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Abstract: This work focuses on simultaneous control of surface roughness and film porosity in a
porous thin film deposition process modeled via kinetic Monte Carlo simulation on a triangular lattice.
The microscopic model of the thin film growth process includes adsorption and migration processes.
Vacancies and overhangs are allowed inside the film for the purpose of modeling thin film porosity.
Appropriate closed-form dynamic models are first derived to describe the evolution of film surface
roughness and porosity and used as the basis for the design of a model predictive control algorithm
that includes penalty on the deviation of surface roughness and film porosity from their respective set-
point values. Closed-loop simulations demonstrate that when simultaneous control of surface roughness
and porosity is carried out, a balanced trade-off is obtained in the closed-loop system between the two
control objectives of surface roughness and porosity regulation.
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1. INTRODUCTION

Thin film deposition processes play an important role in the
semiconductor industry. Thin film microstructure, including
surface roughness and film porosity, strongly affects the electri-
cal and mechanical properties of thin films and of the resulting
devices. Motivated by this, recent research efforts on modeling
and control of thin film microstructure have focused mostly on
thin film surface roughness on the basis of microscopic thin film
growth models which utilize a square lattice. Specifically, ki-
netic Monte Carlo (kMC) models based on a square lattice and
utilizing the solid-on-solid (SOS) approximation for deposition
were initially employed to develop an effective methodology
to describe the evolution of film microstructure and design
feedback control laws for thin film surface roughness (Lou and
Christofides (2003); Christofides et al. (2008)). This control
methodology was successfully applied to surface roughness
control of: a) a gallium arsenide (GaAs) deposition process
(Lou and Christofides (2004)), and b) a multi-species deposi-
tion process with long range interactions (Ni and Christofides
(2005a)). Furthermore, a method that couples partial differen-
tial equation (PDE) models and kMC models was developed for
computationally efficient multiscale optimization of thin film
growth (Varshney and Armaou (2005)). However, kMC models
are not available in closed-form and this limitation restricts
the use of kMC models for system-level analysis and design
of model-based feedback control systems. To overcome this
problem, model identification of linear deterministic models
from outputs of kMC simulators was used for controller design
using linear control theory (Siettos et al. (2003); Armaou et al.
(2004)). However, deterministic models are only effective in
controlling the expected values of macroscopic variables, i.e.,
the first-order statistical moments of the microscopic distribu-
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tion. For higher statistical moments of the microscopic distri-
butions such as the surface roughness (the second moment of
height distribution on a lattice), deterministic models are not
sufficient, and stochastic differential equation (SDE) models
may be needed.

SDEs arise naturally in the modeling of surface morphology of
ultra thin films in a variety of thin film preparation processes
(Edwards and Wilkinson (1982); Villain (1991); Vvedensky
et al. (1993)). Advanced control methods based on SDEs have
been developed to address the need of model-based feedback
control of thin film microstructure. Specifically, methods for
state feedback control of surface roughness based on linear
(Lou and Christofides (2005); Ni and Christofides (2005b))
and nonlinear (Lou and Christofides (2008)) SDE models have
been developed. However, state feedback control assumes full
knowledge of the surface morphology at all times, which may
be a restrictive requirement in certain practical applications.
To this end, output feedback control of surface roughness
was recently developed (Hu et al. (2008)) by incorporating
a Kalman-Bucy type filter, which utilizes information from a
finite number of noisy measurements.

In the context of modeling of thin film porosity, kMC mod-
els have been widely used to model the evolution of porous
thin films in many deposition processes and to investigate
the influence of the macroscopic parameters on the porous
thin film microstructure (Wang and Clancy (1998); Zhang
et al. (2004)). Deterministic and stochastic ordinary differential
equation (ODE) models of film porosity were recently devel-
oped (Hu et al. (2009a)) to model the evolution of film porosity
and its fluctuation and design model predictive control (MPC)
algorithms to control film porosity to a desired level and reduce
run-to-run porosity variability. Despite recent significant efforts
on modeling and control of surface roughness and film porosity,
simultaneous regulation of surface roughness and film porosity
within a unified control framework has not been investigated.



