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Abstract: In many process control problems measurement and control instances might not be
available in a periodically-equally-distributed way. Moreover, due to the sensor processing time,
actuators/sensors calibration, or computation, inevitable delays can often arise. Also information
losses caused, for example, by temporary components failure, or the presence of unreliable
communication media, might represent a non-trivial problem. This leads to asynchronous
availability of measurement and control inputs, i.e. the controller, sensor, and actuator work in
an event-driven, rather than a continuous way. In order to avoid instability and performance
loss all these issues must be considered during the control design. In this paper, it is shown that
predictive control methods based on continuous time models can be used to stabilize event-based
nonlinear systems under variable delays, and limited information losses. It is demonstrated that
by using the suggested approach asymptotic convergence is ensured.
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1. INTRODUCTION

In many cases, continuous time systems are controlled by
means of periodically-equally-distributed sampling times,
commonly assumed to be known a priori. However, prac-
tical control problems are often intrisictly asynchronous,
i.e. the dynamics of the system depends on some –maybe
exogenous– event. Examples are multi fold: sensors such as
chromatographers or laboratory measurements of compo-
sitions could need long time due to calibration or limited
processing capabilities. The energy of an actuator might
be limited, e.g. it must first be “charged” before applying
the input. Measurements/actuation might demand human
interaction, often unpredictable or inefficient. Moreover,
it happens frequently that systems are subject to in-
put/output delays caused, for example, by computational
time, communication, and/or sensor/actuator slow dy-
namics. It might also occur that part of the exchanged
information is lost, e.g. due to components failure, or the
use of unreliable communication media. If these issues are
not taken into account, performance loss or instability of
the closed loop can arise. Event-based and asynchronous
control is a very active field, Brockett and Liberzon (1998);
Heemels et al. (2008). However, most of the work focuses
only on linear unconstrained systems, without considering
explicitly either time delays or information losses.

In this paper, a solution for the formerly introduced prob-
lems, especially suitable to process control applications,
is presented. In particular, the suggested solution relies
on Predictive Control (PC), which fits well the nature
of event-based/asynchronous systems, since the sampling
times do not have to neither be equally distant nor to
be known a priori (see Fontes (2001); Findeisen (2006)).

The compensation capabilities of PC with respect to mea-
surement and computational delays have already been
assessed in inter alia Chen et al. (2000); Findeisen and
Allgöwer (2004)), where asymptotic stability with respect
to such delays has been established. In this work, we focus
on the complete asynchronous case, including delays and
losses on the actuation and measurement side, which is
significantly more challenging. By using smart-sensors and
smart-actuators, i.e. components capable of full-duplex
communication with the controller, it is possible to achieve
closed loop asymptotic convergence.

In the next section PC and the problem under considera-
tion are formally presented. In Section 3, an asynchronous
PC solution to compensate delays and information losses
is introduced. Results on asymptotic convergence are pro-
vided. Simulation results on a Continuous Stirred Tank
Reactor (CSTR) are reported in Section 4.

2. PROBLEM STATEMENT

We consider the problem of controlling the nonlinear time-
continuous process of the form

ẋ = f(x, u), x(0) = x0, x ∈ R
n, u ∈ R

m. (1)

It is assumed that the whole state x is available only at
discrete instants ti. The objective is to stabilize the system
around the origin, i.e. ‖x‖ → 0 for t → ∞, under the state
and input constraints x ∈ X ⊂ R

n, u ∈ U ⊂ R
m. The

state constraints X , e.g. max temperature, and the input
constraints U , e.g. max valve opening, are assumed to be
closed sets. It is also assumed that f(0, 0) = 0, and f is
sufficiently differentiable. The controller should provide for
every state measurement x(ti) a piece of input trajectory



u(t) = u(t;x(ti)), for t ∈ (ti, ti+1], (2)

i.e. the calculated input trajectory is applied open loop
in between consecutive recalculation times. This kind
of control is commonly called sampled-data open loop
feedback. Note that the recalculation times ti do not need
to be known a priori, e.g. in the event-based case when
a measurement is triggered once some conditions, such as
deviation from the product specifications, are met. This
fits well such an asynchronous frame, and it can be used
to provide better performance, thanks to the possibility of
adjusting on-the-fly the recalculation frequency.

