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Abstract: The standard uncorrelated test signals estimate the low-gain direction of ill-conditioned 
multivariable systems poorly. Therefore, the low-gain information needs to be excited more. In this 
paper, identification of an ill-conditioned distillation column process using rotated signals is proposed. 
Rotated input signals allow more excitation to be applied in the weak gain direction of the process and 
less excitation in the strong gain direction. In this approach, the singular value decomposition (SVD) of 
the steady state gain matrix is used to rotate the input signals along the directions of the right singular 
vectors. Simulation results show good accuracy of the proposed method in identifying low and high gain 
directions. 
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1. INTRODUCTION 

Unlike SISO processes, MIMO processes may show 
‘‘directions’’ (in the input vector space) in which the (steady-
state or dynamic) effect of the inputs on the process outputs is 
much larger than in other directions (Zhu et al., 2001, 2006). 
In such situations the process is said to be ill-conditioned. An 
ill-conditioned problem is a specific problem for 
multivariable processes. 

Control-relevant identification of an ill-conditioned system 
requires special techniques. The directionality of such 
systems should be taken into account in the identification test 
signal design. Traditional uncorrelated open-loop step tests 
tend to excite the system mostly in high-gain directions. 
Therefore, the input test signals should be selected correctly 
(Zhu et al., 2001, 2006). 

In MIMO processes, the existing input test signal design 
methods can be divided in two categories, sequential input 
testing and simultaneous input testing (Conner et al., 2004). 

In sequential input testing, one signal, often PRBS (pseudo 
random binary sequence) or GBN (generalized binary noise) 
signal, is applied to each input separately while the other 
inputs are kept at their nominal values (Conner et al., 2004). 
This input excitation usually takes a long time because the 
inputs are perturbed one at a time (Li et al., 2008). 

Simultaneously input testing excites more than one input at a 
time (Conner et al., 2004). This method leads to more 
efficient use of the plant testing time (Conner et al., 2004). 
Gevers et al. (Gevers et al., 2006) using variance analysis 
shows that it is better to excite all inputs simultaneously. 
However, simultaneous uncorrelated open-loop tests cannot 
usually excite the ill-conditioned processes in low-gain 
direction (Zhu et al., 2001, 2006). In these systems, the 

information of low gain direction is dominated by the noise 
(low SNR) and no good identification results can be 
achieved. This problem is caused by poor data not related to 
identification methods or model structure (Zhu et al., 2001, 
2006). 

In order to increase the SNR in the low gain direction, one 
can replace the standard uncorrelated PRBS or GBN inputs 
with highly correlated signals as inputs. Koung and 
MacGregor (Koung et al., 1993) proposed rotated inputs. 
These signals allow more excitation to be applied in the weak 
gain direction of the process and less excitation in the strong 
gain direction (Conner et al., 2004). In their approach, the 
singular value decomposition (SVD) of the steady state gain 
matrix is used to rotate the input signals along the directions 
of the right singular vectors (Li et al., 2008). Therefore, for 
constructing a rotated input signal, preliminary knowledge of 
the steady-state gain matrix is needed (Conner et al., 2004). 

In this paper, MIMO rotated input design for an ill-
conditioned distillation column process identification is 
proposed. 

The paper is organized as follows: In Section 2 and 3, ill-
conditioned processes and rotated input design are 
respectively described. In Section 4, the application of the 
proposed method is carried out on high-purity distillation 
column as an ill-conditioned process. Finally, section 5 
concludes the paper. 

2. ILL-CONDITIONED PROCESS 

Consider the multivariable (MIMO) system with n inputs and 
n outputs as follows 

( ) ( ) ( )y j G j u jω ω ω=  (1) 



 
 

     

 

The singular value decomposition (SVD) of G can be written 
(Skogestad et al., 2001) as: 

( ) ( ) ( ) ( )HG j U j j V jω ω ω ω= Σ  (2) 

where U  and V are the left and the right singular unitary 
matrices, respectively. Matrix Σ  is the singular value matrix 
which is diagonal containing the singular values iσ  in 
decreasing order. The complex frequency jω  denotes that 
the SVD in general is a frequency dependent measure. For 
2 2×  processes, we can write (Jacobsen, 1994) 

[ ], ( , ), [ ]U u u diag V v vσ σ= Σ = =  (3) 

and 

,G v u G v uσ σ= =  (4) 

where σ  denotes the maximum gain of G (in terms of 2-
norm), v  and u  are the corresponding input and output 
directions, respectively. Similarly, σ  is the minimum gain of 
G with corresponding input direction v  and output direction 
u . Note that the singular values and the corresponding input 
and output directions are frequency dependent; however, for 
simplicity jω  is omitted. 

