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Abstract: We address the problem of linear parameter estimation in discrete time state space models in 
the presence of serially correlated error in variables. The common way to solve parameter estimation 
problem is least squares (LS) methods. LS method is not considered to be effective when both dependent 
and independent variables are contaminated by noise. Total Least Squares (TLS) has been introduced as 
the method for parameter estimation in the case of noisy response and predictor variables. However, TLS 
solution is not optimal when number of data is limited and noise is correlated.  Constrained TLS is a 
variant of TLS that considers correlation of noise in the data as additional constraints. We introduced a 
novel method based on a stochastic sampling method to solve estimation problem from correlated noisy 
measurements, and we compared it with the existing methods through in silico examples. Our method 
demonstrates significant improvement over other common estimation algorithms, LS, TLS and 
Constrained TLS under the different amount of correlated noise and data points. It has the potential to be 
the valuable tool for the difficult real life problems, such as, biological systems where data is limited and 
noisy. 
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1. INTRODUCTION 

The problem of linear parameter estimation arises in a broad  
class of scientific disciplines such as signal processing, 
automatic control, system theory, general engineering, 
statistics, physics, economics, biology, medicine, etc ( Huffel 
,1991 ). Linear estimation problem becomes challenging in 
the presence of correlated noise. Errors are unavoidable and 
can be related to many sources, such as modelling, human or 
instruments. They may appear in different forms depending 
on the source of error and nature of the system. Noise can be 
proportional to the signal itself (multiplicative),simply 
additive or it can include both components.   In this paper, we 
will particularly focus on parameter estimation in linear 
discrete time state space models in the presence of 
measurements that include both multiplicative and additive 
error terms.  One can write the linear discrete time system as 
follows;  
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In this equation this equation, value of observed state at time 
1+k  is linear function of all N observed states at time point, 

k . This model can be extended for all states and time points 
in a compact form as follows: 
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where  M is the number of time points and N  is the number 
of states.  Each column of X  and X ′  is represented with the 
vector,  
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The parameters are collected in matrix, 
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This paper is organized as follows. In next section we will 
briefly summarize common methods to solve linear 
estimation problem. Furthermore, we will introduce our novel 
approach based on a sampling algorithm. Section 3 will 
summarize assessment of the performance of our method 
compared to some common existing methods. Finally, 
section 4 will present the concluding remarks.  

 

 

 



 
 

     

 

2. METHODS 

2.1 Common methods 

Many methods have been introduced to solve the linear 
estimation problem (Ljung ,1987 and Huffel ,1991). The 
classic way to solve the linear estimation problem is least 
squares. In the classical least squares regression theory, the 
errors are assumed to be confined only to X̂ ′  ( response 
variables) , and X̂ (predictor variables) are assumed to be 
error free. One can write least squares estimate for 
parameters as follows, 
 

( ) TTT XXXXA ˆˆˆˆ 1
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−             (5) 

 
However, in our problem, it is not realistic to assume X̂  to 
be error free as it shares the same columns with X̂ ′ except for 
the first column. ( See (2) ). This results in serial correlation  
between X̂ , and X̂ ′ .  
 
Total least squares (TLS) is another method of linear 
parameter estimation when there are errors in both sides of 
the equation ( X̂ and X̂ ′ ) ( Huffel ,1991).  
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where, X ′Δ  and XΔ   are the noise terms.  Since X  and X ′ are 
not known, for each state ( Ni ,...,1= ), equation (2) can be 

written in the following format; 
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where [ ]M
iii xxx ,...,2=  and [ ]M

iii xxx ΔΔ=Δ ,...,2  are the 

thi rows of X̂ ′  and X ′Δ respectively ( See (2, 6) ).  

[ ]iNi aaa ,..,1=  is the 
thi row of A . 

