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Abstract: The use of predictive solubility models can be of great use for crystallization modeling, and can 
decrease the amount of experimental data needed to create a robust crystallization model. In this paper, 
predictive solubility models such as MOSCED, UNIFAC, NRTL-SAC, and the Jouyban-Acree model are 
compared against an empirical model for predicted solubility accuracy. The best models are subsequently 
compared against the empirical model for the antisolvent crystallization of acetaminophen in acetone 
using water. Two different optimization objective functions are executed for each solubility model to 
generate corresponding optimal profiles. The effect of these optimal profiles on the predicted crystal 
properties is evaluated.  
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1. INTRODUCTION 

 
Crystallization is an important unit operation for the 
production of pharmaceuticals, fertilizers, and fine chemicals. 
Optimal crystallization operation often requires a 
crystallization model. This crystallization model, typically 
based on population balances (Hulburt and Katz, 1964; 
Ramkrishna, 1985; Randolph and Larson, 1988), requires a 
companion solubility model. Empirical solubility models 
have been extensively used in crystallization modelling 
(Zhou et al., 2006; Nowee et al., 2008; Lindenberg et al., 
2009). It is of interest to understand how other predictive 
solubility models such as the MOSCED, NRTL-SAC, 
UNIFAC, and Jouyban-Acree models can be incorporated 
into crystallization models and how their accuracy of 
predicting the solubility profiles influences both the 
crystallization model prediction and optimal profile 
calculation. The outcome of combining predictive solubility 
modelling with the crystallization model is expected to 
reduce the need for solubility experimental data and 
consequently streamline the optimization of the 
crystallization process.  
 
The solubility prediction is an important aspect of any 
crystallization model because its prediction is the basis for 
any crystallization phenomena. Crystallization is caused by 
supersaturation which is defined as the difference between 
the solution concentration and the equilibrium concentration 
(absolute supersaturation), or the ratio of the solution and 
equilibrium concentrations (relative supersaturation).  
 
This paper investigates the effect of different solubility 
models on the optimization of antisolvent crystallization. 
Both the effect of the model on the predicted optimal profile 
and on the result of these models’ optimal profiles 

implemented into a validated crystallization model will be 
evaluated. Specifically, we examine the effect on the 
supersaturation, mean size, and volume percent crystal size 
distribution (CSD) profiles. Although there has been 
extensive work done in the area of crystallization control and 
optimization (Braatz, 2002; Zhou et al., 2006; Nowee et al., 
2008; Sheikhzadeh et al., 2008), as far as we are aware there 
is no study that has investigated the use of predictive 
solubility models in developing optimal antisolvent feed 
profiles. 
 

2. SOLUBILITY MODELS 
 
2.1 MOSCED & UNIFAC Models 
 
The MOSCED model (Lazzaroni et al., 2005), generates 
infinite dilution activity coefficients. In order to obtain a non-
infinite dilution activity coefficient, another activity 
coefficient model is required. The Van Laar, Wilson, and 
NRTL models were each combined with the MOSCED 
model to evaluate which would give the best prediction to 
known experimental data. The next solubility model 
considered is the UNIFAC model (Anderson and Prausnitz, 
1978). The UNIFAC model predicts activity coefficients 
based on group contributions. The MOSCED and UNIFAC 
models predicted equilibrium profiles for acetaminophen in 
acetone and water are shown in Figure 1. 
 
The MOSCED models all give very poor solubility 
predictions. They all greatly underestimate the solubility. The 
NRTL and Wilson models give better estimates to the shape 
of the solubility curve than the Van Laar model does. The 
UNIFAC model is the worst of the models both greatly 
overestimating the solubility and weakly representing the 
shape of the curve. 



 
 

     

 

 
2.2 NRTL-SAC, Jouyban-Acree, and Empirical Models 
 
The next solubility model considered is the NRTL-SAC 
model (Chen et al., 2004, 2006). The NRTL-SAC model is a 
NRTL activity coefficient model that has been modified 
using segment theory (Chen et al., 2004, 2006). The last 
predictive solubility model considered is the Jouyban-Acree 
model (Jouyban et al., 2006). 
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Figure 1: MOSCED & UNIFAC Solubility Predictions. 
 