The condition number of gain matrix G is given by the ratio 
of the upper and lower singular values as follows (Jacobsen, 
1994) 

( ) /Gγ σ σ=  (5) 

A process is said to be ill-conditioned if ( ) 1Gγ >>  in some 
frequency range (Jacobsen, 1994).  

In these processes, the process gain is strongly dependent on 
the direction of the input vector (Jacobsen, 1994). Therefore, 
the response of the plant is much stronger if input vector is in 
the high gain direction than if it lies along the low gain 
direction (Jacobsen, 1994). This can cause difficulties in the 
identification of ill-conditioned processes. In other words, ill-
conditioned processes represent one of the most difficult 
kinds of linear processes to be identified (Micchi et al. 2008).  

The ill-conditioned processes also have strongly interactions. 
The relative gain array (RGA), proposed by Bristol (Bristol, 
1966), is a valuable criterion for evaluating the degree of 
interactions or directionality. The elements of the RGA is 
defined as follows (Zhu et al., 2006) 

1( ) ( )[ ( )]ij ij jij g j G jλ ω ω ω−=  (6) 

where ijg  is the ,i j  element of G . As the elements in each 
row and column in the RGA adds up to unity, it is sufficient 
to consider the 1,1 element for the 2 2×  case (Jacobsen, 
1994). When one refer to the RGA, it means the 1,1 element 
of the RGA, i.e., 11λ . Large value of 11λ  denotes that the 
process is strongly interactive (Jacobsen, 1994). 

Note that there are differences between strongly interactive 
and ill-conditioned processes. A strongly interactive process 

is always ill-conditioned while the opposite is not always true 
(Jacobsen, 1994). 

3. ROTATED INPUT DESIGN 

Consider the singular value decomposition (SVD) of the 
steady state gain matrix G . 

HG U V= Σ  (7) 

Using the above equation, the steady state output of process, 
with N input-output data, can be written as (Conner et al., 
2004) 

T T H TY G U U V U= = Σ
) )

 (8) 

where 

1 2[ ]nY Y Y Y= K  (9a) 

1 2[ ]nU U U U=
)

K  (9b) 

and 

[ (1) (2) ( )]Ti i i iY y y y N= K  (10a) 

[ (1) (2) ( )]Tj j j jU u u u N= K  (10b) 

In theses equations, an overbar indicates steady state of a 
variable if inputs are held constant from the current time 
forward. 

Now, the original inputs, { }iU , are scaled by the singular 

values { }iσ  to give new inputs U%  (Conner et al., 2004). 

1 1 1
1 2 3

2 3
[ ( ) ( ) ( )]n

n
U U U U U

σ σ σ
σ σ σ

=% K  
(11) 

Then the rotated inputs are produced as follows (Conner et 
al., 2004) 

HU VαΞ = %  (12) 

where α  is a factor that should be adjusted so that the 
outputs do not exceed prespecified limits. 

By using the rotated inputs, Ξ , instead of the original inputs, 
U
)

, equation (8) can be rewritten as (Conner et al., 2004) 

T TY U Uα= Σ %  (13) 

Therefore, the modes of the steady-state gain matrix are 
individually excited by scaled, uncorrelated PRBS or GBN 
signals (Conner et al., 2004). 

A generalization of the rotated inputs design procedure to 
non-square multivariable systems of arbitrary dimensions is 
presented at Micchi et al., 2008. 

4. CASE STUDY: HIGH-PURITY DISTILLATION 
COLUMN 

A binary distillation column as in Fig. 1 is considered as an 
ill-conditioned process. The column is running in LV-
configuration.  



