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Abstract: Friction in control valves and inadequate controller tuning are two of the major
sources of control loop performance degradation. As friction models are needed to diagnose
abnormal valve operation or to compensate such undesirable effects, process models play an
essential role in controller design. This paper extends existing optimization-based methods
that jointly identify the process and friction model parameters, so that a nonlinear process
model structure is considered. The procedure is based on data generated from closed-loop
experiments with an external test signal. A simulation example indicates that the method
accurately quantifies the valve friction, the process dynamics and the nonlinear steady state
characteristics, even when the system is subjected to different level of disturbances.
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1. INTRODUCTION

Among several process variability sources (e.g., inadequate
controller structure/ tuning, equipment malfunction, poor
design, lack of maintenance) valve friction is supposed to
be one of the most prevalent (Desborough and Miller,
2001). For this reason, friction quantification methods are
highly desirable, since they can be applied in the develop-
ment of model-based compensators or to diagnose valves
that need repair. Moreover, quantification methods based
only on controller output (op) and process output (pv)
measurements from closed-loop experiments, are prefer-
able for practical reasons.

Choudhury et al. (2004) dealt with friction quantification
by means of the pv -op plot, but the results produced
by this technique depend on the controller tuning. In a
method proposed by Srinivasan et al. (2005), an opti-
mization approach is used to jointly estimate the process
dynamics and the friction model parameters. This method
can be seen as a Hammerstein model identification, since
the valve friction is treated as a nonlinear static block (N )
followed by a linear dynamic block (L) that represents
the process. As the process dynamics is also estimated,
the joint procedure previously mentioned can be used for
controller retuning. However, in that work, an inappropri-
ate friction model structure that is unable to reproduce
important sticky valve characteristics is employed. In a
recent work (Choudhury et al., 2008), this drawback was
eliminated through the adoption of another friction model
structure.

An additional extension to the method originally proposed
by Srinivasan et al. (2005) is to model the process with
a Wiener structure (Figure 1), built up with a linear
dynamic block connected to a nonlinear static function
(L → N ). In this approach the Hammerstein structure is
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Fig. 1. Wiener model structure with nonlinear disturbance.
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Fig. 2. Hammerstein-Wiener model structure with nonlin-
ear disturbance.

extended to a Hammerstein-Wiener one (N → L → N ),
i.e., the valve friction is associated with the first nonlinear
block, while the remainder blocks represent the process.
The Hammerstein-Wiener structure is shown in Figure 2.

This extension intends to provide some features: (i) to
avoid that process nonlinearities be erroneously incorpo-
rated in the friction model, (ii) to prevent bias problems
in the process model identification and (iii) to turn the
estimation method suitable to wider operating ranges.

This work proposes a procedure to jointly estimate nonlin-
ear process dynamics and friction model parameters from
closed-loop experiments. Actually, it is an extension from
previous works (Choudhury et al., 2008; Srinivasan et al.,
2005). The paper is organized as follows: the structure
that models the valve friction is described in section 2.
The parameterization of the nonlinear process, as well
as an estimation algorithm suitable for closed-loop data
are treated in section 3. The friction and process model
joint estimation procedure is presented in section 4. This



procedure is tested through a simulated example in section
5. At last, the conclusions are drawn.

2. VALVE FRICTION MODEL

Several friction models were evaluated using ISA stan-
dard tests in Garcia (2008). The best trade-off between
accuracy and simplicity was achieved by the data-driven
model proposed by Kano et al. (2004). This is a modified
version of the model employed in the friction quantification
algorithm proposed in Choudhury et al. (2008) and it is
characterized by two parameters: S that represents the
cummulative input signal z(k) amplitude change necessary
to revert the valve movement direction and J that is the
size of the stem slip, also referred as slip-jump, observed
when the valve starts to move.

Besides the parameters S and J , the friction model uses
three auxiliar variables: stp that indicates if the valve is
moving (stp = 0) or if it is stuck (stp = 1), zs that is
updated with z(k) every time the valve sticks and d = ±1
that denotes the direction of the friction force.

The relationship between the command signal z(k) and
the valve stem position u(k) is described in the flowchart
shown in Figure 3. After testing whether the valve stopped,
so that zs and stp are eventually updated, a new value is
assigned to u(k) if: (i) the valve is moving (stp = 0), (ii)
the valve changes its direction and overcomes S or (iii)
the valve moves in the same direction and overcomes J .
On the contrary, the position remains the same.
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Fig. 3. Flowchart of the data-driven model parameterized
by S and J (Kano et al., 2004).

