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Abstract: Conventional Bayesian methods commonly assume that the evidences are
temporally independent. This condition does not hold for most practical engineering
problems. With evidence transition information being considered, the temporal domain
information can be synthesized within the Bayesian framework to improve the diagnosis
performance. A data-driven algorithm is developed to estimate the evidence transition
probabilities. The application in a pilot scale process is presented to demonstrate the data
dependency handling ability of the proposed approach.
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1. INTRODUCTION

Control loop performance assessment and diagnosis has
been an active area of research in the process control
community. A number of control performance methods
are available, including the ones based on minimum vari-
ance control (MVC), linear quadratic Gaussian control
(LQG), historical data trajectories, and user-specified
control, etc (Huang and Shah, 1999; Harris et al., 1999;
Qin, 1998; Jelali, 2006; Schafer and Cinar, 2004; Pat-
wardhan and Shah, 2002). Several surveys on the control
performance assessment research are available (Harris
et al., 1999; Qin, 1998; Hoo et al., 2003; Hugo, 2006;
Jelali, 2006). Besides performance evaluation of control
loops, significant progress has also been made in the
development of monitoring algorithms for process and
instrument components within the control loops, such
as sensor monitor, valve stiction monitor, process model
validation monitor (Qin and Li, 2001; Ahmed et al.,
2009; Choudhury et al., 2008; Mehranbod et al., 2005). A
number of successful industry applications of the process
monitors have been reported. However, many practical
problems remain. One of the outstanding problems is
that the monitoring algorithms are often designed for
one specific problem. An implicit assumption that other
unattended components are in good shape is made.
Clearly this assumption does not always hold, and thus it
may lead to misleading results. It is desirable to develop
approaches that not only monitor the performances of
single components, but also are capable of synthesizing
the information from different monitor outputs to isolate
underlying source of problematic control performance.
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According to Huang (2008), several challenging issues
exist for the process monitor synthesizing problem. The
first one is the similar symptoms among different prob-
lem sources. For instance, oscillations can either be in-
voked by a sticky valve or an improperly tuned con-
troller. Another problem is that no process monitor
has 100% detection rate and 0% false alarm rate, and
thus a probabilistic framework should be built to rep-
resent the uncertainties. Third, a large number of the
developed monitoring algorithms are purely data based
without any a priori process information. Incorporating
a prior process knowledge into the diagnosis framework
is challenging, but better diagnosis performance can be
expected by doing so.

The Bayesian method sheds lights on the problem so-
lutions by providing a probabilistic information synthe-
sizing framework. Applications of the Bayesian methods
have been reported in medical science, image process-
ing, target recognition, pattern matching, information
retrieval, reliability analysis, and engineering diagnosis
(Dey and Stori, 2005; Mehranbod et al., 2005; Steinder
and Sethi, 2004; Chien et al., 2002). It is one of the
most widely applied techniques in probabilistic inferenc-
ing. Built upon previous work in Bayesian fault diag-
nosis by Pernestal (2007) and a framework laid out by
Huang (2008), Qi and Huang (2008) developed a data-
driven Bayesian algorithm for control loop diagnosis
with consideration of missing data. The algorithm is
tested through simulation, where the information syn-
thesizing ability of the proposed approach is demon-
strated. However, the existing Bayesian methods have
not considered temporal dependency problem. In this
paper, a new algorithm is developed with consideration
of temporal dependency, so as to achieve more reliable
and better diagnosis performance.



The remainder of this paper is organized as follows.
In Section 2, the control loop diagnosis problem and
related preliminaries are described, and the data-driven
Bayesian approach developed in (Qi and Huang, 2008)
is briefly revisited. The rationale to consider evidence
temporal dependency is detailed in Section 3. The esti-
mation algorithm for the evidence transition probability
is developed in Section 4. Section 5 presents application
of the proposed approach to a pilot scale process. Finally
the Section 6 concludes this paper.