Motivated by these considerations, the present work focuses on
simultaneous regulation of surface roughness and film porosity
in a porous thin film deposition process modeled via kMC
simulation on a triangular lattice. The definition of surface
height profile is first introduced and the dynamics of surface
height of the thin film are described by an Edwards-Wilkinson
(EW)-type equation. Subsequently, an appropriate definition
of film site occupancy ratio (SOR) is introduced to represent
the porosity and a deterministic ODE model is derived to
describe the time evolution of film SOR. The model parameters
are estimated on the basis of data obtained from the kMC
simulator of the deposition process using least-square methods.
The developed dynamic models are used as the basis for the
design of a model predictive control algorithm that includes
penalty on the deviation of surface roughness square and film
SOR from their respective set-point values. Simulation results
demonstrate the applicability and effectiveness of the proposed
modeling and control approach in the context of the deposition
process under consideration.

2. PROCESS DESCRIPTION AND MODELING

2.1 On-lattice kinetic Monte Carlo model of film growth

The thin film growth process considered in this work includes
two microscopic processes: an adsorption process, in which
particles are incorporated into the film from the gas phase, and a
migration process, in which surface particles move to adjacent
sites (Wang and Clancy (1998); Levine and Clancy (2000);
Yang et al. (1997)). Specifically, the film growth model used
in this work is an on-lattice kMC model in which all particles
occupy discrete lattice sites. The on-lattice kMC model is valid
for temperatures T < 0.5Tm, where Tm is the melting point of
the crystal. At high temperatures (T � Tm), the particles cannot
be assumed to be constrained on the lattice sites and the on-
lattice model is not valid. In this work, a triangular lattice is
selected to represent the crystalline structure of the film, as
shown in Fig.1. All particles are modeled as identical hard disks
and the centers of the particles deposited on the film are located
on the lattice sites. The diameter of the particles equals the
distance between two neighboring sites. The width of the lattice
is fixed so that the lattice contains a fixed number of sites in
the lateral direction. The new particles are always deposited
vertically from the top side of the lattice where the gas phase
is located; see Fig.1. Particle deposition results in film growth
in the direction normal to the lateral direction. The direction
normal to the lateral direction is thus designated as the growth
direction. The number of sites in the lateral direction is defined
as the lattice size and is denoted by L. The lattice parameter, a,
which is defined as the distance between two neighboring sites
and equals the diameter of a particle (all particles have the same
diameter), determines the lateral extent of the lattice, La.

The number of nearest neighbors of a site ranges from zero to
six, the coordination number of the triangular lattice. A site with
no nearest neighbors indicates an unadsorbed particle in the gas
phase (i.e., a particle which has not been deposited on the film
yet). A particle with six nearest neighbors is associated with an
interior particle that is fully surrounded by other particles and
cannot migrate. A particle with two to five nearest neighbors
is possible to diffuse to an unoccupied neighboring site with
a probability that depends on its local environment. In the
triangular lattice, a particle with only one nearest neighbor
is considered unstable and is subject to instantaneous surface
relaxation.
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Fig. 1. Thin film growth process on a triangular lattice.

In the simulation, a bottom layer in the lattice is initially set
to be fully packed and fixed, as shown in Fig.1. There are no
vacancies in this layer and the particles in this layer cannot
migrate. This layer acts as the substrate for the deposition
and is not counted in the computation of the number of the
deposited particles, i.e., this fixed layer does not influence the
film surface roughness and porosity (see Section 2.2 below). All
microscopic processes (Monte Carlo events) are assumed to be
Poisson processes. These Monte Carlo events occur randomly
with probabilities proportional to their respective rates. The
events are executed instantaneously upon selection and the
state of the lattice remains unchanged between two consecutive
events. The specific rules used to carry out the adsorption and
migration processes and their simulation are discussed in detail
in Hu et al. (2009b) and are not presented here due to space
limitations.

2.2 Definitions of surface roughness and site occupancy ratio

Utilizing the continuous-time Monte Carlo algorithm, simula-
tions of the kMC model of a porous silicon thin film growth
process can be carried out. Snapshots of film microstructure,
i.e., the configurations of particles within the triangular lattice,
are obtained from the kMC model at various time instants
during process evolution. To quantitatively evaluate the thin
film microstructure, two variables, surface roughness and film
porosity, are introduced in this subsection.

