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Abstract: High purity distillation control of a binary mixture in a tray column is considered
in the paper at hand. The approach is based on an inferential control idea: dynamics within the
column may be described as movements of concentration waves; the position of the wave front
on the one hand side can be inferred from few temperature measurements, on the other hand
the position implies the product concentrations. Dynamics of wave propagation is derived by
simplification of a first principles model of the column. The resulting descriptor model is the basis
for a recent LMI based controller design scheme that provides general quadratic performance
for descriptor systems.
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1. INTRODUCTION

Distillation is one of the most common separation pro-
cesses in the chemical industries and it is also one of the
most energy consuming ones. Therefore the control of this
kind of processes has been a focus of process control for
many years. Most approaches toward control of distilla-
tion columns are based on linear models which are based
on identification techniques (e.g. Skogestad et al. [1988],
Allgöwer and Raisch [1992]). The disadvantage of iden-
tified models is the missing physical interpretation. First
principle models on the other hand are rather complex and
typically not suitable for a direct model based controller
computation.

In the paper at hand a reduced model for a distillation
column is derived in descriptor form. The control problem
is captured as a generalized quadratic performance prob-
lem. A solution to this problem is briefly reviewed (see
Rehm and Allgöwer [2002] for details) and applied to the
problem at hand.

The resulting controller is tested by means of a high order
nonlinear model of the distillation process.

2. DESCRIPTOR MODEL

Separation of a binary mixture in a 40 tray distillation col-
umn with one feed stream is considered. A schematic rep-
resentation of the process is given in the left part of Fig. 1.
Exemplary the separation of two alcohols (Methanol,n-
Propanol) is taken into account. The mixture is fed in the
column with the feed flow rate F . Feed flow rate F and
feed composition xF (molar fraction) are determined by
upstream processes.

The stationary feed flow rate and feed composition are
corrupted by disturbances. The feed stream separates the
column into rectifying- (upper part of the column) and
stripping section (lower part of the column). Separation is

achieved due to intensive heat and mass transfer between
liquid flow and countercurrently rising vapor flow.

At the bottom of the column the liquid flow splits up into
a liquid product stream which is removed with flow rate B
from the column and a stream which is, after being heated
in the reboiler, recirculated back to the column as vapor
flow with flow rate V .

At the top of the column the vapor flow with the accu-
mulated more volatile product is completely condensed
in the condenser. The condensate is partly pumped back
in the column with a flow rate L (reflux stream) and is
partly removed as the distillate product with a flow rate
D (Deshpande [1985]).

We consider the distillation column in “LV” configuration,
that is: liquid flow rate L and vapor flow rate V are
considered to be control inputs. Measured variables are
the concentrations on trays 14 and 28.

2.1 Control Objectives

The main control objective is to stabilize the product
concentrations at the top and bottom of the column at
their stationary values. Additionally the deviations from
the stationary values due to disturbances in the feed flow
should be small.

Table 1. Notation for model variables

xi . . . liquid concentration of the more
volatile component on the ith tray

yi . . . vapor concentration of the more
volatile component on the ith tray

ni . . . liquid holdup of the ith tray
(·)B,M,D . . . corresponding quantities of reboiler

feed tray, and condensor
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Fig. 1. Scheme of considered 40 tray distillation column (left) and subsystem structure for reduced modelling (right).

2.2 Reference Dynamics

A relatively detailed nonlinear model (CMO model with-
out pressure losses, energy balances, and hydrodynamics
(Deshpande [1985])) is used for simulation studies. The
modelling equations describe the liquid concentrations of
the more volatile component and are derived from the mass
balance for every tray and for reboiler and condensor.

yi =
αxi

1 + (α − 1)xi
, α = const. (1)

The most important source of nonlinearity in the model
are the equations (1) describing the vapor-liquid equilib-
rium (constant relative volatility α). The resulting model
consists of 42 first order differential equations (40 equa-
tions from the intermediate trays plus two equations from
reboiler and condensor).

2.3 Reduced Dynamics (Descriptor Model)

Starting point for the development of a reduced model in
descriptor form of the distillation column is the fact (Ret-
zbach [1986]) that qualitatively the behaviour of the col-
umn towards changes in the input values (V,L, F, xF ) can
be regarded as motion and distortion of the stationary
concentration profile (concentration versus tray number).

Instead of having detailed mass balances for rectifying and
stripping section, the idea for a reduced model is thus
to capture dynamics just by one position variable for a
suitable concentration profile in every column section Due
to (1) it is sufficient to consider a moving concentration
profile only for the lighter component (measured in molar
fractions, denoted by x in the following). Therefore the
reduced model will contain two positions (sr for the
rectifying section and ss in the stripping section) and three
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Fig. 2. Illustration of the shape parameters in function (2)

concentrations (concentration xB in the reboiler, xM for
the feed tray, and xD in the condenser) as state variables.

