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Abstract: Explicit robust multi-parametric feedback control laws are designed for constrained
dynamic systems involving uncertainty in the left-hand side(LHS) of the underlying MPC
optimization model. Our proposed procedure features: (i) a robust reformulation/optimization
step, (ii) a dynamic programming framework for the model predictive control (MPC) problem
formulation, and (iii) a multi-parametric programming solution step.
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1. INTRODUCTION

Robust model predictive control (Robust MPC) is an im-
portant class of constrained, model-based control methods
that can explicitly account for the presence of modeling
uncertainties in the controlled process, which has received
significant attention in control systems research—an indica-
tive list of related publications is given in (Bemporad and
Morari, 1999; Mayne et al., 2000; Sakizlis et al., 2004;
Wang and Rawlings, 2004; Pistikopoulos et al., 2007a) and
references within. On the other hand, explicit MPC, which
has also received equal attention recently (Pistikopoulos
et al., 2002, 2007a), is a control method where the online
MPC optimization problem is solved off-line with multi-
parametric programming methods to obtain the optimal
control actions as a set of functions of the system states.
The MPC controller can then be implemented online as a
set of simple feedback control laws based on function eval-
uations instead of using online optimization with complex
and increased computational demands.

Despite these significant advances, explicit, robust MPC
is still an important area of research. It is evident from
the relevant literature (Bemporad et al., 2003; Wang and
Rawlings, 2004; Pistikopoulos et al., 2007a) that, even
for the case of linear MPC, the underlying optimization
model of the MPC is nonlinear due to the uncertainties
appearing both in the left—hand side and right—hand side of
the optimization constraints (Borrelli, 2003; Pistikopoulos
et al., 2007a). This imposes difficulties for the application
of the existing multi—parametric programming techniques
and special treatment is required to ensure that the
constraints are always satisfied (Bemporad et al., 2003;
Kouramas et al., 2009).
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Explicit robust MPC was investigated in Sakizlis et al.
(2004) for the case of linear dynamic systems with ad-
ditive state disturbances (right-hand side uncertainty in
the optimization model). A dynamic programming based
method, for linear dynamic systems with linear objec-
tive costs and uncertainties in left—hand side of the op-
timization model was studied in Bemporad et al. (2003).
Furthermore, an explicit robust MPC with a quadratic
objective and left—hand side uncertainties, based on robust
optimization methods (Ben-Tal and Nemirovski, 2000; Lin
et al.,, 2004), was presented in Kouramas et al. (2009)
where the MPC optimization is treated as a robust multi—
parametric optimization problem. Explicit robust MPC
problems with quadratic costs have not yet been fully
studied since the underlying multi—-parametric optimiza-
tion problem becomes nonlinear due to the uncertain co-
efficients in the constraints (Kouramas et al., 2009). On
the other hand, employing dynamic programming methods
for even the simple case of explicit MPC (with no un-
certainties) results either into solving a demanding global
optimization problem (Faisca et al., 2008) at each stage
of the dynamic programming procedure or overlapping
critical regions in the explicit solution.

This work presents a novel method for FExplicit Robust
Model Predictive Control based on dynamic programming
methods (Bellman (2003); Faisca et al. (2008)) and robust
optimization techniques (Ben-Tal and Nemirovski, 2000;
Lin et al., 2004) that (i) allows the use of quadratic
objective functions, (ii) accounts for the uncertainties in
the left-hand side of the underlying MPC optimization
problem, and (iii) overcomes the limitations of previous
methods and the need for global optimization at each stage
of the dynamic programming.

We focus on the following explicit robust MPC problem



V*(x) :mUin J(U, x)
N—-1
:mUin Z {2} Quy + ui Rup} + 2% Pry (1)
k=0
s.t. g1 = Axp + Bug, VAA€e A, ABeB
Crp<d, k=0,1,...,N
Mug <p, k=0,1,...,N—-1
Taeny <71
r = X9
where x € R" is the system state, u € R™ is the system
input and N the prediction horizon. We assume that the

underlying system is uncertain in that the system matrices
are described as

Tpt1 = Az + Bug, A= Ao+ AA, B=By+ AB (2)
AA € A= {AA€R™| —ey|Ag| < AA < 24| Ao|}
AB€B={AB € R™"| —e4|Bo| < AB < e5|Bol}

where Ag, By are of known constant values but the values
of matrices AA, AB are not known but are bounded as
given in (2) and e4,e3 € [0,1). The system states and
inputs are also subject to the following linear constraints

reX ={reR"Czx <d} (3)

ueld ={ueR"Mu< pu} (4)
where the sets X', U are assumed to be compact, non-empty
polytopic sets that include the origin in their interior and
with C € R"*" d € R, M € R™M*™ and p € R™M.
The proposed approach and the underlying mathematical
framework for solving (1) will be discussed in detail in the
following sections.