2. DATA-DRIVEN BAYESIAN DIAGNOSIS
METHOD REVISIT

2.1 Control Loop Diagnosis Problem

Generally a control loop consists of the following com-
ponents: controller, actuator, process, and sensor. These
components may all suffer from malfunctions. In this
work, monitors are assumed to be available for some
or all of the components of interest. These monitors,
however, are all subject to disturbances and thus can
produce false alarms, and each monitor can be sensitive
to abnormalities of other problem sources. Our target
is to pinpoint the source of problematic control perfor-
mance based on the collected monitor output data.

To adopt the Bayesian method for control loop diagnosis,
several notations need to be introduced (Qi and Huang,
2008).

Mode M Assume that a control loop under diagnosis
consists of P components of interest: C1, C2, · · · , CP ,
among which the problem source may lie in. Each
component is said to have a set of discrete operating
status. For instance, the sensor might be “biased” or
“unbiased”. An assignment of operating status to all the
components of interest in the control loop is called a
mode, and denoted as M ; M can take different values
and a specific value is denoted by m. For example,
m=(C1=well tuned controller, C2=valve with stiction,
· · · ). Suppose that component Ci has qi different status.
Then the total number of possible modes is

Q =
P∏

i=1

qi,

and the set of all possible modes can be denoted as

M = {m1, m2, · · · , mQ}.

Evidence E The monitor readings, called evidence, are
the input to the diagnostic system, and are denoted as
E = (π1, π2, · · · , πL), where πi is the output of the i-
th monitor, and L is the total number of the monitors.
Often the continuous monitor readings are discretized
according to predefined thresholds. In this work, monitor
readings all take discrete values. For example, the control
performance monitor may indicate “optimal”, “normal”,
or “poor”. A specific value of evidence E is denoted
as e; for example, e=(π1=optimal control performance,
π2=no sensor bias, · · · ). Suppose that the single monitor
output πi has ki different discrete values. Then there are
totally

K =

L∏
i=1

ki

different evidences, and the set of all possible evidence
values can be denoted as

E = {e1, e2, · · · , eK}.

Historical evidence data set D In this paper, process
data refer to the readings from physical instruments such
as temperature, pressure, etc. The evidence data refer to
the readings of monitors which are calculated typically
from a section (window) of process data. Historical
evidence data are retrieved from the past record where
the mode of the control loop, namely, status of the
components of interest in the control loop, is available,
and the monitor readings are also recorded. Each sample
dt at time t in the historical evidence data set D consists
of the evidence Et and the underlying mode M t. This
can be denoted as dt = (Et, M t), and the set of historical
evidence data is denoted as

D = {d1, d2, · · · , dÑ},

where Ñ is the number of historical evidence data sam-
ples. In (Qi and Huang, 2008), all the historical evidence
data samples are assumed to be independent as com-
monly assumed in the data-driven Bayesian approaches.

2.2 Data-driven Bayesian Diagnosis Approach

This section will give a brief review of the data-driven
Bayesian approach proposed by Qi and Huang (2008).
Given current evidence E, historical evidence data set
D, the posterior probability of each possible operating
mode can be calculated according to Bayes’ rule:

p(M |E,D) ∝ p(E|M,D)p(M), (1)

where p(E|M,D) is the likelihood probability; p(M) is
the prior probability of mode M . Among all the possi-
ble modes, generally the one with the largest posterior
probability is taken as the underlying mode based on the
maximum a posterior (MAP) principle, and the abnor-
mality associated with this mode is normally diagnosed
as the problem source.

Since prior probabilities are determined by a priori in-
formation, the main task of building a Bayesian diagnos-
tic system is the estimation of the likelihood probabilities
with historical evidence data D. In (Qi and Huang,
2008), a data-driven Bayesian algorithm for estimation
of the likelihood probability is proposed based on the
work by Pernestal (2007) and Huang (2008).