Surface roughness, which measures the texture of thin film
surface, is represented by the root mean square (RMS) of the
surface height profile of the thin film. Determination of surface
height profile is slightly different in the triangular lattice model
compared to a SOS model. In the SOS model, the surface of thin
film is naturally described by the positions of the top particles of
each column. In the triangular lattice model, however, due to the
existence of vacancies and overhangs, the definition of film sur-
face needs further clarification. Specifically, taking into account
practical considerations of surface roughness measurements,
the surface height profile of a triangular lattice model is defined
based on the particles that can be reached from abobe in the
vertical direction, as shown in Fig.2. In this definition, a particle
is considered as a surface particle only if it is not blocked by the
particles in both neighboring columns. Therefore, the surface
height profile of a porous thin film is the line that connects
the sites that are occupied by the surface particles. With this
definition, the surface height profile can be treated as a function
of the spatial coordinate. Surface roughness, as a measurement
of the surface texture, is defined as the standard deviation of the
surface height profile from its average height. The definition
expression of surface roughness is given later in Section 3.1.
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Fig. 2. Definition of surface height profile. A surface particle is
a particle that is not blocked by particles from both of its
neighboring columns in the vertical direction.

� ���
���
�
����	��

Fig. 3. Illustration of the definition of film SOR of Eq.1.

In addition to film surface roughness, the film site occupancy
ratio (SOR) is introduced to represent the extent of the porosity
inside the thin film. The mathematical expression of film SOR
is defined as follows:

ρ =
N

LH
(1)

where ρ denotes the film SOR, N is the total number of
deposited particles on the lattice, L is the lattice size, and H
denotes the number of deposited layers. Note that the deposited
layers are the layers that contain only deposited particles and
do not include the initial substrate layers. The variables in the
definition expression of Eq.1 can be found in Fig.3. Since each
layer contains L sites, the total number of sites in the film that
can be contained within the H layers is LH. Thus, film SOR is
the ratio of the occupied lattice sites, N, over the total number of
available sites, LH. Film SOR ranges from 0 to 1. Specifically,
ρ = 1 denotes a fully occupied film with a flat surface. The
value of zero is assigned to ρ at the beginning of the deposition
process since there are no particles deposited on the lattice.

3. DYNAMIC MODEL CONSTRUCTION AND
PARAMETER ESTIMATION

3.1 Edwards-Wilkinson-type equation of surface height
An Edwards-Wilkinson (EW)-type equation can be used to
describe the surface height evolution in many microscopic pro-
cesses that involve thermal balance between adsorption (de-
position) and migration (diffusion). In this work, an EW-type
equation is chosen to describe the dynamics of the fluctuation
of surface :

∂h
∂ t

= rh +ν
∂ 2h
∂x2

+ξ (x, t) (2)

subject to PBCs:

h(−π, t) = h(π, t),
∂h
∂x

(−π, t) =
∂h
∂x

(π, t) (3)

and the initial condition:

h(x,0) = h0(x) (4)

where x ∈ [−π,π] is the spatial coordinate, t is the time, rh
and ν are the model parameters, and ξ (x, t) is a Gaussian
white noise with the following expressions for its mean and
covariance:

〈ξ (x, t)〉 = 0〈
ξ (x, t)ξ (x′, t ′)

〉
= σ2δ (x− x′)δ (t − t ′) (5)

where σ2 is a parameter which measures the intensity of the
Gaussian white noise and δ (·) denotes the standard Dirac delta
function.