3. NONLINEAR PROCESS MODEL

3.1 Model parameterization

Consider the Wiener model depicted in Figure 1, where the
input signal is denoted by u(k), the output signal by y(k)
and v(k) represents the process disturbances. Notice that
v(k) is applied before the nonlinear block. In this case, the
disturbances are also subject to the process nonlinearity.
This scheme, proposed by Zhu (1999), is more realistic
from a process operation point of view.

The linear dynamic block can be represented by a rational
transfer function of order n:

G(q) =
b1q

−1 + . . . + bnq−n

1 + a1q−1 + . . . + anq−n
=

B(q)

A(q)
(1)

where q−1 is the backward operator.

When prior knowledge about the process nonlinearity is
not available, piecewise polynomials of third degree (cubic
spline) provide advantages in respect of polynomials and
piecewise linear functions to model the nonlinear block.
For a set of m different knots:

wmin = w1 < w2 < . . . < wm−1 < wm = wmax (2)

A cubic spline can be expressed by (Lancaster and
Šalkauskas, 1986):

y(k) = f (w(k))

=

m−1∑
i=2

ξi |w(k) − wi|
3
+ ξm + ξm+1w(k) (3)

where Ξ � (ξ2, . . . , ξm+1)
T

is the cubic spline parameter
vector and w(k) denotes the Wiener model intermediate
signal.

3.2 Wiener model parameter estimation

In the closed-loop identification of Wiener models, the
prediction error approach yields unbiased estimates, pro-
vided the process and the disturbance models are built
simultaneously and the process model contains at least a
delay of one sampling period (Forssell, 1999). To satisfy
this condition, the disturbance term is modeled using an
Auto Regressive Moving Average (ARMA) structure:

v(k) = H(q)e(k) =
C(q)

D(q)
e(k)

=
1 + c1q

−1 + . . . + cnc
q−nc

1 + d1q−1 + . . . + dnd
q−nd

e(k) (4)

where e(k) is white noise with zero mean and variance σ2.

Suppose that the function which describes the process non-
linearity is monotonic and invertible. Hence, analogously
to (3), the inverse of the process nonlinearity f−1(·) can
be denoted by:

w(k) =

p−1∑
i=2

γi |y(k) − yi|
3 + γp + γp+1y(k) (5)



Furthermore, as the intermediate signal w(k) is unmea-
surable, the gain of the Wiener model can be arbitrarily
distributed between the dynamic and the static block. For
this reason, the constraint γp+1 = 1 is introduced in (5),
so that the parameters can be uniquely determined.

The Wiener model parameters can be obtained from the
minimization of the prediction error criterion:

V =
∑

k

(
H−1(q) (w(k) − G(q)u(k))

)2
(6)

In order to estimate the Wiener and disturbance model
parameters, besides the assumption that the process non-
linearity is invertible, the algorithm considers that the pro-
cess is open loop stable. Both assumptions are commonly
found in many practical situations, e.g., CSTRs, distilla-
tion columns and pH neutralization processes. Hence, G(q)
can be approximated by a finite impulse response (FIR)
model, so that the intermediate signal is expressed by:

w(k) = β1u(k − 1) + . . . + βru(k − r) + v(k) (7)

For more compact notation, consider the regression ψ(k)
and the parameter θ vectors:

ψ(k) �

(
− |y(k) − y2|

3
, . . . ,− |y(k) − yp−1|

3
,−1,

u(k − 1), . . . , u(k − r)
)T

(8)

θ � (γ2, . . . , γp−1, γp, β1, . . . , βr)
T

(9)

Considering (8) and (9), (6) can be rewritten as:

V =
∑

k

(
H−1(q)

(
y(k) − ψT (k)θ

))2
(10)

Since the criterion (10) is a nonlinear least-squares prob-
lem, the following algorithm is employed to calculate G(q),
f(·) and H(q):

Algorithm 1. Wiener and ARMA disturbance model pa-
rameter estimate.

i. Initialize the disturbance model H(q) with:

Ĉ(q) = D̂(q) = 1 (11)

ii. Calculate filtered version of the output and the re-
gression vectors:

yf (k) =
D(q)

C(q)
y(k)

ψf (k) =
D(q)

C(q)
ψ(k)

iii. Estimate the parameter vector θ from:

θ̂ =

(∑
k

ψf (k)ψT
f (k)

)−1 (∑
k

ψf (k)yf (k)

)
(12)

iv. Calculate the residuals ζ(k) of the Wiener model
obtained from the previous step:

ζ(k) = y(k) − ψT (k)θ̂ (13)

v. Estimate an ARMA model for ζ(k), i.e., a filter to
uncorrelate the residuals:

D̂(q)ζ(k) = Ĉ(q)e(k) (14)

vi. While convergence of Ĥ(q) does not occur, go to step
(ii). Otherwise, go to the next step.

vii. The parameters of A(q) and B(q), defined in (1),
are estimated by minimizing the error between the
outputs of the FIR model and the transfer function
G(q):

Vred =
∑

k

(
r∑

i=1

β̂iu(k − i) −
B(q)

A(q)
u(k)

)2

(15)

viii. The nonlinear block parameter vector Ξ estimate is
given by:

Ξ̂ = arg
Ξ

min
∑

k

(
y(k) − φT (k)Ξ

)2
(16)

where:

φ(k) �

(
|ŵ(k) − w2|

3
, . . . , |ŵ(k) − wm−1|

3
, 1, ŵ(k)

)T

ŵ(k) � f̂−1 (y(k))

Correspondingly to the iterative calculation of θ, the
linear model reduction (15) and the nonlinear function
determination (16) are formulated as linear least squares
problems. For this reason, the procedure is considered to
be numerically simple and suitable for practical situations.

4. FRICTION AND PROCESS MODEL JOINT
IDENTIFICATION ALGORITHM

Consider the process control loop depicted in Figure 4.
Since in most of the practical situations only the controller
output and the process output are known, the problem to
be treated is to identify the friction and process model by
means of z(k) and y(k).
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Fig. 4. Process control loop subject to valve friction.

In this work, the friction block is represented by the data-
driven model of section 2, while the process dynamics is
modeled by a Wiener structure. These parameterizations
originate the control loop model shown in Figure 5.
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Fig. 5. Control loop where the valve friction and the pro-
cess are modeled by a Hammerstein-Wiener structure.

In a first moment, suppose that the friction model pa-
rameters S and J are known. With this in mind, as the



controller output z(k) is considered to be measurable, it is
possible to estimate u(k) with:

û(k) = F (z(k), û(k − 1), S, J) (17)

where F (·) is the nonlinear transformation described
in the flowchart of Figure 3. Hence, the Wiener model
parameters can be estimated, using the measured output
y(k) and û(k) instead of u(k), by means of the algorithm
presented in section 3. However, S and J are unknown. To
deal with this fact, the following algorithm is proposed:

Algorithm 2. Algorithm that simultaneously estimate
the parameters of the friction and nonlinear process model.

i. Generate a set of candidate values for the pair (S, J).
Two aspects are considered in order to restrict the
set of candidate values: (a) the behavior of most
real valves is reproduced by the data-driven model
with max(J) ≤ S; (b) it is obvious that without
stem movement, to estimate the valve friction is an
impossible task. If an appropriate excitation d(k) is
employed, it is reasonable to consider that the stem
velocity reversions are produced by the test signal.
Therefore, the controller output imposes an upper
bound for S:

max(S) < max(z(k)) − min(z(k)) (18)

Such constraints yield the geometric locus shown in
Figure 6.
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Fig. 6. Geometric locus of the friction model parameter
candidate values.

ii. Choose a pair (Si, Jj) from the set described in the
previous step.

iii. Calculate the sequence of values û(k) from (17).
iv. Estimate the process model parameters using algo-

rithm 1, described in section 3.
v. Compute the prediction error of the intermediate

signal w(k) through the criterion:

C =
∑

k

(
Ĥ−1(q)

(
f̂−1(y(k)) − Ĝ (q) û(k)

))2

(19)

vi. Until all the candidate values have been tested, back
to step (ii). Otherwise, the values of S, J , G(q)
and f(·) are supposed to be the ones for which C is
minimum.

Furthermore, note in Figure 4 that a test signal d(k) is
introduced into the set-point. Although external interfer-
ences are highly undesirable, the test signal guarantees
sufficiently informative experiments. A well-known result
from the closed-loop identification literature (Ljung, 1999)
is that prediction error approach is not consistent if the
data have been collected exclusively under feedback. In
fact, the variance on the parameter estimate increases with
disturbances and decreases the higher d(k) is.