2.1 Predictive Control

In this section, we summarize the basic idea of PC (for
more details see Mayne et al. (2000); Findeisen (2006)).
The idea is to use a model of the process to be controlled,
in order to repeatedly solve an optimization problem,
based on the state prediction provided by the model itself.
Then, only the first piece of trajectory is implemented and
the problem is re-solved with the new measurement. The
following definition will be useful for the remainder of the
paper.

Definition 1. (Partition). Every series π = (ti), i ∈ N,
ti ∈ R

+, such that t0 = 0, ti < ti+1 and ti → ∞ is called
partition.

For every ti ∈ π, x(ti) is measured, and

min
ū(·)

∫ ti+Tp

ti

F (x̄(τ), ū(τ))dτ + E(x̄(ti + Tp)), (3a)

s.t. ˙̄x(t) = f(x̄(t), ū(t)), x̄(ti) = x(ti), (3b)

ū(t) ∈ U , t ∈ (ti, ti+1], (3c)

x̄(t) ∈ X , (3d)

x̄(ti + Tp) ∈ E , (3e)

is solved, where ·̄ denotes the controller internal variables.
The solution is an optimal control signal u∗(t;x(ti)), for
t ∈ [ti, ti + Tp], where Tp represents the finite prediction
horizon. For sake of simplicity, prediction and control
horizon are supposed to be equal, i.e. Tc = Tp. The control
input is then implemented for the time-span (ti, ti +δ], i.e.

u(t) = u∗(t;x(ti)), for t ∈ (ti, ti + δ], (4)

where δ represents the interval between two consecutive
recalculation times, i.e. δ = (ti+1 − ti),∀ti, ti+1 ∈ π. Sta-
bility can then be achieved by properly choosing the cost
functional F (x, u), the terminal cost E(x), the terminal
region E ⊂ X , and the prediction horizon Tp, see Mayne
et al. (2000); Fontes (2001); Findeisen (2006). As formerly
mentioned, it is commonly assumed that the recalculation
intervals δ = (ti+1 − ti) are constant and known a priori.
Here, however, these assumptions are relaxed, allowing for
the recalculation instants to be time-varying and unknown
a priori. The only requirement on δ is given by Assumption
2.

Assumption 2. Given the prediction horizon Tp, β ∈ R
+,

β < δ = (ti+1 − ti) < Tp,∀ti, ti+1 ∈ π. (5)

In the remainder of the paper, δ will be used to refer
to the maximum recalculation interval δ = (ti+1 − ti).
Additionally, the following theorem will be useful for the
final results.

Theorem 3. (Asynchronous Predictive Control).
Consider the closed-loop system given by (1), (3)-(4). If

i) Assumption 2 is satisfied.
ii) ∀x0 ∈ E ⊆ X ,∃ū(τ) ∈ U , τ ∈ [0, Tp] where

x(τ) ∈ E , (6a)

for ẋ(τ) = f(x(τ), ū(τ)), x(0) = x0, (6b)

and
∂E

∂x
f(x(τ), ū(τ)) + F (x(τ), ū(τ)) ≤ 0. (6c)

iii) The optimal control problem is solvable for a time t0.

Then, lim
t→∞

‖x(t)‖ = 0.

Proof. The proof comes directly from Findeisen (2006)
and the results about PC stability, see inter alia Fontes
(2001); Mayne et al. (2000). It must be ensured that δ is
smaller than Tp.

Remark 4. The solution of the optimal control problem,
as well as the closed loop stability, are based only on the
discrete time measurements x(ti) at ti ∈ π, where π does
not have to be known a priori. This makes PC a very
appealing solution for event-based problems.

