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(e-mail: {ASchaum,JMorenoP,JDiazS}@ii.unam.mx).

∗∗ Departamento de Procesos e Hidraulica, Universidad Autónoma
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Abstract: The problem of controlling a (possibly open-loop unstable) continuous exothermic
reactor with temperature measurements and manipulation of reactant feed and heat exchange
rates is addressed within a passivity-dissipativity framework. The combination of a nonlinear
passive state-feedback (SF) controller with a dissipative observer yields the dissipative output-
feedback (OF) controller closed-loop stability conditions with: (i) the identification of the
underlying gain-behavior interplay, and (ii) simple tuning guidelines. The approach is tested
through numerical simulations, with a representative worst-case example: an exothermic reactor
with Langmuir-Hinshelwood nonmonotonic kinetics, which must be regulated about an open-
loop unstable steady-state which is not observable.

Keywords: Chemical Reactor Models, Output-Feedback Control, Dissipativity, Observability.

1. INTRODUCTION

Continuous exothermic chemical reactors are complex non-
linear dynamical systems with nonlinear behavior, asym-
metric MIMO coupling, parametric sensitivity, multiplic-
ity, hysteresis, bifurcation, and limit cycling. Most of the
industrial reactors are controlled by combining conven-
tional (ratio, and cascade) feedforward and (P, PI and
PID) feedback linear control component with supervisory
or advisory material-energy balance and optimizing con-
trollers (Shinskey [1988], Gonzalez and Alvarez [2005]).
The process design or redesign to meet tighter safety,
productivity, quality and environmental requirements mo-
tivates the development of more capable and systematic
reactor control designs. Advanced nonlinear control stud-
ies have been performed in the chemical process systems
engineering field, the related state of the art can be seen
elsewhere, and here it suffices to mention that: (i) with
a few exceptions (Alvarez et al. [1991], Viel and Jadot
[1997], Antonelli and Astolfi [2003]) most of the studies
lack rigorous stability and performance assessments, and
(ii) only the optimality-based MPC (which stems from
industrial control developments) has reached the stage
of acceptance for plant scale testing or implementation
(Eaton and Rawlings [1990]). Recently, in the context
of polymer reactor (Gonzalez and Alvarez [2005], Diaz-
Salgado et al. [2007]) and distillation column output-
feedback control studies (Castellanos-Sahagun and Al-
varez [2006]) with constructive nonlinear control, connec-
tions between PI, inventory and MP control designs have
been identified, and the closed-loop stability assessment
and tuning aspects have been handled either with con-
ceptual arguments or with the small gain theorem. The
dissipativity notion offers a unifying framework to handle

design-oriented tools in constructive control (Sepulchre
et al. [1997]) according to fundamental connections be-
tween optimality, passivity, robustness and dissipativity,
with emphasis on interlaced observer-control designs and
rigorous stability assessments. The dissipativity ideas (i)
were originally developed in the context of state-feedback
(SF) control problems (Willems [1972]), (ii) have been
extended to design of nonlinear observers (Moreno [2005]),
and observer-control separation (Moreno [2006]), and (iii)
enable the tackling of the difficult problem of estimating
and controlling reactors with non-monotonic kinetics, and
lack of observability at maximum reaction rate (Schaum
et al. [2008]).

The preceding considerations motivate the present reactor
output-feedback (OF) control study, where the problem
of controlling a continuous exothermic (possibly open-loop
unstable) reactor with either monotonic or non-monotonic
kinetics, temperature measurements, and manipulation of
reactant and heat exchange rates is addresed within a
combined passivity-dissipativity approach, including (i)
the derivation of rigorous closed-loop stability conditions
coupled with easy-to-apply tuning guidelines, and (ii) the
identification of the underlying interplay between regula-
tion speed, robustness, and observer-control gains. The
proposed approach is tested, through numerical simula-
tions, with an exothermic reactor with nonmonotonic ki-
netics, open-loop instability, and lack of observability.

In our previous study (Schaum et al. [2008]) the reactor
problem was adressed by ad hoc combining a passive con-
troller with a dissipative observer, and drawing closed-loop
stability conditions with the small gain theorem. How-
ever, the passivity (controller) and dissipativity (observer)
approaches were methodologically disconnected, and the



stability characterization was not reflected in a practical
tuning. In the present work: (i) the controller-observer de-
sign and the closed-loop stability assessment are performed
with a united framework, and (ii) a simple tuning scheme
that is clearly related with closed-loop functioning features
is obtained .

