC objective that is multi-step prediction based. This paper develops a multi-
step prediction error approach for performance monitoring of model predictive control systems,
and demonstrates its application in an industrial MPC performance monitoring and diagnosis
problem.
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1. INTRODUCTION

Since early work of Harris (1989), research on control per-
formance assessment (CPA) has achieved a great progress
and continues to be an active area. There is a great de-
mand from industry for this research to produce practical
solutions, particularly for MPC monitoring. Many algo-
rithms in CPA including commercial software have been
developed. There are several interesting reviews addressing
related research achievements in different stages (Harris
et al., 1999; Huang et al., 1999; Jelali , 2006; Qin , 2007).

Even with great achievements, multivariable CPA still has
a number of stumbling blocks in practical applications.
Recently some progress has been made towards this direc-
tion (Jelali , 2006; Huang et al., 2006). In particular, per-
formance assessment of model predictive control (MPC)
has been an interest since MPC is the most effective and
widely used advanced multivariate control strategies in
modern industries. With the existence of the constraints
and economic optimization, the existing CPA is not di-
rectly applicable to its performance assessment (Xu et al.,
2007).

For multivariable CPA to be practical, it must reduce a
priori knowledge requirement. Traditional approaches for
the multivariable CPA with minimum variance control as
the benchmark need to estimate the interactor matrices,
which is equivalent to knowing the process model (Huang
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et al., 1999) or at least the first few Markov parameter ma-
trices. Recently, some new methods have been developed
to address the multivariable CPA problems with only the
input/output data (Jelali , 2006; Huang et al., 2006).

What simple index may be considered as a measure or
one of the most important MPC performance measures?
Consider that, if a closed-loop output is highly predictable,
one should be able to do better, i.e. to compensate the
predictable content by a well designed controller. This
is the principle of predictive control. Should a better
controller be implemented, the closed-loop output would
have been less predictable. Therefore, high predictability
of a closed-loop output implies high potential to improve
its performance by controller re-tuning and/or re-design,
or in other words, the existing controller may not have
been satisfactory in terms of exploring its potential.

However, the CPA approach based on the prediction error
has an equivalence to minimum variance based perfor-
mance measure (Huang et al., 2008). Thus it may not be
fully comparable with the MPC objective. Motivated by
the prediction-error approach of (Huang et al., 2006; Zhao
et al., 2008) and multi-step identification of Shook et al.
(1992), this paper further develops closed-loop prediction-
error measures based on multi-step prediction that is
more relevant to model predictive control. Furthermore,
applications of the proposed performance measures for an
industrial model predictive control system are reported in
this paper.

The remainder of this paper is organized as follows:
Section 2 revisits the concept of prediction-error and
closed-loop potentials for CPA. Section 3 introduces the



multi-step prediction error. Based on it, new potential
measures are defined for the MPC controller performance
assessment in Section 4. This is followed by an industrial
case study in Section 5 to illustrate the utility of the new
performance measures. Finally the conclusion is drawn in
Section 6.

2. REVISIT OF CLOSED-LOOP POTENTIAL FOR
MULTIVARIATE CPA

In this section, we shall revisit the concepts of prediction
error and closed-loop potentials as defined in Huang et al.
(2006).

For a multivariable process, the closed-loop output driven
by white noise can be described by a time series model:

Yt = Gclat (1)
where Gcl is the time series model and at is white noise
with mean zero and covariance Σa.

Transfer the above time series model to a moving average
(MA) form:

Yt =
∞∑

k=0

Fka(t − k) = F0at + F1at−1 + · · · + Fi−1at−(i−1)

+ Fia(t−i) + · · · (2)
Note that this time series model can be estimated without
any a priori knowledge about the process.

With the MA model, one can obtain the optimal ith step
prediction:

Yt|t−i = Fia(t−i) + Fi+1a(t−i−1) + · · · (3)
and the prediction error:
et|t−i = Yt − Yt|t−i = F0at + F1at−1 + · · · + Fi−1at−(i−1)

(4)
where F0 = I. The covariance of the prediction error can
be calculated as
cov(et|t−i) = F0ΣaFT

0 +F1ΣaFT
1 + · · ·+Fi−1ΣaFT

i−1 (5)
Define its scalar measure:
si = tr(cov(et|t−i)) = tr(F0ΣaFT

0 +· · ·+Fi−1ΣaFT
i−1) (6)

si is monotonically increasing with i, as i → ∞, et|t−i →
Yt, and s∞ = tr(cov(Yt)). If we plot si versus i, the
plot reflects how the prediction error increases with the
prediction horizon.