Remark 5. Note that Theorem 3 states only asymptotic
converge, and not asymptotic stability in the Lyapunov
sense. The former is a weaker property, meaning that even
withouth disturbances, the system can temporary drift
away from the equilibrium point before converging to the
equilibrium. Proving asymptotic stability would in the first
step require to rigorously define stability for discrete event
systems, since the partition π is not known a priori. This
is way beyond the focus of this paper.

2.2 Delays and Information Losses

In a closed loop controlled system, it is quite common
to face delays and/or information losses, e.g. due to
components failures. Essentially, there can be three delay
sources (see Figure 1):

i) Measurement delays, which can be due to measure-
ment elaboration, observer reconstruction, slow sen-
sor dynamics, but also the time required for a signal
to reach the controller.

ii) Computational delays, which represent the time re-
quired by the controller to calculate the control input.

iii) Actuation delays, which can be due to slow actuator
dynamics, but also signal transportation.

The following assumption on the delays is made:

Assumption 6. τs(t), τc(t), τa(t) are nondeterministic with
arbitrary probability distribution, but ultimately limited,
i.e.

τs(t) ∈ [0, τs], τc ∈ [0, τc], τa(t) ∈ [0, τa]. (7)

Fig. 1. Sketch of an event-based system subject to delays
and information losses.



Both the sensor-to-controller and controller-to-actuator
channel can suffer from information losses, which, for
example, can be modeled as Bernoullian variables Ai ∼
B(1 − pa), and Si ∼ B(1 − ps), such that

Ai =

{

1, if a control input is received
0, otherwise

,

Si =

{

1, if a measurement is received
0, otherwise

.

pa, and ps represent the loss probabilities for the actuation
and the measurement link respectively. Sensor, controller,
and actuator are event-driven, such that measurement and
control information are dispatched only when necessary. It
is also assumed that the following statements are fulfilled.

Assumption 7. Either a common global time, or a set
of synchronized clocks is available, such that a common
unique time t is established among the components.

Assumption 8. All exchanged information is time-stamped.

3. ASYNCHRONOUS PC

Model-based approaches, such as PC, represent an in-
tuitive and natural way to handle input/output delayed
systems. In this section, we show how PC can be used in an
event-based way to control asynchronous systems by pre-
serving stability, in the sense of asymptotic convergence,
and simultaneausly reducing both exchanged information
and computational requirements. Note that delays are very
common on a daily basis, therefore the presented approach
represents a good solution for a wide class of problems, e.g
control under actuator/sensor slow dynamics, heavy com-
putation, control over networks, and/or limited resources.

3.1 Compensating Delays

Measurement Delays Assume for the moment that no
information is lost. When a measurement [x(ti)|ti] is
dispatched at a time ti ∈ π, where x(ti) ∈ X is the state
value, while ti is its time-stamp, if there is a measurement
delay τs(t), then the information will be available to the
controller only at (ti + τs(ti)), i.e. the controller has to
use some piece of information which is outdated and does
not correspond to the actual state of the system under
control. Therefore, it is necessary to compensate this delay
in order to solve the correct control problem. Since a model
of the system is available at the controller side, and no
mismatch is present, under Assumptions 7-8, it is possible
to determine the delay simply by comparing the time-
stamp with the global time t, i.e. τs(ti) = (t−ti). By means
of forward prediction through the local model, possible
since it is known what input is applied to the plant (no
actuation delay), one can obtain the state prediction

x(ti + τs(ti)) = x(ti + τs(ti)). (8)

Theorem 9. (Measurement Delay Compensation).
Given the closed loop system (1),(3)-(4), if

i) Theorem 3 is satisfied in the nominal case, i.e. without
measurement delays.

ii) Tp > τs + δ.

Then, lim
t→∞

‖x(t)‖ = 0.

Proof. The proof follows from Theorem 3, when the state
prediction (8) is used to compensate the delay τs(ti). More
details can be found in Findeisen (2006).

