
New tuning rules for PI and fractional PI controllers 
 

Juan J. Gude and Evaristo Kahoraho 
 

Faculty of Engineering – ESIDE 
University of Deusto 

Avda. de las Universidades 24, 48007 Bilbao (Spain) 
(Tel: +34 944139000; Fax: +34 944139101; e-mail: jgude@eside.deusto.es) 

 

Abstract: This paper presents new tuning rules for PI and fractional PI control of processes that are 
typically found in process control. The rules are based on characterization of process dynamics by three 
parameters that can be obtained from a simple step response experiment. The rules are obtained by 
minimizing a frequency objective function subject to a constraint on the maximum sensitivity. 
Comparisons with classical tuning rules show that they are very simple but give substantially better 
performance. 
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1. INTRODUCTION 

In spite of all the advances in process control over the past 
several decades, the proportional integral (PI) and the 
proportional integral derivative (PID) controller remains to be 
certainly the most extensive option that can be found on 
industrial control applications, see Åström and Hägglund 
(2001). The transparency of the PID control mechanism, the 
availability of a large number of reliable and cost-effective 
commercial PID modules, and their widespread acceptance 
by operators are among the reasons of its success, see Gude 
and Kahoraho (2007). 

Over the last half-century, a great deal of academic and 
industrial effort has focused on improving PID control, 
primarily in the area of tuning rules. In fact, since Ziegler and 
Nichols proposed their popular tuning rules, Ziegler and 
Nichols (1942), an intensive research has been done. Works 
include from modifications of the original tuning rules, see 
Chien et al. (1952), Hang et al. (1991), and Åström and 
Hägglund (2004), to a variety of new techniques, see Åström 
and Hägglund (1995). 

Fractional calculus, which is the expansion to fractional 
orders, has been known since the development of the regular 
calculus. However, fractional-order control was not 
incorporated into control engineering mainly due to the lack 
of sufficient mathematical knowledge and the limited 
computational power available at that time.  

More recently, Podlubny (1999) has proposed a 
generalization of the PI and PID controllers, namely the PIλ 
and PIλDµ controllers, involving an integrator of order λ and a 
differentiator of order µ (the orders λ and µ may assume real 
non-integer values). Podlubny has also demonstrated the 
better response of these types of controllers, in comparison 
with the classical PI and PID controllers, when used for the 
control of fractional-order systems. A frequency domain 

approach by using fractional PID controllers has also been 
studied in Vinagre et al. (2000). However, the design 
methods for fractional controllers are a recent research area, 
see Capponetto et al. (2002) and Monje et al. (2005). 

Given that the most common control structure used in the 
process industry is the PI controller, Åström and Hägglund 
(2001), an immediate approach that should be taken into 
account is to use the fractional PIλ controller. Because of the 
widespread use of PI controllers and the potentials of 
fractional PIλ controllers, see Gude and Kahoraho (2009), it is 
interesting to have simple but efficient methods for tuning 
these kind of controllers.  

In this paper, we have developed new simple tuning methods 
for PI and PIλ controllers that give significantly better 
performance for a wide range of processes. 

The layout of this paper is the following. The different 
controllers and the test batch considered in this paper are 
presented in Section 2. The design method is treated in 
Section 3. This is followed by the main results obtained in 
this paper: new tuning rules for PI and PIλ controllers in 
Section 4. In Section 5 the developed tuning rules are applied 
to a process and a comparison between different tuning rules 
is made. Finally conclusions and final remarks are drawn in 
Section 6. 

2. CONTROLLERS AND TEST BATCH 

2.1  Plant knowledge 

To be accepted in industrial applications controller tuning 
rules must be based on a limited amount of plant knowledge 
that is easy to obtain. The plant can the be characterized by 
its τ value: 
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This parameter is usually called the normalized dead time. It 
is essentially the classical controllability ratio L/T, but the 
parameter τ has the advantage that it is in the range from  
0 to 1. The controllability ratio was often mentioned in the 
early process control literature, see Cohen and Coon (1953). 
This parameter can be used to characterize the difficulty of 
controlling a process. Roughly speaking, processes with 
small τ can be considered easy to control and the difficulty in 
controlling the system increases as τ increases. 

2.2  The test batch 

The design method presented in the next section requires the 
transfer function of the process to be known. The results of 
this investigation depend critically on the chosen test batch. 
To apply the method we therefore have to choose process 
models that are representative for the dynamics of typical 
industrial processes. Processes with the following transfer 
functions have been used: 
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The process (3) is the standard model that has been used in 
many investigations of PID tuning. 
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The test batch (2) does, however, not include this transfer 
function because this model is not representative for typical 
industrial processes, see Åström and Hägglund (1995). 
Tuning based on the model (3) typically gives controller 
gains that have a different behaviour from the other processes 
in the test batch, see Hang et al. (1991). This is remarkable 
because tuning rules have traditionally been based on this 
model. 