A closed-loop potential is defined in Huang et al. (2006)
as:

pi =
s∞ − si

s∞
(7)

The closed-loop potential can be interpreted as following
(Huang et al., 2006): If a deadbeat control action can be
applied from time i, then the sum of squared error (SSE)
can be reduced by 100× pi percent. From stochastic view
point, if i is greater than the interactor order d, it is
possible that the variance of the multivariate output can
be reduced by 100 × pi percent of the current variance.
Since the order of the actual interactor matrix may not
be known, one can check the trajectory of the closed-
loop potential versus a range of possible time lag d. As
si is monotonically increasing with i, pi is monotonically
decreasing. When i → 0, s0 = tr(cov(Yt − Yt|t)) = 0,
p0 = 1. Therefore, the index pi starts from 1 at i = 0 and

monotonically decreases to 0 at i → ∞. Larger the closed-
loop potential is, more potential the control performance
can be improved.

From the potential plot we can draw the conclusion
whether or how much the present closed-loop has potential
to improve. Furthermore, with the plot, we can compare
performance of a controller between different tuning pa-
rameters.

3. CLOSED-LOOP POTENTIAL MEASURES BASED
ON MULTI-STEP PREDICTION

3.1 Multi-step optimal prediction and its scalar measure

It is well-known that minimum variance control is an
aggressive control and not all controllers are designed
towards minimum variance performance. Therefore, in
addition to the measure of the optimal i-step prediction
error si, which is associated with minimum variance per-
formance, we consider a control that achieves optimal
prediction performance over multi-steps, i.e. over a window
from N1 to N2, where N1 typically equals time delay d. In
this way, we consider an optimum that is not based on a
single prediction point but based on multiple prediction
points.

For the multi-step optimal prediction problem, the mini-
mization of the following multi-step prediction error is of
interest (Shook et al., 1992; Huang et al., 2003):

sN1,N2 =
1

Np

N2∑

j=N1

E[Yt+j − Yt+j|t]T [Yt+j − Yt+j|t] (8)

where Yt+j|t is an optimal j-step ahead prediction, N1

and N2 are the minimum and maximum prediction step,
Np = N2 − N1 + 1, and sN1,N2 is defined as the scalar
measure of the optimal multi-step prediction error (from
N1 to N2). MPC attempts to minimize the error of multi-
step predictions, i.e. from the first N1 step to the N2

step prediction. Thus the objective function (8) is MPC
relevant.

It has been shown in Huang et al. (2003) that the objective
function of multi-step prediction error is equivalent to the
variance of filtered one-step prediction error:

sN1,N2 =
1

N2 − N1 + 1

N2∑

n=N1

E||[Yt+n − Yt+n|t]||2

= E||[FN1,N2(z
−1)(Yt − Yt|t−1)]||2 (9)

where the filter FN1,N2(z
−1) is the spectral factor of the

following spectrum (Huang et al., 2003):

LN1,N2 =
1

N2 − N1 + 1

N2∑

n=N1

||Fn(e−njω)||2 (10)

where

Fn(z−1) =
n−1∑

i=0

Fnz−i

If N1 = 1 and N2 = k, it is easy to show that F1,k(z−1)
has the following form:

F1,k(z−1) = F̃0 + F̃1z
−1 + · · · + F̃k−1z

−k+1 (11)

where F̃i is to be determined next.



According to Eqn. 4, the optimal one step prediction error
Yt − Yt|t−1 = at, i.e. white noise. Thus

s1,k = E[F1,k(z−1)at]T [F1,k(z−1)at]

= tr{[(F̃0 + F̃1z
−1 + · · · + F̃k−1z

−k+1)at]T

[(F̃0 + F̃1z
−1 + · · · + F̃k−1z

−k+1)at]}
which can be further written as
s1,k = tr(F̃0ΣaF̃T

0 + F̃1ΣaF̃T
1 + · · · + F̃k−1ΣaF̃T

k−1) (12)
In the next two sections we will derive univariate and mul-
tivariate expressions of the optimal multi-step prediction
error, respectively.