2. EXPLICIT ROBUST MODEL PREDICTIVE
CONTROL

The proposed approach is realized in three key steps:

(1) dynamic programming: the MPC optimization is re-
cast in a multi-stage optimization setting,

(2) robust reformulation: the constraints at each stage
are reformulated to account for the worst-case uncer-
tainty, and

(3) multi-parametric programming: each one of the re-
formulated stages is solved as multi-parametric pro-
gramming problems where the optimization variables
are the incumbent control inputs, given the optimal
solutions of the previous steps.

These steps are described in detail in the following.
2.1 Dynamic Programming — Multi-stage optimization

The robust MPC problem (1) can be expressed as a multi-
stage optimization problem since it involves a discrete-time
dynamic system and a stage—additive quadratic objective
function. The same procedure was applied for the nominal
system case (where €,,6g = 0) in Faisca et al. (2008)
Dynamic programming techniques (Bellman, 2003) can
be applied to decompose (1) into a set of stage-wise
problems of smaller dimensions, significantly reducing the
complexity of the initial problem (Bellman (2003) and
Faisca et al. (2008)) - at each stage k the following
optimization problem is considered

Vi(zk) =5£1i£{ Ji(uk, Tr)

N—1
- T o T o\ 4 T
Jnin, ;{xl Qr; +u; Ru;} +zyRey  (5)
s.t. xi+1:Axi—|—Bui, ’L:k,,N
ka g da kaJrl g d7 Muk: S 1,
VAAe A, ABeB

The optimization is taken only on the current stage input
ug and only the constraints on zj and xy1; have to be
considered. The main idea is to solve the single-stage
optimization problem (5) as a robust mp—QP problem and
obtain the control variable uj at each stage as an explicit
function of current state xj

ur = f (zk) (6)

or

Uk zK,ixk—i—c}C if xp ECR;C7 i=1,...,Lg
A method for solving (5) as a robust mp—QP problem
and deriving (6) is presented in the following sections.
The proposed procedure for solving (1) as a multi-stage
problem is the following: starting from time £k = N — 1,
problem (5) is solved iteratively at each time k until k = 0
where the procedure stops. At the initial stage k = N — 1
the extra terminal constraint Tzny < 7 should also be
added in (5).

In order to ensure that a feasible solution w, exists for
all k£ = 0,1,...N — 1 an extra feasibility constraint is
introduced in each of the single stage problems (5)

I ,

Tper € XM XM = U ORY (7)
where X**1 is the union of all critical regions of the
explicit solution ugi1 = f, (7x41) from the previous

stage k 4 1 i.e. X**! is the set of states a2y, for which
the optimization problem at the stage k + 1 has a feasible
solution. Since the set of all critical regions is a convex
polyhedral set (Pistikopoulos et al., 2002), the set X**+1 is
given by a set of linear inequalities
XkJrl _ {1, c Rn‘Hk+1I < hk+1} (8)
Adding the constraints (8) in (5) will ensure that the
future state x4 lies in the set X**1 and hence one of
the critical regions CR} , ;, and therefore a feasible control
input upy1 = fii,;(2r41) at time & + 1 can be obtained.
For simplicity the inequalities Czi11 < d and (8) will be
replaced by the single inequality
GF e <0

where G = [CT H*1']T and br = [d7 pFLT)T

We will now proceed to describe how to reformulate
(5) to a robust mp—QP problem. Considering wuy as the
optimization variable and 60 = [2] uf_ﬂ...u%_l]T as
the vector of parameters, and by incorporating the system
dynamics zp+1 = Azp + Bug into the objective and
constraints, one obtains the following multi-parametric
optimization problem