 

Let, 
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Then, equation (6) can be written as; 
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where a  is the thi row of A . The TLS problem then can be 
posed as follows; 
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The solution to this problem given as; 
 

( ) TTT XXIXXa ˆˆˆˆ 12 ′⋅−⋅=
−

λ               (10) 
 
where λ  is the smallest singular value of C . Compared to 
least squares solution (5), the TLS solution has a correction 
term, λ  at the inverse of the matrix. This reduces the bias in 
the solution which is caused by noise in X (Kim et al, 2007). 
However, TLS solution inherently assumes that the noise 

terms, X ′Δ and ixΔ  are independent , which is not the case 
here. 
 
The correlation between two noise term requires the total 
least squares solution to have additional constraints instead 
merely satisfying the existence of a solution ( Cadzow and 
Wilkes, 1985). Recently, Kim et al. (2007) applied 
constrained least squares algorithm in the context of gene 
network identification problem on a linear discrete time 
model. In their model, they rewrite error term, CΔ  in an open 
form and as follows; 
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They introduced the vector, ( ) [ ]TN

ie 0,..,1,...,01 =×  whose 

elements are zero  except for the  thi  element, which is equal 
to 1. All error terms are rewritten in a vector form as follows; 
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The first N columns of CΔ can be written as follows;  
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Where ( ) ( )[ ]NM
T

iMi eIG ×−− ⊗= 11 0  and 1−MI  denotes the 

identity matrix of size ( ) ( )11 −×− MM  and the symbol, ⊗ , 

denote Kronecker product of two matrices. 

( ) NM ×−10 represents the matrix of zeros with size, 

( ) ( )NM ×−1  

After several steps and simplifications, they posed this as 
optimization problem as follows; 
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where ii ia GaH ⋅=� .  This is a nonlinear, non-convex 

optimization problem without constraints. They initialized 
the optimization problem with least squares solution.  

 



 
 

     

 

 

2.2 Our method 

In this paper, we introduced a new method to solve linear 
parameter estimation problem when both sides of the 
equation are contaminated by error. This method based on a 
stochastic sampling approach. In this method, observations 
( )XX ˆ,ˆ ′   are perturbed by adding a negative noise term in each 
sample.  
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  is the 
thj  perturbed observation for thi  state   at 

time point k  and 
( ) k

i
j ε  is the amount of perturbation sampled 

from Gaussian distribution of zero mean and 
k
iσ  variance in 

the 
thj  sample. N is the number of states, S  is the number of 

samples and M  stands for the number of time points. 

Variance for perturbation
k
iσ  is chosen roughly close to 

variance of the observation error in thi  state and thk  time 

point. ( ik
μ

, see equation (20) ). The amount of perturbation 

,
( ) k

i
j ε , is selected through Monte Carlo Sampling procedure. 

 
Finally, all data points for each state i  at each sample j  are 
collected in a vector form. This is performed for both sides of 
equation (2). Let, 
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Equation (16) can be written in a matrix form for all states, 
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Next, equation (17) can be written for all samples, Sj ,...,1= ; 
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The parameters are estimated using least squares solution;  
 

( )( ) ( ) TotalTTotalTotalTTotalT YYYYA ′⋅=
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3. ASSESSING THE PERFORMANCE 

To test the performance of our method against least squares 
(LS), Total Least Squares , and Constrained TLS solutions, 
we created ensemble of 50 linear time discrete systems with 
different parameters, each consisting of 10 states. This is 

achieved by creating random 1010×A  matrices. We assumed 

sparse structure for each 1010×A  matrix, therefore the number 
of non-zero elements are fixed to 30 out of 100 total 
connections.  Each system is simulated for certain number of 
time points ( )M  starting from a random initial condition. 

However, we assumed limited number of data for the 
systems, as most of the real systems have small number of 
data (Most biological systems, gene networks, etc.). 
Multiplicative and additive noise terms are added to the 
simulation results as follows; 
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In this equation, 

ikx̂  is the observed value of thi state at thk  

time point. 
ikε  and 

ikη  are random variables assumed to have 

Gaussian distribution with zero mean and variances 
1σ  and  

respectively. The term, 
ikikx μ  corresponds to the 

multiplicative noise term, whereas 
ikη  stands for the additive 

noise term. Our algorithm is tested against the other 
algorithms for different level of noise and number of time 
points. Performances of methods for parameter estimation are 
quantified as the Frobenius norm of the deviation of 
estimated parameters from their true values relative to the 
Frobenius norm of true parameters according the following 
formula;  
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where RA  and A  stand for the true and estimated parameters 
respectively. In addition, fitness of the system is evaluated 
and compared to true values of states similar to (15);  
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where X  and RX  indicates estimated and true values of states, 
respectively. 