3.2 The Univariate Process

For the univariate process, the terms Fi and F̃i are both
scalars (hence we use fi and f̃i to stand for the scalar
values), so the scalar prediction error measures can be
simplified to the following forms:

sk = (f2
0 + f2

1 + · · · + f2
k−1)σ

2
a (13)

s1,k = (f̃2
0 + f̃2

1 + · · · + f̃2
m−1)σ

2
a (14)

When k = 1, by definition, s1,1 is the variance of one step
prediction error; thus

s1 = s1,1

When k = 2, the following result could be obtained:

s1,2 = (f̃2
0 + f̃2

1 )σ2
a =

1
2
(2f2

0 + f2
1 )σ2

a =
1
2
(s1 + s2)

Similarly, when N1 = 1, N2 = k, we have

s1,k =
σ2

a

k
{kf2

0 + (k − 1)f2
1 + · · · + f2

k−1}

=
1
k

k∑

i=1

si (15)

Thus

sk,m =
1

m − k + 1
[(m − k + 1)(f2

0 + f2
1 + · · · + f2

k−1)

+ (m − k)f2
k + · · · + f2

m−1]σ
2
a

Proposition 1. For a univariate control loop, the measure
of optimal multi-step prediction error from k to m (sk,m)
is no smaller than that of the optimal k-step prediction
error (sk), and the two measures are asymptotically equal,
namely

sk,m − sk ≥ 0 (16)

lim
k→∞

{sk,m − sk} = 0 (17)

Proof.

Recall that the measures of the optimal k-step prediction
error and optimal multi-step prediction error are respec-
tively:

sk = (f2
0 + f2

1 + · · · + f2
k−1)σ

2
a (18)

and

sk,m =
1

m − k + 1
[(m − k + 1)(f2

0 + f2
1 + · · · + f2

k−1)

+(m − k)f2
k + · · · + f2

m−1]σ
2
a

(19)

Thus

sk,m − sk =
1

m − k + 1
[(m − k + 1)(f2

0 + f2
1 + · · · + f2

k−1)

+ (m − k)f2
k + · · · + f2

m−1]σ
2
a − (f2

0 + f2
1 + · · · + f2

k−1)σ
2
a

� 1
Np

[(Np − 1)f2
k + (Np − 2)f2

k+1 + · · · + f2
m−1]σ

2
a (20)

≥0
where Np = m − k + 1.

Consider a stable closed-loop response:

yt = Gcl(z−1; θ)et =
B(z−1)
A(z−1)

et

=
b0 + b1z

−1 + · · · + bmz−m

a0 + a1z−1 + · · · + anz−n
et (21)

Write the above transfer function in the zero-pole form

yt =
b0(1 − β1z

−1)(1 − β2z
−1) · · · (1 − βmz−1)

(1 − α1z−1)(1 − α2z−1) · · · (1 − αnz−1)
et (22)

where |αi| < 1.

Partial fraction expansion of Eqn. (22) yields

yt = (
c1

1 − α1z−1
+

c2

1 − α2z−1
+ · · · + cn

1 − αnz−1
)et

=
n∑

p=1

cp(1 + αpz
−1 + α2

pz
−1 + · · · )et

� (f0 + f1z
−1 + · · · + fiz

−i · · · )et (23)
where

fi =
n∑

p=1

cpα
i
p (24)

So, the ith term of Eqn. (18) can be calculated as

f2
i = (

n∑

p=1

cpα
i
p)

2

=
n∑

p=1

c2
pα

2i
p + 2

n−1∑

p=1

n∑

q=p+1

cpcq(αpαq)i (25)

According to Eqn. (20)

sk,m − sk =
1

Np

m−1∑

i=k

(m − i)f2
i σ2

a (26)

Substituting Eqn. (25) in Eqn. (26), we obtain that
sk,m − sk

=
σ2

a

Np

m−1∑

i=k

(m − i)(
n∑

p=1

c2
pα

2i
p + 2

n−1∑

p=1

n∑

q=p+1

cpcq(αpαq)i)

=
σ2

a

Np
(m

n∑

p=1

c2
p

m−1∑

i=k

α2i
p −

n∑

p=1

c2
p

m−1∑

i=k

iα2i
p

+
n−1∑

p=1

n∑

q=p+1

2mcpcq

m−1∑

i=k

(αpαq)i

−
n−1∑

p=1

n∑

q=p+1

2cpcq

m−1∑

i=k

i(αpαq)i) (27)

where the terms
∑m−1

i=k α2i
p ,

∑m−1
i=k iα2i

p ,
∑m−1

i=k (αpαq)i and∑m−1
i=k i(αpαq)i can be determined respectively as



m−1∑

i=k

α2i
p =

α2k
p (1 − α

2(m−k)
p )

1 − α2
p

(28)

m−1∑

i=k

iα2i
p =

α2k
p (1 − α

2(m−k)
p )

(1 − α2
p)2

+
(k − 1)α2k

p − (m − 1)α2m
p

(1 − α2
p)