Suppose that the likelihood of evidence E = ei under
mode M = mj is to be calculated, where

ei ∈ E = {e1, · · · , eL},

and
mj ∈ M = {m1, · · · , mQ}.

The following result can be obtained for calculating the
likelihood (Pernestal, 2007):

p(E = ei|M = mj ,D) =
ni|mj

+ ai|mj

Nmj
+ Amj

, (2)

where ni|mj
is the number of historical evidence samples

with the evidence E = ei, and mode M = mj ; ai|mj

is the number of prior samples that is assigned to



evidence ei under mode mj ; Nmj
=

∑
i ni|mj

, and
Amj

=
∑

i ai|mj
.

3. DEPENDENCY IN HISTORICAL EVIDENCE
DATA

Note that in the approach described in Section 2, an
assumption is that the current evidence only depends on
current mode, and is independent on the previous sam-
ples. This assumption is true for appropriate designed
monitors, as explained below.

The independency among evidences relies on how the
evidence data are sampled, and how the disturbance
affects the monitor outputs. If the evidence samples are
collected with sufficiently large intervals, or if the dis-
turbance has no or weak correlation among the evidence
samples, the evidences may be considered as indepen-
dent. Generally the first requirement regarding the sam-
pling interval can be easily satisfied by leaving sufficient
gap between consecutive monitor readings. However,
there is no guarantee that the disturbance is uncorre-
lated in practical applications. If disturbance has long-
term autocorrelation and the gap between consecutive
monitor readings is not large enough, then the temporal
independency assumption of monitor readings can not
apply. A simple practical example of long-term autocor-
relation of the disturbance is the ambient temperature
change. Consider that each monitor reading is calculated
based on 1-hour data and there is no overlap in the use
of data. Assume that some of the monitor outputs are
affected by the ambient temperature. Due to the cyclic
change of temperature within 24 hours, the evidence
samples should follow a predictable pattern. Apparently
it is more justifiable to consider the dependency between
those evidence samples than ignoring it in this example.

Besides the practical issues, another limitation with
the conventional Bayesian approach ignoring evidence
dependency is its inability to capture all time domain
information. An illustrative problem is presented in the
following. Suppose that the system under diagnosis has
two modes m1 and m2. One monitor π, with two discrete
outcomes, 0 and 1, is available. A set of 100 samples of
the monitor outputs is shown in Figure 1. The title in
each plot indicates the underlying operating mode under
which the data are collected.
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Fig. 1. Monitor outputs of the illustrative problem

The likelihood probability of evidence being 0 or 1 is
calculated according to Equation 2, as summarized in

Table 1. Clearly the likelihood of the evidence being

Table 1. Likelihood estimation of the illustra-
tive problem

e = 0 e = 1

m1 0.46 0.54

m2 0.48 0.52

0 or 1 under the two modes is almost identical. This
may invoke confusion in the diagnosis, which will lead
to higher false diagnosis rate. By looking at the data
plot in Figure 1, one can argue that distinguishing the
two modes should not be such a difficult task. Although
the evidences under m1 and m2 share similar likelihood,
the frequencies of the evidence change apparently differ
far from each other. The limitation with the conven-
tional Bayesian method without considering evidence
dependency is that the temporal information has not
been completely used, leading to less efficient diagnosis
performance. In summary it is desirable to take the
evidence dependency into consideration when building
the diagnostic model.

With the consideration of evidence dependency, the
mode posterior probability is calculated as

p(M t|Et−1, Et,D) ∝ p(Et|M, Et−1,D)p(M). (3)

Comparing the difference between Equation 1 and Equa-
tion 3, the main task of building a Bayesian diagnostic
system boils down to the estimation of the evidence
transition likelihood probability with historical evidence
data D, p(Et|M, Et−1,D).