Vk(Ik) :Inin Jk(uk,ﬁk)
1
= min {ufHuk + GkTFuk} +0LY 0 (9)
ur €U 2
s.t. g’“A:vk —|—ngu;C < bk, Crp <d, Mup<p
VAAe A, ABe B



where the matrices H, F, Y are functions of the matrices
A, B, Q and R. When there is no uncertainty in the
underlying system dynamics €, = g = 0, (5) is a simple
mp—QP problem and can be solved with the known mp-—
QP method (Pistikopoulos et al., 2007b). However, in the
presence of uncertainty (when e,,e5 € [0, 1) are non-zeros)
special treatment of (9) is required to reformulate it into
mp—QP problem.

Remark 1. In conventional dynamic programming, the op-
timal value ugy1 = fi i (zx+1) would have been incorpo-
rated into the formulation of (14) to create an optimiza-
tion problem where only uj is the optimization variable
and zj the parameter. However, even for the simple case
with no uncertainties, this would have resulted into a
nonlinear multi-parametric programming problem (since
upt1 = fry1(zry1) is a piecewise affine function) that
would need to employ global optimization methods to be
solved (Borrelli, 2003; Faisca et al., 2008). Our approach
is based on the work of Faisca et al. (2008) for the case
of explicit MPC with no uncertainties, where this issue is
overcome by substituting previous solutions ug4; in the
current solution wy after the multi—parametric program-
ming has been solved.

2.2 Robustification Step

The main issue for applying multi-parametric optimization
techniques for the solution of (9) is the presence of the un-
certain matrices A, B in the objective and the inequalities
of (9). The objective function can be set to penalize only
the behaviour of the nominal system z1 = Aoz + Boug,
that is to say the objective function in (9) is formed
by replacing xp+1 = Apxp + Boug in the objective (5)
and H, F', Y are constant matrices. However, it is very
important to guarantee the feasibility of the constraints in
the presence of the uncertainty. Problem (9) can then be
recast as

1
Vie(zk) = Wé}g{ {2ugHuk + HIZFuk} +0LY O (10)

s.t. GF Aoz, + GFAAzy, + GFBouy, + GFABuy, < bF
Crr <d, Mup,<pu, VAA€e A ABeB

It is obvious from (10) that due to variations of AA, AB
constraint violations might occur. Solving (10) is a robust
multi-parametric optimization problem where wuy is the
optimization variable and 6y is the vector of parameters.
The objective is to find a solution wj(f;) which can
guarantee constraint satisfaction for all admissible values
of the uncertainty i.e. for all AA € A and AB € B.

Definition 2.1. A solution uj () of robust mp-QP prob-
lem (10) is a robust or reliable solution if it is feasible
for (10) both for the nominal system (A = Ay, B = By)
and the uncertain system i.e. if it is feasible for all ad-

missible values of the uncertainty i.e. for all AA € A and
AB € B.

In order to avoid constraint violations, the constraints
have to be immunized against the model uncertainty (see
Ben-Tal and Nemirovski (2000) and Lin et al. (2004)). In
order to account for the uncertainty in (10), the inequality
constraints of (10) are replaced by the following two
inequalities

Gk Ayzr + G Bouy, < d (11)

G Aoy, + €4|G|| Aol |2k | + GF Bouy,
+e5|G" || Bollux| < b* + 6 max{1, |d|} (12)

The first inequality ensures that the problem is feasible for
the nominal system case while the second inequality rep-
resents the realisation of the constraint for the worst-case
value of the uncertainty. The newly introduced variable &
is a measure of the infeasibility tolerance for the constraint
in the problem i.e. how much the constraint can be relaxed
to ensure a feasible solution. If no infeasibility is allowed
then § = 0.