The Jouyban-Acree model is a semi-empirical model 
developed to predict the solubility of pharmaceuticals in 
organic solutions. This model requires the solubilities of both 
pure components in a binary solute-solvent system, and 
predicts the solubility of a solute in a solvent mixture. The 
last solubility model considered is an empirical model 
generated from data from Granberg and Rasmuson (2000) by 
Zhou et al. (2006).  
 

 
 

 
 

 

(1) 

 
Where C* is the equilibrium concentration (kg 
acetaminophen/kg solvents), and w is the solute free mass 
percent of water. The NRTL-SAC, Jouyban-Acree, and 
empirical model predicted solubilities are plotted in Figure 2. 
The NRTL-SAC and Jouyban-Acree solubility models both 
predict the equilibrium solubility much better than the 
MOSCED or UNIFAC models did. The empirical model fits 
the data very well and will be considered as the standard 
solubility model for benchmarking. Since the UNIFAC and 
MOSCED models gave such poor solubility predictions, only 
the NRTL-SAC and Jouyban-Acree models will be compared 
against the empirical model in the optimization sensitivity 
study in the subsequent sections. 
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Figure 2: NRTL-SAC and Jouyban-Acree Solubility 
Predictions. 
 

3. CRYSTALLIZATION MODEL 
 

In order to evaluate the effect of the solubility model on the 
predicted optimal trajectories, a crystallization model is 
required.  
 
3.1 Population Balance 
 
The population balance for a crystallization system having 
size-independent crystal growth and without attrition or 
agglomeration is defined in (2). 
 

 
 

 
(2) 

 
Where n(L,t) is the crystal density (# of particles/m3), V is the 
volume (m3), G is the growth rate (m/s), and B is the 
nucleation rate (# of particles/ s m3). The population balance 
was solved by discretization using backward finite 
differences. The discretization consisted of 250 geometrically 
spaced intervals from 0.5-1000 microns. 
 
3.2 Crystallization Kinetics 
 
The antisolvent crystallization kinetics for acetaminophen in 
acetone with water as the antisolvent were taken from Zhou 
et al (2006). The authors developed their own kinetic rates  
(3-6), from previous crystallization data performed by 
Granberg et al. (1999, 2001). 
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Where N is the nucleation rate (no. of particles/m3), ρc is the 
crystal density of acetaminophen (kg/m3), C* is the 
equilibrium concentration defined previously, C is the 
solution concentration (kg acetaminophen/kg solvents), ρs is 
the density of the solution (kg/m3), G is the crystal growth 
rate (m/s), and w is the solute free mass percent of antisolvent 
(water) in the solution. Also, the growth kinetics is only valid 
for solute free water mass percents greater than 30%. 
 

4. OPTIMIZATION 
 

The first optimization objective (O-1) was to create a final 
volume mean crystal size (D43) of 200 microns, and jointly 
minimize the total amount of nucleation by minimizing the 
zeroth moment. The optimization constraints were to end 
with a solute free antisolvent mass percent of water of 88%, 
and the mass flow rate of water could range between 0 and 
400 g/min. The duration of the experiment was fixed at 4200 
s. The control interval was discretized into 10 fixed 360 s 
intervals where the antisolvent flow rate could be adjusted in 
a piecewise constant manner. The final 600 s had a fixed 
antisolvent flow rate of zero. This was done to ensure that all 
remaining supersaturation is consumed at the end of the run. 
The optimizations were implemented using the gPROMS 
package (Process System Enterprise, UK) using the gOPT 
entity. The objective function used is defined in (7) subject to 
initial conditions in (8). 
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(8) 
 
This optimization was carried out using the crystallization 
model in Section 3 separately with each of the empirical, 
Jouyban-Acree, and NRTL-SAC solubility models. The 
MOSCED and UNIFAC models were not considered because 
when those models where incorporated into the 
crystallization model they did not predict any crystallization 
phenomena. 
 
4.1 Optimal Antisolvent Feed Profiles for O-1. 
 
Each solubility model resulted in an optimal profile (Figure 
3).. The empirical and Jouyban-Acree models generated 
similar optimal profiles (denoted Profile A.1 and Profile B.1 
respectively) with a small initial flow rate at the beginning of 
the experiment, moderate flow rate in the middle, and higher 
flow rate at the end. In contrast, the NRTL-SAC model 
calculates an optimal profile (denoted Profile C.1) that has a 
moderate initial flow rate followed by a high flow rate in the 
middle, and no flow at the end. 
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Figure 3: Optimal antisolvent feed profiles for O-1. 
 