5. SIMULATIONS

To verify the applicability of the friction and process joint
identification algorithm, the process loop in Figure 4 is
simulated with a PI controller C(q), a process dynamics
reproduced by a continuous linear dynamic model G(s)
followed by a nonlinear block f(w(k)) and a disturbance
v(k) given by:

C(q) =
0.5

(
1 − 0.5q−1

)
(1 − q−1)

G(s) =
5

(0.5s + 1)(s + 1)(10s + 1)

y(k) = f (w(k)) =
w(k)√

0.1 + 0.9w2(k)

v(k) =
ρ

1 − 2.65q−1 + 2.335q−2 − 0.684q−3
e(k)

The simulated friction model parameters are S = 10% and
J = 2%. The algorithm is tested in two distinct situations:
low and high disturbances. In the first case, ρ is adjusted
so that the disturbance level in y(k) is 1.44% (in variance),
while in the high disturbance scenario v(k) provides a ratio
of 12.5%.

A randomly switched multi-level signal, GMN (see Zhu,
2001), with average switch time of 25 sampling intervals
and amplitude uniformly distributed between [−0.15, 0.15]
is applied in d(k). The set-point r(k) is fixed in 0.75. The
input-output data of the high disturbance situation, as
well as the excitation signal are shown in Figure 7.
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Fig. 7. Input-output data and external test signal of the
high disturbance simulation.

The friction and process model parameters are estimated
using 600 samples and a 1s sampling period. From (18)
one has max(S) = 35%. A set of candidate values of the
pair (S,J) is generated with a resolution of 1% and the
process model was estimated using: m = p = 3, r = 35,
nc = 0, nd = 6 and l = 3.
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Fig. 8. Level curves of the prediction error C.

The behavior of the prediction error C, in both disturbance
situations, is shown in Figure 8. Darker locations indicate
lower prediction errors and the symbol ”⊗” indicates the
minimum. In both disturbance situations, the parameter
S is exactly estimated.

On the other hand, Ĵ = 1% and 2% for the low and
high disturbance scenarios, respectively. The slight misfit
obtained in lower disturbance situation has two reasons:
(1) the influence of the parameter S is prominent if
compared to J and (2) the occurences of slip-jumps in the
low disturbance simulation is minor (21 slip-jumps against
26 provided by the major disturbance simulation).

The Nyquist plot of linear block estimate from both
disturbances scenarios are compared to the actual one in
order to check if the process dynamics were incorporated.
From Figure 9 it can be seen that the estimation from the
low disturbance dataset provided better results. Therefore,
it is clear that the disturbances degrade the accuracy of
the identified linear dynamic block.

To get a better insight about frequency domain errors,
the Bode plot of the estimates is depicted in Figure 10.
Although the Nyquist curves suggest that the dynamic
block estimate from the high disturbance simulation data
presents a larger misfit, one can see that the errors re-
lated to the actual frequency response are acceptable for
practical purposes.
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Fig. 9. Nyquist plot of Ĝ(q) obtained from both distur-
bance scenarios.
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Finally, the nonlinear block fit is investigated. The true
process nonlinearity and the estimates from low and high

disturbance scenarios, denoted as f̂(low)(·) and f̂(high)(·),
are presented in Figure 11. Despite adopting a parameter-
ization different from the cubic splines during the simula-
tions, the process nonlinearity is accurately estimated in
both disturbance conditions.

Comparing the results achieved in each of the disturbance
situations, one can see that the process steady state
curve fit is better when the disturbance level is lower.
Nevertheless, the estimation performance deterioration is
slight, in spite of the substantial increase (almost 10 times
higher) in the disturbance level.

6. CONCLUSIONS

The results provided by the simulated example suggests
that the proposed procedure that jontly identifies the
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friction and the nonlinear process model parameters is
promising.

Moreover, the estimation results indicate that the GMN
test signal is suitable for the process model identification.
On the other hand, this excitation can not be adjusted in
order to control the ocurrences of slip jumps. Thus, the
GMN is insufficient to guarantee accurate estimates of the
parameter J . An alternative to deal with this drawback
is to combine a multi-level randon noise with a staircase
excitation.

Another aspect that shoud be emphasized is that, when
the process nonlinearity is severe, the Wiener model can be
used to develop nonlinear controllers, such as gain schedule
strategies.

Results of the procedure proposed here applied to indus-
trial data is under development.
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