Replacing the new constraints (11)—(12) into (10) results
into a multi-parametric nonlinear programming problem.
To overcome this, (12) is replaced by the following linear
inequalities

G" Agak + £a|G" || Ao| 21 + G* Bouy,

+ e5|G"|| Bolwr < b* 4 6 max{1,|d|}

— 2k S X < 2k,

(13)
—wi < up < Wk, 2k,wp =0
It is obvious that if a pair xg,u; satisfies (13) then,
since |zp| < z, and |ux| < wy, it also satisfies (12). By
replacing (13) in (10) the new robust mp—QP formulation
is obtained for each stage

min

Vk(xk) - Uk 2k W

st. GFAgzr + GFBouy < b
G" Agy, + £4|G|| Ao |2k + G¥ Bous,
+ £5|G" || Bo|wr < b* + 6 max{1, |d|}
—z2p Sxp < 2y, —wp Sup Swg, 2ZE,wip >0
Crxp <d, Mugp <p

where now the parameters are 6y, the optimization vari-

. T . —
able is m, = [u{,z,{,wg] , the objective function is a

quadratic function and the constraints are all linear in-
equalities. The new formulation (14) is an mp—QP problem
and can be solved by employing the mp—QP methods of
Pistikopoulos et al. (2002) and Pistikopoulos et al. (2007Db)
which is discussed next.

1
{2u£Huk + HI{Fuk} + 9,{5/9;@ (14)

2.8 Multi—-Parametric Quadratic Programming

In order to solve (14) as an mp-QP problem, the following
three steps have to be followed

Step 1. The Karush-Kuhn-Tucker (KKT) conditions
are first applied for problem (14) (see Bazaraa and Shetty
(1979)):

V‘C(ﬂ—k7>‘70k):07 )\ﬂ/}i(ﬂ—kagk):oa Voi=1,...,p
P
L= T 7k, 06) + Y Aithi (i, O) (15)
i=1
where Ji (7, 0)) is the objective function of (14), ¥ (7, 0x) <
0 is the vector of the inequality constraints in (14) and A
is the vector of the Lagrange multipliers.

Step 2. The basic sensitivity theorem (Fiacco (1976)) is
then applied to the KKT conditions (15). For simplicity
we set = 0 and ™ = 7.

Theorem 2. Let 6y be a vector of parameter values and
(mo, Ao, po) a KKT triple corresponding to (15), where



Ao is nonnegative and my is feasible in (14). Also as-
sume that (i) strict complementary slackness (SCS) holds,
(ii) the binding constraint gradients are linearly inde-
pendent (LICQ: Linear Independence Constraint Qualifi-
cation), and (iii) the second-order sufficiency conditions
(SOSC) hold. Then, in neighbourhood of 6y, there ex-
ists a unique, once continuously differentiable function,
z(0) = [w(0),\(09)], satisfying (15) with z(6p) = [m(6o),
A(6p)] where 7(8) is a unique isolated minimiser for (14),
and

(dw(eo)/cw) = — (Mo)~'No, (16)

() /df

where, My and Ny are the Jacobians of system (15) with
respect to z and 6 (Fiacco, 1983, pp. 80-81), (Pistikopoulos
et al., 2002).

Step 8. A general analytic expression for 7 is then
derived by applying the following corollary of Dua et al.
(2002)

Corollary 3. First-order estimation of w(#), A(6), near § =
0o (Fiacco, 1983): Under the assumptions of Theorem 2,
a first-order approximation of [7(#), A(#)] in a neighbour-
hood of 6y is,

58] =[50+ omtmo-osation. )

where (7‘(’0, )\0) = [7‘(’(90), /\(90)], MO = M(eo), No = N(eo),
and ¢(0) = o(||0]|) means that ¢(0)/]|0|| — 0 as 0 — 6.

The critical region (set of §) where (17) remains optimal
can then be obtained as follows (Dua et al., 2002). If ¢ cor-

responds to the non-active constraints, and A corresponds
to the active constraints then each critical region is defined
by

E/?(u(ﬁk)ﬁk) < 0 (Feasibility conditions), (18)
Abr) >0 (Optimality conditions).
It is obvious from step 1.-3. and corollary 3 that the the
explicit solution 7} of (14) is given by a conditional piece-
wise linear function (Dua et al. (2002) and Pistikopoulos
et al. (2007a)) i.e. m; = f;(6x). Consequently, the control
uy, is also obtained as an explicit function of the parameter
0, as follows

U = fl:(ek) = fl:(xlﬁ Uk+15 - -

. 7uN—1) (19)

or

up = K0 + ¢, if 0, € CRy, i=1,...,L; (20)
where K }'W c}; are matrices and vectors of appropriate
dimensions and the critical regions CR?€ C R™ are sets
defined by (18). The same procedure repeats iteratively,
starting at k = IV — 1 and stopping at kK = 0 and hence the
full profile of control policies ux(0x), k =0,1,...,N —1is
derived.