The processes selected in the test batch (2) are representative 
for many of the processes typically found in process control, 
see for example Åström and Hägglund (2000) and  
Gorez (2003), suggested as standard benchmark models for 
testing PID controllers. The test batch includes processes that 
range from delay-dominated to lag-dominated processes. 

They include all kinds of plants with poles strictly on the 
negative real axis, such as plants with time delay or non-
minimum phase zeros, plants of high and low orders, plants 
with multiple and spread poles, etc. All processes are 
normalized to have unit steady state gain and have a 
parameter that can be changed to influence the response of 
the process. The parameter ranges have been chosen to give a 
wide variety of responses. The normalized time delay ranges 
from 0.17 to 1 for G1. The rest of the processes have values 
of τ in the range 0 < τ < 0.5 

2.3  PI and PIλ controllers 

In this paper, two different controllers are considered: the PI 
and the fractional PIλ controller, which is a generalisation of 
the PI controller. It is a non-integer order controller of the 
form: 
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where K is the proportional gain, ki the integral gain, and λ 
the fractional order of the integral part.  

The interest of this kind of controller is justified by a better 
flexibility, since it exhibits a fractional integral part of order 
λ. Thus, three parameters can be tuned in this structure (K, ki, 
and λ), that is, one more parameter than in the case of 
conventional PI controller (λ = 1). We can take advantage of 
the fractional order λ to improve the performance. 

3. THE DESIGN METHOD 

Within the process industry, regulation performance is often 
of primary importance since most controllers operate as 
regulators, see Shinskey (1996). Regulation performance is 
often expressed in terms of the control error obtained for 
certain disturbances. A load disturbance is typically applied 
at the process input. Typical criteria are to minimize a loss 
function of the form: 
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where the error is defined as e(t) = r(t) – y(t). Common cases 
are IAE (n = 0, m = 1), ISE (n = 0, m = 2), or ITSE (n = 1,  
m = 2). 

However, Kristiansson and Lennartson (2002) defined 
another performance criterion in the frequency domain as an 
alternative to the above criteria based on a function of the 
error signal. It is formulated as: 
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The proposed performance criterion is mainly a measure of 
the system ability to handle low-frequency load disturbances.  

Robustness is an important consideration in control design. 
There are many different criteria for robustness. Many of 
them can be expressed as restrictions on the Nyquist curve of 

     



 
 

 

the loop transfer function L(s) = G(s)C(s). Åström and 
Hägglund (1995) introduced the maximum sensitivity 
function of the closed-loop system, MS, as a tuning parameter 
for PID controllers. The constraint (7) that sensitivity 
function S(jω) is less than a given value MS implies that the 
loop transfer function should be outside a circle with radius 
1/MS and center at –1. 
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The design problem discussed in this paper can be formulated 
as an optimisation problem: Find parameters of the different 
controllers that minimize performance criterion (6) subject to 
the robustness constraint (7). 

A reasonable ambition in all control design is to keep the 
control signal as small as possible. Control system design 
very often deals with the trade-off between performance and 
control effort, provided that a reasonable mid-frequency 
robustness is guaranteed, see for example Gude and 
Kahoraho (2009). Therefore, introduce the control effort 
criterion: 
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4. RESULTS 

An empirical method is used to develop the new tuning rules. 
The design method proposed in Section 3 with MS = 1.4 was 
applied to all processes in the test batch (2). This value of MS 
provides a good compromise between performance and 
robustness. This gave the corresponding parameters K, Ti, for 
the PI, and K, Ti, and λ, for the fractional PI controller. The 
process parameters KP, L and T were also computed from the 
step response experiment. The controller gain is normalized 
by multiplying it either with the static process gain KP or with 
the parameter a = KPL/T. Integration time is normalized by 
dividing by T or by L. We will represent normalized 
controller parameters as functions of τ. Data obtained can be 
well approximated by functions having the form: 

( ) caf b += ττ  (9) 

4.1  PI controller 

Simplified tuning rules for PI controllers will be first 
obtained. Figures 1 and 2 show the normalized proportional 
gains and integration times, respectively, as a function of 
normalized time delay τ when the design procedure is applied 
to all processes in the test batch (2). The curves drawn 
correspond to the results obtained by curve fitting. Both 
figures show that there appears to be a good correlation 
between the normalized controller parameters and the 
normalized time delay τ. This indicates that it is possible to 
develop good tuning rules based on the KLT-model. 
However, Figures 1 and 2 also show that parameters KKP, 
aK, Ti/L, and Ti/T range from 0.16 to 23.8, from 0.21 to 3.15, 
from 0.34 to 8.2, and from 0.1 to 6.8, respectively. 
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Fig. 1. Normalized PI controller proportional gains plotted 
versus normalized time delay τ for the test batch. The solid 
lines correspond to the tuning rules obtained in Table 1. 
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Fig. 2. Normalized PI controller integration times plotted 
versus normalized time delay τ for the test batch. The solid 
lines correspond to the tuning rules obtained in Table 1. 