AE  and 
XE  are calculated for ensemble of 50 

different systems at each number of sample point and 
averaged. In figure 1, one can see the comparison of the 
methods with respect to number of samples when 
multiplicative and additive noise terms are set to 10.01 =σ  , 

and 0001.02 =σ and number of time points is 10.  

2σ



 
 

     

 

0 100 200 300 400 500 600
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Relative error in parameter estimation 

Number of Samples (S)

A
ve

ra
g

e 
re

la
ti

ve
 e

rr
o

r 
in

 p
ar

am
et

er
s 

<
E

A
>

 

 
Least Squares
Sampling Method
Total Least Squares

 

Fig.1. Relative error in parameter estimation vs number of 
samples for 10 time points at 10.01 =σ  

Our method shows significant decrease in relative error in 
parameters compared to total least squares and least squares 
with increasing number of samples.  

 

 
Methods 

 
M=12 

 
M=18 

 
M=24       

Least 
Squares 

 2730.1  1.1925 0.59776 

Sampling 
Method  
(at S=500) 

 
0.11563 

  
0.48125 

 
0.44043 

Total   Least 
squares 

200.95 29.465 35.352 

Constrained 
TLS  

0.72001 289.98 3.7678 

Table1. Average relative error in fitness for different methods 
for different time points at 10.01 =σ  

Table 1 depicts the average relative error in fitness across the 
different methods and for different number of data. Our 
method outperforms all methods for 500 samples.  
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Fig.2. Average relative error in parameters versus amount of 
multiplicative noise for 18 time points 
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Fig.3. Average relative error in parameters versus number of 
time points at 10.01 =σ  

 

Figure 2 indicates that our method performs significantly 
better than LS, TLS and constrained TLS across different 
levels of noise. TLS is expected to perform better in the case 
of noisy dependent and independent variables if enough data 
points are available. However, in this particular problem, due 
to the serially correlated multiplicative error and limited 
number of data, its performance is even below least squares 
solution. We assumed relatively small number of data, 
because for most of the interesting real systems, data is 
usually limited and noisy.  Constrained TLS solution resolves 
the serial correlation problem and performs better than TLS, 
however, its performance still falls behind least squares 
solution because of limited data. When the number of data 
increases, the performances of all methods converge (See 
Figure (3) ).   

In Fig.3, one can observe that sampling method gives least 
amount of error in parameters at different number of time 
steps.  

  

 
Methods 

05.01 =σ   

0001.02 =σ
 

10.01 =σ   

0001.02 =σ  
 

15.01 =σ  

0001.02 =σ
 

Least 
Squares 

7.3e+007  2730.1 9.9e+10 

Sampling 
Method  
(at S=500) 

     
0.059484 

       
0.11563 

       
0.16913 

Total Least 
squares 

   11.331        200.95        21.864 

Constrained 
TLS  

   1.2951       0.72001        8.4658 

Table 2. Average relative error in fitness for different 
methods for 10 time points at different levels of noises. 

In table 2, it is seen that the fitness of our method is much 
better than other methods for different noise levels.  

 

 



 
 

     

 

4. CONCLUSIONS 

The contribution of this work can be summarized in two 
ways. First, our method outperforms the common estimation 
methods in parameter estimation in the presence of correlated 
noise. Second, fitness of the estimated parameters through 
our method is significantly better than LS, TLS and 
Constrained TLS method. This method is particularly 
promising in the application of gene network identification 
problem. The biological measurements are notorious for 
having a high level of multiplicative noise which makes the 
network identification problem difficult. Our method has the 
potential to be the valuable tool for this difficult problem.  
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