To proceed with model parameter estimation and control de-
sign, a stochastic ODE approximation of Eq.2 is first derived
using Galerkin’s method. Consider the eigenvalue problem of
the linear operator of Eq.2, which takes the form:

Aφ̄n(x) = ν
d2φ̄n(x)

dx2
= λnφ̄n(x)

φ̄n(−π) = φ̄n(π),
dφ̄n

dx
(−π) =

dφ̄n

dx
(π)

(6)

where λn denotes an eigenvalue and φ̄n denotes an eigenfunc-
tion. A direct computation of the solution of the above eigen-

value problem yields λ0 = 0 with ψ0 = 1/
√

2π , and λn =
−νn2 (λn is an eigenvalue of multiplicity two) with eigen-
functions φn = (1/

√
π)sin(nx) and ψn = (1/

√
π)cos(nx) for

n = 1, · · · ,∞. Note that the φ̄n in Eq.6 denotes either φn or ψn.
For fixed positive value of ν , all eigenvalues (except the zero-th
eigenvalue) are negative and the distance between two consec-
utive eigenvalues (i.e. λn and λn+1) increases as n increases.

To this end, the solution of Eq.2 is expanded in an infinite series
in terms of the eigenfunctions as follows:

h(x, t) =
∞

∑
n=1

αn(t)φn(x)+
∞

∑
n=0

βn(t)ψn(x) (7)

where αn(t), βn(t) are time-varying coefficients. Substituting
the above expansion for the solution, h(x, t), into Eq.2 and tak-
ing the inner product with the adjoint eigenfunctions, φ ∗

n (x) =
(1/

√
π)sin(nx) and ψ∗

n (x) = (1/
√

π)cos(nx), the following
system of infinite stochastic ODEs is obtained:

dβ0

dt
=
√

2πrh +ξ 0
β (t)

dαn

dt
= λnαn +ξ n

α(t),
dβn

dt
= λnβn +ξ n

β (t),n = 1, . . . ,∞
(8)

where

ξ n
α(t) =

∫ π

−π
ξ (x, t)φ ∗

n (x)dx, ξ n
β (t) =

∫ π

−π
ξ (x, t)ψ∗

n (x)dx.

(9)

The covariances of ξ n
α(t) and ξ n

β (t) can be computed as follows:

〈ξ n
α(t)ξ n

α(t ′)〉 = σ2δ (t − t ′) and
〈

ξ n
β (t)ξ n

β (t ′)
〉

= σ2δ (t − t ′).

Since the stochastic ODE system is linear, the analytical solu-
tion of state variance can be obtained from a direct computation
as follows:〈

α2
n (t)

〉
=

σ 2

2νn2
+

(〈
α2

n (t0)
〉− σ2

2νn2

)
e−2νn2(t−t0)

〈
β 2

n (t)
〉

=
σ 2

2νn2
+

(〈
β 2

n (t0)
〉− σ 2

2νn2

)
e−2νn2(t−t0)

n = 1,2, . . . ,∞

(10)



where
〈
α2

n (t0)
〉

and
〈
β 2

n (t0)
〉

are the state variances at time t0.
The analytical solution of state variance of Eq.10 will be used
in the parameter estimation and the MPC design.

When the dynamic model of surface height profile is deter-
mined, surface roughness of the thin film is defined as the
standard deviation of the surface height profile from its average
height and is computed as follows:

r(t) =
√

1

2π

∫ π

−π
[h(x, t)− h̄(t)]2dx (11)

where h̄(t) =
1

2π

∫ π

−π
h(x, t)dx is the averaged surface height.

According to Eq.7, we have h̄(t) = β0(t)ψ0. Therefore,
〈
r2(t)

〉
can be rewritten in terms of

〈
α2

n (t)
〉

and
〈
β 2

n (t)
〉

as follows:〈
r2(t)

〉
=

1

2π

〈∫ π

−π
(h(x, t)− h̄(t))2dx

〉

=
1

2π

〈
∞

∑
i=1

(α2
i (t)+β 2

i (t))

〉
=

1

2π

∞

∑
i=1

[〈
α2

i (t)
〉
+

〈
β 2

i (t)
〉]
(12)

where h̄ =
1

2π

∫ π

−π
h(x, t)dx = β0(t)ψ0 is the average of surface

height. Thus, Eq.12 provides a direct link between the state
variance of the infinite stochastic ODEs of Eq.8 and the ex-
pected surface roughness of the thin film. Note that the model
parameter rh does not appear in the expression of surface rough-
ness, since only the zeroth state, β0, is affected by rh but this
state is not included in the computation of the expected surface
roughness square of Eq.12.