Compensation of Actuation Delays Less trivial is the
compensation of computational and actuation delays. In
this case, in fact, if the delays are nondeterministic, the
actual applied input is not known for sure to the controller.
Thus, it is not possible to obtain (8) correctly since u∗(·)
is not uniquely determined. As formerly stated, this kind
of delays are common in real application, e.g. due to slow
actuator dynamics or reduced computational capabilities,
and if not explicitly considered can worsen considerably
the closed loop performance, or bring to instability. To
solve this problem, in some way the applied input must
be made deterministic. This can be achieved by using
future input trajectories and buffer them in the actuator
till the moment they can be used, see Alldredge and
M. S. Branicky (2008); Findeisen and Varutti (2009);
Varutti and Findeisen (2008). In fact, since Assumption
6 must hold, one can consider the worst case for τa(t) and
τc(t), namely τa and τc, in which the state prediction

x(ti + τs(ti) + τa + τc) = x(ti) +

∫ ti+τs(ti)+τa+τc

ti

f(x(τ), u(τ))dτ (9)

is obtained by using the measurement x(ti). (9) is then
used to solve the optimal control problem and the cor-
responding solution is despatched to the actuator with a
new time-stamp, buffered and used once its time-stamp
matches with the global time t, i.e.

u∗(τ ;x(ti + τs(ti) + τa + τc)), (10)

for τ ∈ (ti + τs(ti) + τa + τc), ti+1 + τs(ti+1) + τa + τc)] is
sent as [u∗(·)|(ti + τs(ti) + τa + τc)]. The overall algorithm
is reported in Algorithm 1, Appendix A. It can be proved
that under Assumption 7, and

Tp > δ + τs + τa + τc, (11)

Algorithm 1 stabilizes the delayed system.

Theorem 10. (Worst Case Compensation).
Given the nonlinear continuous time system (1) and the
the predictive controller obtained from (3)-(4), and (9), by
applying Algorithm 1, under (11) the closed loop system is
stable, in sense of asymptotic convergence, if the nominal
controller, i.e. the controller subject to no delays obtained
from Theorem 3, stabilizes the system.

Proof. The proof follows directly from Theorem 3, and
9, first, by proving recursive feasibility, and then conver-
gence –see Findeisen (2006); Findeisen and Varutti (2009);
Varutti and Findeisen (2008) for more details–.

Remark 11. Assumption 7 is required to have a common
time-frame among the components. This can represent a
problem for fast dynamical systems, since the state-of-
the-art synchronization algorithms cannot guarantee high
precision.

3.2 Information Loss Compensation

It has been assumed till now that the communication is
not affected by any information loss. In reality, however,
information losses might occur due, for example, to unre-
liable communication media, or some temporary compo-
nents failure. As in the delay case, the major problem is
represented by losses/failures in the actuation channel. In
fact, if an information loss Si = 0 occurs for ti ∈ π, the
controller can still use the last available state

x(tk), for tk ∈ π, s.t. Sk = 1, (12)



and the nominal model for (1) to calculate the prediction

x(tk +

i
∑

j=k

τs(tj) + τa + τc), for tj ∈ π, s.t. Sj = 0, (13)

by using the compensation approach presented in Section
3.1, if the applied input is uniquely determined.

Remark 12. Notice that tk +
∑i

j=k τs(tj) can be substi-
tuted by the global time t, moment in which the controller
receives a new measurement.

On the contrary, if a dropout Ai = 0 occurs, then the con-
trol input is not uniquely known at the controller side, and
thus (13) cannot be accurately calculated. In Varutti and
Findeisen (2008); Findeisen and Varutti (2009) a solution
for the problem was found by using prediction consistent
feedbacks, i.e. feedbacks that under information losses are
able to keep the difference between state prediction and
actual state negligible and hence guarantee convergence
under a limited amount of dropouts.

In this paper, a different approach is considered. In par-
ticular, the following assumptions are made:

Assumption 13. An acknowledge mechanism is available
on the actuator side.

Assumption 14. The acknowledgments have high priority,
and they cannot be dropped.

Assumption 15. The acknowledgments are delivered in-
stantaneously.

This is equal to saying that for every input received by the
actuator an acknowledgment with the time-stamp of the
latest successfully delivered information is sent back to the
controller.