Here, only a sketch of the derivation of the reduced
model in descriptor form is given, details can be found
in Rehm [2004]. Furthermore we restrict ourselves to the
presentation of the procedure for one column section, the
deviation for the other section is completely analogous.
The trays in this section are numbered by z = 1, . . . , N
(see right side of Fig. 1). The concentration profile is
modeled with the (continuous) function x(z) (eq. (2),
Fig. 2) which is well suited to describe the stationary
profile in long packed columns (Kienle [1998]):

x(z) = φ− +
φ+ − φ−

1 + e−�(z−s−ξ)
. (2)

With the least squares method the shape parameters
φ−, φ+, �, and ξ (see Fig. 2) are calculated such that x(z)
matches the stationary concentration profile (s = 0, i.e. s
denotes the displacement relative to the stationary case)
of the tray column for the discrete values z = 1, . . . , N in
a least squares sense.
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However, while � and ξ are kept constant, φ− and φ+

are used as adaptation parameters since concentration
profiles not only move but also are distorted. Adaptation
of these parameters is based on the requirement that (2)
should also match the concentrations for the neighbouring
systems when evaluated for z = 0 and z = N + 1. This
adaptation rule implies that the time derivatives of xB ,
xM , and xD influence the dynamics of wave propagation.
The linearisation of the overall reduced descriptor model
of the distillation column is given in (5). Here “Δ” implies
deviations from the stationary value while “∗” denotes
numerical entries. A detailed derivation of the model and
numerical values are given in Rehm [2004].

3. CONTROLLER COMPUTATION

3.1 Synthesis for Generalized Quadratic Performance for
Descriptor Systems

The idea of generalized quadratic performance (GQP)
control is to impose a general quadratic constraint of the
type ∫ T

0

[
z(t)
w(t)

]T [
UP WP

WT
P VP

] [
z(t)
w(t)

]
dt � 0, (6)

on the external input/output chanel w → z of a general-
ized plant description Gcl. Here the notation “� 0” means
that

∫ T

0
Q(w(t),z(t)) dt ≤ −ε

∫ T

0
wT(t)w(t)) dt holds for

all w(·) ∈ L2 and some fixed ε > 0.

The rather general GQP problem contains some important
control problems as a special case if the objective param-
eters UP ≥ 0, VP = V T

P , and WP are chosen accordingly
(Scherer et al. [1997]). For example

• the H∞ constraint ‖Gcl‖∞ < γ, if UP , VP , and WP

are specified as UP = 1
γ I, VP = −γI, WP = 0;

• the strict passivity constraint Gcl(jω)+Gcl(jω)∗ > 0
for all ω ∈ R∪{∞}, when UP , VP , WP are chosen as
UP = 0, VP = 0, WP = −I;• sector constraints of the form∫ T

0

(z(t)−αw(t))T (z(t)−βw(t)) dt � 0 (7)

for UP = I, VP = −αβI, WP = − 1
2
(α + β)I.

We consider a generalized plant description Σ in descriptor
form

Σ :
Eẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D11w(t) + D12u(t)
y(t) = C2x(t) + D21w(t)

(8)

with x(t) ∈ R
nx , w(t) ∈ R

nw , u(t) ∈ R
nu , z(t) ∈ R

nz , and
y(t) ∈ R

ny denoting the generalized state variables, the
external input variables, the control input variables, the
external output variables, and the measurement variables,
respectively. E and A are square constant matrices where,
explicitly, E is allowed to be singular, i.e. rank(E) =:
r ≤ nx. The remaining matrices are constant matrices of
appropriate dimension.

The control problem is, for given matices UP ≥ 0, UP ∈
R

nz×nz , VP = V T
P ∈ R

nw×nw , and WP ∈ R
nz×nw , to

find a linear output feedback controller such that the
undisturbed closed loop (w ≡ 0) is an admissible system
and such that the transfer matrix from the external input
w to the external output z suffices a general quadratic
performace bound (6).

The actual design problem therefore consists in the selec-
tion of matrices UP , VP , WP such that the transfer matrix
from w to z reflects the performance requirements (e.g.
robustness, energy dissipation, ... ). Since we aim at an
admissible close loop, we assume in the following the corre-
sponding necessary stabilizability/detectability properties
for descriptor systems, namely stabilizability/detectability
at infinity (see also Dai [1989]).



With a controller KE ,

KE : Eζ̇(t)=AKζ(t)+BKy(t)
u(t)=CKζ(t)+DKy(t), ζ(t) ∈ R

nx
(9)

parametrized by AK , BK , CK , DK the closed loop system
is given by

Eclξ̇(t) = Aclξ(t) + Bclw(t) (10)
z(t) = Cclξ(t) + Dclw(t), ξ(t) ∈ R

2nx ,

Ecl =
[
E 0
0 E

]
, Acl =

[
A+B2DKC2 B2CK

BKC2 AK

]
,

Bcl =
[
B1+B2DKD21

BKD21

]
, CT

cl =
[
CT

1 + CT
2 DT

KDT
12

CT
KDT

12

]
,

Dcl = (D11 + D12DKD21) (11)

Then a sufficient condition for a controller KE solving the
GQP control problem for DAE systems is given by the
following theorem:
Theorem 1. Consider a plant (8) and a controller (9).
There exists a controller parameterization AK , BK , CK ,
DK such that the undisturbed (i.e. w ≡ 0) closed loop sys-
tem (10) is admissible with general quadratic performance
if the LMIs (3), (4) 1 admit a solution {R, S, WY , WX ,
ÂK , B̂K , ĈK , D̂K}.
Remark. The preceding theorem constitutes also a neces-
sary condition for the existence of a controller with GQP
in the cases, where the corresponding analysis result is nec-
essary for general quadratic performance, i.e. especially in
the case of the H∞ control problem. Therefore the results
of Masubuchi et al. [1997] are included in Theorem 1 as a
special case.

