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Abstract: Extremum-seeking methods are unconstrained real-time optimization techniques that control
the gradient to zero. The crucial difference between them lies in the gradient estimation method used.
Multi-unit optimization technique proposes the use of a multiple units operated with an offset between
them and the estimation of the gradient is by finite difference. Though this method gives fast
convergence, the major bottleneck is that it assumes the units to be identical. This paper addresses the
case where the static curves are indeed identical, while the dynamics are not so. It is shown that if all the
units are stable, despite the difference in dynamics, the method would indeed converge to the true
optimum. Also, it is shown that the difference in dynamics does not affect stability in the neighborhood
of the optimum. In addition, this paper presents a possibility of replacing real units by static models in the
calculation of the gradient. Experimental results are presented from a mixing system where an optimal
temperature is sought.
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1. INTRODUCTION

Process optimization is a tool of choice to find the best
operating point that balances conflicting objectives such as
productivity, selectivity, and operating cost for continuous
chemical process. To perform this optimization numerically,
it is necessary to have a model of its operation. Though most
processes are dynamic in nature, often a steady state model
suffices since typically, for continuous process, one is
interested in finding the best steady state operation point.
However, due to process changes, the optimal operating point
varies with time, and to reap the benefits, it is indeed crucial
to track these changes.

Without being exhaustive, two main classes of techniques
have been employed in the real-time optimization of
continuous processes. The first class comprises of the
repeated optimization techniques (Marlin & Hrymak, 2000)
that alternate between the identification of a steady state
model using measurements and numerical computation of the
optimal input using the updated model. On the other hand,
extremum-seeking methods (Ariyur & Krstic, 2003, Guay et
al., 2004) treat the optimization problem as one of controlling
the gradient to zero.

In the extremum-seeking framework, various methods have
been used for the gradient determination. The perturbation
method (Ariyur & Krstic, 2003) deduces the gradient by
adding perturbation signal that is very slow compared to the
process dynamics. The correlation between the input and
output is used to estimate the gradient. In adaptive extremum
seeking techniques (Guay et al., 2004), parameters of a
dynamic model are adapted and the gradient is computed
from the adapted model. All the above mentioned techniques
have to respect time-scale separations between gradient

estimation and the process dynamics, thereby leading to slow
convergence.

The multi-unit optimization technique (Srinivasan, 2007) is
an attempt to find another gradient method that would
converge faster. The basic method uses two identical units
operated with an offset between them and uses finite
difference to estimate the gradient. However, the main
drawback of this technique is that it needs multiple identical
processes working in parallel, which is impossible to get in
practice. It has been shown that, if the units are not identical,
the stability of the scheme and the convergence toward the
true optimum are not guaranteed (Woodward et al., 2009).

Further research (Woodward et al., 2009) has revealed a way
to compensate the difference in the curves that represent the
steady-state relationship between the input and the objective
function. It uses translation in both the input direction and
direction of the objective function so as to evaluate correctly
the gradient and converge toward the true optimum.

The key advantage of multi-unit optimization technique is
that a reliable gradient is available during the transient, and
one need not have to wait for the steady state. This advantage
arises from the fact that if the process dynamics are the same,
the difference of the objective functions is rendered
insensitive to the process dynamics. However, if the
processes’ dynamics are different, even if the static curves
are identical, the gradient would be falsified. The stability
and convergence to the true optimum are a priori not assured.

In this paper, the case of non-identical dynamics is
considered. It is however assumed that the static curves are
the same. Such a case occurs when the optimization objective
is only a function of the system output whose dynamics is
controlled by a controller with integrator. Results from



stability analysis and the equilibrium point are presented. It is
shown that the difference in dynamics does not change the
equilibrium point but it indeed affects stability and the way it
converges. The theoretical results are experimentally verified
and the data are also presented in this paper.

This paper also analyses the possibility of replacing a
physical unit by a mathematical model. This way, the multi-
unit optimization runs with one physical system and one
mathematical model. Here, experimental results with a
physical dynamic system and a static mathematical model are
presented to show that this option is indeed viable.