We show later how Assumption 15 can be relaxed. On the
contrary, Assumption 14 is a fundamental condition since
it is well known from theoretical results that no hand-
shake protocol can solve a coordination problem under
acknowledgment losses –see ”The two Generals Paradox”,
Tanenbaum (2008)–. In the case of chemical processes,
however, timely submission of acknowledgments is often
not a problem, since there are frequently slow measure-
ment and actuation devices. The used communication
networks are often sufficiently fast and provide the possi-
bility of having high priority acknowledgments. Although
restrictive, these conditions are necessary to allow the con-
troller to correctly reconstruct the applied input sequence.
Algorithm 2 in Appendix A illustrates the procedure to
compensate simultaneously delays and information losses.
Differently from Algorithm 1, the entire control input
trajectory u∗(τ ;x(ti)), for τ ∈ (t + τa + τc, ti + Tp] is
sent to the actuator with time-stamp (t + τa + τc). In
this way, when some information is dropped either in the
down- or in the up-link, the actuator can still utilize the
old input trajectory to control the system. Note that in
an event-based setup measurement losses are transparent
to the controller. This means that no new control input
is generated and dispatched to the actuator. However,
since the whole control trajectory is sent, if the number of
consecutive losses Si is less than Tp, the actuator can still
apply the latest received input. On the other hand, the
controller can establish immediately that some informa-
tion has gone lost thanks to the timer that is implicitly set

by time-stamping the control inputs. In fact, if the current
time exceeds the former time-stamp, from Assumption 15,
it is known for sure that no new control input has arrived.
An alternative would be to index the control trajectories
and use an error mechanism instead, i.e. an error is sent
every time some control information is lost. However, in
the asynchronous case utilizing acknowledgments is more
efficient, since the actuator does not have to wait till the
next successfully received trajectory to realize that some
information went lost. Finally, note that a non-resend
policy has been chosen, i.e. if a control trajectory is lost,
the controller does not transmit it again but it simply
records the event in order to update its local copy of the
currently applied control input. This seems to be a more
logical choice since the sequence would probably arrive
when its applicability time is already expired.

Theorem 16. (Convergence Under Information Losses).
Given the closed loop system (1), (3)-(4), (13) if

i) Assumptions 13-15 are satisfied.
ii) Algorithm 2 is used.
iii) The prediction horizon Tp is such that

Tp > δ + n · τs + τc + m · τa, (14)

where n,m ∈ N/{0} represent, respectively, the num-
ber of consecutive losses in the measurement and in
the actuation.

Then, lim
t→∞

‖x(t)‖ = 0.

Proof. The proof follows from Theorem 3 and 9. The use
of acknowledgments allows the controller to reconstruct
in real time the correct applied control sequence. Thus,
feasibility and convergence can be proved.

As formerly stated, Assumption 15 can be relaxed by
allowing the acknowledgments to be subject to nondeter-
ministic delays τack(t). In this case, however, the following
assumption is required.

Assumption 17. τack(t) is nondeterministic with arbitrary
probability distribution, but limited, i.e τack(t) ∈ [0, τack].

By using a worst case compensation approach similar to
Algorithm 1, and 2, one can ensure asymptotic conver-
gence of the closed loop system by considering, instead,
the state prediction

x(tk +

i
∑

j=k

τs(tj) + τa + τc + τack), (15)

for tj ∈ π, such that Sj = 0.

Corollary 18. (Convergence Under Information Losses).
The closed loop system (1), (3)-(4), is stable, in the sense
of asymptotic convergence, if

i) The conditions for Theorem 3, 9, 10, and Assumption
17 are satisfied.

ii) A modified variant of Algorithm 2, such that the
prediction (15) is used and [u∗(τ ;x(ti))|ts], for ts =
t+τack +τs+τc+τa, τ ∈ [t+τack +τs+τc+τa, ti+Tp]
is utilized.

iii) Tp > n · τs + τc + m · τa + τack, where n,m ∈ N/{0}
represent the number of consecutive losses in the
measurement/actuation.