2. CONTROL PROBLEM

Consider a continuous chemical reactor where a reactant
is converted into product via an exothermic reaction,
heat being removed through a diathermal wall with a
cooling jacket. Assuming the volume (V ) and the jacket
temperature (Tc) are controlled with fast (conventional,
linear decentralized) feedback loops which manipulate the
exit and coolant flowrates (Shinskey [1988]) the reactor
model is given by the dynamic mass-energy balance:

ċ = −r(c, T, π) + θ(ce − c), c(0) = c0
Ṫ = βr(c, T, π) + θ(Te − T )− η(T − Tc), T (0) = T0

(1)

where ((̄·) is the steady-state (SS) value of (·))

c = C/C0, θ = q/V, β = (−∆H)C0/(V ρmcp)
η = (UAU )/(V ρcp), p = (p′a, π

′)′, pa = (ce, β, η)
′

r(c̄, T̄ ) + θ(c̄e − c̄) = 0,
βr(c̄, T̄ , π) + θ(T̄e − T̄ ) − η(T̄ − T̄c) = 0

The reactant dimensionless concentration c, and the re-
actor temperature T are the states, the dilution rate q
and the jacket temperature Tc are control inputs, r is
the nonlinear reaction rate function, π is its parameter
vector, θ is the inverse residence time, η is the heat transfer
coefficient-to-capacity quotient, β is the adiabatic tem-
perature rise, the feed concentration ce and temperature
Te are the exogenous inputs, C (or C0) is the reactant
(or pure reactant) concentration, q is the feed flowrate,
−∆H is the heat of reaction, ρm (or cp) is the reacting
mixture density (or specific heat capacity), U (or AU ) is
the heat transfer coefficient (or area), and p is the model
parameter. The temperatures (T and Tc) are measured,
and the concentrations (ce and c) are not. In compact
vector notation the reactor model (1) is given by

ẋ = f [x, d(t), u, p] , x(0) = x0, y = Cx, z = x (2)

x = [c, T ]′ ∈ X = [0, 1]× (T−, T+) ⊂ R
2, p = (p′a, π

′)′

f [x̄, d̄, ū, p] = 0, d = [ce, Te]
′, Te = ye − ỹe, C = [0, 1],

u = (θ, Tc), T
− = min(Te, Tc), T

+ = max(Te, Tc) + β

x is the state, u (or d) is the control (or exogenous, possibly
time-varying) input, and y (or z) is the measured (or
regulated) output. X is an invariant set, meaning that all
state motions born in X stay in X (Alvarez et al. [1991]).
Since the reactor model (1) contains constant (p̃) and
time-varying reactor (or feed) temperature measurement

ỹ (or ỹe), and dilution rate (θ̃ (or coolant temperature

(T̃c)) actuator bounded errors, the actual reactor system
dynamics are given by

ẋ = f [x, d+ d̃(t), u + ũ(t), p+ p̃],
x(0) = x0, y = Cx + ỹ(t), z = x

(3)

p̃ = (p̃a, π̃), d̃(t) = [c̃e(t), ỹe(t)]
′, ũ(t) = [θ̃(t), T̃c(t)]

′,

ỹ(t) = y − T |p̃| ≤ δp, ||d̃(t)|| ≤ δd, ||ũ(t)|| ≤ δu,
||ỹ(t)|| ≤ δy, ||(.)(t)|| = sup

t∈[0,∞)

|(.)(t)|,

where δp, δd, δu and δy are the error sizes, and |(·)| is
the Euclidian norm of the vector (·). Our control problem

consists in designing, on the basis of the reactor model (1)
(with parameter approximation p) and flow and tempera-
ture measurement, an observer-based dynamical output-
feedback (OF) controller to regulate the concentration-
temperature pair z, about a (possibly opn-loop unstable
and unobservable) SS by manipulating the dilution rate-
cooling temperature pair u.