The rest of this paper is organized as follows. Section 2 of
this paper presents briefly the standard multi-unit
optimization technique. Section 3 presents the results of the
analysis for stability and convergence when the units’
dynamic are different. Section 4 presents the methodology
and the results for the experimental trials.

2. MULTI-UNIT OPTIMIZATION

2.1 Problem formulation

Mathematically, a standard real time optimization problem is
written as follows:

min
u

J = g(x,u)

˙ x = f (x,u) = 0
(1)

J is a twice-differentiable function that is minimized and f
represents the dynamics of a stable process. The states of the
system are represented by the vector x and the inputs by the
vector u. For the easing of presentation, inequality constraints
are ignored.

In order to find the optimal input, it is easier to use the
equality constraints to find an expression of x = h(u) and then
substitute the same. This transforms the original problem into
a unconstrained optimization problem, i.e. min J = p(u).
Then, the necessary condition of optimality is then given by:

p/ u |u* = 0 (2)

If it is assumed that the unconstrained optimization problem
is convex, then the necessary condition indeed leads to the
only minimum. Equation (2) is used in extremum-seeking
methods to find the optimal point by gradient control.

2.2 Multi-unit optimization scheme

A schematic representation of a simplified version of the
multi-unit optimization framework is shown in Fig. 1
(Srinivasan, 2007). The term “unit” is used to represent a real
continuous chemical process, and here they are labeled “0”
and “1”. A difference of  between the inputs “u0” and “u1”
is necessary to estimate the gradient by a first order finite
difference equation J/ u = (J1 –J0)/ . Then, the method uses
an integral controller with an appropriate value of gain to
push the gradient towards 0. The gain K can be tuned to as a
compromise between convergence speed and stability.

˙ u 0 = ˙ u 1 =
K

J1 J0( ) (3a)

u0 = u
2

 and u1 = u +
2

(3b)

Fig. 1. Standard multi-unit optimization control loop.

In the case of multi-unit optimization, it is necessary to
precise the dynamics of each of the units. The two units can
be written mathematically as follows:

˙ x 0 = f0(x0,u0)

˙ x 1 = f1(x1,u1)

J0 = g0(x0,u0)

J1 = g1(x1,u1)

(4)

The steady state for each unit can be described by:

x0 = h0(u0)

x1 = h1(u1)
(5)

And the objective functions of each of the units at steady-
state given by:

J0 = g0(h0(u0),u0) = p0(u0)

J1 = g1(h1(u1),u1) = p1(u1)
(6)

3. MULTI-UNIT OPTIMIZATION WITH DIFFERENT
DYNAMICS

In this section, the results of the analyses for stability and
convergence are presented for the case when the units’
dynamic are different but the static curve for each unit are
identical. These analyses are made assuming that the
technique is applied without any modification to compensate
for the difference in dynamics.

3.1 Analysis for the equilibrium point

Here it is shown that if the scheme is stable, the system will
converge toward the true optimum as long as the static curves
between the units are identical. The difference between the
dynamics does not bias the equilibrium point.

Theorem 1: If (i) the scheme converges, (ii) the static curves
of the two units are identical, then despite the difference in
the dynamics, the steady state of the multi-units optimization
control loop represents the real optimum as  tends to zero.

Proof: From (3a), it can be seen that at steady state:

˙ u 0 = ˙ u 1 = 0 =
K

J1 J0( ) =
K

p1(u1) p0(u0)( ) (7)

So, the equilibrium point is determined by:



p0(u0) = p1(u1) (8)

As the static curves of two units are considered identical,

p0(u) = p1(u) = p(u) (9)

Let u  be the value of u at steady state. Then,

p u + 2( ) = p u 2( ) (11)

A second order Taylor expansion of the function p is
considered:

p(u ) + p'(u )
2

+ p"(u )
2

4
p(u ) + p'(u )

2
p"(u )

2

4
+ O( 3) = 0 (12)

p'(u ) = O( 2) (13)

Lim
0

p'(u ) = Lim
0

O( 2) = 0 (14)

Calculating the limit as  tends to zero, it is observed that the
derivative becomes zero, indicating that the two units arrive
at optimal point. 