4. EVIDENCE TRANSITION PROBABILITY
ESTIMATION

The intention of the estimation of evidence transition
probability is to make the estimated likelihood proba-
bilities be consistent with historical evidence data set
D in which the evidence dependency exists. Our goal
is to calculate the likelihood probability of an evidence
Et given current underlying mode M t and previous ev-
idence Et−1 to reflect the dependency with the Markov
property, so every composite evidence sample for evi-
dence transition probability estimation purpose should
include three elements,

dt−1

E = {M t, Et−1, Et}. (4)

Accordingly, the new composite evidence data set DE ,
which is assembled from historical evidence data set D
to estimate transition probability, is defined as

DE = {d1

E , · · · , dt−1

E }

= {(M2, E1, E2), · · · , (M t, Et−1, Et)}, (5)

Figure 2 depicts how the original collected historical
evidence data are divided to form composite evidence
samples. In Figure 2, the part highlighted with shadows
or gray and enclosed by the dash-lined or solid-lined
frame is a single composite evidence sample described
by Equation 4.

Suppose that the evidence transition probability from
Et−1 = es to Et = et under mode M t = mk is to be
estimated from the composite evidence data set,

p(Et|Et−1, M t,DE) = p(et|es, mk,DE) (6)
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Fig. 2. Bayesian model considering dependent evidence

where

es, et ∈ E = {e1, · · · , eL}, (7)

and

mk ∈ M = {m1, · · · , mQ}. (8)

The transition probability p(et|es, mk,DE) can only
be estimated from the composite evidence data subset
DE|mk

where the mode M t = mk,

p(et|es, mk,DE) = p(et|es, mk,DE|mk
,DE|¬mk

)

= p(et|es, mk,DE|mk
), (9)

where DE|¬mk
is the composite evidence data set whose

underlying mode M t is not mk. To simplify notations,
the subscript mk will be omitted when it is clear from
the context.

Define Φs = {φs,1, φs,2, · · · , φs,K} as the likelihood
parameters for all possible evidence transition from
evidence es under mode mk, where φs,j = p(ej |es, mk) is
the transition probability from evidence es to ej , and K
is the total number of possible evidences. The likelihood
probability can be computed by marginalization over all
possible evidence transition likelihood parameters,

p(et|es, mk,DE)

=

∫
Ψ1,··· ,ΨK

p(et|Φ1, · · · , ΦK , es, mk,DE)

· f(Φ1, · · · , ΦK |es, mk,DE)dΦ1 · · ·ΦK

=

∫
Ψ1,··· ,ΨK

φs,t · f(Φ1, · · · , ΦK |es, mk,DE)dΦ1 · · ·ΦK ,

(10)

where Ψi is the space of all the likelihood parameters
Φi.

f(Φ1, · · · , ΦK |es, mk,DE) can be calculated according
to Bayes’ rule,

f(Φ1, · · · , ΦK |es, mk,DE)

∝ p(DE |es, mk, Φ1, · · · , ΦK)f(Φ1, · · · , ΦK |es, mk).
(11)

In Equation 11, the first term, p(DE |ei, mk, Φ1, · · · , ΦK)
is the composite evidence data likelihood given parame-
ter sets {Φ1, · · · , ΦK}. It should be noted that likelihood
of composite evidence data DE is solely determined by
the mode and parameter sets {Φ1, · · · , ΦK}, and thereby
is independent of es given the mode and the likelihood
parameters, i.e.,

p(DE |es, mk, Φ1, · · · , ΦK) = p(DE |mk, Φ1, · · · , ΦK)

=
K∏

i=1

K∏
j=1

φ
ñi,j

i,j , (12)

where ñi,j is the number of evidence transition from ei

to ej in the composite evidence data set.

Assume that the priors for different parameter sets Φi

and Φj , for i �= j, are independent (Pernestal, 2007),

f(Φ1, · · · , ΦK |es, mk) = f(Φ1|es, mk) · · · f(ΦK |es, mk).
(13)

Dirichlet distribution is commonly used to model priors
of the likelihood parameters with parameters bi1, · · · , biK ,

f(Φi|es, mk) =
Γ(

∑K

j=1
bij)∏K

j=1
Γ(bij)

K∏
j=1

φ
bij−1

ij , (14)

where bij can be interpreted as the number of prior
samples for evidence transition from ei to ej. Γ(·) is the
gamma function,

Γ(x) = (x − 1)!, (15)

where x is positive integer.