Although wy is a function of 6, the objective is to obtain
uy as an explicit control function of the incumbent state
x) thus obtaining a feedback control strategy. We can
overcome this issue by following an approach similar to
Faisca et al. (2008) for the nominal explicit MPC case.
As the procedure is repeated repetitively and backwards

from k = N—1to k = 0, the control inputs ug41,...,un-1
before stage k are obtained as in (19)
k1 = frp1(Tho1, Upyo, -, UN_1)
: (21)

un—1 = fy_1(zn-1)

All the above control inputs are piecewise linear func-
tions of their arguments. Note also that since the control
inputs wugy1,...,uny—1 are functions of the future states
Tk41,---,TN—1 they are also functions of the incumbent
input uy and state z. By incorporating the previous solu-
tions (21) into (19) and by performing algebraic manipula-
tion we obtain the explicit control law uy = fi(xy) (see for
more details Faisca et al. (2008)). The final critical regions
of uiy = fi(xy) are defined as a union of the inequalities
(of the critical regions) of (19) and of each of the critical
regions of (21). This results in (i) realisable feasible sets
of inequalities describing the feasible critical regions of
up = fi(zk) and (ii) empty sets of inequalities where
no feasible solution exists. Feasibility tests, as the ones
presented in Faisca et al. (2008), are finally performed,
during the substitution of (21) into (19), to obtain the
final feasible critical regions.

2.4 Algorithm for Robust mp—-MPC

The dynamic programming based procedure that was
described above is summarized in table 1. The Algorithm
starts at k = N —1 and iterates through Steps 2 and 3 until

k = 0. At the £th stage of the algorithm, problem (14) is
solved following the analysis in sections 2.1-2.3. Each of
the inputs wuy is obtained as an explicit function of the
corresponding state xy i.e. up = fr(xr) where fr(zy) is a
piecewise linear function similar to (6). At the termination
of the algorithm a sequence of admissible control policies
is obtained u§ = fi(xo), uf = fi(z1), ..., uy_4 =
fr_1(xzn_1). Each of these control policies are reliable (or
robust) control policies for each of the stage problems (14).
Since each control policy also guarantees that the state and
input constraints x;y € X and ux € U at each stage are
satisfied, then the control sequence U = {ug, uf ... ujy_;}
is also a robust solution for the initial robust mp-MPC
problem (1). The following lemma can then be stated

Lemma 4. The control sequence U = {ug,uj...uy_;},
where uy, & = 0,1,...,N — 1 are the optimal control
policies obtained by solving (14) iteratively using the
algorithm in table 1, is a robust (or reliable solution) of (1).

Table 1.

Algorithm for Robust Multi—

Parametric MPC

Set k = N — 1: solve the mp-QP problem (14) with
zN—1 being the parameters and obtain uy_, =
f;il_ 1 (me 1 ) .

Set k to the current stage: solve the kth stage—wise
mp—QP problem (14) with zy, ug, ..., un—_1 being the
parameters and obtain uy = f(zg, U, -, UN_1)-
Obtain the control law uy, = fi(xx) by comparing the
sets of solutions (19) and (21).

Set k = k — 1: if kK = 0 stop, else go to Step 2.

Step 1.

Step 2.

Step 3.

Step 4.

The main advantage of the proposed algorithm is that it
can handle robust Model Predictive Control problems with
quadratic objectives in the presence of uncertainties in the



LHS of the underlying optimization model at each stage
of the proposed dynamic programming procedure. This
is achieved by treating the optimization problem for each
stage of the procedure as a convex robust mp—QP problem
(14) with linear constraints, avoiding the nonlinearities
introduced by the presence of uncertainty in (11).