 
 

     

 

 

Fig. 1. High-purity distillation column 

In this study, reflex (L) and boilup (V) flow rates are 
considered as the inputs and distillate ( dy ) and bottom ( bx ) 
compositions are considered as the outputs of the distillation 
column. For more detailed description, one can refer to 
Skogestad, 1997. 

High-purity distillation is a challenging process application 
for system identification because of its nonlinear and strongly 
interactive dynamics (Rivera et al., 2007). Despite their 
nonlinear behavior, the ability to control high-purity 
distillation columns using linear controllers is desirable in 
practice for reasons of simplicity (Rivera et al., 2007). Thus, 
in many studies like this study, a linearized model is used. 

The linear model of a distillation column can be described as 
(Jacobsen, 1994) 

1 1

2 2

( ) ( )
( )

( ) ( )
y j u j

G j
y j u j

ω ω
ω

ω ω
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 
(14) 

where the state space model of G is as follows  

0.0051 0 0 0 0 0.629 0.624
0 0.0737 0 0 0 0.055 0.172
0 0 0.1829 0 0 0.030 0.108
0 0 0 0.4620 0.9895 0.186 0.139
0 0 0 0.9895 0.4620 1.230 0.056

x x u

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= − + −
⎢ ⎥ ⎢ ⎥

− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

&
 

(15a) 
0.7223 0.5170 0.3386 0.0163 0.1121
0.8913 0.4728 0.9876 0.8425 0.2186

y x
− − −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

(15b) 
Fig.2 and Fig.3 respectively show the singular values and 
RGA plotted as functions of frequency for the high-purity 
distillation column. 

It can be seen that the process has large condition number and 
high RGA in the low frequency range. 

At steady state, the high-gain singular value and the low-gain 
singular value are equal to 198.2σ =  and 1.36σ = , 
respectively. Steady state condition number is 146γ ≈ . 
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Fig. 2. Singular values of the distillation column 
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Fig. 3. RGA of the distillation column 

Therefore, the largest effect on the outputs is obtained by 
moving the inputs in opposite directions which causes the 
two outputs to move in the same direction. The smallest 
effect is obtained by moving the inputs in the same direction 
which moves the two outputs in opposite directions.  

4.1  Input Test Signals 

For identification of the high purity distillation column, two 
open-loop test signals are considered: uncorrelated signals 
and rotated signals as outlined in Section 3.  

Identification data are constructed by using generalized 
binary noise (GBN) signals as inputs, both uncorrelated and 
correlated in the case of rotated inputs. GBN signals, 
proposed by Tulleken (Tulleken, 1990), have many favorable 
features, in particular in terms of frequency content, which is 
typically superior to that of pseudo-random binary noise 
(PRBS) and of step signals (Zhu, 2001). 
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Fig. 4. Data collected using uncorrelated GBN signals as 
inputs 
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Fig. 5. Data collected using rotated GBN signals as inputs 

Hence, two independent GBN signals with amplitude 1± , 
switching time 300minswT = , and final time 

5000minfT =  are applied on the inputs of the plant 
simultaneously. The sampling time is selected to be 1 min. 

Normally, distributed output noise with a signal-to-noise ratio 
(SNR) of 10 is added to both outputs. The input-output data 
from the two experiments are shown in Fig. 4 and Fig. 5. 

Fig. 6 and Fig. 7 show the excitations of output directions in 
the uncorrelated and the correlated tests. 

It can be seen that the uncorrelated test inputs only excite the 
high gain direction. In other words, in this case, the outputs 
of the process have no information about the low-gain 
direction of the model. It is clear that the low-gain direction 
information needs to be excited more in order to obtain good 
estimates of model. Therefore, strongly correlated test inputs 
with larger amplitudes are needed (see Fig. 7). 
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Fig. 6. Excitation of output directions in the uncorrelated test 

 

Fig. 7. Excitation of output directions in the rotated test 

4.2  Subspace Identification 

In this paper, a MIMO structure for the model is considered. 
In other words, there is a common model for all outputs. 
System identification is performed using subspace 
identification (SID) method. This method involves particular 
matrices obtained from output and input data and performs 
projection operations to cancel out the noise contributions. 
Thus, the system model is obtained in state-space form using 
these projected data matrices. A detailed treatment of this 
method can be found in Van Overschee et al., 1996. 