This indicates clearly that it is not possible to obtain good 
tuning rules that do not depend on τ. The deviations from the 
solid lines in the figure is about ± 15% 

Table 1.  Tuning formulae for the PI controller. The table 
gives the parameters of the functions of the form (9) for 
the normalized controller parameters and MS = 1.4. 

f(τ) a b c τ 
KKP 0.09793 –1.3676 0.01378 0 < τ < 1 

–0.6473 0.1128 0.77 0 < τ < 0.25 aK 2.212 5.7 0.2163 0.25 < τ < 1 
Ti/L 0.2967 –1.497 –0.01252 0 < τ < 1 

5.479 0.8154 –0.03853 0 < τ < 0.1 Ti/T 10.7 11.79 0.8028 0.1 < τ < 1 
 

Table 1 gives the coefficients for functions of the form (9) 
fitted to the data available in Figures 1 and 2. The 
corresponding graphs are shown in solid lines in figures. 

     



 
 

 

4.2  PIλ controller 

Simplified tuning rules for fractional PI controllers will be 
now obtained. Figures 3, 4, and 5 show the normalized 
proportional gains, the normalized integration times, and the 
controller fractional order, respectively, as a function of 
normalized time delay τ when the design procedure is applied 
to all processes in the test batch (2). The curves drawn 
correspond to the results obtained by curve fitting. Both 
figures show that there appears to be a good correlation 
between the normalized controller parameters and the 
normalized time delay τ. This indicates that it is possible to 
develop good tuning rules for fractional PI controllers based 
on the KLT-model. 
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Fig. 3. Normalized PIλ controller proportional gains plotted 
versus normalized time delay τ for the test batch. The solid 
lines correspond to the tuning rules obtained in Table 2. 
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Fig. 4. Normalized PIλ controller integration times plotted 
versus normalized time delay τ for the test batch. The solid 
lines correspond to the tuning rules obtained in Table 2. 

As in the case of the PI controller, it is not possible to obtain 
good tuning rules that do not depend on τ. The deviations 
from the solid lines in the figure is about ± 15%. Table 2 
gives the coefficients of functions of the form (9) fitted to the 
data available in Figures 3, 4, and 5. The corresponding 
graphs are shown in solid lines in these figures. 
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Fig. 5. Fractional order λ plotted versus normalized time 
delay τ for the test batch. The solid lines correspond to the 
tuning rules obtained in Table 2. 

Table 2.  Tuning formulae for the fractional PIλ. The 
table gives the parameters of the functions of the form (9) 
for the normalized controller parameters and MS = 1.4. 

f(τ) a b c τ  
KKP 0.08621 –1.594 0.1096 0 < τ < 1 

–0.5643 0.2715 0.6866 0 < τ < 0.25 aK 3.327 6.593 0.2983 0.25 < τ < 1 
Ti/L 1.17 –0.8997 –0.8666 0 < τ < 1 

8.549 1.052 –0.04380 0 < τ < 0.15 Ti/T 6.271 7.304 1.12 0.15 < τ < 1 
λ 0.03512 –0.4862 1.073 0 < τ < 1 

 

Figure 6 shows the ratio between the optimal Jv–values 
obtained with a PIλ and PI controller applied to the processes 
in the test batch. It shows that the benefit in using a PIλ 
instead a PI controller is more than 12% for delay–dominated 
processes, about 11% for balanced lag and delay processes, 
and tends to 18% for lag–dominated processes. 
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Fig. 6. Ratio of the Jv–values obtained for a PIλ and a PI 
controller for different values of τ applied to the processes of 
the test batch. 

     



 
 

 

4.3  A simpler tuning rule for PIλ controllers 

As can be seen in Figure 5, optimal λ–value is approximately 
equal to 1.12 for 0.3 < τ < 1. Provided that the maximum 
difference between the optimal value of λ and 1.12 is, in the 
worst case, equal to 0.12, i.e. 10%, we will try to develop 
simple tuning rules for PIλ controllers, fixing the value of λ to 
1.12. Figures 7 and 8 show the optimal normalized 
proportional gains and integration, for a constant value of  
λ = 1.12, as a function of the normalized time delay τ. The 
curves drawn correspond to the results obtained by curve 
fitting in Table 3.  