Substituting Equation 14 and Equation 12 in Equation
11, and then combining it with Equation 10, the follow-
ing result is obtained,

p(et|es, mk,DE) =
ñs,t + bs,t

Ñs + Bs

, (16)

where Ñi =
∑

j ni,j is the total number of historical data
samples with evidence transition from ei under mode
mk, and Bi =

∑
j bi,j is the corresponding total number

of prior samples.

By comparing Equation 2 and Equation 16, we can see
that the evidence transition probabilities are also de-
termined by both prior samples and historical samples,
similar to the evidence likelihood calculation when the
evidences are independent. The difference lies in how
the numbers of prior and historical evidence samples are
counted. In Equation 2 the prior and historical evidence
samples refer to a simple count of the evidence samples
corresponding to a certain mode, while in Equation 16
the prior and historical evidence samples refer to the
count of composite evidence samples corresponding to a
evidence transition under the target mode. Readers are
referred to (Qi and Huang, 2008) for detailed explana-
tion of the likelihood calculation.

5. PILOT SCALE EXPERIMENT

5.1 Process Description

The experiment setup is a water tank with one inlet
flow and two outlet flows. The schematic diagram of the
process is shown in Figure 3. The inlet flow is driven by a

Fig. 3. Pilot scale tank process

pump. Of the two outlet flow valves, one is adjusted by a



PID controller to provide level control for the tank, and
the other one is a manual bypass valve. It is assumed
that the bypass valve is closed when the system in its
normal operation condition.

Three operating modes are defined, including the normal
functioning (NF ) mode, and two problematic modes
leakage and bias. The problems associated with the two
faulty modes are: the tank leakage problem defined as
leakage mode, implemented by opening the bypass valve
manually, and the sensor bias problem defined as bias
mode, implemented by adding a constant bias to the sen-
sor output. The two problems share similar symptoms in
terms of shifting the steady state operation point of the
process. For instance, when there is a leakage in the tank,
the valve adjusted by the PID controller will decrease to
maintain the water level; when there is a negative sensor
bias, the valve will also decrease. Thus it is not obvious
how to distinguish the two faulty modes without any
advanced information synthesizing approach. To make
things worse, the external disturbance introduced by
changing the pump input will also shift the operation
point. Thus the operation point may also change during
normal operation.

Random binary sequence is introduced into the inlet
pump input to simulate temporal dependent distur-
bances. By defining the high value as 1, and the low
value as 0, the disturbance transitions are designed to
follow the transition probability matrices presented in
Equation 17.

P dis
NF =

( 0 1

0 0.9 0.1

1 0.2 0.8

)
, P dis

leakage =

( 0 1

0 0.1 0.9

1 0.8 0.2

)
,

P dis
bias =

( 0 1

0 0.5 0.5

1 0.5 0.5

)
. (17)

Two process monitors, process model validation monitor
and sensor bias monitor, are designed. Since we mainly
focus on the study of the information retrieving and syn-
thesizing abilities of Bayesian approaches with different
diagnosis strategies, the selected monitor algorithms are
not necessary to have good performances.

The output of process model validation monitor π1 is
given by the squared sum of the nominal model output
residuals, scalded by the magnitude of the process out-
put. Let the simulated output of the nominal model be
ŷt at each sampling instance t, and the real output be
yt. The output of the model validation monitor π1 is
calculated as

π1 =

∑N

t=1
(yt − ŷt)

2

ȳ
, (18)

where ȳ = 1

N

∑N

t=1
yi is the mean value of the process

output over one monitor reading period, and N is the
length of data segment over the one monitor reading.