3.2 Analysis for the stability of the scheme.

To analyze the stability of the above scheme, the units are
linearized around the current operating point. The transfer
function representation is used and normalized transfer
function that has a unit steady state gain is derived. Then, the
characteristic equation of the loop is obtained and analyzed if
the roots of this equation are in the left half of the complex
plane.

Theorem 2: If an integral controller with gain K can stabilize
the average of the two normalized dynamics, then for a small
enough value of , the scheme is locally asymptotically
stable around the optimum.

Proof: In order to analyze locally the stability, it is necessary
to linearize the dynamics of both units. With the linearization,
it is possible to represent directly the relationship between u
and J by a transfer function T(s). It is useful to rewrite T(s) as
a combination of a dynamic term with a static gain of 1,
labeled as N(s), and a static term which represents the steady
state gain:

T0(s) = N0(s)p'(u0)  and T1(s) = N1(s)p'(u1) (15)

Note that the static gain of the different units is given by the
gradient (linearization) of the static curve p(u) at their
respective operating points. The above decomposition
separates the static behavior of the units from its dynamics.
The condition on the characteristic equation for this loop to
be stable is given by:

Z =1+
K

s
T1(s) T0(s)( ) = 0 (16)

Considering a Taylor expansion approximation of p gives:

p'(u0) = b
2
M  and p'(u1) = b +

2
M (17)

where b = p'(u) and M = p"(u). Distributing and rearranging
the terms in (16), one gets,

s+
KM

2
N1 + N0( ) +

Kb
N1 N0( ) = 0      (18)

At the equilibrium point (which has been shown to be the
optimum in Theorem 1), as  tends to zero, (b/ ) goes to
zero. Then, the third term of the characteristic equation
disappears. So, around the optimum, the stability is no more
influenced by the value of , nor by the error in the
dynamics. The stability of the system around the optimum is
then determined by whether or not the integral controller with
the given gain stabilizes the average dynamics. 

Note that the difference in the dynamics would not affect the
stability around the optimum. However, the difference in
dynamics can affect the characteristic equation considerably
when the system is far from the optimum. The characteristic
equation (18) is a rich source of information from which two
conclusions can be drawn:

Effect of gain K: The value of the gain is crucial to stability in
all cases. If the normalized average dynamics is stable and
minimum phase, then for small values of gain, the overall
scheme would be stable. Moreover, if the value of K is small,
it can be seen from (18) that the influence of the difference in
dynamics is negligible. In other words, with a small gain, the
inputs variations are slow compared to the dynamics, and the
two units operate at their respective pseudo-steady states.

Evolution far from the optimum: When the starting point is
far from optimum (“b” is not zero), it can be seen from (18)
that the dynamic behavior is influenced by the sign of the
ratio (b/ ), rather than the sign of the individual components.

Without loss of generality, suppose unit 0 is faster than unit
1. A negative  and a negative b mean that the faster unit is
closer to the optimum. The same situation occurs for a
positive  and a positive b. These two cases would have
similar adaptation characteristics, and are shown in Figure 3
with the red dot representing the faster unit 0 and the green
representing the slower unit 1.
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Fig. 3. Analysis of configurations with respect to dynamic
behavior. Red faster than green leads to oscillations. Green

faster than red leads to slow convergence.

In this configuration, since the system with a rapid dynamics
is closer to the optimum, the difference between the outputs
will be larger during the transients (for the same change in u).
This will overestimate the gradient which, in the best case,
will cause the system to converge with oscillations.

A negative  and positive b means that the slower unit is
closer to the optimum. The same situation occurs for a
positive  and a negative b. These two cases would have



similar dynamics, and are shown in Figure 3 with the green
dot representing the faster unit 0 and the red representing the
slower unit 1.