The second optimization objective (O-2) was to create a 
larger final volume mean size (D43) of 400 microns while 
again minimizing the total amount of nucleation by 
minimizing the zeroth moment. The objective function 
formulation for O-2 was the same as for O-1 with the 
exception that D43 now cannot be greater than 400 microns. 
 
4.2 Optimal Antisolvent Feed Profiles for O-2. 
 
Each solubility model resulted in a new optimal profile for O-
2 (Figure 4). The empirical and Jouyban-Acree models again 
generated similar optimal profiles (denoted Profile A.2 and 
Profile B.2 respectively) with a small initial flow rate at the 
beginning of the experiment, a high flow rate in the middle 
for A.2, and a high flow rate at the end for B.2. In contrast, 
the NRTL-SAC model calculates an optimal profile (denoted 
Profile C.2) that has a moderate initial flow rate followed by 
a low flow rate in the middle, and a moderate flow rate at the 
end. 
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Figure 4: Optimal antisolvent feed profiles for O-2. 
 

5. OPTIMIZATION SENSITIVITY ANALYSIS 
 

The crystallization model was executed for each generated 
optimal feed profile (A.1-C.2) using the empirical solubility 
model. The empirical model is used as the benchmark since it 



 
 

     

 

showed very close agreement to experimental solubility data. 
This should predict what these optimal profiles would 
actually produce in a real crystallizer. Results are shown in 
the next sections.  
 
5.2 Optimal Profiles for O-1 Evaluation 
 
When the optimal profiles are implemented into the empirical 
solubility model there are several observed differences in the 
simulated supersaturation profiles (Figure 5) under Profiles 
A.1, B.1, and C.1. The NRTL-SAC optimal profile (C.1) 
causes the supersaturation to peak earlier than the other two 
models, while the supersaturation caused by the Jouyban-
Acree profile (B.1) is shown to be similar in shape to the 
empirical profile (A.1) but with a delay. Next, the effect on 
the volume mean size growth is shown in Figure 6. 
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 Figure 5: Relative supersaturation profiles for each optimal 
antisolvent feed profile for O-1. 
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Figure 6: Volume mean size for each optimal antisolvent feed 
profile for O-1. 
 
Each volume mean size profile can be explained by its 
corresponding supersaturation curve. Whenever the 
supersaturation increases there is a corresponding increase in 
the volume mean size. The NRTL-SAC optimal profile’s 
(C.1) supersaturation profile only has one large early 
supersaturation peak which causes the first primary increase 
in crystal size, and a second peak which causes a small 
increase in crystal size. The empirical optimal profile’s (A.1) 

generated supersaturation profile has four peaks which cause 
four increases in crystal size. Likewise the Jouyban-Acree 
optimal profile (B.1) causes the supersaturation profile to 
have four increases in D43. Using the empirical solubility 
model, the empirical optimal profile (A.1) satisfies its 
objective of 200 microns, the Jouyban-Acree optimal profile 
(B.1) is higher at 242 microns, and the NRTL-SAC optimal 
profile (C.1) is lower at 169 microns. Both predictive models 
optimal profiles did not meet the optimization objective but 
are within 20% of the desired value. 
 
Figure 7 shows the volume percent CSD for each optimal 
profile. All three optimal profiles give similar distributions 
with the NRTL-SAC optimal profile (C.1) distribution having 
a lower mean size than the others, and the Jouyban-Acree 
optimal profile (B.1) distribution having a larger mean size. 
All three optimal profiles generated distributions with similar 
width.  
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Figure 7: Volume percent CSD for each optimal antisolvent 
feed profile for O-1. 
 
For this objective function (O-1) only the empirical model’s 
optimal profile (A.1) was able to satisfy the objective to 
create a volume mean size of 200 microns, but the predictive 
models’ profiles (B.1 & C.1) were able to be within 20% of 
the desired value. Also, all three profiles were successfully 
able to suppress nucleation to produce unimodal profiles. 
 