The introduction of the two new variables z,w also results
in an increase of the number of constraints in the opti-
mization as it can be seen from (13). The total number
of optimization variables in the resulting robust mp—QP
problem (14) is 2m + n, while the total number of linear
inequalities is 2n. + ma; + n + m. One can notice that
both the number of optimization variables and inequalities
for problem (14), after the robustification step, is linear
with the number of system states and inputs. Thus the
complexity of the mp—QP problem is not significantly
increased. Finally, the number of parameters of the mp—
QP (14) at each stage is equal to n+ (N — k — 1)m, hence
it increases as k decreases. This will have an important
effect on the number of critical regions at each stage and
eventually in the overall number of critical regions.

3. EXAMPLE

Consider the following robust MPC example where

11 0
0] o= [0] cameamon

o[ 5|

The target set in this example is considered to be simply
the set of state constraints while § = 0 is set equal to zero.
The algorithm, presented in Table 1, is applied and the
results can be seen in Figures 1, 2, 3. In the first iteration
of the algorithm the robust multi-parametric programming
problem (14) for k = 2 is solved, where the parameter
is 3 = x9. The critical regions of the explicit solution
ug = fa(xe) are shown in Figure 1. Then, the procedure
is repeated for the stages K = 1 and £ = 0 to obtain
the explicit controls u; = fi(z1) and uwy = fo(xg). The
critical regions for these stages are shown in Figures 2
and 3 respectively. One can notice that the area of the
critical regions at each stage k decreases as k decreases.
This happens since the set of states which can be driven to
the target set (which here is the set of constraints) reduces
as k reduces. Also, the number of critical regions increases
since at each stage the number of parameters increases.
Two different simulations for two different initial states
of the explicit robust MPC control is shown in Figure 4
where the system matrices A, B are perturbed around their
nominal values. Finally, table 1 shows some of the critical
regions and corresponding control functions for the explicit
solution at stage 0.

2.6005 2.081

2.081 3.3306} , V=3

4. CONCLUDING REMARKS

A new algorithm for robust multi-parametric MPC was
presented when uncertainty is introduced in the LHS of the

Fig. 1. Critical regions of the explicit robust MPC for stage
27 U2 = f2 (IQ)
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Fig. 2. Critical regions of the explicit robust MPC for stage
L oup = fi(21)

~io 3 % 4 2 0 2 4 6 8

Fig. 3. Critical regions of the explicit robust MPC for stage
0, ug = fo(zo)

underlying MPC optimization model. Based on dynamic
programming and robust optimization, the algorithm ob-
tains the control input explicitly as function of the states
by solving a set of convex mp—QP problems and avoid the
need for employing multi—parametric global optimization.
Current work is focusing on the generalisation of the pre-
sented results to the following problems: (i) explicit robust
MPC of constrained dynamic systems with uncertainty



344 Feasible Region Fragments

Fig. 4. Simulation of the uncertain system state trajectory
with explicit robust MPC.

Table 2. Critical Regions and the correspond-
ing Control Laws for stage 0

Critical Control Law Critical Regions
Regions
No.
[ 0.2174 1 —1.748
0 1 —1.01
1 u=1 —0.5 —1 z < 5.5
—0.3333 —1 4.3333
L 1 0 —0.01
[ 0.2174 1 —1.7480
—0.3333 -1 4.3333
= <
2 w=1 -1 o |*= 0.01
| 1 0 0.0050
r—0.2513 —1 7 r—0.1791 7
0.9 1 6.65
0 1 —1.6562
3 w=-1 0 -1 =< | 21250
—0.7821 —1 —4.5301
L —1 —0.9524 L —6.3333
r -1 —0.2757 7] [ —7.8743 7
0.4172 1 1.5014
4 u = —0.5662x1 — 1 0.631 z < 7.3523
1.3573xz9 +1.0378 —0.4172 -1 —0.7720
L -1 —0.555 | L —7.0852 |
r1 0.9042 0.079
-1 -1 0.01
5 u = —0.4701x1 — —1 —0.7395 z < —0.0211
1.3476x2 — 0.0001 —1 —0.1585 —0.0579
L 1 1 0.005

and additive disturbance, both in the LHS and RHS of the
underlying multi-parametric optimization model (Sakizlis
et al. (2004)), (ii) explicit robust MPC of hybrid systems
— based on multi-parametric Mixed Integer Linear Pro-
gramming (Faisca et al. (2009)) and (iii) multi-parametric
Global Optimisation (Dua et al. (2004))..
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