3.2 Deterministic dynamic model of film site occupancy ratio
Since film porosity is another control objective, a dynamic
model is necessary in the MPC formulation to describe the
evolution of film porosity, which is represented by the film SOR
of Eq.1. The dynamics of the expected value of the film SOR
evolution are approximately described by a linear first-order
deterministic ODE as follows:

τ
d 〈ρ(t)〉

dt
= ρss −〈ρ(t)〉 (13)

where t is the time, τ is the time constant and ρss is the steady-
state value of the film SOR. The deterministic ODE system of
Eq.13 is subject to the following initial condition:

〈ρ(t0)〉 = ρ0 (14)

where t0 is the initial time and ρ0 is the initial value of the film
SOR. Note that ρ0 is a deterministic variable, since ρ0 refers to
the film SOR at t = t0. From Eqs.13 and 14, it follows that

〈ρ(t)〉 = ρss +(ρ0 −ρss)e−(t−t0)/τ . (15)

3.3 Parameter estimation
Referring to the EW equation of Eq.2 and the deterministic
ODE model of Eq.13, there are several model parameters, ν ,
σ2, ρss and τ , that need to be determined as functions of the
substrate temperature. These parameters describe the dynamics
of surface height and of film SOR and can be estimated by
comparing the predicted evolution profiles from the dynamic
models of Eqs.2 and 13 and the ones from the kMC simulation
of the deposition process in a least-square sense (Hu et al.
(2009a,b)).

Since surface roughness is a control objective, we choose the
expected surface roughness square of Eq.12 as the output for

the parameter estimation of the EW equation of Eq.2. Thus, the
model coefficients, ν and σ2, can be obtained by solving the
minimization problem as follows:

min
ν ,σ2

n1

∑
i=1

[〈
r2(t)

〉− 1

2π

∞

∑
i=1

(〈
α2

i (t)
〉
+

〈
β 2

i (t)
〉)]2

(16)

where n1 is the number of the data samplings of surface height
profile and surface roughness from the kMC simulations. The
predictions of model state variance,

〈
α2

i (t)
〉

and
〈
β 2

i (t)
〉
, can

be solved from the analytical solution of Eq.10.

With respect to the parameters of the equation for film porosity,
ρss and τ can be estimated similarly from the solutions of Eq.15
as follows:

min
ρss,τ

n2

∑
i=1

[
〈ρ(ti)〉−

(
ρss +(ρ0 −ρss)e−(t−t0)/τ

)]2
(17)

where n2 is the number of the data samplings of film SOR from
the kMC simulations. We note that since the dynamic models of
film surface height and film SOR may have different dynamics,
different numbers of data samplings at different time instants
may be used to estimate the parameters of the dynamic models.

The data used for the parameter estimation are obtained from
the open-loop kMC simulation of the thin film growth process.
The process parameters, i.e., the substrate temperature and the
adsorption rate, are fixed during each open-loop simulation.
The predictions from the dynamic models with the estimated
parameters are close to the open-loop simulation profiles. De-
tailed data and plots can be found in Hu et al. (2009b).

The parameters that are estimated from fixed operating condi-
tions are suitable for the feedback control design in this work.
This is because the control input in the MPC formulation is
piecewise, i.e., the manipulated substrate temperature remains
constant between two consecutive sampling times, and thus, the
dynamics of the microscopic process can be predicted from the
dynamic models with estimated parameters. The dependence
of the model parameters on substrate temperature is used in
the formulation of the model predictive controller in the next
section. Thus, parameter estimation from open-loop kMC sim-
ulation results of the thin film growth process for a variety of
operation conditions is performed to obtain the dependence of
the model coefficients on substrate temperature. In this work,
the deposition rate for all simulations is fixed at 1 layer/s. The
range of T is between 300 K and 800 K, which is from room
temperature to the upper limit of the allowable temperature for
a valid on-lattice kMC model of silicon film. The dependence
of the model parameters on the substrate temperature can be
found in Hu et al. (2009b).