4. SIMULATION RESULTS FOR A CSTR

The formerly presented method has been applied to a
CSTR, where an irreversible exothermic reaction, A → B,
takes place in a constant volume, cooled by a single coolant
stream at temperature Tc –see Figure 2–. The overall

Fig. 2. Scheme of CSTR under study.

system is modeled as:

ĊA(t) =
F

V
(CAf − CA(t)) − k0CA(t)e−

E
RTr(t) ,

Ṫr(t) =
F

V
(Trf − Tr(t)) −

k0∆H

ρcp

CA(t)e−
E

RTr(t)

+
UA

ρcpV
(Tc(t) − Tr(t)).

The meaning and the values of all the parameters are
explained in Henson and Seborg (1997). Under the nominal
condition Tnom

c = 103.4 K, the system has the three
equilibrium points depicted in Figure 3. The objective
is to stabilize the unstable saddle point (0.52, 398.97) by
manipulating the control input u(t) = Tc(t) under the
input constraints Tc(t) ∈ [275, 370] K. If we represent

Fig. 3. Phase plot of the system for the nominal case
Tc,nom = 302 K.

the state as the vector x(t) = [CA(t) Tr(t)]
T , the cost

functional to be minimized is given by

J(u, x) =

∫ ti+Tp

ti

(xT Qx + uT Qu)dτ,

where Q = I, R = 1, and Tp = 1.5 min. For sake of
simplicity, the control trajectory is held constant between
consecutive recalculation times. Terminal penalty and ter-
minal region constraints have been chosen such that closed
loop stability in the nominal case is achieved.

In Figure 4, the results for the asynchronous nominal case
(no delays and no failures) are presented. Compared to
a classical sampling approach with constant recalculation

interval δ = 0.15 min, the asynchronous controller pre-
sented in Theorem 3 obtains extremely similar results by
saving up to 30% of computational effort and exchanged
information. The partition π is implicitly determined by
the absolute error on the product concentration, i.e. the
sensor regularly checks the concentration CA(t), but it
sends a measurement to the controller only when

‖CA(t) − 0.52‖ > ǫ, with ǫ = 2 · 10−3,

for longer than 0.15 minutes. In a second simulation

Fig. 4. Event-based controller under nominal conditions.

both measurement and actuation delays are considered.
It is assumed that τs lies between 0 and 15 seconds,
while τa between 0 and 5 seconds. Both are modeled as
uniform variables. For sake of simplicity, no computational
delay is considered. However, notice that this delay could
be implicitly considered as part of the input delay τa.
Furthermore, it is assumed that the probability loss at the
actuator side pa is equal to 5%, while no information from
the sensor is lost. It is also supposed that Assumption
15 is verified. The results for the compensated and the
uncompensated case are presented in Figure 5. As one can
see, the proposed method is able to stabilize effectively
the unstable saddle point with performance comparable
to the nominal case, reported in Figure 4. Note that the
controllers presented in Findeisen and Allgöwer (2004);
Chen et al. (2000) are not able to handle delays on the
actuation side at all.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, it was shown how PC can be used to con-
trol event-based/asynchronous systems, such as chemical
processes, in which the recalculation times do not need to
be known a priori. Moreover, it was depicted how delays
and information losses/failures on the actuators/sensors,
common in control systems, need to be taken into account
to avoid instability. Whereas delays can be compensated
easily with forward prediction, one can exploit bidirec-
tional communication with the actuators in order to es-
tablish an acknowledgment mechanism to counteract infor-
mation losses/failures. Two algorithms able to guarantee
asymptotic convergence for nonlinear continuous time sys-
tems were presented. Through the simulation of a CSTR,
it was shown firstly that asynchronous PC can actually
reduce both computational requirements and exchanged
information, but also compensate effectively delays and
information losses while keeping closed loop stability and
good performance. Future work should concentrate on
how to include directly in the optimization problem the



Fig. 5. Results for the closed loop system subject to delays and information losses with and without compensation.

exchanged information. Moreover, the method should be
extended to include also robustness.