The sensor bias monitor output π2 is obtained by exam-
ining the operation point shift. For illustration, consider
the scenario when a negative sensor bias occurs. The
steady state in terms of the sensor output will not
change, since it is controlled by the PID. The steady

state output of the controller, i.e., the valve position,
however, will decrease. The valve position will reverse
in the presence of the positive sensor bias. Thus we
can detect the sensor bias by monitoring the deviation
of the controller output mean value from the nominal
operation point. The output of the sensor bias monitor
π2 is calculated as

π2 =

∣∣∣∣∣u0 −
1

N

N∑
t=1

ut

∣∣∣∣∣ , (19)

where u0 is the nominal operation point of the controller
output, ut is the controller output at each sampling
instance t, and N is the length of process data segment
for a single monitor reading. Note that this monitor will
fail for the transition data, thus only steady state data
are collected and used in this example.

5.2 Diagnosis Settings and Results

Process data are collected for the three predefined
modes. The sampling interval is set to be one second. Ev-
ery 100 seconds of process data are used for calculation
of one monitor reading. Totally 600 monitor readings are
calculated from 16.5 hours of process data samples. The
collected evidence data of the three modes are divided
into two parts for estimation of the likelihood, and for
cross-validation respectively. Table 2 summarizes the
Bayesian diagnosis parameters.

Table 2. Summary of Bayesian diagnosis pa-
rameters

Discretizaion ki = 2, K = 22 = 4

Historical data 120 monitor readings for each mode

Uniformly distributed with prior sample,
Prior samples for single evidence space,

and evidence transition space

Prior probabilities p(NF ) = p(mother) = 1/3

Evaluation data 80 independently generated cross-
validation monitor readings for each mode

With the data-driven Bayesian approaches of two dif-
ferent strategies, namely, considering and ignoring the
evidence dependency, the diagnosis results in Figure 4
are obtained based on the cross-validation data. In the
plot, the gray bars are the numbers of the underlying
modes occurred in the validation data set; the light gray
and dark bars are the numbers of the diagnosed mode
by two diagnostic approaches respectively.
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Owing to the dependent external disturbance, the
Bayesian approach ignoring evidence dependency sig-
nificantly overestimates the number of leakage mode
occurrence, and underestimates the number of NF
mode. Therefore, its overall correct diagnosis rate is
only 51.45%, and is much lower in comparison to the
diagnosis rate of the proposed method, which is 73.86%.
Not only can better overall performance be obtained
by the proposed approach, the diagnosis performance
of each single mode, as will be also investigated, is more
favorable.

Figure 5 summarizes the diagnosis results in the form
of average posterior probabilities. The title of each plot
denotes the true underlying mode, and the posterior
probability corresponding to the true underlying mode
is highlighted with light gray bars. The left panel sum-
marizes the diagnosis results calculated by the approach
ignoring evidence dependency; the right panel summa-
rizes the diagnosis results obtained by the approach with
consideration of evidence dependency. It is observed that
for the three modes, the posterior probabilities assigned
to the true underlying modes by the proposed approach
are all higher than these assigned by the method ignoring
dependency. Thus we can conclude that the proposed
approach has better performance for diagnosis of all
modes. This conclusion is confirmed by computing the
correct diagnosis rate for each mode, as presented in
Table 3.
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Fig. 5. Average posterior probability for each mode

Table 3. Correct diagnosis rate for each single
mode

NF leakage bias

Ignore evidence dependency 6.25% 73.75% 70%

Consider evidence dependency 55% 78.75% 92.5%

6. CONCLUSION

In this work, a data-driven approach considering evi-
dence dependency is presented. Temporal dependency
of monitor outputs is taken into consideration to obtain
more accurate diagnosis results. The evidence transition
probabilities are estimated from historical data with the
developed data-driven algorithm. The method is applied
to a pilot scale process, where the performance of the
proposed approach is shown superior to that of the
method ignoring evidence dependency. In summary, the
more information from the time domain is synthesized,
the better diagnosis performance is expected.
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