4. MODEL PREDICTIVE CONTROL DESIGN

We consider the problem of regulation of surface roughness
and of film SOR to desired levels within a model predictive
control framework. State feedback control is considered in this
work, i.e., the surface height profile and the value of film SOR
are assumed to be available to the controller. Real-time film
roughness and SOR can be estimated from in-situ thin film
thickness measurements (Buzea and Robbie, 2005) in combi-
nation with off-line film porosity measurements. Since surface
roughness and film SOR are stochastic variables, the expected
values,

〈
r(t)2

〉
and 〈ρ〉, are chosen as the control objectives.

The substrate temperature is used as the manipulated input and
the deposition rate is fixed at a certain value, W0, during the
entire closed-loop simulation. To account for a number of prac-



tical considerations, several constraints are added to the control
problem. First, there is a constraint on the range of variation
of the substrate temperature. This constraint ensures validity of
the on-lattice kMC model. Another constraint is imposed on
the rate of change of the substrate temperature to account for
actuator limitations. The control action at a time t is obtained
by solving a finite-horizon optimal control problem. The cost
function in the optimal control problem includes penalty on the
deviation of

〈
r2

〉
and 〈ρ〉 from their respective set-point values.

Different weighting factors are assigned to the penalties of the
surface roughness and of the film SOR. Surface roughness and
film SOR have very different magnitudes, (

〈
r2

〉
ranges from 1

to 102 and 〈ρ〉 ranges from 0 to 1). Therefore, relative devia-
tions are used in the formulation of the cost function to make
the magnitude of the two terms comparable. The optimization
problem is subject to the dynamics of the surface height of Eq.2
and of the film SOR of Eq.13. The optimal temperature pro-
file is calculated by solving a finite-dimensional optimization
problem in a receding horizon fashion. Specifically, the MPC
problem is formulated as follows:

min
T1,...,Ti,...,Tp

J =
p

∑
i=1

{
qr2,i

[
(r2

set −
〈
r2(ti)

〉
)/r2

set
]2

+qρ,i [(ρset −〈ρ(ti)〉)/ρset ]
2
}

subject to

∂h
∂ t

= rh +ν
∂ 2h
∂x2

+ξ (x, t),τ
d 〈ρ(t)〉

dt
= ρss −〈ρ(t)〉

Tmin < Ti < Tmax, |(Ti+1 −Ti)/Δ| ≤ LT
i = 1,2, . . . , p

(18)

where t is the current time, Δ is the sampling time, p is
the number of prediction steps, pΔ is the specified prediction
horizon, ti, i = 1, 2, . . . , p, is the time of the ith prediction step
(ti = t + iΔ), respectively, Ti, i = 1, 2, . . . , p, is the substrate
temperature at the ith step (Ti = T (t + iΔ)), respectively, W0

is the fixed deposition rate, qr2,i and qρ,i, i = 1, 2, . . . , p, are

the weighting penalty factors for the deviations of
〈
r2

〉
and

〈ρ〉 from their respective set-points at the ith prediction step,
Tmin and Tmax are the lower and upper bounds on the substrate
temperature, respectively, and LT is the limit on the rate of
change of the substrate temperature.

The optimal set of control actions, (T1, T2, . . . , Tp), is obtained
from the solution of the multi-variable optimization problem
of Eq.18, and only the first value of the manipulated input
trajectory, T1, is applied to the deposition process during the
time interval (t, t + Δ). At time t + Δ, a new measurement of ρ
and h is received and the MPC problem of Eq.18 is solved for
the next control input trajectory.

The MPC formulation proposed in Eq.18 is developed on the
basis of the EW equation of surface height and the deterministic
ODE model of the film SOR. The EW equation, which is a
distributed parameter dynamic model, contains infinite dimen-
sional stochastic states. Therefore, it leads to a model predictive
controller of infinite order that cannot be realized in practice
(i.e., the practical implementation of such a control algorithm
will require the computation of infinite sums which cannot be
done by a computer). To this end, a finite dimensional approx-
imation of the EW equation of order 2m, derived using modal
decomposition, is used in the simulations below.

5. SIMULATION RESULTS

In this section, the model predictive controller is applied to the
kMC model of the thin film growth process described in Section

2. The value of the substrate temperature is obtained from the
solution of the MPC problem at each sampling time and is
applied to the closed-loop system until the next sampling time.
The optimization problem is solved using a local constrained
minimization algorithm using a broad set of initial guesses.