3. OUTPUT-FEEDBACK (OF) CONTROLLER

The reactor dynamics represent mass and energy accu-
mulation due to advective, reaction and heat exchange
input/output mechanisms. From the abstract energy per-
spective associated with the dissipativity control (Willems
[1972], Sepulchre et al. [1997]) and estimation (Moreno
[2005]) framework, our OF control problem amounts to
designing the observer-control pair in such a way that
the dissipation rate is negative, and robust, and implies
nonwasteful control action.

In deviation form referred to the SS regime, the reactor
system (1) is written as follows

ė = fe[e, ũe(t)], e(0) = e0, e = x− x̄,

ũe = (p̃′, d̃′, ũ′)′, fe(0, 0) = 0.
(4)

According to the definition of nonlocal input-to-state sta-
bility (ISS) (Freeman and Kokotovic [1996]), the SS e =
0 is said to be practically uniformly (P) stable if an
admissible disturbance size (δu) produces an admissible
state deviation size (εx): given (δu, εx) there is a KL-
class (increasing-decreasing) function β and a K-class (in-
creasing) γ so that the state responses of system (4) are
bounded as follows

|e0| ≤ δ0, |ũe(t)| ≤ δu, (5)

⇒|e(t)| ≤ τ(|e0|, t) + α(||ũe(t)||) ≤ τ(δ0, 0) + α(δu) = εx

where τ (or α) bounds the transient (or asymptotic) re-
sponse. The (necessary and sufficient) Lyapunov charac-
terization of the ISS property is given by

α1(|e|) ≤ V (e) ≤ α2(|e|), V̇ = −α3(|e|) + α4(|ũe|) (6)

where V is a positive definite radially unbounded function
and α1, · · · , α4 are K-class functions.

3.1 Passive state-feedback (SF) controller

The notion of passivity plays a key role in the design of
robust nonlinear SF controllers (Khalil [2002]), with: (i)
fundamental connections between optimality, robustness
and passivity, and (ii) means to analytically construct
optimal controllers via inverse optimality. An optimal SF
controller is passive and underlien by a minimum phase
(MP) system (with relative degree less or equal than one).
A nonlinear system is passive if it is dissipative (Willems
[1972]) with storage function-supply rate pair and MP.

The reactor (1) is feedback-passive (after input coordinate
change) with respect to the input-output pair (u, z) and
the storage function V = eT e if and only if the reactor
relative degree equal to one condition is met, i.e. (Schaum
et al. [2008]):

rd(u, z) = (1, 1), z = x ⇔ ce 6= c , η 6= 0 (7)

Thus, the state-input coordinate change e = x − x̄, v =
f(x, d, u) takes the reactor into the passive normal form
(8)



ė = v, e(0) = e0, ψ = e;V = eT e, V̇ = 2ψT v, (8)

with storage function V and input-output pair (v, ψ). The
SF controller (9) yields the closed-loop (decoupled, stable,
and dissipative) dynamics (10),

v=f(e, d, u)=−Ke,K=diag(kc, kT ) ⇒ u=µ(x, d, u) (9)

ė=−Ke, e(0)=e0, ψ=e;V= eTe, V̇=−2eTKe < 0. (10)

In original coordinates, the nonlinear passive SF controller
(9) is given by:

θ = [r(c, T ) − kc(c− c̄)]/(ce − c),
Tc = T − [βr(c, T ) + θ(Te − T ) + kT (T − T̄ )]/η

(11)

This controller with state, parameter, and measurement-
actuator errors (ǫ, d̃, p̃), yields the closed-loop dynamics
(13) with dissipation (14)

u = µ(x+ ǫ, d+ d̃, p+ p̃) := [µθ, µTc
]T (12)

ė = −Ke+f̃
[

e; ǫ, d̃(t), p̃
]

, e(0)=e0,K= diag(kc, kT ) (13)

V̇ ≤ −2 min{kc, kT }V + e′f̃
[

e; ǫ, d̃(t), p̃
]

(14)

f̃
(

e; ǫ, d̃, p̃
)

= f
[

x̄+ e, d̄+ d̃, µ
(

x+ ǫ, d̄+ d̃, p+ p̃
)

, p
]

e = (ec, eT )′ = x− x̄, f̃ (e; 0, 0, 0) = 0.