Figure 9 shows the ratio between the optimal Jv–values 
obtained with a PIλ with all its parameters free and a PIλ with 
λ = 1.12 applied to the test batch. It shows that the Jv–values 
obtained in both cases are nearly the same for 0.3 < τ < 1, and 
the loss for lag–dominated processes increases but it is, in all 
cases, less than 5%. 
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Fig. 7. Normalized PIλ controller proportional gains plotted 
versus normalized time delay τ for the test batch. The solid 
lines correspond to the tuning rules obtained in Table 3. 
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Fig. 8. Normalized PIλ controller integration times plotted 
versus normalized time delay τ for the test batch. The solid 
lines correspond to the tuning rules obtained in Table 3. 

Table 3.  Tuning formulae for fractional PIλ controllers. 
The table gives the parameters of the functions of the 
form (9) for the normalized controller parameters,  
λ = 1.12 and MS = 1.4. 

f(τ) a b c τ 
KKP 0.2154 –1.169 –0.1592 0 < τ < 1 

–0.4645 0.3182 0.5795 0 < τ < 0.25 aK 3.271 5.75 0.28 0.25 < τ < 1 
Ti/L 9.242 –0.1966 –9.171 0 < τ < 1 

5.479 0.8154 –0.03853 0 < τ < 0.3 Ti/T 6.06 7.066 1.18 0.3 < τ < 1 
λ λ = 1.12 0 < τ < 1 
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Fig. 9. Ratio of the Jv–values obtained for a PIλ and a PIλ with 
λ = 1.12 for different values of τ applied to the processes of 
the test batch. 

5. COMPARISON WITH OTHER DESIGN METHODS 

Extensive simulations have been done. Comparisons with 
classical tuning rules show that proposed tuning rules are 
very simple but give substantially better performance. 
However, due to page limitations, only one simulation has 
been included in this paper. There are many methods for 
tuning PI controllers. In this Section, the proposed methods 
for PI and PIλ controllers are compared with the Ziegler-
Nichols step response method, Ziegler and Nichols (1942), 
the Cohen-Coon method, Cohen and Coon (1953), and 
optimal controllers in terms of Jv, IAE, Ju, and MS. 

For simplicity we will denote the Ziegler Nichols step 
response method by ZN, the Cohen-Coon method by CC, the 
optimal PI and PIλ controller obtained using the design 
method by opt-PI and opt-PIλ, respectively, the proposed 
method for PI controllers by GK, the one for PIλ controllers 
by f-GK, and the approximation for PIλ controllers with  
λ = 1.12 by af-GK. 

Consider the process with the following transfer function:  
G(s) = 1/(1+s)(1+0.5s). We find that the apparent time delay 
and time constants are L = 0.193 and T = 1.407. Hence, the 
controllability index is L/T = 0.1372 and τ = 0.12 for this 
process.  

     



 
 

 

Table 4 contains the values of the different controller 
parameters obtained with the considered design methods. 
This table shows that results obtained by GK, f-GK and  
af-GK are very close to their respective optimal values. The 
performance obtained for PIλ is substantially better than for 
PI. ZN and CC give controllers that reduce load disturbances 
very effectively, however they exhibit a very poor robustness 
and excessively large control effort. 

Table 4.  Controller parameters obtained for the different 
design methods for the considered transfer function. 

Method K Ti λ ki MS Ju Jv IAE
ZN 6.56 0.58 1 11.34 3.11 22.59 0.12 0.16
CC 6.65 0.50 1 13.32 3.62 28.90 0.14 0.18
GK 1.78 1.13 1 1.58 1.38 2.65 0.63 0.63

opt-PI 2.04 1.21 1 1.68 1.40 3.02 0.59 0.59
f-GK 2.62 1.24 1.17 2.12 1.41 3.58 0.45 0.58

opt-PIλ 2.86 1.34 1.24 2.13 1.40 3.79 0.46 0.61
af-GK 2.40 1.32 1.12 1.82 1.39 3.28 0.50 0.60

Parameters obtained by f-GK and optimal PIλ are very close 
which indicates that little is lost by not using the full transfer 
function. The improvement in Jv of using a PIλ instead of a PI 
is about 22%. The value of Jv for GK is about 28% higher 
compared with f-GK. These improvements are also evaluated 
in Gude and Kahoraho (2009). 

6. CONCLUSIONS 

This paper presents new tuning rules for PI and fractional PI 
control of typical processes found in process control. The 
rules are based on characterization of the process dynamics 
by three parameters, i.e. gain KP, apparent time constant T 
and apparent time delay L, that can be obtained by a simple 
step response experiment. The design method consists on 
minimizing a frequency objective function subject to a 
constraint on the maximum sensitivity function. Based on 
these parameters it is possible to develop very simple tuning 
rules for PI and PIλ controllers that only depend on the 
normalized time delay τ. 

In this paper it is also demonstrated that substantially better 
performance can be obtained using PIλ instead of PI 
controllers. These tuning rules are shown to give good results 
compared to a couple of well established classical tuning 
methods, especially when simplicity, performance and 
robustness are emphasized.  

Future investigation should rely on extending these tuning 
rules to fractional PID controllers. 
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