5.3 Optimal Profiles for O-2 Evaluation 
 
The next objective function considered is the 400 volume 
mean size objective function (O-2). As seen in Figure 8 the 
generated supersaturation profiles follow the same trend as 
for the first objective function (O-1). The NRTL-SAC 
optimal profile (C.2) generates a supersaturation profile that 
is nearly identical to the supersaturation profile that C.1 
generated for O-1. The empirical optimal profile (A.2) 
generates a supersaturation amount that is above 1.02 from 
500 to 2500 s. The Jouyban-Acree optimal profile (B.2) 
generates a supersaturation peak that is similar to (A.2) but 
not as high of a supersaturation amount. 
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Figure 8: Relative supersaturation profiles for each optimal 
antisolvent feed profile for O-2. 
 
The Jouyban-Acree (B.2) and NRTL-SAC (C.2) optimal 
profiles both generated a much smaller mean size because 
they did not generate the required supersaturation. The 
Jouyban-Acree optimal profile (B.2) generated a volume 
mean size of 271 microns and the NRTL-SAC optimal 
profile (C.2) generated a volume mean size of 162 microns. 
Both predictive solubility models’ optimal profiles do not 
satisfy O-2 as well as they satisfied O-1. 
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Figure 9: Volume mean size for each optimal antisolvent feed 
profile for O-2. 
 
Figure 10 shows the volume percent CSD for each optimal 
profile for O-2. For this case there is a larger difference 
between the three profiles. Clearly, the Jouyban-Acree (B.2) 
and NRTL-SAC (C.2) optimal profiles did not satisfy the 
optimization objective. Also, the distribution width had more 
variation between the three profiles. The empirical profile 
(A.2) had the lowest distribution width, followed by the 
Jouyban-Acree (B.2) and the NRTL-SAC (C.2) model had 
the largest distribution width.  
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Figure 10: Volume percent CSD for each optimal antisolvent 
feed profile for O-2. 
 
Just as for the first case (O-1) only the empirical model’s 
optimal profile (A.2) was able to satisfy the objective (O-2) 
to create a volume mean size of 400 microns. Both predictive 
model profiles (B.2 & C.2) produced a much smaller mean 
size. The Jouyban-Acree profile (B.2) produced particles 
32% smaller, and the NRTL-SAC profile (C.2) produced 
particles 60% smaller. Even though they did not produce the 
proper volume mean size, all three profiles were successfully 
able to suppress nucleation to produce unimodal profiles. 
 
5.5 Optimization Evaluation 
 
The reason why the optimal flow rates are similar for both the 
empirical and Jouyban-Acree model is that the slopes of both 
solubility curves are very similar. Since the slope of the 
solubility curve is what dictates the supersaturation profile, it 
would be expected to give similar supersaturation profiles. 
The NRTL-SAC model has a different slope in its solubility 
profile which causes the larger deviation in these reported 
results. In order for a predictive solubility model to produce 
predictive optimal profiles it must be accurate both 
quantitatively and qualitatively. 
 

Table 1: Final volume mean crystal size derived from each 
optimal profile. 

Final Volume Mean Size & Percent Error 
Optimal 
Feed 
Profile 

O-1 
(200) 

Prediction 
Percent 
Error 

O-2 
(400) 

Prediction 
Percent 
Error 

Empirical 200 0 400 0 
Jouyban-
Acree 242 21% 271 

 
-32% 

NRTL-
SAC 169 -16% 162 

 
-60% 

 
Only the optimal profiles (A.1, A.2) generated from the 
empirical solubility model were able to satisfy both 
optimization objectives. When other optimal profiles were 
used the final volume mean size was as much as 60% under 
predicted and 21% over predicted when implemented into the 



 
 

     

 

empirical solubility model. The deviation from the objective 
criteria increased as the volume mean size increased. 

 
6. CONCLUSION 

 
The effect of several solubility models were evaluated on the 
predicted optimal antisolvent feed profiles. The solubility 
model did have an effect on the optimal profile, and 
generated a unique optimal antisolvent feed profile. The use 
of the predictive solubility models’ optimal profiles in the 
empirical solubility model did not satisfy the original 
objective function. The use of an incorrect solubility model 
will create a sub-optimal antisolvent feed profile that will not 
satisfy its intended crystallization optimization objective in a 
real system. This underpins the significance of the solubility 
profile in crystallisation optimizations work. 
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