For identifying the system using subspace method, model 
order should be selected. In this paper, the model order is 
determined using number of nonzero singular values of 
matrix M  given by (Misra et al., 2003) 

/

[ ] [ ]

T
ff

T T T
f f f

f p UU

f p pU U U

M Y W

Y W W

⊥

+⊥ ⊥ ⊥
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⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

∏
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(16) 



 
 

     

 

where 

/ [ ][ ] ;T T
f ff

p
f p f p p pU UU p

U
Y W Y W W W

Y
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∏ ∏  

(17a) 

( )
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T T
f f f f

I

I U U U U

⊥ ⊥

+

= −

= −
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(17b) 

( fY , fU ) and ( pY , pU ) are future and past output-input 
data, respectively, that is: 

[ ]
[ ]

1 1

1 1

f r r r M

f r r r M

Y y y y

U u u u

+ + −

+ + −

=

=

K

K
 

(18a) 
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(18b) 

where r  is greater than the system order n  ( r n> ) and 
2 1M N r= − + . The order of system is determined using 

singular value decomposition of matrix M in equation (16) as 
follows: 

ˆ ˆ0ˆ ˆ
ˆˆ0

T
s s

s n T
nn

S V
M Q Q

VS

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥= ⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 
(19) 

In the absence of noise, the rank of this matrix is exactly n. 
Thus there are exactly n nonzero singular values in the SVD 
in equation (19). In the presence of noise, however, the data 
matrix on the left hand side of (19) becomes a full rank 
matrix. The selection of the sizes of ˆ

sS  and ˆ
nS  then 

requires determining which singular values can be considered 
small, hence essentially zero, and which ones large. If the 
noise level is not too high, there is usually a significant 
difference between noise and signal singular values, and their 
separation is easily achieved (Misra et al., 2003). However, 
for ill-conditioned systems, even a small magnitude of noise 
can make it very difficult to determine the system order 
correctly (Misra et al., 2003). 

For solving this problem, additional requirements must be 
posed on the input signals. In other words, input signals must 
excite ill-conditioned system in order to produce output 
signals as uncorrelated as possible. Therefore, rotated input 
signal is one of the most appropriate input signals to be used 
in subspace identification of ill-conditioned multivariable 
systems. 

Fig.8 shows the singular values of the matrix M (for 6r = ) 
in the rotated inputs case. As can be observed in this figure, 
the system order is 5.  

After model order determination, subspace method MOESP 
is used to identify the system. Identification for both types of 
input test is performed over 20 simulation runs. For estimated 
model validation, the singular values and RGA are checked. 
Fig. 9-12 show the singular values and RGA of 20 simulation 
runs.  
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Fig. 8. Singular-value plot for distillation column using rotated 
input test 
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Fig. 9. Singular values of MIMO MOESP models from 20 
simulations using uncorrelated test 
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Fig. 10. RGA of MIMO MOESP models from 20 simulations 
using uncorrelated test 
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Fig. 11. Singular values of MIMO MOESP models from 20 
simulations using rotated input test 
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Fig. 12. RGA of MIMO MOESP models from 20 simulations 
using rotated input test 

Note that in these figures, solid lines are the true values and 
dashed lines are the estimates. It can be seen that the high 
gain of process is easily estimated whereas the low-gain is 
very poorly estimated using the uncorrelated test signals. 
However, by using rotated input signal, good estimates of 
both low and high gain directions are achieved. 

5. CONCLUSIONS 

The standard uncorrelated test signals estimate the low-gain 
direction of ill-conditioned systems poorly. Therefore, the 
low gain information needs to be excited more in order to 
obtain good estimates. In this paper, MIMO rotated input 
design for ill-conditioned process identification was 
described. Rotated input signals allow more excitation to be 
applied in the weak gain direction of the process and less 
excitation in the strong gain direction. In this approach, the 
singular value decomposition (SVD) of the steady state gain 
matrix is used to rotate the input signals along the directions 

of the right singular vectors. The application of the proposed 
method was carried out on a high-purity distillation column 
as an ill-conditioned process. Simulation results show good 
accuracy of the proposed method in identifying both low and 
high gain directions. 
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