Since the reactor has trivially stable nominal zero-
dynamics e = 0, the errorless closed-loop is asymptoti-
cally stable. From the Lipschitz continuity of (f, µ) the
system P-stability follows (Khalil [2002]), with a suitable
tradeoff between the initial state (δ0), parameter (δp),
input (δd and δx̃) and state excursion (εx) sizes, depending
on the choice of the control gain pair (kc, kT ). The P-
stable closed-loop reactor dynamics (13) represents: (i) the
behavior attainable with any robust controller, and (ii)
the recovery target for the OF control design. The related
solvability conditions (7) are generically met by the reactor
class (1) because: (i) c < ce, and (ii) η > 0.

3.2 Dissipative observer

The nonlinear global detectability property of any reactor
motion (Schaum et al. [2008]) suggests the consideration
of a dissipative observer, because (i) its functioning does
not require complete observability (Moreno [2005]), and
(ii) the structure-oriented approach offers a means to
perform the control-estimator design (Section 4). The
reactor dissipative observer is given by (Schaum et al.
[2008])

˙̂c =−r[ĉ−κr(T̂ − y), y, π] + θ(ce − ĉ) −κc(T̂ − y),
·

T̂ = βr[ĉ − κr(T̂ − y), y, π] + θ(Te − T̂ )−

−η(T̂ − Tc) − κT (T̂ − y),

ĉ(0) = ĉ0, T̂ (0) = T̂0,

(15)

where κc (or κT ) is the usual concentration (or temper-
ature) gain, and κr is the gain of an injection in the
concentration argument of the reaction rate. The estima-
tion error dynamics are given by the two-subsystem inter-
connection in Lur’e- Popov form (Khalil [2002], Willems
[1972], Schaum et al. [2008])

[

ε̇c(T )
ε̇T (t)

]

=

[

−θ(t) −κc

0 −λT

] [

εc(T )
εT (t)

]

+

[

1
−β

]

ν

ψ = ζ , ǫc − κrǫT , , λT , θ(t) + η + κT

(16)

ν = −ρ (c, y; ζ) , (17)

with (i) a linear-dynamic advective subsystem (16) with
input ν and output ζ, and (ii) a nonlinear-static kinetic
subsystem (17) with the reaction rate error. Since the
rate r is continuously differentiable, there is a continuous
secant function ϕ so that the estimated minus the actual
rate is conically bounded (18) with the nonlinearity ρ is
encompassed in the conic sector (19)

ρ(c, T ; ζ) , r (c+ ζ, T ) − r(c, T ) = ϕ (c, T ; ζ) ζ, (18)

ζ , ǫc − κrǫT , −k1 (T ) ≤ ϕ (c, T ; ζ) ≤ k2 (T )

− k1 (T ) = min
0≤c≤1

rc(c, T, π) , k2 (T ) = max
0≤c≤1

rc(c, T, π),

(k2ζ − ρ(c, T ; ζ)) (ρ(c, T ; ζ) + k1ζ) ≥ 0 (19)

(Khalil [2002]). Consequently, the static system (17) is
[−1, 1/2(k2 − k1),−k1k2]-dissipative Moreno [2005], and
its dissipation is characterized by the reaction rate slopes:
the slope k1 is positive (or negative) if the reaction
rate is monotonic (or non-monotonic). The observer is
designed in such a way that: (i) the open-loop estimation
error dynamics consist of the feedback interconnection
of two adequatly dissipative (passive) subsystems, and
(ii) the estimator and control dissipativity properties are
structurally compatible. The observer gains κc, κT , κr are
chosen so that the system interconnection (16) - (17) is
dissipative with respect to the estimation storage function

V̂ =
1

2
ǫT ǫ. (20)

The gain pair (κc, κT ) shapes the dissipation of the linear
dynamical subsystem, and the gain κr determines the
interconnection form by setting the output of the linear
system. Convergence conditions for the dissipative open-
loop observer (15) are given in (Schaum et al. [2008]).

3.3 OF controller

The combination of the SF (9) passive nonlinear controller
with the dissipative observer (15) yields the dynamic OF
controller

˙̂c =−r[ĉ−κr(T̂ − y), y, πr] + θ(ce −ĉ)−κc(T̂ − y) ,
·

T̂ = βr[ĉ− κr(T̂ − y), y, πr] + θ(Te − T̂ )−

−η(T̂ − Tc) − κT (T̂ − y),
θ = [r(ĉ, T ) − kc(ĉ− c̄)]/(ce − ĉ),

Tc = T̂ − [βr(ĉ, T ) + θ(Te + T̂ ) + kT (T̂ − T̄ )]/η

(21)

with five adjustable gains: kc and kT for the passive-
dissipative controller, and κc, κT and κr for the observer.