(29)

m−1∑

i=k

(αpαq)i =
(αpαq)k(1 − (αpαq)m−k)

1 − αpαq
(30)

m−1∑

i=k

i(αpαq)i =
(αpαq)k(1 − (αpαq)m−k)

(1 − αpαq)2

+
(k − 1)(αpαq)k − (m − 1)(αpαq)m

(1 − αpαq)
(31)

Substituting the above four equations in Eqn. (27) yields
sk,m − sk

=
σ2

a

Np
(

n∑

p=1

c2
p(−

α2k
p (1 − α

2(m−k)
p )

(1 − α2
p)2

+
Nkα2k

p − α2
m

1 − α2
p

)

+
n−1∑

p=1

n∑

q=p+1

2cpcq(− (αpαq)k(1 − (αpαq)m−k)
(1 − αpαq)2

+
Nk(αpαq)k − (αpαq)m

1 − αpαq
))

�
n∑

p=1

c2
p × Sum1 +

n−1∑

p=1

n∑

q=p+1

(2cpcq) × Sum2 (32)

where

Sum1 =
σ2

a

Np
[−α2k

p (1 − α
2(m−k)
p )

(1 − α2
p)2

+
Npα

2k
p − α2

m

1 − α2
p

]

Sum2 =
σ2

a

Np
[− (αpαq)k(1 − (αpαq)m−k)

(1 − αpαq)2
+

Np(αpαq)k − (αpαq)m

1 − αpαq
]

When k → ∞, m → ∞ since m ≥ k. Let m − k = P ≥ 0.
Consequently, Np = m−k+1 = P +1. The limits of Sum1
and Sum2 can be obtained:

lim
k→∞

Sum1 = lim
k→∞

[−α2k
p (1 − α

2(m−k)
p )

Np(1 − α2
p)2

+
Npα

2k
p − α2m

p

Np(1 − α2
p)

]σ2
a

=0 (33)

As |αi| < 1, obviously |αpαq| < 1. Similarly,
lim

k→∞
Sum2

= lim
k→∞

(− (αpαq)k(1 − (αpαq)m−k)
Np(1 − αpαq)2

+
Np(αpαq)k − (αpαq)m

Np(1 − αpαq)
)σ2

a

=0 (34)

Consequently,
lim

k→∞
{sk,m − sk}

=
n∑

p=1

c2
p × Sum1 +

n−1∑

p=1

n∑

q=p+1

(2cpcq) × Sum2

=0 (35)

3.3 The multivariate process

Following a similar procedure as that for the univariate
process, the following measure of optimal multi-step pre-
diction error can be derived:
sk, m = tr(F̃0ΣaF̃T

0 + F̃1ΣaF̃T
1 + · · · + F̃m−1ΣaF̃T

m−1)

=
k−1∑

p=0

N∑

j=1

N∑

i=1

f2
ijpσ

2
j +

m−1∑

p=k

m − p

m − k + 1

N∑

j=1

N∑

i=1

f2
ijpσ

2
j

(36)
A same proposition as in the univariate case can be proved,
but is omitted in this shorter version due to space limit.

4. CLOSED-LOOP POTENTIALS BASED ON THE
MULTI-STEP PREDICTION

Based on the multi-step prediction error derived in the
above section, the following closed-loop potential measure
is defined for performance assessment of MPC:

pk, m =
s∞,∞+Np

− sk, m

s∞,∞+Np

(37)

where Np = P +1 and P represents the prediction horizon.
It can be shown that s∞,∞+Np

= s∞ = trace{cov(Yt)}.
Here we use the multi-step prediction error scalar measure
sk, m instead of the k-step prediction error scalar measure
sk of Huang et al. (2006) to derive closed-loop potential.
As has been proven in the last section, with a fixed
prediction horizon P , i.e. m − k = P = Np − 1, the scalar
measure sk, m is monotonically increasing with k. So pk, m

is monotonically decreasing. When k = 0, sk, m ≥= s0 = 0,
so p0, Np

≤ 1. Besides, as s∞,∞+Np
≥ sk, m, consequently,

0 ≤ pk, m ≤ 1. According to its definition we can see that
the pk, m is dimensionless and in addition, the potential
measure is more relevant to the MPC control strategy
as it is multi-step prediction based. The actual process
time delay (that corresponds to k) may not be known in
practice. So the trajectory of the potential measure with
a range of k will be more useful to assess the performance
of the controller.