In this configuration, since the system with a slower
dynamics is closer to the optimum, the difference between
the outputs will be smaller during the transients (for the same
change in u). This will underestimate the gradient which will
cause the system to converge slowly.

The interesting point is that even if there is an overestimation
of the gradient (faster unit closer to the optimum), the system
would not in general become unstable. This is due to the fact
that once both the units overshoot the optimum, the situation
is reversed, i.e., the slower unit is closed to the optimum. So,
an under estimation of the gradient occurs, where the return
back would be slow and sure.

4. EXPERIMENTAL RESULTS

4.1 Problem Formulation

In order to prove the theoretical results shown in the previous
section, an experimental setup has been designed. The setup
is composed of two tanks (units) whose temperature is
controlled in order to minimize the criterion mentioned
below.

min
Fc

J = Tout Tc( ) Tout Th( )

˙ T out =
Fh

V
Th Tout( ) +

Fc

V
Tc Tout( ) = 0

(19)

Each unit is supplied with water by two pumps: a hot water
pump and cold water pump. Hot water at temperature Th and
cold water at temperature Tc are added to these tanks with
flow rates Fh and Fc respectively. The hot water pump is fixed
with two heads in order to feed the same flow for both units.
However, each unit has its own cold water pump (Fc0 and Fc1

being the decision variable). The temperatures in the units
Tout0 and Tout1, in the hot water tank and in the cold water
tank are measured using thermistors. V is the volume of each
of the units. The answer to this problem is:

Tout =
Th + Tc
2

; Fc = Fh (20)

Also, in order to control the dynamics of each unit
independently, cascade control has been implemented.
Essentially, the multi-unit scheme sends a temperature set
point u to each temperature control loop, which is controlled
using a PI controller. This way that the static curves are
identical (steady state error is zero). However, by tuning the
temperature controllers differently, the two units will have
different dynamics.

4.2 Experiments conditions tested

Four experiments are performed for all cases. In Experiment
1, the system is initialized to a value higher than the optimum
with a positive value of . Experiment 2 starts with an initial
condition that is less than the optimum. Experiment 3 and
Experiment 4 start from the initial conditions of Experiment 1
and 2 respectively, but with negative .

It is always arranged that Unit 1 is slower than Unit 0. So, in
Experiments 1 and 4, the optimum is closer to the faster unit,
while the optimum is closer to the slower unit in the other
two experiments. Experiments 1 and 4 show a configuration
that overestimates the gradient, while experiments 2 and 3
present a configuration that underestimates the gradient. The
gain K is the same for all experiment and is chosen so that the
scheme is always stable.

Exp. Start Temp
Temp Unit 0
(fast )

Temp Unit 1
(slow)

1 47 C +1 C -1 C

2 33 C +1 C -1 C

3 47 C -1 C +1 C

4 33 C -1 C +1 C

Table 1: Experimental plan for all experiments

4.3 Experiments with two real units.

In this set of experiments, the controller of “unit 1” has been
tuned so that the internal loop (dynamics between the
temperature output and temperature set point) is two times
slower than its counterpart “unit 0”. The results are presented
in Figures 5-8.

Fig. 5. Evolution for Experiment 1 with real units.

Fig. 6. Evolution for Experiment 2 with real units.



Fig. 7. Evolution of the system for Exp. 3 with real units.

Fig. 8. Evolution of the system for Exp. 4 with real units.

The influence of the sign of  can be seen by comparing Fig
5 (Exp1) and Fig 7 (Exp3). The positive value of  brings the
faster unit closer to the optimum in Exp1 and farther from the
optimum in Exp3. Note that in both these experiments, there
is a larger difference between the set point and the measured
temperature in Unit 1 compared to that of Unit 0. The effect
of the transients is more marked when the system is far from
the optimum where the set point changes rapidly.

In the case of Exp 1, because of the difference in speed of the
respective responses, the gradient is overestimated. This
causes the scheme to converge with oscillations. On the
contrary, in the case of Exp 3, the gradient is underestimated
due the above mentioned speed difference. This
underestimation causes the scheme to converge slowly but
surely.