4. CLOSED-LOOP STABILITY AND TUNING

In this section, the closed-loop dynamics are characterized,
yielding: (i) stability conditions, (ii) tuning guidelines,
and (iii) a functioning assessment. The main difficulty
resides in an inherent limitation: the unmeasured output
concentration (c) must be regulated about a steady-state
wich is open-loop unstable and not locally observable.

The application of the OF controller (21) to the actual
reactor (3) yields the closed loop dynamics

ė = −Ke+ ψ(e)ǫ+ φ
(

e, ǫ; d̃(t), p̃
)

,

ǫ̇ = M(t)ǫ+ g̃
(

e, ǫ; d̃(t), p̃
)

,
(22)

M(t) =

[

−θ(t) − ϕ(t) −κc

βϕ(t) −λT

]

, φ (e; 0) = 0



where e (or ǫ) is the regulation (or estimation) error, φ
results from the replacement of ǫT by ỹ in the reaction
rate term of the error function f̃ (13) associated with
the Lyapunov closed-loop stability characterization with
SF control. From the continuity of φ, f̃ , g̃ and the
compactness of their domains their Lipschitz continuity
and boundedness follow.

Given that the separation principle holds for linear but not
for nonlinear systems, the nominal closed-loop stability
(i.e. system (22) with (g̃, φ) = (0, 0)) can be established
as follows: since the regulation error dynamics are indi-
vidually P-stable and the estimation error dynamics are
individually convergent, the reactor(1)-OF controller(21)
interconnection is uniformly asymptotically stable (An-
geli et al. [2004], Moreno [2006]). Motivated by the need
of a more constructive stability criterion in the sense
of practical applicability for gain tuning and behavior
assessment purposes, in the next propositionclosed-loop
stability conditions are given in terms of the five-gain set
(kc, kT , κc, κT , κr) of the proposed OF controller (21).

Proposition 4.1. (Sketch of proof in Appendix A)
The closed-loop reactor (1) with the proposed passive-
dissipative OF controller (22) is P-stable if the con-
troller five-gain set (kc, kT , κc, κT , κr) and the regulation-
estimation error set meet the conditions

(i) θ = µθ(kc) > −k1, (ii) kc > ιc(kc)

(iii) kT > ιT (kc, κc, κr), (iv) κT > ιτ (kc, kT , κT , κc, κr),

with µθ givn in (12) and ιc, ιT , ιτ in Appendix A.

As it can be seen in Appendix A, the combined passivity-
dissipativity approach enables the derivation of the above
stability conditions in a rather straighforward way, by
using the passive control (V ) (13) and dissipative observer

(V̂ ) (20) storage functions and applying Lyapunovs direct
method. In the absence of modeling error the closed-loop
stability becomes asymptotic. Condition (i) is a closed-
loop detectability requirement, Condition (ii) ensures the
stability of the regulation-estimation concentration dy-
namics and imposes lower and upper limits (k−c ≈ 1, k+

c ≈
3) on the composition control gain kc (Gonzalez and
Alvarez [2005]), and Conditions (iii) and (iv) ensure the
stability of the regulation-estimation temperature dynam-
ics and of the entire interconnection. Thus, for κr ≈
1/β, kc ≈ 3θ̄, the preceding inequality conditions can be
met by choosing: (i) kT sufficiently large to dominate
ιT (kc, κc, κr), and (ii) κT sufficiently large to dominate
ιτ (kc, kT , κc, κr).

From the preceding P-stability conditions the conventional-
like tuning guidelines follow: (i) set the gains conserva-
tively at (kc, kT ) ≈ (1, 3), κr ≈ 1β, κc ≈ kc, κT ≈ 10κc,
(ii) increase the T -estimation gain κT until oscillatory
response is obtained at κ+

T , back off and set κT = κ+
T /2-to-

3, (iii) in the same way set kT = k+
T /2-to-3, (iv) carefully

increase kc (sufficiently below k+
c ≈ 4θ̄) until there is no

improvement, and adjust κr. If necessary, repeat steps (ii)
to (iv).