The constraint on the rate of change of the substrate temperature
is imposed onto the optimization problem, which is realized in
the optimization process in the following way:∣∣∣∣Ti+1 −Ti

Δ

∣∣∣∣ ≤ LT ⇒ Ti −LT Δ ≤ Ti+1 ≤ Ti +LT Δ

i = 1,2, . . . , p.
(19)

The desired values (set-point values) in the closed-loop sim-
ulations are r2

set = 10.0 and ρset = 0.95. The order of finite-
dimensional approximation of the EW equation in the MPC
formulation is m = 20. The deposition rate is fixed at 1 layer/s
and initial temperature of 600 K. The variation of temperature
is from 400 K to 700 K. The maximum of change of the temper-
ature is LT = 10 K/s. The sampling time is fixed at Δ = 1 s. The
number of prediction steps is set to be p = 5. The simulation
duration is determined on the basis of a desired film thickness
and the fixed adsorption rate and is chosen as 1000 s for the
closed-loop simulations in this work. All expected values are
obtained from 1000 independent simulation runs.

Closed-loop simulations of separately regulating film surface
roughness and porosity are first carried out. In these control
problems, the control objective is to only regulate one of the
control variables, i.e., either surface roughness or film SOR, to a
desired level. The cost functions of these problems contain only
penalty on the error either of the expected surface roughness
square, or of the expected film SOR, from their set-point
values. The corresponding MPC formulations can be realized
by assigning different values to the penalty weighting factors,
qr2,i and qρ,i.

In the roughness-only control problem, the weighting fac-
tors take the following values: qr2,i = 1 and qρ,i = 0, i =
1,2, . . . , p. Fig.4 shows the closed-loop simulation results of the
roughness-only control problem. From Fig.4, we can see that
the expected surface roughness square is successfully regulated
at the desire level, 10. Since no penalty is included on the error
of the expected film SOR, the final value of expected film SOR
at the end of the simulation, t = 1000 s, is 0.988, which is far
from the desired film SOR, 0.95.
In the SOR-only control problem, the weighting factors are
assigned as: qr2,i = 0 and qρ,i = 1, i = 1,2, . . . , p. Fig.5 shows
the closed-loop simulation results of the SOR-only control
problem. Similar to the results of the roughness-only control
problem, the desired value of expected film SOR, 0.95, is
approached at large times. However, since the error from the
expected surface roughness square is not considered in the cost
function,

〈
r2

〉
reaches a very high level around 125 at the end

of the simulation.

Finally, closed-loop simulations of simultaneous regulation of
surface roughness and film SOR are carried out by assigning
non-zero values to both penalty weighting factors. Specifically,
qr2,1 = qr2,2 = · · · = qr2,p = 1 and qρ,1 = qρ,2 = · · · = qρ,p =
qSOR and qSOR varies from 1 to 104. Since substrate temperature
is the only manipulated input, the desired-values of r2

set and ρset
cannot be achieved simultaneously. With different assignments
of penalty weighting factors, the MPC evaluates and strikes a
balance between the two set-points. Fig.6 shows the expected
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Fig. 4. Profiles of the expected values of surface roughness
square (solid line) and of the film SOR (dash-dotted line)
under closed-loop operations with cost function including
only penalty on surface roughness.
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Fig. 5. Profiles of the expected values of surface roughness
square (solid line) and of the film SOR (dash-dotted line)
under closed-loop operation with cost function including
only penalty on the film SOR.
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Fig. 6. Profiles of the expected values of surface roughness
square (solid line) and of the film SOR (dash-dotted line)
at the end of the closed-loop simulations (t = 1000 s) with
the following penalty weighting factors: qr2,i fixed at 1 for
all i and for different values of qSOR.

values of r2
set and ρset at the end of closed-loop simulations

of the simultaneous control problem with respect to different
weighting factors. It is clear from Fig.6 that as the weighting
on expected film SOR increases, the expected film SOR ap-
proaches its set-point value of 0.95, while the expected surface
roughness square deviates from its set-point value of 10.
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