It is also desirable to know details about the performance
of each output. So, the individual scalar potential measure
is required. By replacing the operator tr(·) in Eqn. (36)
with diag(·), the individual scalar measure is defined as:

sind
k, m = diag(F̃0ΣaF̃T

0 + F̃1ΣaF̃T
1 + · · · + F̃m−1ΣaF̃T

m−1)

where sind
k, m ∈ R

N×1 and N represents the number of
controlled variables.

The ith component of sind
k, m can be obtained:

sind
k, m(i) =

k−1∑

p=0

N∑

j=1

f2
jipσ

2
i +

m−1∑

p=k

m − p

m − k + 1

N∑

j=1

f2
jipσ

2
i

(38)

As a result, the individual potential measure can be
defined as:

pind
k, m(i) =

sind
∞,∞+Np

(i) − sind
k, m(i)

sind
∞,∞+Np

(i)
(39)

where sind
∞,∞+Np

= diag(s∞,∞+Np
) = diag(cov(Yt)) and

1 ≤ i ≤ N .
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Fig. 2. Output data set under MPC controller.

5. INDUSTRIAL APPLICATION

In this section the proposed multi-step closed-loop poten-
tial measures will be applied to evaluate the performance
of an industrial control system.

5.1 Process description

This is a control performance assessment and diagnosis
problem for a MPC control system in a delayed coking
refinery unit. Fig. 1 is a simplified process flow chart.

The control system consists of three manipulated variables
(MVs), three controlled variables (CVs) and one distur-
bance variable (DV), the temperature of the feedstocks. A
description of process variables and their corresponding
tag names and the parameters for the MPC design is
shown in Table 1.

Two different closed-loop operation data sets are collected
with 1 min sampling interval under different MPC con-
troller tunings as shown in Fig. 2. All the data is selected
without the drum events to avoid unusual upset. The first
part of the data from 1 to 1900 is selected before the
controller tuning and the rest part is selected after the
controller tuning.

5.2 Performance assessment

By using the proposed approach, the scalar potential
measure trajectories for each data set are generated and
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Fig. 3. Scalar potential measures of the system before
controller tuning.
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Fig. 4. Scalar potential measures of the system after
controller tuning.
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Fig. 5. Overall scalar potential measures of the system
under different controller tunings.
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Fig. 6. Individual scalar potential measures of the system
under different controller tunings of CV1.

shown in Fig. 3 and 4, respectively. The comparisons of
the overall potential and individual potential for each CV
are displayed from Fig. 5 to Fig. 8.

With these figures, the following performance analysis
conclusions can be obtained:



Table 1. List of process variables and their corresponding tag names and parameters for MPC
design.

No. Tag Weight Horizon Operation Range

CV1 Temperature of diesel 10 20 275-295
CV2 Temperature in the intermediate 1 20 285-295
CV3 Temperature of light coker gas oil 1 20 360-380
MV1 Valve opening of diesel 0.1 3 0-100
MV2 Valve opening of intermediate reflux 0.1 3 0-100
MV3 Valve opening of light coker gas oil reflux 0.1 3 0-100
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Fig. 7. Individual scalar potential measures of the system
under different controller tunings of CV2.
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Fig. 8. Individual scalar potential measures of the system
under different controller tunings of CV3.

• According to Fig 3, before the controller tuning, the
overall scalar potential measure trajectory converges
slowly and CV1 contributes the more potential to the
overall potential than the other two CVs.

• According to Fig 4, after the controller tuning, the
overall scalar potential measure trajectory converges
fast and the three individual trajectories come close
to each other, although the trajectory of CV1 still lies
above the other two.

• According to Fig 5, there is significant improvement
of the system’s performance after the tuning as there
is less potential after the controller tuning than that
before tuning.

• According to Fig 6, 7 and 8, performance of both
CV1 and CV2 is improved after the controller tuning;
however, performance of CV3 is degraded after the
tuning.

• The above results indicate that the improvement of
the overall performance comes from the improvement
of CV1 and CV2 but at some cost of CV3. As CV1
is the most important quality variable (the weight
of CV1 is larger than those of the other two in
Table 1.), it is worth to improve its performance
by slightly deteriorating the performance of CV3.

In summary, after the controller tuning, there is
significant improvement of the system’s performance.

6. CONCLUSION

The closed-loop potentials are promising measures of
model predictive control performance. However, they have
certain limitations as they are originally defined. In this
paper, new closed-loop potentials are proposed. The pro-
posed performance potentials are multi-step prediction
based and thus MPC relevant. Regardless of the dimension
of the plant, the closed-loop potentials can be easily calcu-
lated, which facilitates the implementation, visualization,
and interpretation. Industrial application demonstrates
powerfulness of the the proposed performance measures.
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