The above conclusion can be generalized for the ratio (b/ ).
Comparing Fig 5 (Exp1) and Fig 8 (Exp4), it can be seen that
in both these experiments, the faster unit is closer to the
optimum (b/  > 0). The gradient is overestimated, resulting
in an oscillatory response toward the optimum. In contrast,
Fig 6 (Exp2) and Fig 7 (Exp3) show slower convergence
since the faster unit is farther from the optimum (b/  < 0).

Comparing Exp 1 and Exp3, it can be noted that the response
for Exp3 is not as smooth as expected. Taking into account
that a linear controller was used to control a nonlinear
system, such a behavior is expected, The controller
parameters are clearly not tuned for all points of operation.
The controller settings used favored higher temperatures as
can be seen from Figure 3.

4.3 Experiments with a real unit and a virtual unit

The purpose of next series of tests is to check the viability of
replacing one of the real units by a mathematical model. This
removes one of the major constraints of the scheme, i.e., the
availability of two physical identical units in operation. There
are two kinds of model that one can use: (i) a first
principles/black box dynamic model (ii) a black box static
model. Though the dynamic models were tested
experimentally, the more interesting and extreme case, i.e.,
the use of the static model, is presented here.

In this set of experiments, “unit 0” is a static mathematical
model whose dynamics is by definition instantaneous and so
faster compared to the real unit (unit 1). In practice, it is done
by setting the output equal to the set point of the control loop.

Fig. 9. Evolution for Exp. 1v with real and virtual units.

Fig. 10. Evolution for Exp. 2v with real and virtual units.



Fig. 11. Evolution for Exp. 3v with real and virtual units.

Fig. 12. Evolution for Exp. 4v with real and virtual units.

The results obtained using a system with a real unit and a
virtual unit are similar to those obtained with two real units
under the same testing conditions. The conditions on stability
and convergence remain the same for this series of
experiments. Indeed, the comparison of Fig 9 (Exp1v) and
Fig 11 (Exp3v) yields the same general conclusion as the
comparison of Exp1 and Exp3. It is also true for the
comparison of Fig 9 (Exp1v) and Fig 12 (Exp4v) with Exp1
and Exp4 and the comparison of Fig 10 (Exp2v) and Fig 11
(Exp3v) with Exp2 and Exp3. However, for the last
comparison, it is easier now to see that the smaller difference
between the unit temperatures results in an underestimation
of the gradient, thereby leading to slow convergence.

Note that while replacing the real unit by a model, it was
assumed that the static characteristics are matched. The only
difference between the real and virtual units is at the
dynamics level. In this particular example, since the objective
function is only dependant on the unit temperature, this
assumption of matching the static behavior is easily verified.
However, if the objective function is a function of both the
output and input (Tout and Fc) of the dynamic part, it then
becomes mandatory to have a good model of the physical
system in order to match the static characteristics.

The conclusion here is that if the static characteristics are
matched, then multi-unit optimization can be performed even
when the dynamics are not necessarily identical. In extension,
a real unit can be replaced by a virtual static model, which
has the same static characteristics as the real unit. However,
in order to converge to the true optimum, where the static
characteristics are different, parameter adaptations are indeed
necessary so as to compensate for these differences. In short,
the differences in the dynamics can be tolerated, while
differences in the static behavior needs to be quantified and
compensated.

5. CONCLUSIONS

In this paper, it is shown that it possible to use the multi-unit
scheme with differences in dynamics without affect its
performance considerably. If the static curves are the same,
the equilibrium point and the stability around the optimum
are not affected. However, far from the optimum, the choice
of the offset plays an important role; it can either make the
system converge slowly or make it oscillatory.

Experimentally, it is shown that replacing a real dynamic unit
by a simple static mathematical model is indeed viable. This
means that the major constraint of having real multiple
identical units can be circumvented. A good, not necessarily
perfect, approximation of the process is sufficient to this
effect.
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