The solvability of the robust OF reactor control problem
is a consequence of: (i) the solvabilities of the OF control
(7) and dissipative closed-loop observer (condition (i) in

Proposition 4.1) problems, and (ii) the adequate choice of
gains according to Proposition 4.1.

5. APPLICATION EXAMPLE

To subject the proposed OF controller to a severe test, let
us consider an extreme case of an industrial situation: the
operation of the continuous reactor (3) with the Langmuir-
Hinshelwood (LH) kinetics model

r(c, T, π) =
cke−( γ

T )

(1 + σc)2
, rc = (c∗, T, π) = 0, c∗ = 1/σ

adapted from a previous (partial open-loop or asymptotic
and full measurement injection) estimation study with
EKF and experimental data for the catalyzed carbon
monoxide oxidation reaction (Baratti et al. [1993]). With
the nominal parameters and inputs

d̄′ = (c̄e, T̄e) = (1, 1), ū′ = (θ̄, T̄c) = (1, 370), p = (p′a, π
′)′,

pa = (c̄e, T̄e, η)
′ = (1, 370, 1), π′ = (k, γ, σ) = (e25, 10000, 3)

the reactor has three steady-states (Diaz-Salgado et al.
[2007]: two stable (extinction and ignition), and one unsta-
ble at maximum concentration rate r∗ = 0.6614 with c∗ =
1/3. The application of the tuning guidelines associated
with Proposition 4.1 yielded: κc = 0.62, κT = 30, κr =
1
50 , kc = 2, kT = 3., and the initial reactor and esti-
mator conditions were set at x0 = [430, 0.28]′, x̂0 =
[425, 0.35]′, about the unstable steady-state with maxi-
mum rate. The relative degree (7) and global detectability
(Schaum et al. [2008]) conditions are well met, because:
ce − c̄ = 2/3 > 0, η = 1 > 0, θ̄ = 1, 1/3 = θ− ≤ θ ≤
θ+ = 3/2. In the spirit of the nonlocal P-stability frame-
work, the closed-loop reactor with nominal SF, nominal
and perturbed OF will be subjected to initial state, and
persistent parameter and exogenous input disturbances.

5.1 Nominal behavior with SF control

The closed-loop reactor behavior with exact model-based
nonlinear passive SF controller (9) is shown in Figure 1.
As expected, the concentration (or temperature) response
is about one half (or quarter) settling residence time
(4/θ = 4), with smooth-coordinated dilution rate-coolant
temperature control action, safely away from saturation.
This agrees with the optimality-based non-wasteful feature
of passive SF controllers (Sepulchre et al. [1997]).

5.2 Nominal behavior with OF control

Initially, the reactor was in the above stated deviated
initial state, and subjected to known constant feed concen-
tration ce = 1 and temperature Te = 370K. The behavior
with exact model-based OF control (21) is shown in Figure
2: (i) the state responses are quite similar to the ones
of the nonlinear SF controller (Figure 1), in spite of a
sluggish concentration estimate response (about 3/4th of
the natural settling time), and (ii) as expected from the
FF component of the OF controller, the control inputs
practically annihilate the effect of the known oscillatory
input, and (iii) the control actions are smooth and efficient,
reasonably away from saturation. Thus, the nominal OF
controller recovers rather well the behavior of its exact
model-based nonlinear SF counterpart. This test verifies
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Fig. 1. Closed-loop nominal behavior with nonlinear SF
controller: input and response (—) , estimate (−−),
and set point (· · · ).

the closed-loop P-stability property with OF dynamic
control, with asymptotic convergence to the prescribed SS.
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Fig. 2. Closed-loop nominal behavior with nonlinear OF
controller: input and response (—) , estimate (−−),
and set point (· · · ).