REFERENCES

Alldredge, G. and M. S. Branicky, V.L. (2008). Play-back buffers in
networked control systems. evaluation and design. Amer. Cont.
Conf., 3106–3113.

Brockett, R. and Liberzon, D. (1998). Quantized feedback systems
perturbed by white noise. In Proc. 37th IEEE Conference on
Decision and Control, volume 2, 1327–1328.

Chen, W., Ballance, D., and O’Reilly, J. (2000). Model predictive
control of nonlinear systems: Computational delay and stability.
In IEE Proceedings, Part D 147(4), 387–394.

Findeisen, R. (2006). Nonlinear Model Predictive Control: a
Sampled-Data Feedback Perspective, volume 8. VDI Verlag.
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Appendix A

Algorithm 1 (Worst Case Compensation)

∀ti ∈ π; t = current time;

Sensor:

(1) Measure x(ti).

(2) Send [x(ti)|ts], with ts = ti, to the controller.

(3) Go to 1.

Controller:

buffer = [x(ti)|ts]old;

control input = {[u∗(·)|ts0]};

(1) If [x(ti)|ts]new arrives

a) If tsnew ≤ tsold, then discard.

b) Else buffer = [x(ti)|ts]new.

(2) τs = (t − ti) for ti = ts.

(3) Calculate (9), from u∗(·; x(ti)) ∈ control input.

(4) Solve the o.c.p. for (9) −→

u∗(τ ; x(ti)), for τ ∈ (ti +τs(ti)+τa +τc, ti+1 +τs(ti+1)+τa +τc].

(5) Send [u∗(τ ; x(ti))|ts], with ts = (t + τa + τc).

(6) Insert [u∗(τ ; x(ti))|ts] in control input.

(7) Go to 1.

Actuator:

buffer = {[u∗(·)|ts0], . . . , [u∗(·)|tsn]}, for ts0 < t < ts1 . . . < tsn;

applied input = [u∗(·)|ts0];

(1) If [u∗(·)|ts]new arrives

a) Insert [u∗(·)|ts]new in buffer.

b) Sort buffer by increasing ts.

(2) temp = first element of buffer.

(3) If tstemp = t

a) applied input = temp.

b) Remove first element from buffer.

(4) Go to 1.

Algorithm 2 (Information Loss Compensation)

∀ti ∈ π; t = current time;

Sensor:

(1) Measure x(ti).

(2) Send [x(ti)|ts], with ts = ti.

(3) Go to 1.

Controller:

buffer = [x(ti)|ts]old;

control input = {[u∗(·)|ts0]};

delivered = true;

(1) If [·|ts] arrives:

(2) Case([x(ti)|ts]):

If tsnew ≤ tsold, then discard.

Else buffer = [x(ti)|ts]new.

τs = (t − ti) for ti = ts.

Calculate (13), from u∗(·; x(ti)) ∈ control input.

Solve the o.c.p. for (13) −→

u∗(τ ; x(ti)), for τ ∈ (t + τa + τc, ti + Tp].

delivered = false.

Send [u∗(τ ; x(ti))|ts], with ts = (t + τa + τc).

Wait until delivered=true OR t ≥ ts.

If delivered = true, then insert [u∗(τ ; x(ti))|ts] in control input.

Else if t ≥ ts, then delivered = false, use old input in

control input.

Go to 1.

(3) Case([ack|ts]):

Set delivered = true.

Go to 1.

Actuator:

buffer = {[u∗(·)|ts0], . . . , [u∗(·)|tsn]},

for ts0 < t < ts1 . . . < tsn;

applied input = [u∗(·)|ts0];

(1) If [u∗(·)|ts]new arrives

a) Send [ack|ts] to the controller.

b) Insert [u∗(·)|ts]new in buffer.

c) Sort buffer by increasing ts.

(2) temp = first element of buffer.

(3) If tstemp = t

a) applied input = temp.

b) Remove first element from buffer.

(4) Go to 1.