Theorem 1 is constructive: controller computation consists
of three steps:

• Solution of the LMIs (3), (4). This is possible via
effective numerical tools tailored for LMI problems
arising from control theoretic problem setups (e.g.
Gahinet et al. [1994], El Ghaoui et al. [1995]).

• Computation of non-singular matrices X3, Y3 such
that

X1Y1 + X2Y3 = I (12)
X3Y1 + X4Y3 = 0 (13)

hold together with the coupling condition ETX2 =
XT

3 E. This is a essentially a factorization problem on
the range of E which is always solvable provided (3),
(4) have a solution.

• Solution of the linear equations

D̂K :=DK (14)

ĈK :=CKY3+DKC2Y1

B̂K :=XT
3 BK +XT

1 B2DK

ÂK := XT
1 (A + B2DKC2)Y1+ XT

3 AKY3+
+ XT

3 BKC2Y1+XT
1 B2CKY3

for the controller matrices DK , CK BK , AK .

1 Here E+ denotes any generalized inverse with the property
EE+E = E and “∗” is used in order to indicate the symmetric
expansion of a block matrix.

3.2 Distillation Control Problem as S/KS Mixed Sensitivity
Problem

As a special case of generalized quadratic performance,
the H∞ control problem for the distillation problem is
solved. The control objectives are translated into a mixed
sensitivity set-up depicted in Fig. 4. with G representing
the plant (reduced model in descriptor form), K the
controller, and W1, W2, V frequency dependent weighting
matrices. Controller design by “loop shaping” requires a
selection of the weighting matrices such that the solution
of the H∞ control problem∥∥∥∥ W1(I + GK)−1V

−W2K(I + GK)−1V

∥∥∥∥
∞

!
< γ (15)

results in a well behaved closed loop system. In this
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Fig. 4. Mixed sensitivity configuration

setup V can be interpreted as a filter which models the
disturbance considered to be relevant for the problem at
hand. With S(s) := (I + GK)−1 being the sensitivity
matrix of the closed loop the expression (15) with γ = 1
suggests to choose W1 to be approximately the inverse
of the wanted behavior for S(s) and analogously W2 to
be the inverse of K · S. General indications on selecting
these weighting matrices can be found in Skogestad and
Postlewaite [1996].

In case of the distillation control problem at hand an
indirect approach is taken: with stabilizing the measured
concentrations x14, x28 also the stationary profiles are
fixed and thus approximately also the product concentra-
tions. In order to realize this idea the descriptor S/KS H∞
control problem depicted in Figure 4 (with G being the
descriptor model (5)) is solved by the outlined descriptor
GQP synthesis procedure with specification of W , Q, and
Σ as for the H∞ set-up. The synthesis LMIs are jointly
optimized with respect to γ. A final value of γ = 1.01
shows that the control objectives are approximately met.

The resulting controller has a dynamical order of 9, i.e.
equal to the order of the generalized plant description. Af-
ter removing the fastest two eigen-modes of the controller
in order to avoid numerical problems due to stiffness, the
controller is tested in simulation studies with the nonlinear
CMO model of the distillation column.

4. RESULTS

In Figure 5 the stationary concentration profiles for various
severe persistent disturbances for the closed loop are
shown. It can be seen that the controller is able to stabilize
the profile position although the disturbances result in a
distortion of the stationary profile in the vicinity of the
feed tray.
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Fig. 3. Step responses for the controlled distillation column (+15% increase in feed flow rate F and +15% increase in
feed concentration xF with respect to stationary values at t = 500sec). Top: deviations from the steady state for
the controlled variables x14 and x28. Bottom: control variables, i.e. liquid flow rate L and vapor flow rate V .

In Figure 3 a detailed view on the control variables and
the error in the controlled variables is given for a mutual
step in the feed flow rate and feed composition. The
plots show a fast transient behavior and small deviations.
Furthermore no excessive action in the control variables is
needed.

5. CONCLUSION

The generalized quadratic performance control problem
for descriptor systems is solved for a reduced model of a
distillation control problem. The resulting controller shows
rather good results for a nonlinear reference model. The
descriptor problem formulation is a direct result of reduced
modeling. Furthermore, also standard approaches to build
generalized plant descriptions easily fit into the descriptor
system set-up. This was demonstrated by means of a S/KS
- control problem formulation that directly leads to a
descriptor model.
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