5.3 Robust behavior with OF control

To test the robustness of the OF controller, the reactor and
the estimator initial states were deviated from the nominal
open-loop unstable and maximum reaction rate steady-
state, and subjected to the oscillatory feed concentration
and temperature inputs

ce =0.99 + 0.01 cos(4πt), Te = 370 + 2 sin(4πt)

The constant errors in the estimation model correspond
to: (i) ĉe(t) = 0.991, (ii) measured feed and reactor tem-

peratures with considerable periodic error T̂e(t)− Te(t) =
y (t) − T (t) = 2 cos(40πt) (four degrees amplitude band
and frequency close to natural resonance mechanism),
and (iii) −1.5, −10, and +3 % errors in the activation
energy (γ), heat transfer coefficient (η), and adiabatic
temperature rise (β), respectively. These errors represents
a worst-case situation to subject the OF controller to a
severe robustness test. The resulting closed-loop behavior
is presented in Figure 3: (i) the reactor is adequately P-
stable with a transient response trend that basically coin-
cides with the one of the errorless model case (see Figure
2), (ii) as expected from the severe modelling errors, the
unmeasured concentration exhibits a significant (≈ −30%)
asymptotic offset, some reaction rate offset (≈ −20%)
and the temperature estimate generated by the linear-
dynamical advective (that is mass-energy balance based)
estimation component yields an offset-less trend response,
and (iii) given the flatness feature of the reaction kinetics
in the isotonic branch of the reaction rate function, in spite
of the −30% concentration trend offset, the reaction rate
trend is only a −20% of its maximum set point value.
Should it be necessary, the optimal rate offset can be
reduced by online kinetic parameter model calibration on
the basis of the occasional or periodic concentration mea-
surements that are usually taken for quality monitoring
purposes.
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Fig. 3. Closed-loop robust behavior with nonlinear OF
controller: input and response (—) , estimate (−−),
and set point (· · · ).

5.4 Concluding Remarks

In agreement with the theoretically drawn methodology,
the proposed passive-dissipative OF controller: (i) recovers
rather well the behavior of its exact model-based nonlinear
SF counterpart, with optimality-based robustness and con-
trol non-wastefulness, and (ii) exhibits P-(robust and non
local) stability with respect to model, and measurement



errors. The closed-loop behavior assessment through sim-
ulations made quantitative the P-stability features (like
transient response speed, overshoot, high frequencies os-
cillatory components, and asymptotic response offsets),
and verified the effectiveness of the gain tuning scheme
obtained from the P-stability characterization.

6. CONCLUSIONS

A robust OF control design methodology for continuous
reactors with temperature measurements has been pre-
sented. Structural (relative degree and global detectabil-
ity) solvability conditions were identified and exploited to
design a nonlinear dynamic dissipative-passive OF con-
troller. The interlaced estimator-control design led to a
robust OF control scheme with: (i) a systematic construc-
tion procedure, and (ii) a rigorous closed-loop (nonlinear-
nonlocal) P-stability criterion, (iii) simple tuning guide-
lines, and (iv) behavior recovery, up to estimator conver-
gence, of the exact model-based FF-SF nonlinear control.
A Langmuir Hinshelwood kinetics (carbon monoxide oxi-
dation) in an open-loop unstable reactor at maximum re-
action rate was considered as a representative case example
with numerical simulations.
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Appendix A. PROOF OF PROPOSITION 4.1

Recall the control (V ) (13) and observer (V̂ ) (20) storages,
set the composed storage W , and write the corresponding
dissipation (Ẇ ) along the closed-loop reactor motion:

W = V + V̂ , Ẇ = −zTQz, z = [ec, ǫc, eT , ǫT ],

Q =







kc −ιc(θr + ϕ) 0 κrϕ(ce − c)/[2(ce − ĉ)]
⋆ θr + ϕ (βϕ)/2 [κc − (κr + β)ϕ]/2
⋆ ⋆ kT 2ι1 + ιr
⋆ ⋆ ⋆ κT + ιr







ιc(kc) =
(θ∗ − [kc − ϕ](ce − c))2

4(ce − ĉ)(θr + ϕ)
, ιr(κr) = µ+ η + κrβϕ

ιT (kc) =
kcβ

2ϕ2

4(θr + ϕ)(kc − ιc(kc))
, ι1 =

(kT − κrβϕ)2

4kT

− ιr

ι2 =
̟(kc, κc, κr

(θr + ϕ)
− ιr, ιτ = max{ι1, ι2},

and ̟ is a class-K function of its arguments. The en-
forcement of the positive defintness property in each of
the four leading principal minors (M1, . . . ,M4), yields
the conditions stated in Proposition 4.1, or equivalently
the positive definitness of Q implying the closed-loop P-
stability property. QED


